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Fundamental limits and non-reciprocal approaches
in non-Hermitian quantum sensing
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Unconventional properties of non-Hermitian systems, such as the existence of exceptional

points, have recently been suggested as a resource for sensing. The impact of noise and

utility in quantum regimes however remains unclear. In this work, we analyze the parametric-

sensing properties of linear coupled-mode systems that are described by effective non-

Hermitian Hamiltonians. Our analysis fully accounts for noise effects in both classical and

quantum regimes, and also fully treats a realistic and optimal measurement protocol based

on coherent driving and homodyne detection. Focusing on two-mode devices, we derive

fundamental bounds on the signal power and signal-to-noise ratio for any such sensor. We

use these to demonstrate that enhanced signal power requires gain, but not necessarily any

proximity to an exceptional point. Further, when noise is included, we show that non-

reciprocity is a powerful resource for sensing: it allows one to exceed the fundamental

bounds constraining any conventional, reciprocal sensor.
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A
mong the most powerful and ubiquitous measurement
techniques is dispersive measurement, where a parameter
of interest shifts the frequency of a resonant electro-

magnetic mode. Dispersive measurement is used in a myriad of
tasks, including in settings where quantum noise and quantum
limits are relevant. Examples range from the sensing of biomo-
lecules and nanoparticles1–3, to the measurement of super-
conducting qubits4,5, quantum optomechanical measurements of
mechanical motion6, and gravitational wave detection7–9.

Given its widespread utility, methods for improving dispersive
measurements are of immense practical and fundamental interest.
In this regard, there has been considerable recent interest in
exploiting non-Hermitian dynamics in linear coupled-mode
systems to enhance dispersive-style measurements10–16. Such
systems are described by an effective non-Hermitian Hamiltonian
matrix, and can exhibit exceptional points (EPs), where as a
function of parameters two eigenvalues of the Hamiltonian coa-
lesce and the matrix becomes defective. Near such EPs, the system
eigenvalues have an extremely strong dependence on small
changes in parameters. In the simplest two-mode realization17,18,
a parameter ϵ, which enters the Hamiltonian linearly is able to
shift eigenmode frequencies by an amount

ffiffiffi

ϵ
p

. For small ϵ, this
suggests an extremely strong response, and the possibility of
enhanced sensing. The first experiments probing this extreme
sensitivity of mode frequencies to parametric changes have
recently been reported19,20.

To date, almost all work on EP-based sensing implicitly
assumes frequency shifts whose magnitude is at least comparable
to mode linewidths. It is, however, also interesting to ask whether
non-Hermitian sensing methods are effective in the common
weak dispersive regime, where frequency shifts are small; this is

the goal of our work. Analyzing this regime involves addressing
several general questions about non-Hermitian sensing. First,
most studies focus exclusively on characterizing parametric shifts
of mode frequencies; the process of how such shifts are measured
is not fully analyzed. This is problematic, as a realistic sensing
protocol may be sensitive to the parametric dependence of both
the eigenvalues and eigenvectors of the system Hamiltonian; this
latter dependence could conceivably counteract the parameter
dependence of the eigenvalues21. Second, the impact of fluctua-
tions has not been discussed. In the coupled-mode settings of
interest, non-Hermitian effective dynamics always corresponds to
dissipative dynamics which will generically be accompanied by
noise. This noise can limit the ability to resolve parameter
changes. This is especially crucial in quantum settings, where one
can never ignore the effects of vacuum noise, especially if the
dissipative dynamics involves amplification processes.

In this paper, we address both these sets of issues. We analyze a
generic linear non-Hermitian sensing setup by mapping it to a
probability-conserving open quantum system (see Fig. 1a). This
allows us to fully account for fluctuation effects in both classical
and quantum regimes of operation. We analyze an optimal
homodyne-based measurement scheme, and derive fundamental
bounds on signal power and signal-to-noise ratio (SNR) that
constrain sensing protocols based on non-Hermitian Hamilto-
nians. Focusing on two-mode sensors, we find that the apparent
improvement of signal power in a system with an EP can be
accomplished by simply adding gain to a more conventional
setup without any EP. Further, when fluctuation effects are
included, we find that the SNR of any reciprocal system (whether
or not it exploits an EP) is constrained by a fundamental bound
involving the average intramode photon number. Surprisingly,
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Fig. 1 General dispersive measurement setup and measurement results. a The setup consists of resonant modes (circles) that interact via a parameter-

dependent non-Hermitian Hamiltonian. Standard analyses only consider the non-Hermitian dynamics of mode amplitude (region inside gray rectangle). In

this work, we instead treat the system as an open quantum system, where non-Hermitian dynamics is generated by coupling to gain/loss baths (red/blue

rectangles) and a readout waveguide. The operators and parameters are defined in Eq. (5). Particularly, the coupling rates to the various baths (dotted

lines) is characterized by matrices Y and Z, and H describes the Hermitian direct couplings between modes (solid lines). A classical drive is injected into the

readout waveguide, which couples only to mode 1. Its reflected field is measured by homodyne detection. A parametric change in the Hamiltonian (e.g.,

coupling between modes 1 and 2 here) changes the state of modes as well as that of the reflected field. b Integrated homodyne current m at a certain

measurement time τ0, as a function of the detuning Δ of the drive frequency from the cavity 1 resonance frequency. The shaded area denotes uncertainty

due to measurement noise, and the two curves are for two values of the parameter to be sensed. A parametric change can be optimally detected by

measuring at a single detuning, e.g., Δ0 (dashed vertical line). c Time variation of integrated homodyne current for a fixed detuning Δ0. The signal induced

by the perturbation to be sensed (
ffiffiffiffi

S
p

, pink arrow) scales linearly as τ, while the uncertainty (
ffiffiffiffiffi

N
p

, green arrow) has a weaker scaling,
ffiffiffi

τ
p

. Therefore, any

small perturbation can be resolved for sufficiently long τ
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sensors involving nonreciprocal interactions can surpass this
bound; we analyze this in detail. We thus identify nonreciprocity,
which is accessible in a variety of experimental platforms, as a
novel resource for enhanced sensing.

Results
General setup. We consider a generalized version of the non-
Hermitian sensing system studied in previous works10,13–
15,19,20,22: M resonant modes interact as described by the linear
and Markovian coupled-mode equations:

_αi tð Þ ¼ �i
X

j

~Hij½ϵ�αj tð Þ: ð1Þ

αj(t) denotes the amplitude of mode j, and the M ×M matrix ~H
is`an effective non-Hermitian Hamiltonian describing both
coherent and dissipative linear dynamics. The Hamiltonian
depends on a parameter ϵ, and the goal is to sense an infinitesimal
change in ϵ. We assume that this parameter only changes non-
dissipative terms in ~H, and thus write

~Hij½ϵ� ¼ ~Hij½0� þ ϵVij ð2Þ

where the Hermitian matrix V describes the coupling of the
parameter to the dynamics. We take ϵ to have units of frequency,
and hence V is dimensionless.

Unlike many works, we explicitly analyze the protocol used to
measure the parametric dependence of ~H. A general strategy is to
couple mode 1 to an input–output waveguide or transmission
line, and then use this port to drive this system with a coherent
tone at a frequency ωdr. The reflected signal is then measured, and
used to infer ϵ. Coupling to the waveguide introduces extra
damping of mode 1, and hence ~Hij ! ~Hij � iðκ=2Þδi1δj1, where κ
is the coupling rate to the waveguide. Working in a rotating frame
at the drive frequency, the coupled-mode equations now become:

_αi ¼ iΔαi � i
X

j

~Hij½ϵ�αj � iδi1
ffiffiffi

κ
p

β; ð3Þ

where β is the amplitude of the coherent drive. Without loss of
generality, we take β to be real and positive, and choose a
frequency reference such that Re ~H11½0� ¼ 0. This implies that Δ
represents the detuning of the drive frequency from the mode-1
resonance frequency.

In addition to fully treating the measurement, we also want to
consistently describe noise effects associated with the dissipative
dynamics encoded in ~H. Dissipative dynamics correspond to the
anti-Hermitian part of ~H, which can always be written in terms of
the difference of two positive-definite matrices. We thus write

1

2i
~H � ~Hy� �

� YYy � ZZy � 1

2
~κ; ð4Þ

where ~κij ¼ κ δi1δj1. The matrix YY† represents gain processes,
i.e., processes that tend to cause exponential growth in time;
correspondingly, ZZ† represents loss processes (beyond the loss
associated with the input–output waveguide). For definiteness, we
take Y to be a M ×NY matrix, and Z to be a M ×NZ matrix. We
also define H ¼ ~H þ ~Hy� �

=2 (i.e., the Hermitian part of ~H, which
describes nondissipative dynamics).

We can now view the coupled-mode equation in Eq. (3) as the
noise-averaged version of a fully probability-conserving linear
Markovian open quantum system. This description is useful
even in the classical regime if one wants to account for the effect
of thermal noise. The non-Hermitian dynamics in ~H are
generated by coupling to NY+NZ distinct dissipative environ-
ments, with specific mode-bath coupling constants given by the

matrices Y, Z. Letting âi denote the canonical bosonic annihila-
tion operator of the ith mode, the full system is described by the
Heisenberg–Langevin equations:

:

âi ¼ iΔâi � i
P

j

~Hij½ϵ�âj � iδi1
ffiffiffi

κ
p

β

�iδi1
ffiffiffi

κ
p

B̂in � i
ffiffiffi

2
p

P

NY

j¼1
YijĈ

iny
j þP

NZ

j¼1
ZijD̂

in
j

 !

ð5Þ

The first line here has the same structure as in Eq. (3), and
describes the linear dynamics of our system and its coherent
driving. The terms on the second line instead describe zero-
mean noise driving our system. B̂in is noise entering from the

input–output waveguide, whereas Ĉin
j D̂in

j

� �

are noises entering

from the dissipative baths used to realize the gain (loss) parts of
the dissipative dynamics encoded in ~H. Consistent with the
linear, Markovian nature of our system, these noise operators
represent (operator-valued) Gaussian white noise. Quantum
mechanically, they cannot be zero: at best, they describe vacuum
fluctuations. In this case, we have:

Q̂inðtÞQ̂inyðt′Þ
� �

¼ �nthQ þ 1
� �

δðt � t′Þ ð6Þ

Q̂inyðtÞQ̂inðt′Þ
� �

¼ �nthQ δðt � t′Þ ð7Þ

Q̂inðtÞQ̂inðt′Þ
� �

¼ 0 ð8Þ

where Q∈ {B, Cj, Zj}, and there are no correlations between
different noise operators. The averages above represent averages
over different realizations of the noise process, or equivalently,
over the state of the bath degrees of freedom. �nthQ represents the
thermal occupancy of bath Q; we focus on the case where there is
only vacuum noise, and these occupancies vanish (though our
formalism can also easily treat the classical case �nthQ � 1).

Note that Eq. (5) describes the same average dynamics as our
starting coupled-mode equations: taking the average of Eq. (5)
and defining αi � âih i recovers Eq. (3). The additional noise
effects encoded in Eq. (5) will, however, be important in
determining our ability to make a measurement. We stress that
these Markovian Heisenberg–Langevin equations are standard in
the study of open quantum systems; a derivation is provided in
Methods, and pedagogical treatments are given in5,23.

A crucial observation here is that the system-bath coupling
matrices Y, Z in Eq. (4) are not uniquely determined by ~H. This
ambiguity corresponds to a simple physical fact: there are many
different ways to couple to dissipative baths to realize a given
non-Hermitian dynamics. As is perhaps obvious, noise will play
a crucial role in determining the measurement sensitivity of ϵ;
hence, the sensitivity will depend on the particular choice of baths
and bath couplings used to realize ~H. This leads to two important
conclusions: first, ~H on its own does not completely specify the
performance of our detector, and second, for a given non-
Hermitian Hamiltonian, an optimal measurement will require
using an optimized choice of dissipative baths and bath couplings.

Homodyne measurement and measurement rate. We now
discuss how the information on ϵ in the reflected field leaving
mode 1 can be extracted. We will characterize the measurement
sensitivity using standard metrics that are well established in
describing a weak, continuous linear measurement; see, e.g.5, for a
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pedagogical discussion. This will allow us to directly compare the
non-Hermitian sensing protocols to more established methods.

The amplitude of the reflected field in the waveguide is
described by an operator B̂out. Using standard input–output
theory23, we have

B̂outðtÞ ¼ βþ B̂inðtÞ
� �

� i
ffiffiffi

κ
p

â1ðtÞ: ð9Þ

The first term describes the incident field on mode 1 that is
promptly reflected, whereas the second term describes the field
emitted from mode 1. Note that the reflected field in our
geometry is completely equivalent to the transmitted field in
standard setups where an optical fiber is coupled to a whispering-
gallery mode resonator1–3.

For small ϵ, the average value of the output field will have a
linear dependence on ϵ. We will be interested throughout this
paper on long measurement times, and hence will focus on the
steady state (time-independent) value of this average. We thus
write

B̂out
� �

ϵ
’ B̂out
� �

0
þλϵ ð10Þ

where λ is a (possibly complex) linear response coefficient. We
throughout use ::h iz to denote an average calculated using Eq. (5)
with ϵ ¼ z.

Letting ϕ=−arg λ, it is clear that all the information on ϵ in
the output field is contained in the real part of eiϕB̂out. An optimal
measurement strategy is thus to measure this quantity directly.
This corresponds to one quadrature of the output field, and the
necessary measurement is known as homodyne detection. The
time-dependent measurement signal (i.e., the homodyne current)
is described by the operator ÎðtÞ:

ÎðtÞ �
ffiffiffi

κ

2

r

eiϕB̂outðtÞ þ e�iϕB̂outyðtÞ
� � ð11Þ

Note the factor of
ffiffiffi

κ
p

is included in the homodyne current for
convenience, as it makes Î have the units of a rate.

The homodyne current will be subject to shot noise fluctua-
tions which will obscure our ability to extract ϵ. This noise is
described by a spectral density5:

�SII ½ω� ¼
1

2

Z 1

�1
dteiωt fδÎðtÞ; δÎð0Þg

� �

0
ð12Þ

where δÎ � Î � Î
� �

. As we are considering the effects of an
infinitesimal perturbation ϵ, we can characterize our measure-
ment sensitivity using the noise spectral density calculated to
zeroth order in ϵ.

To estimate ϵ, the homodyne current is integrated from t= 0
to t= τ to average away the effects of noise. The time-integrated
measurement is thus described by the operator:

m̂ðτÞ �
Z τ

0
dt̂IðtÞ: ð13Þ

Considering the long-τ limit, the power associated with the
signal induced by the perturbation is:

S ¼ m̂ðτÞh i
ϵ
� m̂ðτÞh i0

	 
2¼ 2κϵ2 λj j2τ2 ð14Þ

We have assumed a measurement time τ that is long enough
that we can ignore any transient effects in the behavior of ÎðtÞ

� �

.
Note also that with our definitions, S is dimensionless.

Similarly, the noise power associated with the integrated
homodyne current in the long-time limit is:

N � δm̂ðτÞδm̂ðτÞh i0¼ τ�SII ½0�; ð15Þ

where δm̂ � m̂� m̂h i0.
Combing these results, we see that the SNR of signal power

associated with the homodyne measurement grows linearly with
time:

S
N ¼ 2κϵ2τ

λj j2
�SII ½0�

� ϵ
2

κ2
τΓmeas: ð16Þ

We have defined the long-time linear growth of the SNR in terms
of a measurement rate Γmeas. This is a standard metric for
quantifying the resolving power of weak continuous measure-
ments; κ=ϵ0ð Þ2Γ�1

meas represents the minimum time required to
distinguish ϵ ¼ ϵ0 from ϵ ¼ 0. The measurement rate defined
here is also directly related to the another standard metric for
sensitivity, the imprecision noise spectral density5.

More fundamentally, one could ask whether homodyne
measurement is truly the optimal way to use the output field to
estimate ϵ. While heuristically this seems clear from Eq. (10), one
can ask the question more formally. The maximum amount of
information available in the output field considering all possible
measurements is quantified by the quantum Fisher information24.
This quantity can be calculted exactly for our linear, Gaussian
system25. In Methods, we show that this metric coincides with
the SNR given above in the limit where the driving field β is
sufficiently large. As such, the homodyne measurement strategy
here is indeed the optimal strategy.

We stress that our measurement scheme involves driving the
system at a single frequency only. This is in contrast to most
works on EP sensing10,13,19,20, which involve probing the system
over a wide range of frequencies to measure a full output field
spectrum. This approach requires driving the system with
multiple tones, with each drive tone contributing to the total
photon number (circulating power) in the coupled modes. To
make a meaningful comparison between different schemes, we
imagine a situation where the total photon number (in all modes
and over all frequencies) is constrained. The question is then
whether in this setting, it is better to have a multitone drive, or a
drive at just a single frequency. We find that there is no advantage
for such multitone driving, as the information generated at each
frequency is independent. It is thus optimal to probe the system
with a single coherent tone whose frequency is chosen to optimize
Γmeas, see Fig. 1. We provide a rigorous proof of this statement (in
terms of the quantum Fisher information) in Methods.

General expressions and constraints for a linear system. While
the definition of the SNR and measurement rate in Eq. (16) is
generally applicable, things simplify enormously for our system
given the linearity of the dynamics. For a stable system, the Lan-
gevin equations in Eq. (5) can be solved in the Fourier domain in
terms of the dimensionless system susceptibility matrix ~χ defined as

~χ½ω;Δ; ϵ� � iκ ðωþ ΔÞI� ~H½ϵ�
	 
�1

; ð17Þ

where I is the M ×M identity matrix. Using the input–output
relation in Eq. (9) and taking average values, we immediately find
that the steady-state average homodyne current is given by

Î
� �

¼
ffiffiffiffiffi

2κ
p

Re eiϕβ 1� ~χ11½0;Δ; ϵ�
� �	 
 ð18Þ

Note that the homodyne current depends on ϵ through ~χ,
which in turn depends on both the eigenvalues and eigenvectors
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of ~H. The zero-frequency susceptibility matrix can in general be
written in terms of the eigenvalues Ωj of ~H as

~χ½0;Δ; ϵ� ¼ �iκ
adjð�ΔIþ ~H½ϵ�Þ
Q

j

ð�ΔþΩj½ϵ�Þ
; ð19Þ

where adj(⋅) is the adjugate matrix. The basis of many sensing
techniques is that the eigenvalues Ωj generally have a dependence
on ϵ, which directly influences the susceptibility and hence output
field. However, to get a complete description of the measurement,
one must also worry about the numerator in this expression: the
adjugate matrix (e.g., right and left eigenvectors of ~H) will also in
general depend on ϵ, which can serve to suppress the overall
sensitivity to ϵ. In what follows, we thus focus on the entire
susceptibility matrix, and not just on the eigenfrequencies of ~H.

Returning to Eq. (18) and considering small ϵ, one readily finds
a direct expression for the linear response coefficient λ in Eq. (10).
Defining χðΔÞ � ~χ½0;Δ; 0� as the zero-frequency, unperturbed
susceptibility matrix, we have

λ ¼ �β
d~χ11½0;Δ; ϵ�

dϵ

�

�

�

�

ϵ¼0

¼ i
β

κ
χVχð Þ11: ð20Þ

We will implicitly assume χ is evaluated at Δ unless specified.
Using this expression, it is straightforward to calculate the

signal power associated with the time-integrated homodyne
current (c.f. Eq. (14)):

S
ðϵτÞ2

¼ 2
β2

κ
ðχVχÞ11
�

�

�

�

2¼ 2�ntot
ðχVχÞ11
�

�

�

�

2

χyχð Þ11
: ð21Þ

In the second equality, we have expressed S in terms of the total
average photon number in all modes induced by the coherent
drive:

�ntot �
X

i

â
y
i

D E

âih i ¼ β2

κ

X

i

χi1
�

�

�

�

2¼ β2

κ
χyχ
� �

11
: ð22Þ

Our motivation here is that S can always be increased indefinitely
by simply increasing the drive power. For a meaningful metric,
one thus needs to ask how much signal is generated given a fixed
number of photons used for the measurement. In many
situations, the photons to worry about are the intracavity photons
described by �ntot: if this photon number becomes too large, a
variety of problems typically ensue (e.g., unwanted heating effects
and breakdown of linearity). Note that we have neglected the
incoherent photons injected by the gain bath. Unlike the drive-
induced photon number that scales linearly as the driving power,
the incoherent photon number is independent of coherent drive.
For a sufficiently large driving power, the drive-induced photon
thus dominates the total photon number.

Turning to the fluctuations in the homodyne current, a
straightforward calculation using Eqs. (5) and (15) yields:

�SII ½0� ¼
κ

2
1þ 4

κ
χYYyχy
� �

11

� 

: ð23Þ

The first term here represents the unavoidable shot noise in the
homodyne current. The second term describes additional noise
emanating from the dissipative baths that generate the gain
processes in ~H. This extra noise corresponds to the amplification
of zero-point fluctuations, and is connected to the fact that
quantum mechanically, phase-insensitive linear amplification
cannot be noiseless26. We stress that for a fixed ~H½0�, the choice
of Y is not unique; thus, the noise properties of our setup is not

directly determined by ~H½0�, but will depend crucially on how the
dissipative dynamics is realized using external baths.

For a fixed ~H½0� (and hence fixed χ), we can find the optimal
choice of baths and bath couplings that minimizes the noise in
the homodyne current (see Methods). We find:

�SII ½0�min ¼
κ

2
1þ 2Θ 1� χ11

�

�

�

�

2�1
h i

1� χ11
�

�

�

�

2�1
� �� �

; ð24Þ

where Θ[z] is the Heaviside step function. Again, this result
reflects the well known quantum limits on added noise of linear
amplifiers26. Here, if our system has reflection gain (i.e.,
1� χ11
�

�

�

�>1), the output noise must be bigger than simple shot

noise. We stress that for any given ~H½0� and corresponding
susceptibility matrix χ, it is always possible to construct a
realization of the dissipative dynamics (in terms of bath couplings
Y, Z) that attains this minimum possible noise level (see
Methods).

Combining these results gives us a general bound on the
measurement rate of any linear system:

Γmeas � Γopt �
4κ�ntot
χyχð Þ11

χVχð Þ11
�

�

�

�

2

1þ 2Θ 1� χ11
�

�

�

�

2�1
h i

1� χ11
�

�

�

�

2�1
� � :

ð25Þ

This fundamental bound on the measurement rate (i.e., long-time
SNR) of our linear sensor will now allow us to compare the best
possible performance of sensors with different Hamiltonians.
More precisely, we want to quantitatively ask whether systems
exploiting non-Hermitian physics (such as EP-based sensing
schemes) can ever offer advantages over more conventional
sensing schemes, including simple sensing schemes based on a
linear amplifier.

Note that while our focus is on sensing a parameter which
modifies the Hermitian part of the Hamiltonian, Eqs. (21) and
(25) can also be used directly in the more general case where V
is non-Hermitian. The only additional assumption required is
extremely mild: we just need that any extra noise associated with
the non-Hermitian parameter change is not pathologically
large, i.e., it vanishes in the limit ϵ ! 0, where the parametric
dependence of the Hamiltonian vanishes. As long as this is
satisfied, the extra noise would not change the form of the bound
on the SNR in Eq. (25).

Two-mode non-Hermitian sensors for coupling perturbation.
The results above are extremely general, applying to any non-
Hermitian sensing setup described by Eq. (5). In Methods, we
consider the simple case where the parameter of interest simply
shifts the resonant frequency of mode 1. Here, however, we apply
our results to the specific kind of system that has been extensively
studied in the literature on EP sensing10,13–15,19,20: a two-mode
system described by a non-Hermitian Hamiltonian ~H½ϵ�, where
the parameter to be determined is a Hermitian coupling between
the modes. This corresponds to a coupling matrix

V ¼ 0 1=2

1=2 0

� 

ð26Þ

in Eq. (2).
The signal power in the homodyne current follows directly

from Eq. (21) and is given by

S ¼ 1

16

χ11
�

�

�

�

2
χ12 þ χ21
�

�

�

�

2

χ11
�

�

�

�

2þ χ21
�

�

�

�

2 S
ϵ
: ð27Þ
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where

S
ϵ
� 8ϵ2τ2�ntot: ð28Þ

is the signal power associated with a standard, single-mode
dispersive measurement (see Methods).

Reciprocal two-mode sensors. Consider first a reciprocal system,
where the magnitude of the coupling between the two modes does
not have any directionality, i.e., ~H12

�

�

�

� ¼ ~H21

�

�

�

�. Note that this
definition of reciprocity here is consistent with the standard usage
of a scattering matrix being invariant under exchange of source
and receiver27. If we attached a weak coupling waveguide to mode
2, the condition ~H12

�

�

�

� ¼ ~H21

�

�

�

� would ensure that the amplitudes
for 1→ 2 transmission and 2→ 1 transmission have the same
magnitude.

This immediately implies that χ12
�

�

�

� ¼ χ21
�

�

�

�, and allows us to
bound the maximum value of S:

Srecip �
1

4
S
ϵ
χ11
�

�

�

�

2
: ð29Þ

Thus, for a reciprocal system, the only way to parametrically
increase the signal power (at fixed measurement time τ and
intracavity photon number �ntot) is to make χ11

�

�

�

� large. This
implies that the system is an amplifier: signals incident in the
coupling waveguide will be reflected with gain.

Including now the effects of measurement noise, the above
bound on signal power for a reciprocal two-mode system, when
combined with Eq. (46), immediately yields a bound on the
measurement rate:

Γmeas;recip � 16κ�ntot: ð30Þ

We see that Γmeas for a reciprocal sensor is fundamentally
bounded by the intracavity photon number and the coupling rate
κ to the waveguide; unlike signal power, it cannot be made

arbitrarily large by increasing χ11
�

�

�

�. As discussed in Methods,
achieving this bound requires χ11= 2, implying the absence of
reflection gain. If one instead increases χ11

�

�

�

�� 1 to achieve a
large signal power, the optimal measurement rate instead
approaches 2κ�ntot.

These results apply directly to the kind of non-Hermitian two-
mode sensors that have been studied extensively in the
literature14–16,19. These systems generically involve a sensing
parameter that couples as per Eq. (26), and a reciprocal two-mode
effective Hamiltonian of the form

~Hrecip½0� ¼
�i

κþγ1
2 J

J �i
γ2
2

 !

: ð31Þ

Here, J is the Hermitian coupling between the modes, whereas γ1,
γ2 describe possible gain/loss processes (depending on the sign)
acting locally on each mode. As always, κ represents the coupling
rate between the input–output waveguide and mode 1; note that
this coupling has mostly been neglected in previous work.

The eigenvalues of ~H½0� in this case are:

Ω± ½0� ¼ �i
κþ γ1 þ γ2

2
±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J2 � 1

4
κþ γ1 � γ2
� �2

r

: ð32Þ

It thus exhibits a stable EP when J= (κ+ γ1− γ2)/4 and κ+ γ1+ γ2
> 0. For this tuning of J, the mode eigenvalues behave as Ω± ½ϵ�=
±

ffiffiffiffiffiffiffi

2Jϵ
p � i κþ γ1 þ γ2

� �

=2, and have a strong square-root depen-
dence on ϵ.

Despite the large sensitivity of mode frequencies to ϵ at the EP,
the signal power and measurement rate for this setup remain
bounded by Eqs. (29) and (30). This is shown explicitly in Fig. 2,
where the signal power and measurement rate for this system is
plotted as a function of the drive frequency. These quantities
never exceed the fundamental bounds.

Note that in many applications, it is only the signal power that
is relevant, as the measurement noise will be limited by non-
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Fig. 2 Signal power and measurement rate. a Signal power S and b measurement rate Γmeas against drive detuning Δ for three 2-mode non-Hermitian

sensors. Blue dot-dashed: Reciprocal system with exceptional point but no gain, described by Eq. (31) with γ1= 0, γ2= 0.2κ, J= 0.2κ. Blue solid: Reciprocal

system with exceptional point and gain, described by Eq. (31) with γ1= 0, γ2=−0.3κ, J= 0.325κ. Despite a higher signal power, introducing gain does not

enhance the measurement rate due to the corresponding increased level of measurement noise. Neither of these systems beat the fundamental reciprocal-

system bound in Eq. (30) (green dotted). Red: nonreciprocal system in Eq. (35) (γ1= κ, γ2= 0.5κ, J= 1.5κ, ν2= 0). It yields a measurement rate which

appreciably exceeds the reciprocal-system bound for a wide range of Δ
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intrinsic effects (e.g., following amplifiers and detector ineffi-
ciency). It is thus interesting to note that the signal-power
performance of the two-mode EP system in Eq. (31) can be
matched with a simple two-mode amplifier setup, where the first
mode is subject locally to gain, and the total damping rate of
mode 2 is made to match that of mode 1. While this system never
possesses an EP, its performance matches the EP system, see
Fig. 3. Thus, in terms of signal power at fixed photon number,
there is no fundamental utility here to using a EP system.

Nonreciprocal two-mode sensors. The above discussion shows
that for a reciprocal system, tuning to an EP does not provide
special advantages for measurement. We now consider another
means of exploiting non-Hermitian physics: a sensor whose
effective Hamiltonian breaks reciprocity, i.e., ~H12

�

�

�

�≠ ~H21

�

�

�

�.
Breaking reciprocity allows one to parametrically exceed the
bounds in Eqs. (29) and (30) that constrain any reciprocal two-
mode sensing system. Synthetic nonreciprocity in driven photo-
nic systems is an active area of current research (see ref. 28 and
references therein), with experimental demosntrations in photo-
nic platforms as well as superconducting quantum circuits and
optomechanical systems. While most work in this area has
focused on achieving nonreciprocal scattering to build devices
such as isolators and circulators, we show here that non-
reciprocity can also be a powerful resource for enhanced sensing.

To see how nonreciprocity changes our sensing problem,
consider again Eq. (27) for the signal power, in the extreme
directional limit where χ21= 0, but χ12 ≠ 0. This describes a
situation where mode 2 influences mode 1 but not vice-versa. The
signal power for this fully directional setup becomes independent
of χ11:

Sdir ¼
1

16
S
ϵ
χ12
�

�

�

�

2
: ð33Þ

The signal power could now in principle be increased indefinitely
by increasing χ12 while keeping the intracavity photon number
and reflection gain fixed. We illustrate the intuition behind this
effect in Fig. 4.

The benefits of nonreciprocity are more apparent when we
consider noise and the full expression for the measurement rate.
In a nonreciprocal system we can increase the signal power
indefinitely (by making χ12 large) without having to have a large
χ11 and hence reflection gain. This implies that the output noise
can stay at the shot noise level. For a nonreciprocal system, we
thus have:

Γmeas;dir � κ�ntot χ12
�

�

�

�

2 ð34Þ

For χ12
�

�

�

�>4, this exceeds the fundamental bound on the
measurement rate of a reciprocal system given in Eq. (30). We
thus see that nonreciprocity is a resource for enhanced sensing;
moreover, it does not require a system that is tuned to an EP.

It is helpful to consider a concrete example of a fully
nonreciprocal setup. Consider a non-Hermitian Hamiltonian

~Hdir½0� ¼
�i

κþγ1
2 J

0 ν2 � i
γ2
2

 !

; ð35Þ

where γ1 and γ2 describe local damping or antidamping of the
two modes, ν2 is the frequency detuning of the two modes, and
J describes a (complex) nonreciprocal mode-mode coupling. Such
directional couplings can be realized in many different ways. For
example, one could start with a three-mode system in a ring
geometry with purely Hermitian couplings that have nontrivial
complex phases. As discussed extensively in ref. 29, if one then
adds strong damping to the third mode and adiabatically
eliminates it, one can realize an effective two-mode Hamiltonian
identical to that in Eq. (35).

The susceptiblity matrix is readily found. One has χ21= 0. For
a drive that is resonant with mode 1 (i.e., Δ= 0), the remaining
elements are

χ11 ¼
2κ

κþ γ1
; χ12 ¼ �χ11

J

ν2 � iγ2=2
: ð36Þ

As desired, one can make χ12 arbitrarily large by increasing J
without requiring that χ11 also become large. As a result, one can
reach the upper bound on the measurement rate given in Eq. (34)
for γ1 ≥ 0. The performance of this nonreciprocal sensor is shown
in Fig. 2, where its performance is compared against reciprocal
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−0.3κ, J= 0.325κ), and a simple two-mode amplifier system that never has

an EP (orange, Eq. (31) with κ+ γ1= γ2= 0.16κ, J= 0.325κ). The two

systems have similar peak signal powers. Dotted lines denote bound on

signal power for both systems as given by Eq. (29)
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Fig. 4 Schematic showing how signal power is enhanced by nonreciprocity.

Arrows and their thicknesses illustrate the direction and magnitude of

influences. a In the absence of any perturbation, nonreciprocity prevents

mode 2 being excited by the drive incident on mode 1. Drive photons do not

experience the large nonreciprocal tunneling J from mode 2 to 1. b A

nonzero coupling perturbation (ϵ≠0) breaks nonreciprocity. As a result,

drive photons can tunnel from 1 to 2, and then return experiencing

amplification from the large nonreciprocal tunneling amplitude J. This gives

a large signal

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06477-7 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:4320 | DOI: 10.1038/s41467-018-06477-7 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


non-Hermitian systems. One clearly sees the violation of the
reciprocal-system bound on the measurement rate.

Note that at an EP, the Jordan normal form of a 2 × 2 matrix
has the nonreciprocal form of Eq. (35), but is also constrained
to have identical diagonal entires; this was pointed out in ref. 13.
We stress however that the benefits of our nonreciprocal setup
have nothing to do with tuning our system to an EP or having
eigenvalues coalesce. To see this explicitly, note that the
unperturbed eigenvalues of ~Hdir½0� are

Ω�½0� ¼ �i
κþ γ1

2
; Ωþ½0� ¼ ν2 � i

γ2
2
: ð37Þ

The system has an EP only when the parameters are precisely
tuned to ν2= 0 and κ1+ γ1= γ2. In contrast, the large
enhancement of the measurement rate we obtain only requires
Jj j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ν
2
2 þ γ22=4

p

. This condition is clearly unrelated to the
presence of an EP.

While the simple nonreciprocal sensing setup in Eq. (35) is
capable of reaching the fundamental bound in Eq. (34), whether
or not this occurs depends on exactly how the dissipative
dynamics encoded in ~Hdir is realized through couplings to
external baths. Here, it is possible to achieve the needed non-
Hermitian Hamiltonian using only passive dissipation (i.e., no
coupling to gain baths, Y= 0 in Eq. (4)). The simplest realization
would involve coupling both modes to an effective chiral
waveguide, as depicted in Fig. 5; the (positive) coupling rate
between mode j and the waveguide is denoted γj. Focusing on the
case of two modes with identical frequencies (i.e., ν2= 0), and
using standard cascaded quantum systems theory23 to describe
this setup, we realize the non-Hermitian Hamiltonian in Eq. (35)
with J ¼ �i

ffiffiffiffiffiffiffiffiffi

γ1γ2
p

. Further, as there are no couplings to gain
baths, the homodyne current noise is always given by its minimal
shot noise value. This setup then realizes the optimal value for the
measurement rate for a nonreciprocal setup as given in Eq. (34).
Setting γ1= κ, we have:

Γmeas ¼ 4κ�ntot
γ1
γ2

� 

ð38Þ

Comparing against Eq. (30), we see that this system beats the
reciprocal-system measurement rate bound whenever γ2 < (1/4)γ1.

We note that there are a variety ways of implementing a
coupling to an effective chiral waveguide. These range from

conventional approaches based on the use of circulators, to
realizations of chiral waveguides using topological photonic
systems30, to methods that mimic chiral propagation by using
dynamic modulation and engineered dissipation28,29,31,32. We
stress that such engineered nonreciprocal interactions have been
experimentally realized in photonic setups33–35, classical micro-
wave circuits36,37, optomechanical systems38,39, and supercon-
ducting circuits40,41. While the motivation for these experiments
was largely to build circulators and isolators, our work shows that
such systems could also be exploited for enhanced sensing.

Nonreciprocal sensors and the mode-splitting technique. Up to
this point, our work has focused exclusively on sensing para-
metric changes in ϵ that are small enough to allow the use of
a perturbative, linear response approach; this typically requires ϵ
to be smaller than relevant mode linewidths. Nonreciprocity
enhanced sensing is however also highly effective for larger, non-
perturbative changes in ϵ. We consider the same general setting as
recent works on EP sensing10,13,19,20 that aim to detect a relatively
large change in ϵ by directly measuring the frequency splitting of
two normal modes42–44. This involves first measuring the output
field intensity as a function of drive frequency, and then fitting
this curve to extract a mode splitting.

For a sufficiently strong classical drive the contribution of
amplified vacuum fluctuations can be ignored, and the intensity
of the waveguide output field B̂out (c.f., Eq. (9)) is

P½Δ� � B̂out
� �y

B̂out
D E

� B̂out
� ��

B̂out
� �

¼ β2 1� χ11
�

�

�

�

2
:

ð39Þ

where Δ is as always the detuning of the drive frequency from
the cavity 1 resonance frequency, and β the (real) amplitude of
incident driving field.

As discussed before, the magnitude of χ is large when Δ is close
to an eigenfrequency of ~H, hence P½Δ� will generically exhibit a
resonance feature (peak or dip) near these values. If a nonzero ϵ

lifts the degeneracy of eigenvalues, it will thus manifest itself
by the appearance of new resonances in the intensity spectrum.
We note again that the transmitted field in standard setups
where a nearby readout object (e.g., prism or fiber) is coupled
to an optical resonator20,42,44,45 is completely equivalent to the
reflected field in our geometry.

As we now show, nonreciprocity has two distinct benefits to
frequency-splitting detection. First, a perturbation to a non-
reciprocal system can induce new resonances in P½Δ� even if
there is no degeneracy in the unperturbed system. This allows the
frequency-splitting technique to be implemented in a wider range
of systems. Second, nonreciprocity can dramatically increase the
parametric, ϵ-dependent splitting of resonances: one can obtain
the same

ffiffiffi

ϵ
p

type splitting as a system tuned to an EP, without
actually needing to be at an EP. Again, this greatly reduces the
fine tuning needed to achieve such strong parametric mode
splittings (and also demonstrates that EP is not a necessary
ingredient for such behavior).

Consider the first point above: with nonreciprocity, the mode-
splitting technique can be used even if the unperturbed system
has non-degenerate eigenvalues. The reason is simple: because
of nonreciprocity, a given eigenmode of the system may fail to
be excited by the incident measurement drive when ϵ ¼ 0,
irrespective of Δ. If however a nonzero ϵ breaks the system’s
nonreciprocity, these dark modes may become visible in the
output intensity spectrum. Further, breaking nonreciprocity can
lead to parametrically large mode splittings, much larger than
would be possible without nonreciprocity.

D1
out

D1
in

B out

B in

1

�1 �2

2

Fig. 5 Implementation of a simple nonreciprocal two-mode sensor. Both

modes are coupled to a single effective chiral waveguide; no coupling to

gain baths is required. This system is capable of arbitrarily exceeding the

fundamental bound on the measurement rate of any reciprocal two-mode

sensor. The required chiral waveguide could be realized using circulators,

dynamic modulation28, or by using driven parametric interactions and

external dissipation29. Symbols follow that in Fig. 1 and γi � Zi1j j2

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06477-7

8 NATURE COMMUNICATIONS |  (2018) 9:4320 | DOI: 10.1038/s41467-018-06477-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


To illustrate both the above points, we again consider the
simple two-mode nonreciprocal sensor described by Eq. (35). As
usual, the parameter to be sensed corresponds to a Hermitian
coupling between the two modes (c.f., Eq. (26)). For ϵ ¼ 0, we
have a purely nonreciprocal coupling between the modes: mode 2
can influence mode 1, but not vice-versa. One finds that the
eigenvalues of ~Hdir½0�, as given in Eq. (37), are in general
nondegenerate in both real and imaginary parts. Note also that
the eigenvalues are completely independent of the coupling J,
reflecting the lack of any coherent oscillations between mode 1
and 2.

When perturbation ϵ is nonzero, reciprocity is lost, as mode 1
can now influence mode 2. The eigenvalues of ~Hdir½ϵ� are

Ω± ½ϵ� ¼ ν2
2 � i

κþγ1þγ2
4

±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J ϵ

2 þ ϵ2

4 þ
ν2
2 þ i

κþγ1�γ2
4

� �2
q

:
ð40Þ

For ϵ>0 and sufficiently large positive J, the frequency splitting
demonstrates a square root dependence on ϵ, i.e.,
Ωþ½ϵ� �Ω�½ϵ� �

ffiffiffiffiffiffiffi

2Jϵ
p

. We see that the nonreciprocal coupling
J amplifies the effect of ϵ, even though it has no impact on the
unperturbed eigenvalues. The

ffiffiffi

ϵ
p

splitting dependence resembles
that of EP sensing schemes; here, however, the unperturbed
modes are not required to be tuned to a degeneracy, and the
unperturbed system is not at an EP. The enhanced splitting

obtained here can be much larger than mode linewidths, and
directly manifests itself in the output intensity spectrum P½Δ�.
An example is shown in Fig. 6.

Discussion
We have provided a comprehensive analysis of weak dispersive-
style measurements made using coupled-mode systems described
by effective non-Hermitian Hamiltonians. Our work goes beyond
previous analyses of non-Hermitian sensing techniques, in that
we fully treat fluctuation effects, and fully treat the entire mea-
surement process. We derive fundamental bounds on any reci-
procal two-mode non-Hermitian sensor, and show that they
also constrain systems that are tuned to an exceptional point.
Generically, we find that amplification is the necessary ingredient
for generating large signal powers, and this can be achieved
without any proximity to an exceptional point. However,
amplification process must incorporate extra noise that will
fundamentally limit the quantum measurement rate of any reci-
procal sensor. Our results highlight the fact that the efficacy of
a non-Hermitian sensing scheme is not completely described by
the parametric dependence of mode eigenvalues. Considering
fluctuation effects, the particular dissipative implementation of
the dynamics is crucial as this will set noise levels.

We also discussed a new method for enhancing dispersive
measurement using effective non-Hermitian physics, namely the
use of nonreciprocity to enhance sensing. We show that non-
reciprocity allows one to arbitrarily exceed the fundamental
bound on the measurement rate of a reciprocal sensor, and dis-
cussed a simple implementation that does not require any
amplification processes. We also show that nonreciprocity can
enhance the sensitivity of mode-splitting type sensor.

Finally, we note that the general theory developed in this work
could be easily applied to more general kinds of sensing problems.
For example, the same formalism could be used to understand
the performance of non-Hermitian sensors when thermal noise
dominates (as would be the case for systems deep in the classical
limit). The formalism could also be extended to study the sensing
of time-dependent perturbations.

Note added: During the completion of this work, we became
aware of work by Zhang et al.49 and Chen et al.50 on a related
topic.

Methods
Full Hamiltonian for effective non-Hermitian system. Our measurement setup
consists of a readout waveguide that interacts with only one cavity mode. This
coupled cavity mode can interact with other modes as well as arbitrary gain
and loss baths. The interaction between cavities is limited to be photon number
conserving, i.e., only hopping. The total Hamiltonian of the system+ bath is

Ĥ¼ P

M

i;j¼1
Hijâ

y
i âj þ

R

dk ωb;kb̂
y
kb̂k

� �

þP
NY

j¼1

R

dk ωc;j;k ĉ
y
j;k ĉj;k

� �

þP
NZ

j¼1

R

dk ωd;j;kd̂
y
j;kd̂j;k

� �

þ
R

dk
ffiffi

π
p gðkÞ â1b̂

y
k þ â

y
1b̂k

� �

þP
M

i¼1

P

NY

l¼j

R

dk
ffiffi

π
p Y�

ij ðkÞâi ĉj;k þ YijðkÞâyi ĉyj;k
� �

þP
M

i¼1

P

NZ

j¼1

R

dk
ffiffi

π
p Z�

ijðkÞâid̂yj;k þ ZijðkÞâyi d̂j;k
� �

:

ð41Þ

b̂k , ĉj;k , and d̂j;k are the annihilation operator of the mode with wave number k in
the readout waveguide, gain bath, and loss bath, respectively. Mode operators of

different bath commute, and that of the same bath follows Ôk; Ô
y
k′

h i

¼ δ k� k′ð Þ,
where O∈ {bk, cj,k, dj,k}. We have chosen a unit that ħ= 1, and k has a unit of
frequency. For simplicity, we assume all baths have linear dispersion relation, i.e.,
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Fig. 6 Drive-detuning dependence of the output field intensity. The

dependence on of the output field intensity P½Δ� (c.f., Eq. (39)) for a
nonreciprocal system is described by Eq. (35). We have taken γ1= 0.5κ,

γ2= κ, ν2= 4κ. a Spectrum for ϵ ¼ 0, when the system is fully

nonreciprocal. Even though the system has two nondegenerate eigenvalues

Ω±[0], only one resonance is seen, as nonreciprocity makes the Ω+[0] dark

to the incident drive. Note that this spectrum is independent of J. b Black

dashed: Spectrum where the parameter to be sensed ϵ ¼ 0:3κ, but

without nonreciprocity (J= 0). The spectrum only has a single dip, and

almost identical to the ϵ ¼ 0 spectrum. Red and green: spectra with the

same perturbation ϵ ¼ 0:3κ, but with nonreciprocal couplings J= 20κ

and J= 50κ, respectively. Two resonances are clearly observed, and their

separation increases with the strength of the nonreciprocal coupling J
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ωb,k= ωc,j,k= ωd,j,k= k, and homogeneous mode-bath coupling, i.e., gðkÞ ¼ ffiffiffi

κ
p

,
Yij(k)= Yij, and Zij(k)= Zij.

With the full Hamiltonian in Eq. (41), the Heisenberg equations of motion
(HEOM) of any operator Â can be computed as _̂A ¼ i Ĥ; Â

	 


. By integrating the
HEOM of bath mode operators, and substituting them into the HEOM of cavity
mode operators, the Langevin equation in Eq. (5) can be arrived at. In our
convention, the input field operators are defined as

B̂inðtÞ ¼
Z

dk
ffiffiffiffiffi

2π
p b̂k t0ð Þe�ikðt�t0Þ ð42Þ

Ĉin
j ðtÞ ¼

Z

dk
ffiffiffiffiffi

2π
p ĉj;k t0ð Þe�ikðt�t0Þ ð43Þ

D̂in
j ðtÞ ¼

Z

dk
ffiffiffiffiffi

2π
p d̂j;k t0ð Þe�ikðt�t0Þ; ð44Þ

where t0→−∞. Interested readers can refer to refs.5,23. for detailed derivations.

Minimum noise. For a given ~H, the measurement noise depends on the choice of
gain and loss baths. We can optimize the choice to obtain a minimum measure-
ment noise. We first recognize in Eq. (23) that χYYyχy

� �

11
	 0, because YY† is

positive semidefinite. By using Eq. (4), we can obtain another relation

χYYyχy
� �

11
¼ 1

2i χ ~Hχy
� �

11
� χ ~Hyχy
� �

11

� �

þ κ
2 χ11
�

�

�

�

2þ χZZyχy
� �

11

ð45Þ

	 � κ

2
χ�11 þ χ11
� �

þ κ

2
χ11
�

�

�

�

2
; ð46Þ

where we employ the fact that ZZ† is positive semidefinite in the last relation. After
rearrangement, we get the minimum noise in Eq. (46).

Single-tone quantum Fisher information. We want to characterize the maximum
amount of information available on ϵ in the reflected output mode in our wave-
guide. As we are interested in the limit of long integration times τ, the relevant
temporal mode of the output field is described by an annihilation operator

B̂ðτÞ � 1
ffiffiffi

τ
p
Z τ

0
B̂outðtÞdt: ð47Þ

This is a standard bosonic annihilation operator satisfying B̂ðτÞ; B̂yðτÞ
h i

¼ 1.

Changing the parameter ϵ will change both our non-Hermitian Hamiltonian ~H
as well as the state of the temporal mode B̂. To sense this change, one would
measure some property of B̂, described by an observable M̂. The possible
outcomes z of the measurement would be described by a probability distribution
P
ϵ
½z�, which depends parametrically on ϵ. Our goal is to maximize the the statistical

distance between P
ϵ
½z� and P0[z]. For small ϵ, standard definitions and arguments

yield that this distance ds2 is given by ϵ
2F , where F is the Fisher information46.

Optimizing F over all possible choices of measurement observables M̂ yields the
quantum Fisher information (QFI), FQFI

24,47.
In our case, because of the linear nature of our system and the Gaussian nature

of the relevant noise, B̂ is always in a Gaussian state, and FQFI can be computed
exactly25. For infinitesimal ϵ, one finds:

FQFI ¼
d~u

ϵ

dϵ
W�1

ϵ

d~uT
ϵ

dϵ

� �

�

�

�

ϵ!0

þΞ; ð48Þ

where ~u
ϵ
� q̂1h i

ϵ
; q̂2h i

ϵ

� �

and W
ϵ

ð Þjl� 1
2 δq̂j; δq̂l

n oD E

ϵ

are, respectively the first

and second moments of the Gaussian state; q̂1 � B̂ þ B̂y
� �

=
ffiffiffi

2
p

and q̂2 �
i �B̂ þ B̂y
� �

=
ffiffiffi

2
p

are the B mode quadratures; δq̂j � q̂j � q̂j

D E

ϵ

48. Ξ is a scalar that

depends on only the ϵ-dependence of the second moment. The first (second) term
in Eq. (48) can be viewed as the information associated with the ϵ-induced change
in the first (second) moment of the temporal mode B.

After solving the Langevin equation in Eq. (5), the first and second moment for
our linear sensor can be evaluated in the long-τ limit of interest:

~u
ϵ
¼

ffiffiffiffiffi

2τ
p

β 1� Re ~χ11½0;Δ; ϵ�;�Im ~χ11½0;Δ; ϵ�
� � ð49Þ

W0 ¼
�SII ½0�
κ

1 0

0 1

� 

ð50Þ

Due to the linearity of Eqs. (5) and (9), the classical drive affects only the first but not
the second moment of the output field. This can be seen from the fact that the first
moment in Eq. (49) scales as β, while the second moment in Eq. (50) is independent

of β. For sufficiently strong drive, the QFI will be dominated by the first, drive-
dependent term in Eq. (48), and the contribution from Ξ can be neglected.

One can now confirm that the SNR for an optimal homodyne measurement
(as given in in Eq. (16)) coincides with the quantum Fisher information, i.e.,
SNR ¼ ϵ

2FQFI . This implies that homodyne detection is the optimal measurement
for dispersive sensing because it extracts the maximum information about ϵ from B
mode.

Multiple-tone quantum Fisher information. In the main text and previous sec-
tions, we considered the case where the system is driven at a single frequency. One
might naturally ask if the measurement rate can be increased by driving and
measuring the system using multiple drive tones, each at a different frequency. For
sufficiently many frequencies, this method is equivalent to probing the full spectral
response of the system.

As mentioned in the main text, this multitone approach is no better that simply
probing the system with a single tone with an optimally chosen driving frequency.
We make this statement rigorous here. We here show that if the total intracavity
photon number is restricted, then probing the entire spectral response (via
multitone driving) does not provide more information (as quantified by the
quantum Fisher information) than an optimal single-tone measurement.

We first consider a generalized coherent driving field on mode 1 that consists of
NB distinct frequencies:

βðtÞ ¼
X

NB

j¼1

βje
�iΔj t : ð51Þ

In the long-time limit, the output field state becomes a dynamic steady state that
consists of components in each tone Δj. Each component can be viewed as the state
of a temporal mode:

B̂j �
1
ffiffiffi

τ
p
Z τ

0
B̂outðtÞeiΔj tdt: ð52Þ

It is easy to check that temporal modes are independent bosonic modes at τ→∞,

i.e., B̂j; B̂l

h i

¼ 0 and B̂j; B̂y
l

h i

¼ δjl .

Because the system is linear, the multimode output state is Gaussian. We again
assume each drive is sufficiently strong that QFI is dominated by the first term in Eq.

(48). The multimode first moment is~u
ϵ
¼ q̂1;1

D E

ϵ

; q̂2;1

D E

ϵ

; q̂1;2

D E

ϵ

; q̂2;2

D E

ϵ

; ¼
� �

,

where the quadrature operators of each mode are q̂1;j � B̂j þ B̂y
j

� �

=
ffiffiffi

2
p

and

q̂2;j � i �B̂j þ B̂y
j

� �

=
ffiffiffi

2
p

. The first moment of each mode can be evaluated by

B̂j

D E

ϵ

¼ ffiffiffi

τ
p

βj 1� ~χ11½0;Δj; ϵ�
� �

: ð53Þ

In the long-time limit, we find that the second moment is block diagonal, i.e.,

W0 ¼ 
NB

j¼1W
ðjÞ
0 , and each block corresponds to the second moment of each

temporal mode:

W
ðjÞ
0 ¼

~SII Δj

h i

κ

1 0

0 1

� 

ð54Þ

where

~SII Δj

h i

¼ κ

2
1þ 4

κ
χ Δj

� �

YYyχy Δj

� �� �

11

� 

; ð55Þ

and χ Δj

� �

� ~χ 0;Δj; 0
h i

. Note that ~SII ½Δ� � SII ½0� in Eq. (23) because all dynamics

in the main text is evaluated at the rotating frame of the single drive frequency.
To fairly compare this multitone approach with other schemes, we again

constrain the problem to have a fixed total photon number. Here the time-averaged
total photon number is

�ntot ¼
X

NB

j¼1

�nj �
X

NB

j¼1

β2j

κ
χy Δj

� �

χ Δj

� �� �

11
: ð56Þ

The multitone Fisher information can be evaluated as

Fmt ¼
X

NB

j¼1

τ

κ2
�nj~Γ Δj

� �

ð57Þ

where ~Γ Δj

� �

is the measurement rate per coherent photon for a single-tone

measurement at detuning Δj:

~Γ Δj

� �

� 2κ2

~SII Δj

h i

χ Δj

� �

Vχ Δj

� �� �

11

�

�

�

�

�

�

2

χy Δj

� �

χ Δj

� �� �

11

: ð58Þ
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By using Eq. (46), it is easy to show that each SII[Δj] is lower bounded by

~SII Δj

h i

	 ~SII Δj

h i

min

� κ
2 1þ 2Θ 1� χ11 Δj

� ��

�

�

�

�

�

2
�1

� �

´ 1� χ11 Δj

� �
�

�

�

�

�

�

2
�1

� 

ð59Þ

and so the maximum per-photon measurement rate is

~Γ Δj

� �

� ~Γopt Δj

� �

� 2κ2

~SII Δj

h i

min

χ Δj

� �

Vχ Δj

� �� �

11

�

�

�

�

�

�

2

χy Δj

� �

χ Δj

� �� �

11

: ð60Þ

We note that there might not be a single set of bath that could optimize all ~SII ½Δj�
to saturate the bound in Eq. (59). In general the bath can only be optimized with
respect to a specific detuning Δj.

We can then see that the multitone QFI is upper-bounded by the maximum
single-tone QFI at the optimal detuning:

Fmt � P

NB

j¼1

τ
κ2
�nj~Γopt Δj

� �

� P

NB

j¼1

τ
κ2
�nj max

Δj

~Γopt

� �

¼ τ
κ2
�ntot max

Δj

~Γopt

� �

¼ max
Δj

FQFI

� �

:

ð61Þ

Recall again that the QFI is the maximum information obtainable from any
detection scheme. Our result thus shows that probing the entire spectral response
of the system (via multitone driving) does not provide more information about the
parameter ϵ than simply driving with a single (optimally chosen) tone and
performing a homodyne measurement.

Bound on the measurement rate of a reciprocal two-mode system. We focus
here on a two-mode system where the parameter to be sensed corresponds to the
Hermitian coupling between the modes (as given in Eq. (26) in the main text). For
any such two-mode system, the maximum measurement rate obtainable by using
an optimized bath is

Γmeas � Γopt ¼ κ�ntot
χ12 þ χ21
�

�

�

�

2

χ11
�

�

�

�

2þ χ21
�

�

�

�

2 f χ11
� �

ð62Þ

where f(χ11) is a positive-valued function of a complex χ11:

f χ11
� �

� χ11
�

�

�

�

2

1þ 2Θ 1� χ11
�

�

�

�

2�1
h i

1� χ11
�

�

�

�

2�1
� � : ð63Þ

Due to reciprocity, i.e., χ12
�

�

�

� ¼ χ21
�

�

�

�, the sum of antidiagonal susceptibility
entries is bounded by χ12 þ χ21

�

�

�

�

2� 4 χ21
�

�

�

�

2
. This condition bounds the optimal

measurement rate as

Γopt � 4κ�ntotf χ11
� �

� 16κ�ntot: ð64Þ

The first inequality is exploited when χ21
�

�

�

�

2� χ11
�

�

�

�

2
. The second inequality is

imposed by the maximum value of f(χ11). As illustrated in Fig. 7, the maximum is
max{f(χ11)}= 4, which is attainable when χ11= 2. These inequalities complete the
reciprocal-system bound in Eq. (30).

Bounds on sensing a change in the frequency of mode 1. Consider a general M
mode setup where the parameter of interest is a simple shift in the resonance
frequency of mode 1, i.e., Vij= δi1δj1. In this case, one finds from Eq. (21) that the
signal power S is given by

S ¼ 1

4

χ11
�

�

�

�

4

χyχð Þ11
S
ϵ
� 1

4
χ11
�

�

�

�

2S
ϵ
; ð65Þ

where S
ϵ
is defined in Eq. (28). The last relation becomes an equality in the special

case where χj1= 0 for j ≠ 1. In this case, the coherent drive only induces a coherent
photon population in mode 1 (and not in modes 2 through M).

If we further specialize to a system with just one mode (M= 1), the
Hamiltonian and susceptibility are simple scalars,

~Hone½0� ¼ �i
κþ γ1

2
; χ11 ¼

iκ

Δþ i κþ γ1
� �

=2
: ð66Þ

If we further assume a resonant drive (Δ= 0) and no extra gain or loss (γ1= 0), we
have the usual setup for an ideal dispersive measurement (see, e.g., Ref.5). One has
χ11= 2, implying that the signal power is just S ¼ S

ϵ
.

If one now allows for gain (i.e., γ1 < 0), the signal power can be enhanced
arbitrarily above S

ϵ
without increasing the intracavity photon number �ntot: one

simply increases χ11
�

�

�

� above 2. We stress that this enhancement does not require
EP, but simply the introduction of gain, and also applies to the case of a multimode
system M > 1.

Consider next the behavior of the measurement rate Γmeas associated with
detecting a mode-1 frequency shift; as discussed, Γmeas considers both the signal
power and the impact of intrinsic noise in the homodyne current. For a general M
mode sensor, we find that Γmeas is upper-bounded by

Γmeas � 4κ�ntotf χ11
� �

� 16κ�ntot; ð67Þ

where f(χ11) is defined in Eq. (63). As shown in Fig. 7, the measurement rate is
maximum when χ11= 2. This optimal value is achieved by the simple one mode
sensor in Eq. (66) in the case where the dissipation of mode 1 is solely due to the
waveguide coupling, i.e., γ1= 0. It is interesting to note that this bound is identical
to the bound on a reciprocal two-mode sensor, c.f., Eq. (30). In contrast, a
nonreciprocal two-mode sensor could have Γmeas arbitrarily larger than this bound,
c.f., Eq. (34).

Because a simple one-mode system achieves the optimal value of Γmeas for
sensing a parametric change in the frequency of mode 1, using a multimode system
is unnecessary for this problem. This is true even if one uses a multimode system
tuned to an EP where eigenvalues exhibit a

ffiffiffi

ϵ
p

scaling. As a concrete example,
consider the reciprocal two-mode system given in Eq. (31). When J= (κ+ γ1−
γ2)/4, the system exhibits EP. The unscaled Jordan normal form can be obtained in
an appropriate basis:

1

2

1 �i

�i 1

� 

~Hrecip½0�
1 i

i 1

� 

¼ Ω½0� 2J

0 Ω½0�

� 

; ð68Þ

where the unperturbed degenerate eigenvalue is Ω[0]≡−i(κ+ γ1+ γ2)/4. In this
basis, the perturbation matrix has non-vanishing off-diagonal entry, i.e.,

1

2

1 �i

�i 1

� 

V
1 i

i 1

� 

¼ 1=2 i=2

�i=2 1=2

� 

; ð69Þ

and so the eigenvalue of ~H½ϵ� has ffiffiffi

ϵ
p

dependence at small ϵ, i.e.,

Ω½ϵ� � Ω½0�±
ffiffiffiffiffiffiffiffiffi

�iϵJ
p

: ð70Þ

As usual, one might be tempted to conclude from this strong dependence of
eigenvalues on ϵ that this system should out perform the simple one-mode system
in Eq. (66). This is, however, not true: the two-mode EP system still has a
measurement rate fundamentally bounded by Eq. (67). It is interesting to note that
this bound is achieved by the two-mode EP system only when mode 2 has nonzero

loss, i.e., γ2 > 0, and when the gain of mode 1 is tuned to γ1 ¼ � ffiffiffi

κ
p � ffiffiffiffiffi

γ2
p� �2

.

Systematic construction of minimum noise bath. In Eq. (46), we show the lower
bound of measurement noise for a given ~H. Here, we outline a systematic

0 1 2 3 4 5
0

1

2

3

4

(�
1
1
)

|�11|

Fig. 7 Allowable values of function f(χ11). The shaded blue region indicates

the allowable values of f(χ11) (c.f., Eq. (63)) as a function χ11
�

�

�

�. f(χ11) sets the

maximum possible measurement rate both for sensing a parametric change

in mode coupling (c.f., Eq. (62)) and for sensing a parametric change in the

resonance frequency of mode 1 (c.f., Eq. (67)). The dashed horizonal line

shows the maximum possible value of f(χ11), which is achieved only when

χ11= 2. Note that for larger χ11
�

�

�

� 	 5, f(χ11) < 1
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construction of baths that attains the minimum measurement noise. We first recall
that the coupling to gain and loss bath is specified by the positive semidefinite M ×
M matrices YY† and ZZ†. For a given ~H, those matrices are not unique because Eq.
(4) is unchanged if we change the baths as YYy ! YYy þ K and ZZy ! ZZy þ K ,
for any positive semidefinite K. Our aim is to find a YY† such that the gain noise
term is

χYYyχy
� �

11
¼ max χ

~H � ~Hy þ i~κ

2i

� 

χy
� 

11

; 0

� �

: ð71Þ

For convenience, we define the Hermitian matrix

h � χ
~H � ~Hy þ i~κ

2i

� 

χy: ð72Þ

Then Eq. (71) becomes a conditional equation of h11 only. In the following, we
separately consider the cases of h11 < 0 and h11 > 0.

For negative h11, our aim is to construct YY† such that

χYYyχy
� �

11
¼ 0: ð73Þ

We first construct a positive semidefinite Hermitian matrix X
−1:

X�1ð Þ1i ¼ X�1ð Þ�i1¼ �h1i ¼ �h�i1; ð74Þ

X�1ð Þjj ¼ �
M h1j

�

�

�

�

�

�

2

h11
; ð75Þ

X�1ð Þij ¼ 0 otherwise: ð76Þ

It is easy to see that h+ X
−1 has vanishing entries in first row and first column, i.e.,

(h+ X
−1)1i= (h+ X

−1)i1= 0.
Because h+ X

−1 is Hermitian, it can always be diagonalized by a unitary matrix
U:

U hþ X�1ð ÞUy� �

ij
¼ Λiδij; ð77Þ

where the eigenvalues Λi are real. Due to the vanishing first row and first column in
h+ X

−1, we can require U1i=Ui1= δi1 and Λ1= 0.
Next we decompose h+ X

−1= X+2− X
−2 as the difference of two positive

semidefinite Hermitian matrices X+2 and X
−2, which are constructed as

UX± 2U
y� �

ij
� Λij j±Λi

2
δij: ð78Þ

Combining the matrices and Eq. (72), we have

χ
~H � ~Hy þ i~κ

2i

� 

χy ¼ Xþ2 þ �X�1 � X�2ð Þ; ð79Þ

where the first (second) term in R.H.S. is positive (negative) semidefinite and thus
corresponds to gain (loss) bath. By using Eqs. (4) and (17), we can construct the
gain and loss baths as

YYy ¼ 1

κ2
ðΔI� ~H½0�ÞXþ2ðΔI� ~Hy½0�Þ; ð80Þ

ZZy ¼ 1

κ2
ðΔI� ~H½0�Þ X�1 þ X�2ð Þ ΔI� ~Hy½0�

� �

: ð81Þ

It is easy to verify that Eq. (73) is satisfied.
Similarly for positive h11, our aim is to construct YY† such that

χYYyχy
� �

11
¼ h11: ð82Þ

We first construct a positive semidefinite Hermitian matrix X+1:

Xþ1

� �

1i
¼ Xþ1

� ��
i1
¼ h1i ¼ h�i1; ð83Þ

Xþ1

� �

jj
¼

M h1j

�

�

�

�

�

�

2

h11
; ð84Þ

Xþ1

� �

ij
¼ 0 otherwise: ð85Þ

It is easy to see that h− X+1 has vanishing entries in first row and first column, i.e.,
(h− X+1)1i= (h− X+1)i1= 0.

Because h−X+1 is Hermitian, it can always be diagonalized by a unitary matrix U:

U h� Xþ1

� �

Uy� �

ij
¼ Λiδij; ð86Þ

where the eigenvalues Λi are real. Due to the vanishing first row and first column in
h−X+1, we can require U1i=Ui1= δi1 and Λ1= 0.

Next we decompose h− X+1= X+2− X
−2 as the difference of two positive

semidefinite Hermitian matrices X+2 and X
−2, which are constructed as

UX ± 2U
y� �

ij
� Λij j±Λi

2
δij: ð87Þ

Combining the matrices and Eq. (72), we have

χ
~H � ~Hy þ i~κ

2i

� 

χy ¼ Xþ1 þ Xþ2

� �

þ �X�2ð Þ; ð88Þ

where the first (second) term in R.H.S. is positive (negative) semidefinite and thus
corresponds to gain (loss) bath. By using Eqs. (4) and (17), we can construct the
gain and loss baths as

YYy ¼ 1

κ2
ðΔI� ~H½0�Þ Xþ1 þ Xþ2

� �

ΔI� ~Hy½0�
� �

; ð89Þ

ZZy ¼ 1

κ2
ðΔI� ~H½0�ÞX�2 ΔI� ~Hy½0�

� �

: ð90Þ

It is easy to verify that Eq. (82) is satisfied.

We note that if χ
~H� ~Hyþi~κ

2i

� �

χy
� �

11
¼ 0, we modify the matrix in Eq. (72) as

h→ h+ ρδi1δj1. The baths can be constructed by the above procedure with a
small ρ→ 0.
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