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Abstract

The past decades have witnessed an explosion of interest in topological
materials, and a lot of mathematical concepts have been introduced in con-
densed matter physics. Among them, the bulk-boundary correspondence
is the central topic in topological physics, which has inspired researchers to
focus on boundary physics. Recently, the concepts of topological phases
have been extended to non-Hermitian Hamiltonians, whose eigenvalues
can be complex. Besides the topology, non-Hermiticity can also cause a
boundary phenomenon called the non-Hermitian skin effect, which is an
extreme sensitivity of the spectrum to the boundary condition. In this
article, we review developments in non-Hermitian topological physics by
focusing mainly on the boundary problem. As well as the competition
between non-Hermitian and topological boundary phenomena, we discuss
the topological nature inherent in non-Hermiticity itself.

1 INTRODUCTION

Recently, the topological properties of lattice systems have attracted broad in-
terest in condensed matter physics. One of the major concepts in topological
physics is the bulk-boundary correspondence in topological phases [1, 2], which
states that the topological invariant constructed from the bulk states counts
the number of robust gapless boundary states [3]. In this context, topological
phenomena also have aspects as boundary phenomena.

Dynamical properties of open systems are other major perspectives in recent
condensed matter physics. While the Hamiltonian represented by a Hermitian
matrix is the central object of interest in isolated equilibrium systems, non-
Hermitian matrices, whose spectrum can be complex, play important roles in
various open systems. Although the absence of Hermiticity brings about trou-
blesome properties that defy the common sense of condensed matter physicists,
it leads to new and deeper physics as well. In recent years, a lot of concepts in
spectral theory [4] and non-Hermitian physics [5, 6, 7, 8, 9] have been introduced
in condensed matter physics [10].
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In this paper, we review the topological physics in non-Hermitian lattice sys-
tems by focusing mainly on the boundary phenomena. The concept of topologi-
cal phases was generalized to non-Hermitian systems in Refs. [11, 12, 13, 14, 15].
In particular, Ref. [13] provided bulk topological numbers in various non-
Hermitian systems and showed the validity of the bulk-boundary correspon-
dence in the presence of a class of symmetries. However, it was pointed out
later that a general non-Hermitian system without such symmetries may ex-
hibit other boundary phenomena specific to non-Hermitian systems [16, 17],
called non-Hermitian skin effects [16]. The new effects localize bulk modes on
boundaries and obscure the bulk-boundary correspondence. We first review the
competition between the bulk-boundary correspondence and the non-Hermitian
skin effects, but our focus is not merely on the competition between the two
different phenomena. Remarkably, the latter non-Hermitian boundary physics
is also closely related to topological physics. In the main part, we introduce the
mathematics of non-Hermitian matrices and discuss recent developments in the
field of non-Hermitian phenomena whose origin is non-Hermitian topology.

2 REVIEW OF NON-HERMITIAN SKIN EF-
FECT

2.1 Example and definition of non-Hermitian skin effect

In conventional solid-state physics, boundary insensitivity of bulk quantities
plays important roles because one can freely choose a convenient boundary
condition. In particular, the periodic boundary condition (PBC), together with
translation invariance in solids, enables us to introduce band theory based on
the momentum-space picture.

In non-Hermitian physics, on the other hand, the boundary condition can
drastically affect bulk properties. Such a boundary sensitivity is best repre-
sented by the spectral properties of the Hatano-Nelson model (without disor-
der), which is a non-Hermitian tight-binding Hamiltonian defined on a one-
dimensional lattice [18, 19, 20]:

ĤHN =
∑
i

[
(t+ g)c†i+1ci + (t− g)c†i ci+1

]
, (1)

where i is the site index, (c†, c) are the bosonic or fermionic creation and an-
nihilation operators, and t ∈ R and g ∈ R represent the Hermitian symmetric
and non-Hermitian asymmetric hopping terms, respectively. We express the
Hamiltonian in the equivalent matrix representation henceforth:

HHN :=


0 t− g 0 · · ·

t+ g 0 t− g · · ·
0 t+ g 0 · · ·
...

...
...

. . .

 . (2)
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Under the PBC ([HHN]1,N/N,1 = t±g), we obtain the complex energy spectrum

of the Hamiltonian by using the Fourier transform: Ek = (t+g)eik+(t−g)e−ik,
where k = 2πj/L ( j = 0, 1, · · · , L − 1) with L being the number of sites. For
tg 6= 0, the PBC spectrum is on an ellipse in the complex plane. Under the open
boundary condition (OBC), on the other hand, the eigenspectrum is completely
different: Using the imaginary gauge transformation1, one can map the OBC
Hamiltonian to a Hermitian Hamiltonian without asymmetry [18, 19]:

H
(sim)
HN := V −1r HHNVr

=

 0
√
t2 − g2 · · ·√

t2 − g2 0 · · ·
...

...
. . .

 , (3)

where [Vr]i,j = riδij with r =
√
t+ g/t− g, and we have assumed t > g > 0 for

simplicity. Since this is a similarity transformation, preserving the eigenspec-
trum of a finite-dimensional matrix, the OBC spectrum of the Hatano-Nelson

model is given by that of the Hermitian matrix H
(sim)
HN . Thus, the OBC spec-

trum is on a line on the real axis of the complex plane, which is very different
from the PBC one on an ellipse [Figure 1(a)]. The corresponding OBC eigen-

states, which are obtained from those of H
(sim)
HN by the similarity transformation

Vr, are exponentially localized at a boundary, in contrast to the extended PBC
eigenstates.

Recently, such extreme sensitivities of eigenspectra and eigenstates against
the boundary condition have been extensively studied as the non-Hermitian
skin effect, named by Yao and Wang [16]. In their work, this term was used in
the following situation [16]:

all the eigenstates of an open chain are found to be localized near the boundary

In this paper, we adopt a broader definition of the non-Hermitian skin effect.
We focus on the boundary-localized modes whose origin is non-Hermiticity. Un-
like eigenstates of Hermitian Hamiltonians, the Hermitian conjugate of a right
eigenstate (ket eigenvector) is not always a left eigenstate (bra eigenvector) in
the presence of non-Hermiticity2. To emphasize the difference, we adopt the
following notation:

H|E〉 = E|E〉, 〈〈E|H = E〈〈E|. (4)

We call a mode |E〉 as a non-Hermitian skin mode if its spatial distribution
is different from that of the left counterpart |E〉〉. Typically, we are interested
in skin modes localized at one boundary whose left counterparts are localized
at the other boundary [Figure 1(b)]. Such a situation is realized in the case

1This term was named after the fact that this transformation can be interpreted as a gauge

transformation with an imaginary phase θ: cj → eiθjcj , c
†
j → e−iθjc†j .

2More precisely, this is property of non-normal matrices discussed later.
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of the Hatano-Nelson model under the OBC. In the following, we define the
non-Hermitian skin effect by the presence of non-Hermitian skin modes. As
we will see throughout the paper, the presence of skin modes is equivalent to
the extreme sensitivity of the non-Hermitian energy spectrum to the boundary
condition.

In the first half of this paper, we will focus on conventional skin effects with
O(L) skin modes3, which are found in one-dimensional systems with discrete
translation invariance (except for the ends). In the presence of the conventional
skin effect, the OBC bulk spectrum is determined by the non-Bloch band theory
[21, 16, 22, 17, 23, 24, 25, 26]. In conventional band theory, the bulk spectrum,
or the energy dispersion, is given as a function of crystal momentum k (or the
exponential factor of a Bloch wavefunction eik), E(eik). On the other hand,
the non-Bloch band theory provides the OBC bulk spectrum as an analytic
continuation E(eik)→ E(β), where β is a complex parameter on a closed curve
in the complex plane, called the generalized Brillouin zone (GBZ). In the absence
of the non-Hermitian skin effect, the GBZ reproduces the unit circle of the
BZ, while in the case of the Hatano-Nelson model, it is given by a circle with
radius r−1. In general, the GBZ can be a complicated curve [Figure 1(c)] and is
determined with the help of numerical calculations, as discussed in Refs. [23, 25]
4.

2.2 Bulk-edge correspondence under non-Hermitian skin
effect

The non-Hermitian skin effect obscures the bulk-boundary correspondence [28,
29, 30, 17, 16, 22]. More precisely, even when the PBC spectrum is gapless
and thus one cannot define the bulk topological invariant in the PBC, the bulk
OBC spectrum can be gapped due to the skin effect. As a result, the topo-
logical phase diagram under the OBC is generally different from that under
the PBC. In Figure 1(d), the OBC spectrum of a non-Hermitian extension of
the Su-Schrieffer-Heeger model [31] with asymmetric hopping [28] is plotted as a
function of a model parameter [16]. This figure shows that the topological phase
transition with the appearance of topological zero modes occurs at a point that
is different from the gap-closing points under the PBC.

At first sight, this phenomenon suggests a breakdown of the bulk-boundary
correspondence. However, even in such a case, one can recover the bulk-
boundary correspondence once one introduces a proper topological invariant
via the OBC bulk spectral information. For example, the topological invariant
for the non-Hermitian Su-Schrieffer-Heeger model is given by a winding number
defined in terms of the GBZ [16] in the OBC, instead of the conventional BZ in

3We count the number of modes by distinguishing algebraic degeneracy (multiplicity) for
an eigenvalue E defined as the number of times λ = E appears as a root of det(H − λ). For
example, there is only one eigenvector for Eq.(1) with t = g because of the nondiagonalizability.
In this case, the number of skin modes is counted as L, while the geometric degeneracy
(multiplicity) defined as the dimension of the eigenspace is one.

4The factors eik(β) in our notation correspond to the factors e−ik(β−1) in Ref. [23].
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Figure 1: (a) The PBC and OBC eigenspectrum of Hatano-Nelson model (t =
1,g = 0.5). (b) Right and left eigenstates of a Hermitian edge state and a
non-Hermitian skin mode. (c) Brilloin zone (BZ) and generalized Brillouin zone
(GBZ) for PBC and OBC spectra, respectively. We use E(β) = β2−iβ+iβ−1−
β−2 [4, 27]. (d) The OBC spectrum (absolute value) of the non-Hermitian Su-
Schrieffer-Heeger model as a function of model parameter, adopted from Ref.
[16]. The OBC and PBC gap-closing points are indicated by arrows. The
emergence of topological zero modes (red) under the OBC cannot be predicted
by the PBC information.
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the PBC. To treat more generic cases including higher-dimensional systems and
disordered ones, Ref. [32] proposed to use real-space topological invariants in
the OBC, which enables us to characterize the bulk-boundary correspondence in
terms of the explicit right and left eigenstates of the OBC Hamiltonian. These
studies indicate that the bulk-boundary correspondence should be defined for
the bulk and boundary modes under the common boundary condition. In the
absence of the non-Hermitian skin effect, on the other hand, the topological
invariant under the OBC coincides with that under the PBC. In this sense, the
success of predictions by the PBC information in Hermitian topological physics
is due to not only the bulk-boundary correspondence but also the boundary
insensitivity, which is a special property of the systems without skin modes.
Such a conventional bulk-boundary correspondence also holds in non-Hermitian
systems without skin effects. Actually, when a class of symmetries may pro-
hibit the skin effects [33], the topological invariant under the PBC succeeds in
the prediction of the boundary modes in the OBC [13]. One can also obtain
the conventional bulk-boundary correspondence for the bosonic Bogoliubov-de
Gennes Hamiltonian [34, 35, 36, 37, 38], whose energy spectrum is given by the
eigenspectrum of a non-Hermitian matrix with pseudo-Hermiticity and particle-
hole symmetry [39, 33] 5. It should be noted here that one needs to generalize
the topological invariants properly so as to be consistent with non-Hermiticity
[13, 15, 38, 41] even without the skin effects.

In this subsection, we have seen the competition between two different
boundary phenomena: the bulk-boundary correspondence and the non-Hermitian
skin effect. Actually, the non-Hermitian skin effect itself is also a kind of topo-
logical phenomenon, as we shall see in the following sections.

3 Conventional skin effect as non-Hermitian topo-
logical phenomenon

In this section, we review the topological nature of the conventional non-Hermitian
skin effect [42, 43]. In particular, we focus on the fact that the conventional
non-Hermitian skin effect and the bulk-boundary correspondence in a class-AIII
one-dimensional topological insulator share the same mathematical origin.

3.1 Winding number as an indicator for conventional skin
effect

As we mentioned, the OBC spectrum is given by a function of β on the GBZ
determined by the non-Bloch band theory. Unfortunately, the shape of the GBZ
is not a simple function of the model parameter in general, and the spectral be-
havior is unclear without the help of numerical calculations. Nevertheless, the
presence or absence of the non-Hermitian skin effect is easily determined by the
non-Hermitian topology, i.e., the winding number W ∈ Z of the PBC spectral

5For more details, see a review paper of topological magnons [40].
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curve in the complex plane. Several observations about this correspondence
were indicated in Refs. [44, 45, 46], and related theorems were proven in Refs.
[42, 43]. In the following, we focus on the theorem in Ref. [42]. Suppose that the
system is described by a one-dimensional translation-invariant non-Hermitian
tight-binding model H with finite-range hopping and without symmetry. Then
the following theorem holds in the infinite-volume limit [42]6.

Theorem The OBC bulk spectrum cannot have a non-trivial winding num-
ber. Consequently, the PBC spectral curve with a non-trivial winding number
implies that the OBC bulk spectral curve is different from the PBC one, or
equivalently, the conventional skin effect inevitably occurs.

We here describe a strategy for the proof. Since there is no simple formula for
calculating the OBC spectrum, it is difficult to compare the OBC spectrum to
the PBC one directly. Thus, the proof of this theorem is divided into two parts:
(i) the comparison between the PBC and the semi-infinite boundary condition
(SIBC), and (ii) that between the SIBC and the OBC. Here the “semi-infinite”
means that there is only one boundary in the one-dimensional lattice. In step (i),
we use the index theorem of spectral theory [4, 47] to relate the SIBC spectrum
with the PBC one. According to the index theorem, the SIBC spectrum is given
by a PBC curve together with all the points enclosed by the PBC curve with
a non-zero winding number7 [Figure 2(a)]. Here, the winding number around a
point E ∈ C is defined as

W (E) :=

∫ 2π

0

dk

2πi

d

dk
log det (H (k)− E) , (5)

where H(k) is the Bloch Hamiltonian of H under the PBC. Corresponding
to a point E inside the PBC curve, the right (left) eigenstate is given by an
exponentially localized boundary state for a negative (positive) winding number.
In step (ii), we begin with the following inclusion:

σOBC(H) ⊂ σSIBC(H), (6)

where σ denotes the spectrum. Besides an exact justification, it is intuitively
natural because the OBC is given by a combination of the SIBC and an addi-
tional boundary condition at the other boundary. Once we admit this inclusion,
we obtain another inclusion by applying the imaginary gauge transformation
(3), which is a kind of similarity transformation, to the Hamiltonian. The cru-
cial point is that a similarity transformation changes the SIBC spectrum due to
the infinite-dimensional nature of the matrix8 [Figure 2(a)], while it does not

6For a rigorous definition of the infinite-volume limit, see the math textbook [47].
7In this proof, we focus only on the continuous spectrum and ignore isolated points. In

physics, such points are nothing but edge modes such as the topological zero modes. For
Toeplitz matrices, which correspond to cases without internal degrees of freedom in the unit
cell, the statement here does not suffer from this subtlety.

8Under the imaginary gauge transformation, the boundary of the SIBC spectrum is changed
because the corresponding PBC Hamiltonian is also changed. The change of the PBC curve
can be treated by introducing a Bloch Hamiltonian for complex momenta, H (k − i log r) [45].

7



Skin effect Topological insulator

Skin mode/
Pseudospectrum

Exact zero mode/
Quasi zero mode

Non-Hermitian
   Topology

Hermitian
Topology

Figure 2: (a) Schematic picture of the PBC, SIBC, and OBC spectra in the
presence of non-Hermitian skin effect. The disk with the dotted boundary is the
SIBC spectrum under an imaginary gauge transformation Vr. (b) Relationship
between non-Hermitian topology and Hermitian topology.

change the OBC spectrum defined by the infinite-volume limit of the spectrum
of a finite-dimensional matrix. Thus, the original OBC spectrum is included in
the transformed SIBC spectrum. Since one can consider such an inclusion for
an arbitrary imaginary gauge transformation Vr, we obtain

σOBC (H) ⊂
⋂

r∈(0,∞)

σSIBC

(
V −1r HVr

)
. (7)

Now we are in a position to prove the theorem. If the PBC spectrum has a non-
trivial winding, one can find a SIBC mode with energy E ∈ C just inside the
PBC curve, which is exponentially localized at the boundary. This boundary
mode is mapped to a plane wave via the imaginary gauge transformation Vr with
an appropriate r, and E is on the edge of σSIBC

(
V −1r HVr

)
, or equivalently, the

PBC spectrum of V −1r HVr. Thus, the intersection σSIBC(H)∩σSIBC

(
V −1r HVr

)
is smaller than the original SIBC spectrum σSIBC(H). This procedure can be
repeated unless the right-hand side of the inclusion (7) becomes a curve without
winding, which implies that the OBC spectrum cannot have a nonzero winding
[Figure 2 (a)].

3.2 The bulk-boundary correspondence

The above consideration also clarifies how the conventional bulk-boundary cor-
respondence breaks in the presence of the non-Hertmitian skin effect. To see
this, let us consider a non-Hermitian lattice system with the bulk band spec-
trum forming spectral islands in the complex energy plane. When the spectral
islands are separated from each other, we say that the system has line gaps [33]
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(see Sect. 5), and each island may support a topological number [13, 15, 33, 48].
Then, the bulk-boundary correspondence holds if one considers spectral islands
in the OBC: If a spectral island in the OBC has a non-zero topological number,
we have a corresponding topological boundary state.

In the presence of the non-Hermitian skin effect, the spectral islands in the
OBC are different from those in the PBC. Therefore, the conventional bulk-
boundary correspondence, which relates a topological number in the PBC to a
boundary state, does not always hold. However, the breakdown has limitations.
By the argument in the previous subsection, the bulk OBC spectrum is always
inside the PBC one, and thus each bulk spectral island in the OBC is also
inside a spectral island in the PBC. Thus, if the system has a line gap in the
PBC, it also has a line gap in the OBC. Since spectral islands in the PBC can
be smoothly deformed into those in the OBC without closing line gaps, this
means that the topological numbers of the spectral islands coincide between the
PBC and the OBC under the same situation. Therefore, once one has a well-
defined topological number in the PBC, which is always true in the situation
above, the corresponding topological number in the OBC takes the same value,
and thus the conventional bulk boundary correspondence holds. Note that the
PBC islands should merge before the gap closing (namely, a collision of spectral
islands) in the OBC, and thus the topological number in the PBC becomes ill-
defined near a topological phase transition in the OBC. The breakdown of the
conventional bulk-boundary correspondence occurs in this situation.

3.3 Correspondence between skin mode and topological
exact zero mode

Thus far, we have related the conventional skin effect with a non-trivial winding
number of the PBC spectrum. Actually, the same winding number characterizes
the topological boundary zero modes of a Hermitian topological insulator. The
key idea is to introduce the doubled Hermitian Hamiltonian, which is also a tool
for topological classifications of Floquet Hamiltonians [49] and non-Hermitian
Hamiltonians without boundaries [44, 33]:

H̃E :=

(
0 H − E

H† − E∗ 0

)
, (8)

where E ∈ C is a reference point. Owing to the artificial doubling process, an
additional chiral symmetry is imposed on the doubled Hermitian Hamiltonian
as a constraint:

ΓH̃EΓ−1 = −H̃E with Γ =

(
1 0
0 −1

)
. (9)

In the Altland-Zirnbauer classification [50], the symmetry class with one chiral
symmetry is called class AIII, and the topological classification of insulators
(gapped9 phases) is given by Z. Actually, the integer topological invariant is

9The gapped nature of H̃E is defined by det H̃E(k) 6= 0, or equivalently, det (H (k)− E) 6=
0.
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nothing but the winding number of the PBC spectral curve of H around the
reference point E, given in Eq. (5). Thus, the same winding number charac-
terizes both a class-AIII topological insulator and a conventional skin effect. In
other words, the conventional skin effect gives one physical interpretation of a
non-Hermitian topological classification [44, 51] in a special case (see Sect. 5 for
details). Remarkably, in this correspondence, one can relate the Hatano-Nelson
model, which is the simplest model of the conventional skin effect, to the Su-
Schrieffer-Heeger model [31], which is the simplest model of one-dimensional
class-AIII topological insulators.

Moreover, the skin mode is not unrelated to the bulk-boundary correspon-
dence. To see this, we begin with the SIBC. If E ∈ σSIBC(H) \ σPBC(H) and
W (E) < 0 for the PBC curve, one can find a boundary-localized right eigenstate
|E〉 of H. By using |E〉, one can construct a boundary zero mode of H̃E with
negative chirality:

H̃E

(
0
|E〉

)
= 0, Γ

(
0
|E〉

)
= −

(
0
|E〉

)
. (10)

This is nothing but a topological boundary zero mode of a class-AIII topological
insulator. Similarly, for a positive winding number, one can assign a topological
boundary zero mode with positive chirality

H̃E

(
|E〉〉

0

)
= 0, Γ

(
|E〉〉

0

)
=

(
|E〉〉

0

)
, (11)

where |·〉〉 denotes the Hermitian conjugate of the left eigenstate [see Eq. (4)].
Basically, the same thing holds for the non-Hermitian skin modes under the

OBC, but there are several significant differences from the SIBC case. One thing
is that both the right and left eigenstates localized at the opposite boundaries
can be defined at the same time, owing to the additional boundary. Corre-
spondingly, the topological zero modes with opposite chirality appear at the
opposite boundary of the doubled Hermitian system. The more crucial differ-
ence is a subtle mismatch in the correspondence. While H̃E corresponds to a
topological insulator for any E in a two-dimensional region on the complex plane
σSIBC(H) \ σPBC(H), σOBC (H) is given by a one-dimensional complex curve.
Under the OBC with finite L, two topological boundary modes with opposite
chirality, localized at the opposite sides, usually have a finite overlap, and the
true eigenstates are their superpositions with small but finite energy that be-
comes zero only for L→∞. Such topological modes are called quasi-zero modes,
and the correspondence between a Hermitian eigenstate and a non-Hermitian
eigenstate does not exactly hold. In contrast, the topological boundary modes
with exact zero energy have correspondence with the skin modes [Figure 2(b)],
as in the case of the SIBC. This is the origin of the subtle mismatch mentioned
above.
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3.4 Correspondence between pseudospectrum and topo-
logical quasi zero mode

The remaining question is what the non-Hermitian counterpart of the topo-
logical quasi-zero energy of H̃E in the correspondence is. The answer is ε-
pseudospectrum σε(H) [52][Figure 2(b)], which is defined by the set of spectra
of perturbed matrices10 H + η with ||η|| < ε, where || · || is the matrix 2-norm or
the largest singular value [4]. While the ε-pseudospectrum of a normal matrix
([H,H†] = 0) such as a Hermitian matrix is just given by the ε-neighborhood
of the exact spectrum, that of a non-normal matrix ([H,H†] 6= 0) can be
much larger than the ε-neighborhood. In the present case, the following holds11

[4, 44, 52]:

lim
ε→0

lim
L→∞

σε(H
(L)
OBC) = σSIBC(H), (12)

where H
(L)
OBC is the size-L OBC Hamiltonian. Roughly speaking, the SIBC

eigenstates approximate the states that correspond to the pseudospectrum,
mentioned as quasieigenstate12 in Ref. [44]. Reference [52] showed the cor-
respondence between topological quasi-zero modes with O(ε) energy and ε-
pseudospectrum. Thus, the pseudospectrum with infinitesimally small ε com-
pensates for the subtle mismatch between the two-dimensional region with non-
trivial topology and the OBC spectral curve in the complex plane. Note that
the origin of the drastic difference between the OBC spectrum and pseudospec-
trum is the nonlocal perturbations that connect the ends of the open chain. In
other words, the OBC spectrum is unstable against such nonlocal perturbations
13, while it is robust against local perturbations. By using the correspondence
between Hermitian and non-Hermitian topology, one can relate this behavior
to the following fact: The topological zero modes of a topological insulator
are easily gapped out by connecting edges, while they are robust against the
symmetry-preserving local perturbations.

3.5 The Bauer-Fike theorem and the skin effect

For a nonzero ε and a finite L, we have a useful bound for perturbations called
the Bauer-Fike theorem [53]. When H is diagonalizable, the theorem implies
[4]

σε(H) ⊆ σ(H) + ∆εκ(V ), (13)

10In numerical calculations, another equivalent definition [4] σε(H) = {z ∈ C | ||(z−H)−1|| >
ε−1} is useful.

11The opposite limit corresponds to the OBC spectrum: limL→∞ limε→0 σε(H
(L)
OBC) =

σOBC(H).
12Related to this terminology, one can also describe the ε-pseudospectrum by another equiv-

alent definition σε(H) = {z ∈ C | ||(z − H)v|| < ε for some unit vector v}, where || · || is the
vector norm.

13Related to this mathematics, it is known that a numerical diagonalization of the non-
normal matrices is sensitive to a rounding error because it can behave as a nonlocal pertur-
bation [4].
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with ∆δ = {z ∈ C : |z| < δ} and κ(V ) = ‖V ‖ · ‖V −1‖ ≥ 1, where V is a
matrix diagonalizing H, V −1HV = diag(E1, E2, . . . ). The condition number
κ(V ) measures the non-normality of H and give a bound for perturbed spec-
trum: If H is normal so V is unitary, it takes the minimal value κ(V ) = 1, so
the perturbed spectrum stays the ε-neighborhood of the exact spectrum. On
the other hand, if H is non-normal, it allows a larger perturbation of the spec-
trum. With biorthgonal right and left eigenstates |En〉, |En〉〉 of H, we have
V = (|E1〉, |E2〉, . . . ) and V −1 = (〈〈E1|, 〈〈E2|, . . . )t. Because the matrix 2-norm
satisfies ‖A‖ ≥

√
tr(A†A)/

√
L for a L × L matrix A [54], κ(V ) has a lower

bound as

κ(V ) ≥
√∑

i

〈Ei|Ei〉
∑
j

〈〈Ei|Ei〉〉/L =

√∑
i

〈Ei|Ei〉
∑
j

〈〈Ei|Ei〉〉/
∑
k

〈〈Ek|Ek〉.

(14)

Therefore, κ(V ) can be huge if the skin effect occurs, where the right eigenstate
|Ei〉 and left one |Ei〉〉 are localized on an opposite boundary. The extreme
sensitivity of the spectrum against perturbations, which is suggested the bound
εκ(V ) in Eq. (13), opens a possible application of the skin effect to highly
accurate sensors [55].

For a larger ε, a variant of the Bauer-Fike theorem [4]

σε(H) ⊆ σ(H) + ∆ε+dep(H) (15)

with dep(H) =
√

tr(H†H)−
∑
i |Ei|2 gives a more severe bound for pertur-

bations. The quantity dep(H) is called departure of normality [56], and also
measures the non-normality of H. The skin effect results in a large difference
between dep(H) in the OBC and that in the PBC, and thus the difference also
characterizes the skin effect [57].

We also note that the pseudospectrum plays an important role in non-
Hermitian dynamics. This point will be discussed in Sect. 7.

4 Symmetry-protected skin effects under time-
reversal symmetry

So far we have shown that the PBC curve with a non-trivial winding number
indicates the non-Hermitian skin effect. Then a natural question arises: Are
all the non-Hermitian skin effects characterized by non-zero winding numbers?
The answer is NO.

In modern physics, the quantum Hall effect is regarded as an example of
broader concepts: topological insulator [1, 2] or symmetry-protected topological
phase [58]. Similarly, the conventional skin effect can be regarded as an example
of a broader concept: symmetry-protected skin effects in general dimensions. In
this section, we consider one- and two-dimensional skin effects protected by a
non-Hermitian time-reversal symmetry. Instead of the Z winding number, they
are characterized by Z2 topological invariant.
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4.1 Time-reversal symmetry in non-Hermitian systems

For non-Hermitian Hamiltonian matrices, there are more types of symmetries
than for Hermitian ones [59, 33]. Among them, we focus on extensions of the
time-reversal symmetry (TRS). For a Hermitian Hamiltonian H, the TRS is
defined as an antiunitary symmetry:

TH∗T−1 = H, (16)

where T is taken as a unitary matrix. Corresponding to the integer/half-integer
spin of a particle, TT ∗ = ±1 are assigned. One natural extension to non-
Hermitian cases is the complex-conjugate-type TRS defined by the same equa-
tion (16). Since the transpose is not equivalent to the complex conjugation
under non-Hermiticity, one can also consider another extension, namely, the
transpose-type TRS [59, 33]:

THTT−1 = H. (17)

Depending on the situation, both TRSs may be physically relevant. For ex-
ample, the transpose-type TRS appears as a natural TRS of non-Hermitian
Hamiltonians defined by the one-particle Green’s function [60] or that of the
quadratic Lindbladian [61].

4.2 Z2 skin effect in one dimension

In the previous section, we have introduced the doubled Hermitian Hamiltonian
H̃E [see Eq.(8)] to show the correspondence between a conventional skin effect
and a class-AIII topological insulator. In the presence of the transpose-type
TRS, one can also define H̃E for arbitrary E ∈ C because the addition of terms
proportional to the identity matrix does not break the relation (17). For the
cases with TT ∗ = −1, H̃E has a Hermitian TRS, an artificial chiral symmetry
(CS), and their combination, namely, the particle-hole symmetry (PHS):

TRS : T̃ H̃∗E T̃
−1 = H̃E , T̃ T̃

∗ = −1, T̃ :=

(
0 T
T 0

)
,

PHS : C̃H̃∗EC̃
−1 = −H̃E , C̃C̃

∗ = 1, C̃ :=

(
0 −T
T 0

)
,

CS : Γ̃H̃EΓ̃−1 = −H̃E , Γ̃2 = 1, Γ̃ :=

(
1 0
0 −1

)
. (18)

In the Altland-Zirnbauer classification [50], the set of these symmetries cor-
responds to the symmetry class DIII. In one dimension, a class-DIII gapped
Hermitian Hamiltonian (or the original non-Hermitian Hamiltonian) is classi-
fied by a Z2 topological invariant ν(E) ∈ {0, 1} [33]

(−1)
ν(E)

:= sgn

{
Pf [(H (π)− E)T ]

Pf [(H (0)− E)T ]
× exp

[
−1

2

∫ k=π

k=0

d log det [(H (k)− E)T ]

]}
,

(19)
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where H(k) is again the Bloch Hamiltonian for the non-Hermitian Hamiltonian.
Under the OBC, the non-trivial phase (ν = 1) describes a topological supercon-
ductor with a Kramers doublet of Majorana fermions [62]. If the energy of the
OBC boundary modes are exactly zero, one can relate the Majorana boundary
states to eigenstates of H as in the case of the conventional skin effect [Figure
3]: (

0
|E〉

)
,

(
T |E〉∗

0

)
,

(
0

T |E〉〉∗
)
,

(
|E〉〉

0

)
. (20)

The former/latter two modes form a Majorana doublet. Since the former and
the latter pairs are localized at the opposite side, |E〉 (T |E〉〉∗) and |E〉〉 (T |E〉∗)
are the right and left eigenstates of H localized at the different side. Thus, the
right eigenstates |E〉 and T |E〉〉∗ satisfy the definition of skin modes and are
localized at the different sides. In terms of the transpose-type TRS, they are in
the relationship of the non-Hermitian Kramers pair [63, 33]. To emphasize the
difference from the conventional skin effect, we call this localization phenomenon
the Z2 skin effect. Note that the conventional winding number under the PBC
cannot have a non-trivial winding number in the presence of the transpose-type
TRS with TT ∗ = −1 because of the Kramers degeneracy.

In the following, we construct an explicit model of the Z2 skin effect. Let
us mimic the first example of the Z2 topological insulator protected by the
TRS, called the Kane-Mele model [64]. This model was constructed by a stack
of quantum anomalous Hall insulators with opposite Chern numbers. In the
absence of spin-orbit interactions, the Kane-Mele model is block diagonalized
into spin sectors and is characterized by the integer spin Chern number. In
the presence of the spin-orbit interaction that couples the spin sectors, the
non-trivial phase is characterized by a Z2 topological invariant instead of the
ill-defined spin Chern number. Similarly, we begin with the stack of the Hatano-
Nelson model (1) with opposite winding numbers W = ±1 [65]:

HZ (k) =

(
HHN (k) 0

0 HHN (−k)

)
= 2t cos k σ0 + 2ig sin k σz, (21)

where σ’s represent the Pauli matrix of spin. Instead of the full Hamiltonian, we
have specified the model by the Bloch Hamiltonian. In this basis, the transpose-
type TRS with TT ∗ = −1 for a Bloch Hamiltonian H(k) is given by

THT (−k)T−1 = H(k), (22)

where T = iσy. Thus, HZ(k) hosts the transpose-type TRS, and the total wind-
ing number (5) cannot be non-trivial. However, the block Hamiltonians in the
spin sectors are given by the Hatano-Nelson models with opposite asymmet-
ric hopping terms, which show the skin effects characterized by the opposite
winding numbers for tg 6= 0. This is an example of the skin effect protected
by transpose-type symmetry. Instead of the total winding number, the integer
“spin” winding number characterizes this skin effect.
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Next, we add a spin-orbit interaction ∆ ≥ 0 that connects the spin sectors
[42]:

HZ2
(k) =

(
HHN (k) 2∆ sin k
2∆ sin k HHN (−k)

)
= 2t cos k + 2∆ (sin k)σx + 2ig (sin k)σz.

(23)

Since the spin-rotational symmetry is completely broken, the winding number
in each spin sector cannot be defined for non-zero ∆. Even for this case, we
can still define the Z2 invariant (19) due to the presence of TRS (22). The

PBC spectrum is given by two bands E± (k) = 2t cos k ± 2i
√
g2 −∆2 sin k,

both of which describe an ellipse in the complex plane for |g| > ∆ and t 6= 0
[42]. Correspondingly, the Z2 invariant (19) is not trivial for this parameter
region, which should lead to the non-Hermitian skin effect. The numerical
diagonalization for a finite size (L = 100) shows the presence of skin effect with
Kramers pairs localized at the opposite sides [Figure 3]. This is an example
of symmetry-protected skin effects characterized by a Z2 topological invariant
(19).

We here give several remarks about the symmetry-protected skin effects.
First, the symmetry-protected nature appears as an instability of the skin effect
against symmetry-breaking perturbations [δh 6= 0 in Figure 3]. In the infinite-
volume limit, this instability is understood by the failure of the standard non-
Bloch band theory under some symmetry protection [65]. In the presence of
the symmetry that block-diagonalizes H(k) such as Eq. (21), the correspond-
ing OBC spectrum is determined not by the non-Bloch band theory for the
total Hamiltonian but by that for each block. Under symmetry-breaking terms
that connect the blocks, however, the OBC spectrum is determined by the non-
Bloch band theory for the total Hamiltonian. Remarkably, the latter spectrum
for an infinitesimally small perturbation can be different from the former spec-
trum. For example, the OBC spectrum of Eq. (21) under an infinitesimally
small transverse magnetic field becomes identical to the PBC one [65]. In the
case of the transpose-type TRS without spin-rotational symmetry, a similar dis-
cussion can be applied by introducing a modified non-Bloch band theory with
Kramers doublet [26]. In the language of doubled Hermitian Hamiltonian, this
phenomenon is understood by the fact that the exact zero modes acquire the
finite gap under a symmetry-breaking term, which destroys the correspondence
between the skin modes and the exact zero modes mentioned above 14.

Second, the Z2 nature is checked by a stack of two copies of the system
with the skin effect whose topological number is unity. The skin effect in such
a stack is fragile even against symmetry-preserving terms [ν = 0 in Figure 3].
This behavior can be understood by the fact that a skin mode of one Kramers
doublet localized at the left side can be mixed with a skin mode of the other
doublet localized at the right side.

14In a finite system, the threshold of the perturbation strength for the instability is expo-
nentially small with respect to the system size. In terms of the correspondence between the
Hermitian and non-Hermitian topology, this threshold corresponds to the amount of pertur-
bation that changes the energies of boundary modes significantly.
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Figure 3: Relationship between Z2 topological superconductor and Z2 skin ef-
fects in one and two dimensions. The spectra and weight functions are adopted
from Ref. [42].

These are the basic properties of symmetry-protected skin effects in one
spatial dimension. One can apply a similar consideration based on the doubled
Hermitian Hamiltonian to higher dimensions. However, more careful discussion
about the boundary condition is needed to characterize a higher-dimensional
non-Hermitian skin effect.

4.3 Z2 skin effect in two dimensions

We consider two-dimensional non-Hermitian Hamiltonians with the transpose-
type TRS with TT ∗ = −1. Again, a doubled Hermitian Hamiltonian H̃E de-
scribes class-DIII superconductors and is classified by a Z2 invariant under the
PBC [33]:

(−1)ν(E) :=
∏

X=I,II

sgn

{
Pf [(H (kX+)− E)T ]

Pf [(H (kX−)− E)T ]

× exp

[
−1

2

∫ k=kX+

k=kX−

d log det [(H (k)− E)T ]

]}
,

where k is a two-dimensional momentum, and (kI+,kI−) and (kII+,kII−) are
two pairs of time-reversal-invariant momenta. For the non-trivial phase ν (E) =
1, topological boundary modes are givien by helical Majorana edge modes [62].
If there exist exact zero modes, they are given by the same expression as Eq.
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(20). Unlike one dimension, however, the exact zero modes cannot be found un-
der the full OBC, i.e., the OBC in both the x and y directions. This is because a
topological gapless mode at the closed boundary of a higher-dimensional topo-
logical insulator/superconductor effectively feels the curvature of the bound-
ary, and the “zero” modes inevitably have finite energy in the order of 1/L
[66, 67, 68]. Correspondingly, the Z2 skin effect does not occur for this bound-
ary condition. To observe a two-dimensional Z2 skin effect, one should choose
boundary conditions that allow the exact topological boundary zero modes of
H̃E . At least two boundary conditions for this purpose are known for higher-
dimensional topological insulators/superconductors: (i) the OBC in one direc-
tion and the PBC in the other directions, and (ii) the full OBC with topological
defects [62].

In the following, we describe the properties of the two-dimensional Z2 skin
effect by using the massless Dirac Hamiltonian coupled to valley-dependent
dissipation characterized by Γ ∈ R [42]:

H (k) = (sin kxσx + sin kyσy) + iΓ(cos kx + cos ky). (24)

For non-zero Γ, the set {E ∈ C | ν(E) = 1} occupies a two-dimensional region
of the complex plane. The complex spectrum of this system is shown in Figure
3 for various boundary conditions [42]. In case (i), the OBC is imposed in the y
direction. In case (ii), the topological defect is given by a π flux (or a half flux
quantum) at the central unit cell. In contrast to the full PBC and full OBC,
there exist skin modes for both cases. Remarkably, only O(L) modes of total
O(L2) modes show the Z2 skin effect in which the spectrum has no winding, and
they are separated from the other modes surrounding them. In case (i), O(L)
skin modes are also interpreted as the one-dimensional Z2 skin modes of a one-
dimensional HamiltonianH(kx) at the time-reversal-symmetric points kx = 0, π,
where H(kx) is the Fourier transform of H in the x direction. The skin modes
are localized at the boundaries in the y direction. In D-dimensional topological
insulators/superconductors under the boundary condition (i), only O(1) modes
of the total O(Ld−1) modes of the surface Dirac Hamiltonian correspond to the
exact zero modes. Thus, D-dimensional skin effect has only O(L) skin modes15.
In case (ii), O(L) skin modes are localized at the boundary and the topological
defect. In contrast to the other skin effects, this case shows a non-Hermitian
localization in the radial direction [Figure 3]. Note that this two-dimensional
localization purely originates from the non-Hermiticity, while the higher-order
skin effect in Sect. 6.2 is reduced to the combination of Hermitian and non-
Hermitian localizations.

15The Hamiltonian (24) with Γ = 1 has O(L)-fold algebraic degeneracy at E = ±i, which
are exceptional points (see Sect.5.4). Three-dimensional cases were investigated in Ref. [69].
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5 Physical interpretation of non-Hermitian topo-
logical classification

We here review several topics related to non-Hermitian topological classifica-
tion. In particular, the anomaly interpretation provides another insight into
symmetry-protected skin effects, in addition to the topological aspects discussed
above.

5.1 Review of Non-Hermitian topological classification

In Hermitian physics, a standard classification of non-interacting topological in-
sulators/superconductors is given by the K-theoretical classification of a momentum-
resolved Hamiltonian matrix H(k) [70, 71, 72, 73], where k is a momentum on
a sphere or a torus. In this field, the ten-fold Altland-Zirnbauer class [50],
in which each class is specified by the combination of TRS, PHS, and CS, is
regarded as the most fundamental symmetry class [for example, see Eq.(18)].
The gapped nature of insulators/superconductors is captured by the condition
detH(k) 6= 0, which means the absence of zero energy in the bulk spectrum.
Gong et al. adopted the same condition for a non-Hermitian H(k) as the defini-
tion of a non-Hermitian gapped phase [44]. This type of complex energy gap was
named point gap in Ref. [33] [Figure 4(a)]. They showed that the topological
classification of point-gapped phases is given by the K-theoretical classification
of the corresponding doubled Hermitian Hamiltonian

H̃(k) :=

(
0 H(k)

H†(k) 0

)
, (25)

by noticing the equivalence between detH(k) 6= 0 and det H̃(k) 6= 0. After
this study, Refs. [33, 74] applied this classification scheme for 38-fold Bernard-
LeClair class, which was originally introduced to describe non-Hermitian ran-
dom matrices [59]. Reference [33] proposed another non-Hermitian gapped
structure named the real/imaginary line-gapped phase [Figure 4(a)]. In this
scheme, the gapped phase is defined as a spectral structure whose real/imaginary
parts are nonzero. Furthermore, the concept of the line gap has been generalized
to situations where several spectral islands exist in the complex energy plane
[48].

Next, we consider physical interpretations of the non-Hermitian gapped
phases. In the case of the Hermitian classification, the non-trivial phase of the
classification corresponds to a topological insulator/superconductor, in which
the bulk non-trivial topology indicates the presence of topological gapless bound-
ary modes. Actually, the real/imaginary line-gapped phases can be adiabatically
connected to Hermitian/anti-Hermitian gapped Hamiltonians without breaking
the fundamental symmetries and closing the line gap [13, 33, 10]. Thus, the
non-trivial topology in a line-gapped phase is essentially the same as that in a
Hermitian gapped phase and indicates the bulk-boundary correspondence with
a certain modification (see Sects. 2.2 and 3.2). In contrast, it is not easy to say
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something about the point-gapped phases because the non-trivial topology indi-
cates the bulk-boundary correspondence of the doubled Hermitian Hamiltonian
H̃, not of the original Hamiltonian H. To the best of the authors’ knowledge,
there is no unified physical interpretation for the point-gapped phases16. In the
following, we give several interpretations for limited cases.

5.2 Classification of non-Hermitian skin effects

The symmetry-protected skin effects give one physical interpretation of the
point-gap topological classification for classes without symmetry or with only
transpose-type TRS (TT ∗ = ±1) [42, 75]. In these three classes, also called
class A, AI†, and AII† [33], the addition of arbitrary reference energy E ∈ C
to H does not break the given symmetry, allowing us to construct symmetry-
protected skin effects discussed above [75]. The classification of skin effects for
these three classes is highlighted in red in Table 1. The above discussion does
not mean that symmetry-protected skin effects occur only in these three classes,
because the topological invariants of the three classes can be non-zero in other
classes.

5.3 Non-Hermitian topology and quantum anomaly

5.3.1 Anomaly interpretation for AZ† symmetry

As we noted in Sect. 4.1, there are two types of non-Hermitian TRS, i.e.,
complex-conjugate-type and transpose-type TRS. Similarly, one can define complex-
conjugate-type and transpose-type PHS. The ten-fold Altland-Zirnbauer (AZ)
class is defined by the combination of complex-conjugate-type TRS and transpose-
type PHS, while the ten-fold AZ† class17 is defined by the combination of
transpose-type TRS and complex-conjugate-type PHS.

As far as the AZ† class is concerned, one can give a physical interpretation
of the non-Hermitian topological classification, in the absence of boundaries.
Lee et al. pointed out that a point-gap topological invariant of the PBC curve
in the class s† ∈AZ† counts the number of anomalous gapless modes whose
imaginary parts are large enough [76]. Here, the anomalous gapless modes in D
dimensions are the gapless modes that cannot appear on the bulk of a lattice
due to the quantum anomaly but can appear on a D-dimensional boundary of
a (D + 1)-dimensional Hermitian topological insulator/superconductor in the
corresponding Hermitian class s ∈AZ. In linear dynamics described by a non-
Hermitian Hamiltonian, the eigenvalues with large imaginary parts are relevant
to the long-time dynamics. In this sense, the dynamics described by a point-
gap non-trivial Hamiltonian are governed by the anomalous gapless modes in
the long-time limit. For example, the chiral modes, which appear on the edge

16There are even cases where the point-gap topological invariant is reminiscent of a line-gap
topological invariant, whose origin is essentially Hermitian topology [42].

17In this paper, we call the combination of two-fold complex AZ class [33] and eight-fold
real AZ† class [33] the ten-fold AZ† class.
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Table 1: Point-gap topological classification in AZ† class [33]. The red-colored
rows can also be regarded as the skin-effect classification.

AZ† T C Γ 0 1 2 3 4 5 6 7

A 0 0 0 0 Z 0 Z 0 Z 0 Z
AIII 0 0 1 Z 0 Z 0 Z 0 Z 0

AI† 1 0 0 0 0 0 2Z 0 Z2 Z2 Z
BDI† 1 1 1 Z 0 0 0 2Z 0 Z2 Z2

D† 0 1 0 Z2 Z 0 0 0 2Z 0 Z2

DIII† −1 1 1 Z2 Z2 Z 0 0 0 2Z 0

AII† −1 0 0 0 Z2 Z2 Z 0 0 0 2Z
CII† −1 −1 1 2Z 0 Z2 Z2 Z 0 0 0
C† 0 −1 0 0 2Z 0 Z2 Z2 Z 0 0

CI† 1 −1 1 0 0 2Z 0 Z2 Z2 Z 0

of a quantum Hall insulator, describe the relevant modes in long-time dynam-
ics of one-dimensional class-A non-trivial systems [Figure 4(b)]. More precise
formulae are summarized as the extended Nielsen-Ninomiya theorem in Ref.
[77].

5.3.2 Anomaly interpretation of non-Hermitian skin effects

In classes A, AI†, and AII†, the symmetry-protected skin effects give the physi-
cal interpretation of non-trivial non-Hermitian topology under the OBC, while
the anomalous gapless modes do under the PBC. These facts indicate the pres-
ence of the anomaly interpretation of the symmetry-protected skin effects. In
the anomaly interpretation, the skin effects are related to fermion production
caused by the quantum anomaly [75]. For example, a conventional skin ef-
fect is related to a charge accumulation at the boundary caused by a chiral
current. The anomaly interpretation also gives an intuitive reason why higher-
dimensional skin effects occur in the presence of the topological defect. In
quantum field theory, the combination of the quantum anomaly and the topo-
logical defect causes the fermion production at the topological defect. The most
famous example is the Rubakov-Callan effect (or monopole catalysis), which
was originally introduced as the mechanism for proton decay in a SU(5) grand
unified theory [78, 79]. The corresponding skin effect is realized in a class-A
three-dimensional Weyl Hamiltonian with valley-dependent dissipation in the
presence of a magnetic monopole [75]. The chiral magnetic skin effect in Ref.
[77] can be related to a typical fermion production mechanism called the chiral
magnetic effect [80].
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line gap

point gap

Figure 4: (a) Definitions of non-Hermitian gapped spectra (blue). A point/line-
gapped spectrum does not contain red point/line. (b) Correspondence between
class-A point-gap topology and chiral edge mode at the boundary of quantum
Hall effect, adopted from Ref. [76]. (c) Exceptional point (EP) and its charac-
terization by point and line gap, adopted from Ref. [81].

5.4 Non-Hermitian topology and degeneracy points

In the Hermitian topological classification, gapless structures in momentum
space such as Dirac and Weyl point/line nodes are also of great interest [82,
83, 84, 85, 86, 87, 88, 89, 90, 91]. In a D-dimensional parameter space, a robust
d-dimensional symmetry-protected gapless structure is characterized by a topo-
logical gapped structure on a (D−d)-dimensional sphere surrounding the gapless
structure. On the basis of similar topological classification on sphere, Ref. [81]
gave point-gap and line-gap topological classifications around the exceptional
points18, at which the parameterized non-Hermitian Hamiltonian is not diago-
nalizable [92, 93, 94] [Figure 4(c)]. According to Ref. [81], the point/line gap is
open/closed around an exceptional point. This statement is based on the obser-
vation that exceptional points are connected via a line-gapless structure called
the bulk Fermi arc [95, 96, 97] [Figure 4(c)]. Such topological classifications de-
scribe symmetry-protected exceptional structures with various dimensionality
such as exceptional points and rings [98, 95, 96, 97, 99, 15, 100, 101, 102, 103,
104, 105, 106, 107, 108, 109].

6 SKIN EFFECTS IN VARIOUS SITUATIONS

6.1 Skin effects without asymmetric hopping

Non-Hermitian skin effects are experimentally relevant in classical systems [110,
111, 112, 113]. While the implementation of asymmetric hopping is not easy
in quantum systems, this does not forbid the quantum implementation be-
cause non-Hermitian skin effects only require the spectral topology. Namely,

18Note that non-trivial classifications do not always ensure the existence of exceptional
points.
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on-site dissipation can also induce non-Hermitian skin effects, as emphasized
in Refs. [114]. In fact, the non-Hermitian skin effect in the discrete-time
non-unitary quantum walk was experimentally realized by mode-selective loss
[115]. For an intuitive understanding, let us consider a one-dimensional two-
band Hermitian Hamiltonian H(k) = d(k) · σ, where d ∈ R3, and σ’s are
the Pauli matrices that represent “spin” degrees of freedom. The dispersion
is given by E±(k) = ±|d(k)|, and the spin direction of each eigenstate is
parallel/anti-parallel to d(k). Under momentum-independent spin-dependent
non-Hermiticity, each band effectively feels momentum-dependent dissipation
[75]. For d(k) that realizes the PBC curve with a non-trivial winding num-
ber, one can realize the conventional skin effect by the combination of the
spin-momentum locked band structure and the on-site non-Hermiticity [Fig-
ure 5(a)]. This construction is analogous to an implementation of a topological
superconductor in which the p-wave paring is effectively realized by the com-
bination of the spin-momentum-locked band structure and the s-wave paring
[116, 117, 118, 119]. One can also use the combination of topological bound-
ary states and boundary-dependent dissipation as a source of non-Hermitian
skin effects [75]. For example, let us consider a thin film of a three-dimensional
topological insulator. The low-energy effective model of this system is given
by two two-dimensional Dirac cones with opposite chiralities at the top and the
bottom surfaces. By setting a surface-dependent dissipation, one can realize the
effective valley-dependent dissipation that leads to the two-dimensional Z2 skin
effect [Figure 5(b)].

6.2 Skin effects in higher dimensions

In the previous sections, we have discussed D-dimensional skin effects whose
origin is a D-dimensional topology. In addition to such intrinsic D-dimensional
skin effects, one can also consider the D-dimensional skin effect whose origin is a
(d < D)-dimensional topology. For example, under the OBC in the x direction
and PBC in the other direction, the Hamiltonian is block diagonalized into the
Bloch Hamiltonian H(k⊥ ∈ RD−1), which can be regarded as a one-dimensional
system. For each k⊥, one can define a conventional non-Hermitian skin effect
whose origin is the spectral winding. In this context, Ref. [113] theoretically and
experimentally discussed a relationship between the emergence of exceptional
points and a skin effect in a two-dimensional Dirac system.

Another remarkable direction is the corner skin modes at a higher-dimensional
lattice, which are realized as the combination of Hermitian and non-Hermitian
localizations. Reference [120] proposed the hybrid higher-order skin-topological
mode as the combination of Hermitian topological gapless state and the non-
Hermitian skin effect, and Ref. [121] experimentally realized it on electric cir-
cuits. References [122, 123, 124] investigated higher-order skin effects whose
doubled Hermitian Hamiltonians are higher-order topological insulators19 [125,

19These skin modes are related to Hermitian edge states of semi-metals such as graphene.
In this sense, Hermitian and non-Hermitian localizations coexist.
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Figure 5: Skin effects without momentum-dependent dissipation. (a) One-
dimensional skin effect in spin-momentum-locked bands of the Hamiltonian
H(k) = sin kσz + (1 − cos k)σx. A spin-dependent momentum-independent
dissipation ig(−1 + σz) effectively behaves as momentum-dependent dissipa-
tion. The model parameters are L = 100 and g = 0.1. (b) Two-dimensional Z2

skin effect realized on the surface of a three-dimensional topological insulator
H(k) =

∑3
i=1 sin kiγi + (m+

∑3
i=1 cos ki)γ0, where γs are the Gamma matrices

satisfying {γµ, γν} = δµν . The constant dissipation −ig is introduced at the
bottom surface, and the pi flux goes through the center. The system size is
20× 20× 6, m = −2, and g = 0.4.

126, 127, 128]. In addition to these studies, higher-order localizations have been
studied in various contexts 20. For example, the combinations of non-Hermitian
skin effect and higher-order topological modes have been investigated both the-
oretically [129, 130, 131, 132] and experimentally [133, 134].

7 NON-HERMITIAN DYNAMICS AND SPEC-
TRAL TOPOLOGY

Before closing, we relate the spectral topology of non-Hermitian tight-binding
models to non-Hermitian dynamics. Let us consider the non-Hermitian Schorödinger
equation with a non-Hermitian Hamiltonian H:

i
∂

∂t
|ψ(t)〉 = H|ψ(t)〉, (26)

where |ψ(t)〉 is a wavefunction whose norm depends on time. In open quantum
systems, this equation describes various situations, such as the Lindblad equa-
tion [135] written in a quadratic form of field operators [136, 137] and the con-
tinuous Lindblad dynamics without quantum jumps [138]. In classical systems,
this equation has been investigated in various fields, including fluid mechanics
[4] and network science [139]. If H is a normal matrix ([H,H†] = 0), the dy-
namics of the norm is always governed by the imaginary part of the spectrum.

20Correspondingly, the terminology “higher-order skin effects” are often used in various
situations.
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If not ([H,H†] 6= 0), however, the relaxation dynamics is more non-trivial. Re-
markably, the right eigenstates of a non-normal matrix do not span the whole
Hilbert space. If the initial state is in or close to the subspace spanned by
the right eigenstates, the non-normal dynamics is not different from the normal
dynamics. For more general initial states, however, there is a transient time
(0 < t < ∞) for the state to have a large overlap with that subspace, and the
transient dynamics is governed by the pseudospectrum discussed in Sect. 3.4,
instead of the spectrum. In the long-time limit (t→∞), non-normal dynamics
is governed by the spectrum, as in the case of a normal matrix. Due to the pseu-
dospectral nature, amplification in transient time is allowed even if the largest
imaginary part of the spectrum is negative.

Physically, the transient time depends on the speed of propagating infor-
mation, or the Lieb-Robinson Bounds [44]. In a one-dimensional system with
the non-Hermitian skin effect, the transient time is given by the time for the
information to propagate from one end to the other end, which is propor-
tional to the system size [44]. The corresponding “quasi-eigenvalue” is in the
ε-psudospectrum with ε that is exponentially small with respect to the system
size [44]. In the correspondence between non-Hermitian and Hermitian topol-
ogy, the pseudospectrum under the non-Hermitian skin effect is related to the
quasi-zero modes of a topological insulator [52], as emphasized in Sect. 3.4. In
this sense, the transient dynamics under the non-Hermitian skin effect is related
to the quasi-zero modes of a Hermitian topological insulator. For general non-
normal matrices, the transient time can be roughly estimated by the non-normal
energy-time uncertainty relation defined for a pseudospectrum [140].

Which is physically more important, the spectrum or the pseudospectrum?
The answer depends on the situation. If one is interested in the stability/instability
under linear fluctuations, the stability/instability is judged by the negativ-
ity/positivity of the largest imaginary part of the spectrum. If nonlinearity
is not negligible, on the other hand, the combination of transient amplifica-
tion and nonlinearity can lead to instability even if the largest imaginary part
of the spectrum is negative [4]. In addition to classical systems [4, 139], the
mathematics of stability/instability is relevant in quantum systems described
by the bosonic Bogoliubov-de Gennes equation [141, 142, 143, 144, 145]. In
addition to the stability analysis, the relaxation process to the non-equilibrium
steady state in the Lindblad equation is related to non-normality. Several stud-
ies pointed out that the relaxation time is not always described by the spectral
gap [52, 146, 147]. In our view, the origin of the mismatch is nothing but the
pseudospectral nature of non-normal matrices.

Although the above discussion is limited to the Schorödinger dynamics, we
note that non-Hermitian spectral phenomena can appear in more generic situ-
ations. For example, Ref. [121] detected the skin corner modes with a small
imaginary part in electric circuits in which the relevant eigenvalues are not given
by the largest imaginary part but by the smallest absolute value. We hope that
this review inspires readers to consider applications of non-Hermitian matrices
to condensed matter physics.
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