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Non-Hermitian skin effect (NHSE) describes the exponential localization of all eigenstates toward
boundaries in non-Hermitian systems, and has attracted intense research interest of late. Here
we theoretically propose a scheme in which the NHSE significantly impacts the external motion
of a single trapped ion through complex spin-motion dynamics. On the one hand, we show the
competition between the NHSE and the coherent Bloch dynamics. On the other hand, since the
NHSE manifests as a non-reciprocal flow in occupied phonon modes, we demonstrate that such
dynamics can have potential applications in cooling and sensing. Our proposal can be readily
implemented using existing experimental techniques, and offers a scalable (in terms of the available
ions and phonon modes) simulation platform for relevant non-Hermitian physics.

I. INTRODUCTION

In a general class of non-Hermitian systems, eigen-
states become exponentially localized toward boundaries,
giving rise to the non-Hermitian skin effect (NHSE) [1–
15]. The NHSE originates from the spectral topology of
the system’s complex egienspectrum under the periodic
boundary condition, which translates to a non-reciprocal
bulk flow that leads to the accumulation of eigenstates at
boundaries [8, 9]. In lattice systems with NHSE, the de-
viation of eigenstates from extended Bloch waves necessi-
tates the application of the non-Bloch band theory, which
offers a consistent and efficient description for topological
edge states [1–3] and system dynamics [10, 16–19]. So far,
signatures of the NHSE have been observed in topoelec-
trical circuits [20], metamaterials [21], photonics [22, 23],
and cold atoms [24]. A wealth of unconventional phe-
nomena predicted by the non-Bloch band theory, such as
the non-Bloch parity-time symmetry [10, 25], non-Bloch
topological invariants and quench dynamics [16, 26], have
also been experimentally confirmed. The identification
of these NHSE-related behaviors in the quantum me-
chanical setting such as cold atoms is particularly in-
teresting, as it paves the way for exploring, in quan-
tum open systems, exotic many-body phenomena that
can be conveniently understood from the perspective of
non-Hermitian physics.

In a recent experiment, dynamic signatures of the
NHSE have been observed in a dissipative Bose-Einstein
condensate moving along a synthetic momentum lat-
tice [24]. Therein, the implemented model is the dissi-
pative Aharonov-Bohm (AB) chain, consisting of a se-
ries of rings with on-site loss and threaded by synthetic
flux [27]. However, due to experimental limitations, the
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implemented system is confined to five unit cells. Since
the NHSE persists in the thermodynamic limit, it is de-
sirable to consider alternative designs and systems where
the lattice size can be further increased.

In this work, we propose one such realization using
a single trapped ion [28, 29]. Taking the ion of 9Be+

as a concrete example, we demonstrate that a dissipa-
tive AB chain can be realized in the combined synthetic
dimensions of the hyperfine states and phonon modes.
Here a state-selective dissipation can be implemented,
by coupling the ground hyperfine state to an excited
state undergoing spontaneous decay. Under post selec-
tion, the resulting dissipative AB chain is a semi-infinite
one-dimensional lattice with a natural open boundary at
n = 0, where n labels the Fock space of the phonon
mode. While the natural open boundary would necessi-
tate the non-Bloch band theory to account for the sys-
tem’s topological edge states, we focus on the dynamic
consequence of the NHSE. Specifically, a unidirectional
flow emerges in the occupied phonon modes, manifesting
itself as increasing or decreasing average phonon num-
bers, depending on the parameters. By tuning the system
parameters such that the AB chain becomes tilted in the
synthetic dimension, the competition between the NHSE
and the coherent Bloch dynamics can be studied. Fur-
ther, in the regime featuring decreasing average phonon
number, the NHSE-induced flow gives rise to an effective
cooling of the ion. We also find that the change in the
average phonon number is sensitive to the synthetic flux,
which is potentially useful for quantum sensing. Finally,
we demonstrate that the directional flow is robust again
various experimental imperfections, such as heating and
spontaneous decay back into the ground states.

The work is organized as follows. In Sec. II, we present
in detail the proposed scheme, as well as the implemented
model. In Sec. III, we discuss the unidirectional flow
in the occupied phonon modes, as a direct consequence
of the NHSE. We also depict the competition between
the dynamic signatures of the NHSE and the Bloch dy-
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FIG. 1. Experimental scheme with a single trapped 9Be+ ion. (a) A tilted dissipative Aharonov-Bohm (AB)
chain. (b) The level scheme of our proposal. The sublattice sites (a, b, c) in (a) are respectively encoded in the states
(|F = 2,mF = 0〉 , |F = 2,mF = −1〉 , |F = 1,mF = 1〉) of the ground-state 2S1/2 manifold. Within each unit cell, sites (a, b, c)
are coupled through the carrier (∆n = 0) transitions driven by a radio-frequency field (between a and b), a microwave field
(between a and c) or a combination of both in a two-photon process (between b and c). Their phases contribute to a synthetic
magnetic flux φ through each ring. Site a of the (n + 1)th cell and site b of the nth cell are coupled through a two-photon
Raman transition, resonant with the first sideband (∆n = 1). Thus different unit cells are encoded into the phonon modes.
When the Raman transition is detuned by δ, a cell-dependent offset potential is introduced, giving rise to a tilted AB chain.
The laser-induced dissipation is introduced by coupling site c to the excited state |F = 2,mF = −2〉 of the 2P1/2 manifold,
which spontaneously decays back into the ground-state manifolds. We first neglect the spontaneous decay back into site c,
but will explicitly gauge its impact in Sec. V. The states |F = 2,mF = 1〉 and |F = 2,mF = 2〉 then serve as the reservoir,
rendering the dynamics within (a, b, c) non-unitary upon post selection.

namics. In Sec. IV, we show the dynamic features of
the NHSE can have potential applications in cooling and
sensing. In Sec. V, we demonstrate the robustness of the
NHSE under experimental imperfections. We summarize
in Sec. VI.

II. EXPERIMENTAL SCHEME AND MODEL

As illustrated in Fig. 1(a), we aim to simulate dynam-
ics along a dissipative AB chain, consisting of a series of
AB rings with synthetic magnetic flux and on-site dissi-
pation [27]. To realize this model, the ability to control
coherent couplings and dissipation in a multi-level open
system is indispensable. Implementing a long lattice with
a long coherence time is also important to investigate the
system dynamics, which in general plays a crucial role in
identifying the NHSE and topological properties of the
model [22, 24]. A further requirement for the investiga-
tion of the NHSE is the ease with which to implement
sharp boundaries, which is not the case, for instance, for
cold atoms trapped in an optical lattice potential.

To satisfy all these requirements, we propose an ex-
perimentally feasible scheme with a single trapped ion.
As a concrete example, we consider the 9Be+ ion, whose
rich level structure offers a particularly convenient plat-
form. As shown in Fig. 1(b), the ground manifold 2S1/2

of 9Be+ features eight hyperfine levels due to the coupling
between the electronic and nuclear spins (I = 3

2 ), with a
hyperfine splitting of ∼ 1.2 GHz. The transitions among
these states can be coherently driven by radio-frequency

or microwave fields for single photon transitions, and
laser fields for Raman transitions. The ground-state
manifold is therefore a qudit that can be well controlled
and manipulated. To simulate the dissipative AB chain,
we encode the sublattice sites (a, b, c) of the AB rings into
the hyperfine states |F = 2,mF = 0〉, |F = 2,mF = −1〉
and |F = 1,mF = 1〉, respectively. Different unit cells
are encoded into different phonon states |n〉 (n =
0, 1, 2...).

While the intracell hoppings are generated by radio-
frequency and/or microwave fields, the intercell hopping
between |n+ 1, a〉 and |n, b〉 is realized by a stimulated
Raman two-photon process, marked red in Fig. 1(b).
Thus, the spin and motion are coupled along the direc-
tion of the Raman lasers. The Rabi frequencies of these
sideband transitions vary with n and are proportional
to
√
n+ 1 if the Lamb-Dicke criterion is satisfied. How-

ever, the light mass of 9Be+ leads to a large Lamb-Dicke
parameter, such that the Rabi frequencies for n ≤ 14
are more or less uniform. We therefore first consider
a uniform coupling rates, unless othrewise specified (in
Sec. IV).

To realize non-Hermiticity, dissipation is intro-
duced by coherently exciting atoms in the state
2S1/2 |F = 1,mF = 1〉 to 2P1/2 |F = 2,mF = 2〉, which
has a natural linewidth of Γ = 2π × 19.4 MHz.
Upon spontaneous decay, the excited state
2P1/2 |F = 2,mF = 2〉 has a probability of 1/2 end-
ing up in either |F = 2,mF = 1〉 or |F = 2,mF = 2〉 of
the ground-state manifold, which are then post-selected.
While the ion also has a significant probability (1/2) to
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decay back into the state |F = 1,mF = 1〉 (site c) caus-
ing decoherence, such a process does not qualitatively
change the dynamic signatures of the NHSE, as we will
show in Sec. V. In the following, we first neglect these
processes for the convenience of discussion.

Under the condition of post selection, the dynamics of
the system is then driven by the non-Hermitian effective
Hamiltonian (see Appendix for a detailed derivation)

H =
∑
n

nδ(|n, a〉〈n, a|+ |n, b〉〈n, b|+ |n, c〉〈n, c|)

−
∑
n

iγ|n, c〉〈n, c|+
∑
n

[J1(eiφ|n, c〉〈n, a|

+ |n, c〉〈n, b|+ |n, a〉〈n, b|) + J2|n+ 1, a〉〈n, b|+H.c.]
(1)

where γ = J2
e /Γ is the effective dissipative rate, and Je is

the coupling strength between site c and the excited state
2P1/2 |F = 2,mF = 2〉. J1 and J2 are respectively the in-
tracell and intercell hopping rates. The tunable phase φ
corresponds to the synthetic magnetic flux through the
rings. Note that a unit-cell dependent detuning δ can be
created by detuning the sideband drive from resonance,
as shown in Fig. 1(b). The most general form of our
implemented model is therefore a tilted dissipative AB
chain in the synthetic dimensions of the trapped ion. For
δ = 0, Hamiltonian (1) reduces to the dissipative AB
chain, manifesting the NHSE and non-Bloch band topol-
ogy. Whereas for δ 6= 0, the Hamiltonian resembles a
Wannier-Stark ladder [30], wherein the coherent Bloch
dynamics competes with the NHSE.

Since the states of a trapped ion can be detected with
very high efficiency and fidelity, dynamics in the synthetic
dimension can be conveniently probed. For instance, the
ion’s internal states can be read out through fluorescence
by coupling to an excited state. The external phonon
states can be mapped onto the internal degrees of free-
dom of the ion via a sideband drive for readout. This
is because sideband transitions between |n〉 and |n+ 1〉
states have different Rabi frequencies with different n.
By fitting the resultant internal state population after
driving the sideband transitions, the population of dif-
ferent phonon states can be reconstructed [31]. In this
way, phonon modes up to n ∼ 100 can be manipulated
and probed [32]. This lends a valuable scalability to the
dissipative AB chain, whose prior implementation is lim-
ited to five unit cells in cold atoms [24].

III. DYNAMIC SIGNATURES OF THE NHSE

The NHSE originates from a directional bulk flow [8],
thus offering a useful dynamic signature for experimental
detection. In this section, we demonstrate that this is
also the case with our proposed setup.

FIG. 2. NHSE of the AB chain. (a)(b)(c) are the Hermitian
cases with γ = 0; (d)(e)(f) are the non-Hermitian cases with
γ = 2π × 50 kHz. (a)(d) show the spatial distribution of
eigenstates wavefunctions. (b)(e) are the bulk dynamics with
an initial state |n = 7, a〉. (c)(f) are dynamics close to the
boundary at n = 0, with the initial state |n = 0, a〉. The
color bar indicates the normalized probability in each cell.
The red solid line indicates the time evolution of the average
phonon number. Other parameters are J1 = 2π × 20 kHz,
J2 = 2π × 10 kHz, φ = −π/2 and δ = 0.

A. The NHSE from dynamics

We first focus on the case with δ = 0. The NHSE of the
model is then closely related to the sign and magnitude
of the synthetic flux φ. Since in our case, a natural open
boundary exists at n = 0, the NHSE in the synthetic di-
mension is readily visible from the eigenstates’ wavefunc-
tions. As shown in Fig. 2(a)(d), whereas the eigenstates
are extended for γ = 0, they become localized toward the
open boundary at n = 0 under finite dissipation. Note
that we fix φ = −π/2 for the calculations here, since the
NHSE requires a finite γ and φ 6= 0, π.

In Fig. 2(b)(e), we show the bulk dynamics for the ini-
tial state |n = 7, a〉, either without or with dissipation.
A unidirectional flow is clearly visible in Fig. 2(e), con-
firming the emergence of NHSE therein. More directly,
the NHSE can be identified through dynamics close to
the open boundary. In Fig. 2(c)(f), we show dynamics
for the initial state |n = 0, a〉. Under the impact of the
NHSE, the time-evolved state remains close to the open
boundary in Fig. 2(f).

B. Competition with the Bloch dynamics

Under a finite δ, Hamiltonian (1) corresponds to a
tilted AB chain. In the absence of dissipation (γ = 0),
eigenstates of the system are localized, since the system
essentially constitutes a Wannier-Stark ladder, which is
known for its localized eigenstates. While the localiza-
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FIG. 3. Competition between the NHSE and the Bloch
dynamics, where the color bar indicates the phonon number
in each unit cell, at a given time. (a)(b) are the Hermitian
cases with γ = 0; (c)(d) are the non-Hermitian cases with γ =
2π × 50 kHz. The system is initialized in the state |n = 7, a〉
for (a) and (c), and in a Gaussian states

∑
n e
−0.1(n−7)2 |n〉 for

(b) and (d). The red solid line indicates the average photon
number. Other parameters are J1 = 2π × 20 kHz, J2 =
2π × 10 kHz, φ = −π/2 and δ = 2π × 5 kHz.

tion occurs in the bulk, it should compete with the NHSE
in the presence of dissipation. Dynamically, whereas the
NHSE is signaled by the unidirectional propagation, a
Wannier-Stark ladder is noted for the coherent Bloch os-
cillation [33]. We therefore expect the competition be-
tween the two distinct types of dynamics to emerge.

This is confirmed in Fig. 3. In the Hermitian case,
the Bloch dynamics manifests in two distinct scenarios.
For an initial state localized within a single unit cell, the
state is close to an eigenstate of the tilted AB chain,
such that the average phonon number (red curve) os-
cillates close to the initial phonon number with a small
amplitude [see Fig. 3(a)]. By contrast, when the initial
state features a wave packet spanning several unit cells,
the average phonon number significantly oscillate around
the initial value in the dynamics [see Fig. 3(b)]. More
importantly, in Fig. 3(c)(d), we plot the dynamics of the
above two cases, in the presence of dissipation. In both
cases, the average phonon number, while still oscillatory,
tends toward the open boundary at n = 0. For the sec-
ond scenario in particular, the boundary (n = 0 unit cell)
becomes significantly populated in a periodic fashion.

IV. POTENTIAL UTILITIES OF NHSE

In this section, we show that, given our proposed
scheme, the dynamic features of the NHSE can have
potential applications in cooling and sensing. For both
cases, we consider the inevitable heating under typical
experimental conditions. The heating process introduces

decoherence into the external motion of the ion, typi-
cally giving rise to a higher average phonon number over
time. Here we describe the heating process by intro-
ducing quantum jump processes, with the jump opera-
tors {Ln,1 =

√
κ|n〉〈n + 1|, Ln,2 =

√
κ|n + 1〉〈n|}, where

κ = 2π × 0.3 kHz is the typical heating rate. The dy-
namics of the system (still under post selection) is thus
captured by a hybrid master equation

dρ

dt
= −i(Hρ− ρH†)

+
∑
n,j

[Ln,jρL
†
n,jρ−

1

2
(L†n,jLn,j + ρL†n,jLn.j)], (2)

where ρ is the density matrix; H is the effective non-
Hermitian Hamiltonian (1).

Another practical consideration is the inhomogeneity
in the hopping rate J2. The intercell hopping realized by
sideband transitions is typically inhomogeneous, which
typically scales with

√
n+ 1 if the Lamb-Dicke criterion

is satisfied (with the Lamb-Dicke parameter η � 1). As
our ion of choice, 9Be+ gives η ∼ 0.35 under typical ex-
perimental conditions (see Appendix), which does not
satisfy the Lamb-Dicke criterion. In Fig. 4, we show the
dependence of J2 on n in the range of n ∈ [0, 14]. Appar-
ently, J2 does not scale as

√
n+ 1, and does not deviate

too much from its average value in this range. In the
following, we take this inhomogeneity into account for
numerical simulations.

FIG. 4. Inhomogeneous intercell hopping rate J2 calculated

through J2(n) = ~
2
Ω4ηe

−η2/2
√

1
n+1

L1
n(η2) where Lan is the

generalized Laguerre polynomial (see Appendix). The param-
eters are chosen so that the average value of J2 is 2π×10 kHz
for η = 0.35 and n ∈ [0, 14]. The horizontal dashed line indi-
cates the mean value of J̄2 = 2π × 10 kHz.
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FIG. 5. Ion cooling by the NHSE. Time evolution, governed
by Eq. (2) of (a)(d) the average phonon number, (d)(e) the
fluctuations of the phonon number, and (c)(f) entropy under
the NHSE. The system is initialized in the state |n = 7, a〉 for
(a)(b)(c), and a thermal state with n̄th = 7 for (d)(e)(f). The
red solid lines are the Hermitian cases with γ = 0, and the
blue solid lines are the non-Hermitian cases with γ = 2π ×
50 kHz. Other parameters are J1 = 2π × 20 kHz, φ = −π/2,
and κ = 2π× 0.3 kHz. The value of J2 is chosen according to
Fig. 4.

A. NHSE for cooling

In our setup, the NHSE-induced unidirectional flow
occurs in the phonon modes. When the parameters are
tuned such that the probability flows toward smaller n,
the NHSE effectively gives rise to cooling in the external
ion motion. The question is whether the cooling effect
is still significant under typical experimental conditions
where heating also arises according to Eq. (2).

In Fig. 5, we show the time evolution of the average
phonon number, its fluctuation, and the entropy of the
system, driven by the master equation Eq. (2). Regard-
less of the initial state, the average phonon number and
its fluctuation oscillate slightly and approach small finite
values under the impact of the NHSE. By contrast, in
the absence of non-Hermiticity, both the average phonon
number and the fluctuation increase during the time evo-
lution. From the entropy evolution, we see that in both
cases, the system has already approached a quasi-steady
state after 1 ms of time evolution. Thus, the NHSE, by
inducing a directional flow toward smaller n, effectively
cools the external motion of the ion, which, while remi-
niscent of the resolved sideband cooling in trapped ions,
derives from a distinct mechanism.

B. Sensing the synthetic magnetic flux

While the NHSE in the dissipative AB chain originates
from the interplay of dissipation and the synthetic flux,

FIG. 6. Dependence of the NHSE on the synthetic flux. (a)(c)
The final average phonon number n̄ as a function of the syn-
thetic flux φ, after a time evolution of 0.2 ms. The system
is initialized in the state |n = 7, a〉. (b)(d) Derivatives of the
average phonon number versus the flux. We show the Hermi-
tian cases in (a)(b), and take γ = 2π× 50 kHz in (c)(d). The
ideal cases (blue curves) are the results from the theoretical
dissipative AB chain model, while the real cases (red curves)
include the inevitable heating and inhomogeneous intercell
hopping rates in our experimental setting. Other parameters
are J1 = 2π × 100 kHz, and γ = 2π × 50 kHz. The value of
J2 is chosen according to Fig. 4.

the NHSE-induced dynamics depends sensitively on the
synthetic magnetic flux, which offers the interesting pos-
sibility of quantum sensing.

In Fig. 6, we demonstrate the dependence of the di-
rectional flow on the flux. In particular, initializing the
system in the state |n = 7, a〉, we see that the average
phonon number changes sharply near φ = 0 and φ = ±π.
At exactly these locations, the NHSE-induces directional
flow not only changes its direction, but undergoes a rapid
increase/decrease in the amplitude. As such, using the
average phonon number or its time derivative as the sig-
nal, one should in principle realize a sensing scheme for
the synthetic magnetic flux near φ = 0 and φ = ±π.
We also note that the sensitivity of the protocol becomes
better with increasing J1/J2.

V. EXPERIMENTAL IMPERFECTIONS

For the calculations above, we have neglected the spon-
taneous decay back into the state |c〉. To account for the
impact of the spontaneous decay, we consider the full
master equation

dρ

dt
= −i[Hcoh, ρ]

+
∑
n,j

[Ln,jρL
†
n,jρ−

1

2
(L†n,jLn,j + ρL†n,jLn.j)], (3)
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where the Hermitian Hamiltonian is

Hcoh =
∑
n

[J1(eiφ|n, c〉〈n, a|+ |n, c〉〈n, b|+ |n, a〉〈n, b|)

+ J2|n+ 1, a〉〈n, b|+ Je|n, c〉〈n, e|+H.c.] (4)

and the jump operators are

Ln,1 =
√
κ|n〉〈n+ 1|, Ln,2 =

√
κ|n+ 1〉〈n|, (5)

Ln,3 =
√

Γc|c〉〈e|, (6)

Ln,4 =
√

Γr1 |r1〉〈e|, Ln,5 =
√

Γr2 |r2〉〈e|. (7)

Here |e〉, |r1〉, |r2〉 respectively represent the excited
state 2P1/2 |F = 2,mF = 2〉, and the reservoir states
|r1〉 (|F = 2,mF = 2〉) and |r2〉 (|F = 2,mF = 1〉) in the
2S1/2 manifold, with Γr1 = Γ/3, Γr2 = Γ/6, and Γc =
Γ/2 according to the Clebsch-Gordon coefficients. The
coupling rate between |c〉 and |e〉 is labeled as Je, which
modulates the laser-induced loss on site c with an ef-
fective dissipative rate γ = 2J2

e (Γr1 + Γr2)/(Γc + Γr1 +
Γr2)2 = J2

e /Γ.

FIG. 7. (a) Dynamics under the non-Hermitian effective
Hamiltonian 1. (b)(c)(d) Dynamics under the Lindblad mas-
ter equation Eq (3), with jump operators {Ln,4, Ln,5} for (b),
{Ln,3, Ln,4, Ln,5} for (c), and {Ln,1, Ln,2, Ln,3, Ln,4, Ln,5} for
(d). Other parameters are J1 = 2π × 20 kHz, φ = −π/2,
Je =

√
γΓ ≈ 2π × 0.98 MHz, and γ = 2π × 50 kHz. Note

that we take Γr1 + Γr2 = Γ and Γc = 0 in (b), such that
the spontaneous decay back to the state |c〉 is neglected. The
value of J2 is chosen according to Fig. 4.

We now take the above imperfections into account for
numerical calculations. Figure 7 shows the dynamics un-
der the non-Hermitian effective Hamiltonian 1, as illus-
trated in Fig. 7(a), and the Lindblad master equation
Eq. (3) with different sets of jump operators, as shown in
Fig. 7(b)(c)(d). For all calculations here, we adopt the
inhomogeneous hopping J2. In Fig. 7(b), we only include
decay from the excited state to the reservoir states, and
the results are the same as those in Fig. 7(a). Such a
connection between the non-Hermitian Hamiltonian and

the master equation is due to the linearity of the jump
operators, as discussed previously [34]. In Fig. 7(c), we
further introduce the decay back into the state c, while
leaving out the jump operators for heating. Compared
with the results in Fig. 7(a)(b), dynamics in Fig. 7(c) re-
mains largely similar. Importantly, the directional flow
induced by the NHSE is still visible. In Fig. 7(d), we in-
clude all jump operators, including those responsible for
the heating processes. Again, the dynamic signatures of
the NHSE is robust when both processes are present.

FIG. 8. Error estimate from the experimental imperfec-
tion. The difference of dynamical results between the hy-
brid master equation (2) with jump operators {Ln,1, Ln,2}
and the full Lindblad master equation (Fig. 7(d)) is shown
in population. The color bar indicates the difference of
normalized probability in each cell. Other parameters are
J1 = 2π× 20 kHz, φ = −π/2 and effectively γ = 2π× 50 kHz
through Je =

√
γΓ ≈ 2π × 0.98 MHz. The value of J2 is

chosen according to Fig. 4.

Figure 8 shows the time-evolved difference in the
phonon-mode occupation, between dynamics under
the hybrid master equation Eq. (2) with jump op-
erators {Ln,1, Ln,2}, and that under the full Lind-
blad master equation Eq. (3), with jump operators
{Ln,1, Ln,2, Ln,3, Ln,4, Ln,5}. At all times, the difference
is much smaller than one phonon. This confirms that the
experimental imperfections do not qualitatively alter the
dynamic signature of the NHSE.

VI. DISCUSSIONS AND OUTLOOK

To summarize, we propose a practical scheme to simu-
late the dissipative AB chain using a single trapped ion.
We focus on the NHSE of the model, and demonstrate
that dynamic signatures of NHSE can be detected by
probing the occupation of the phonon modes. By ana-
lyzing in detail the dependence of the directional flow on
system parameters, we show that the flow can in principle
be used for cooling and sensing.
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For future studies, it would be interesting to exploit
the band topology of the AB chain for quantum simula-
tion and manipulation. Since the system of trapped ions
is famed for its scalability, our proposal also paves the
way for implementing synthetic non-Hermitian models in
higher dimensions [35], and with few- or many-body cor-
relations. This can be achieved, for instance, by realizing
a chain of trapped ions, each individually engineered to
simulate a dissipative AB chain. The extra degrees of
freedom and the Coulomb interaction between ions [36],
while both highly tunable, offer a versatile platform for
theoretical and experimental study.
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Appendix A: Derivation of the effective Hamiltonian

We start by writing down the Hamiltonian of the level scheme in Fig. 1, where under an appropriate rotating frame

H1 =
~
2

(Ω1|a〉〈b|+ Ω2e
iφ|c〉〈a|+ Ω3|c〉〈b|+ Ω4e

i(∆kzz−π2 )e−iδ̃t|a〉〈b|) +H.c..

Here we assume that the effective coupling rates Ωi (i = 1, 2, 3, 4) are real, and ∆kz is the wave-vector difference,

along the z-axis, between the Raman lasers (red in Fig. 1). δ̃ is the detuning in the Raman two-photon transition.
Now we consider ion’s harmonic motion along the axis z, whereas its motion in the x-y plane is considered to be

frozen. We have

H2 =
∑
n

n~ωz(|n, a〉〈n, a|+ |n, b〉〈n, b|+ |n, c〉〈n, c|) +
∑
n

~
2

(Ω1|n, a〉〈n, b|+ Ω2e
iφ|n, c〉〈n, a|

+ Ω3|n, c〉〈n, b|+H.c.) +
∑
m,n

~
2

(Ω4〈m|eiη(a†+a)|n〉e−iδ̃t−iπ2 |m, a〉〈n, b|+H.c.),

where ωz is the trapping frequency, and the Lamb-Dicke parameter η is defined through ∆kzz = ∆kz

√
1

2mωz
(a†+a) =

η(a† + a).
Importantly, the intercell hopping rate is calculated through

〈m|eiη(a†+a)|n〉 = 〈m|D(iη)|n〉 = (iη)|m−n|e−η
2/2

√
n<!

n>!
L|m−n|n< (η2),

where n<(n>) is the lesser (greater) of m and n, and Lan is the generalized Laguerre polynomial.

Performing the unitary transformation U = exp(iδ̃a†at), and taking the rotating-wave approximation, we have

H3 = UH3U
† − iU dU

†

dt
(A1)

=
∑
n

nδ(|n, a〉〈n, a|+ |n, b〉〈n, b|+ |n, c〉〈n, c|) +
∑
n

~
2

(Ω1|n, a〉〈n, b|+ Ω2e
iφ|n, c〉〈n, a|+ Ω3|n, c〉〈n, b|

+ 0.48Ω4|n+ 1, a〉〈n, b|) +H.c. (A2)

≡
∑
n

[J1(eiφ|n, c〉〈n, a|+ |n, c〉〈n, b|+ |n, a〉〈n, b|) + J2|n+ 1, a〉〈n, b|+H.c.], (A3)

where δ = ωz − δ̃. Here we have taken η = 0.35, typical for a trapped 9Be+ ion. Since 〈n + 1|eiη(a†+a)|n〉e−iπ2 =

ηe−η
2/2

√
1

n+1L
1
n(η2) ≈ 0.48 for η = 0.35 and n ∈ [0, 14], we neglect the heterogeneity in the intercell coupling rate.

For the laser-induced dissipation, the spontaneous decay from the excited state |F = 2,mF = 2〉 (2P1/2) ends up
in the states |c〉, |r1〉 (|F = 2,mF = 2〉) and |r2〉 (|F = 2,mF = 1〉) in the ground state manifold, with the branching
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ratio 3 : 2 : 1. Denoting the linewidth of the excited state as Γ, the effective laser-induced loss rate is then γ = J2
e /Γ,

where Je is the coupling strength of the pumping laser.
Finally, we have the non-Hermitian effective Hamiltonian that is the tilted AB chain model

H =
∑
n

nδ(|n, a〉〈n, a|+ |n, b〉〈n, b|+ |n, c〉〈n, c|)−
∑
n

iγ|n, c〉〈n, c|

+
∑
n

[J1(eiφ|n, c〉〈n, a|+ |n, c〉〈n, b|+ |n, a〉〈n, b|) + J2|n+ 1, a〉〈n, b|+H.c.]. (A4)
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