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It is generally believed that non-Hermiticity can transform Weyl semimetals into Weyl-
exceptional-ring semimetals. However, this belief is from the systems without skin effect. We
investigate the non-Hermitian Weyl semimental and its Floquet engineering in a system with skin
effect, which breaks the bulk-boundary correspondence in its Hermitian counterpart. It is found
in both the static and periodically driven cases that the skin effect makes this general belief no
longer valid. We discover that exotic non-Hermitian topological matters, e.g., a composite phase
of Weyl semimetal and topological insulator with the coexisting Fermi arc and chiral boundary
states, a widely tunable Hall conductivity with multiple quantized plateaus, and a Weyl semimetal
with anomalous Fermi arcs formed by the crossing of gapped bound state, can be generated by the
Floquet engineering. Revealing the leading role of the skin effect in determining the feature of a
semimental, our result supplies a useful way to artificially synthesize exotic non-Hermitian Weyl
semimetals by periodic driving.

Introduction.—Non-Hermitian topological phases have
attracted much attention [1–24]. People desires to know
if the well-developed topological phases in Hermitian sys-
tems can be generalized to non-Hermitian cases. This
is particularly nontrivial due to the non-Hermitian skin
effect induced breakdown of bulk-boundary correspon-
dence (BBC). Non-Hermiticity also opens a novel win-
dow in applying topological phases to design lasers [25–
27], invisible media [28], and sensing [29, 30]. A re-
cent effort has been underway to generalize Hermitian
topological semimetals [31–43] to non-Hermitian systems
[44–55]. It was revealed that the non-Hermiticity can
transform a Weyl semimetal into a Weyl-exceptional-ring
semimetal [56–61]. Various non-Hermitian semimetals in
different structures, including exceptional links [62] and
knots [63, 64], were found. However, these systems have
no skin effect. The skin effect generally causes the mis-
matching of the exceptional points (EPs) under the open
boundary condition (OBC) and periodic boundary condi-
tion (PBC), which invalidates the topological character-
ization by the Bloch-band theory. Therefore, a natural
question is whether the non-Hermiticity induced inter-
conversion of Weyl EPs and rings is still true in non-
Hermitian systems with the skin effect.

Coherent control via periodic driving dubbed as Flo-
quet engineering has become a versatile tool in artificially
creating novel topological phases in systems of ultracold
atoms [65, 66], photonics [67, 68], circuit QED systems
[69, 70], and graphene [71]. Many exotic phases absent
in static systems have been synthesized by Floquet en-
gineering [72–80]. The key role played by periodic driv-
ing is changing symmetry and inducing an effective long-
range hopping in lattice systems [81–84], which efficiently
decreases the difficulty in fabricating specific interactions
in natural materials. An interesting question becomes:
How can the non-Hermitian topological semimetals ben-
efit from periodic driving? Although Floquet engineering
to Weyl-exceptional-ring semimetals have been studied,

those systems did not have the skin effect [73, 85]. Thus,
a general study on Floquet engineering to non-Hermitian
topological semimetals is still lacking.

Here, we investigate the non-Hermitian Weyl
semimetal (NHWS) and its Floquet engineering in
a system with the skin effect. It is interesting to find
that the skin effect invalidates the general belief that
the non-Hermiticity could convert the Weyl points into
exceptional rings. Via Floquet engineering, we discover
an exotic composite topological matters of NHWS and
topological insulator with coexisting surface Fermi arc
and chiral boundary states and with an enhanced Hall
conductivity with multiple quantized plateaus compared
to the static case. We also find an exotic NHWS with
anomalous Fermi arc formed by the crossings of the
gapped bound states instead of the generally believed
gapless chiral boundary states. Our results reveal the
distinguished role of the skin effect, Floquet engineering,
and their interplay in determining the feature of the
NHWSs as well as offer us a useful way to artificially
create exotic NHWSs absent in natural materials.

Static NHWS.—We consider a NHWS model on a cu-
bic lattice. Its Hamiltonian is

Ĥ =
∑

n

{1

2

[
fxĈ

†
n+x(τx − iτy)Ĉn + fyĈ

†
n+y(τx − iτz)Ĉn

+fzĈ
†
n+zτxĈn + H.c.

]
+ Ĉ†n(mτx + i

γ

2
τy)Ĉn

}
, (1)

where Ĉn = (ĉn,A, ĉn,B)T ; ĉn,j is the annihilation opera-
tor at j = A,B sublattice of the site n = (nx, ny, nz); fα
are the hopping rates along the α = x, y, and z directions
with the unit vectors x, y, and z; τα are the Pauli matri-
ces acting on the sublattice degrees of freedom; m is the
mass term; and the non-Hermitian term γ is the nonre-
ciprocal intracell hopping rate. Under the PBC, Eq. (1)
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FIG. 1. (a) Exceptional rings in CBZ (blue solid lines) and
points in GBZ (red stars). (b) Phase diagram described by
C(kz). The red solid line is obtained by setting Eq. (4) as
zero. (c) Energy spectrum under x-direction OBC for ky = π
and Chern number when fx = fy. The one under the PBC is
shown by the gray area. Energy spectra under the x-direction
OBC when kz = 0 (d) and π (e). (f) Hall conductivity from
Eqs. (6) (blue solid line) and (7) (red dashed line), where
σ0 = e2/h. We use fz = 0.5fy, m = 2fy, and γ = 0.4fy.

reads Ĥ =
∑

k Ĉ
†
kH(k)Ĉk with Ĉk = (ˆ̃ck,A, ˆ̃ck,B)T and

H(k) = (fx cos kx + Fky,kz )σx

+(fx sin kx + i
γ

2
)σy + fy sin kyσz, (2)

where σα are the Pauli matrices and Fky,kz = m +
fy cos ky + fz cos kz. A related model in the Hermitian
case was studied in Ref. [86]. The unique feature of the
non-Hermitian system is the skin effect [3], which breaks
the BBC manifesting in the mismatching of the EPs un-
der the OBC and PBC.

Its Hermitian counterpart is a nodal-point semimetal
because the bands touch at discrete points k =

[p, p′, arccos(−m+fx cos p+fy cos p′

fz
)], with p and p′ being

0 or ±π, when γ = 0. Equation (2) reveals that the
non-Hermitian term converts the points into exceptional
rings in the kx ≡ p = 0 and ±π planes satisfying (Fky,kz +

fxe
ip)2 + f2

y sin2 ky − γ2/4 = 0 [see the solid lines in Fig.
1(a)]. Thus, being consistent with Refs. [56–61], we re-
ally find in the conventional Brillouin zone (CBZ) that
the system becomes a Weyl-exceptional-ring semimetal.
To verify if this is still true under the OBC, we introduce
a generalized BZ (GBZ) formed by k̃ = (kx−i ln r, ky, kz)
with r = |(Fky,kz − γ/2)/(Fky,kz + γ/2)|1/2 [87]. It re-
covers the BBC and permits us to correctly describe the
energy spectrum under the OBC. Then Eq. (2) becomes

H(k̃) =

(
fy sin ky Fky,kz + γ

2 + fxβ
−1

Fky,kz − γ
2 + fxβ −fy sin ky

)
(3)

with β ≡ eik̃x = reikx . Its eigen energies are

E2 = F 2
ky,kz + f2

x − γ2/4 + f2
y sin2 ky

+(Fky,kz −
γ

2
)fxβ

−1 + (Fky,kz +
γ

2
)fxβ. (4)

We find that the bands still touch at the discrete values

k = [p, p′,± arccos
±
√
f2
x+γ2/4−m−fy cos p′

fz
], as shown by

the stars in Fig. 1(a). Different from the result of Eq.
(2) under the PBC, the system is still a Weyl-exceptional-
point semimetal. It demonstrates the leading role of the
skin effect in determining the feature of NHWSs.

The GBZ permits us to topologically characterize the
NHWS, which is sliced into a family of two-dimensional
(2D) topological and normal insulators parameterized by
kz. The kz-dependent Chern number is defined in the
GBZ as

C(kz) =
1

4π

∫
h ·
(
∂k̃xh× ∂kyh

)
dk̃xdky, (5)

where h = h/h with h = Tr[H(k̃)σσσ] and h =
√
h · h

[88]. We plot in Fig. 1(b) the phase diagram by calculat-
ing C(kz). A topologically non-trivial phase signified by
C(kz) = −1 is formed after the EPs obtainable by setting
Eq. (4) as zero. When fx < 0.4fy, C(kz) = 0 for all kz
and the system is a three-dimensional (3D) normal insu-
lator. When fx > 1.5fy, C(kz) = −1 for all kz and the
system is a 3D topological insulator. A NHWS is formed
when fx ∈ [0.4, 1.5]fy. This is confirmed by the energy
spectrum under the x-direction OBC. We see from Fig.
1(c) that, exhibiting a severe deviation from the one un-
der the OBC due to the skin effect, the energy spectrum
under the OBC is well described by C(kz). Two Weyl
EPs are present where C(kz) jumps between 0 and −1.
A line connecting the two EPs called Fermi arc is formed
in the regime of C(kz) = −1. The regime without the
Fermi arc is a normal insulator [Fig. 1(d)], while the one
with the Fermi arc is a 2D Chern insulator [Fig. 1(e)].
Thus, a complete topological description to the NHWS
is established.

The GBZ also permits us to calculate the Hall conduc-
tivity. Inspired by its 2D form [88], we define it as

σxy =
−πe2

2h

∫
d3k̃

(2π)3
Re
[
h ·
(
∂k̃xh× ∂kyh

)]
sgn[Re(h)].(6)

It is verified that sgn[Re(h)] = −1 for the lower band
of our system, which reduces Eq. (6) into σxy =
e2

4πh

∫
dkzC(kz). If the system is a 3D normal insula-

tor, then C(kz) = 0 for all kz and thus σxy = 0. If it
is a 3D topological insulator, then C(kz) = −1 for all
kz and thus σxy = −e2/(2h). If it is a Weyl semimetal,
then σxy ∈ (−e2/(2h), 0) is governed by the length of the
Fermi arc equal to

σxy =
e2

2h
[
1

π
arccos

±
√
f2
x + γ2/4−m− fy cos p′

fz
− 1].

(7)
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Figure 1(f) shows σxy in different fx. It exhibits two
obvious quantised plateaus in the three typical regimes,
which corresponds to the phases in Fig. 1(b), i.e., the 3D
normal insulator, the NHWS, and the 3D topological in-
sulator. Thus, σxy as an experimental observable can be
used to characterize the phase transition in our system.

Floquet engineering to NHWS.—For creating more ex-
otic NHWSs, we make fx periodically change as

fx(t) =

{
q1f, t ∈ [zT, zT + T1),

q2f, t ∈ [zT + T1, (z + 1)T ),
(8)

where z ∈ Z and T = T1 + T2 is the period. The
Hamiltonian periodically takes two pairwise forms Ĥ1

and Ĥ2 within their respective time durations T1 and
T2. Such a type of driving has been used in generating
a time crystal [89, 90]. The periodic system does not
have an energy spectrum because the energy is not con-
served. According to Floquet theorem, the one-period

evolution operator ÛT = e−iĤ2T2e−iĤ1T1 defines an ef-
fective Hamiltonian Ĥeff = i

T ln ÛT whose eigenvalues are
called quasienergies. The topological properties of peri-
odic systems are defined in such quasienergy spectrum.
Applying Floquet theorem in Hj = hj · σσσ (j = 1, 2), we
obtain Heff(k) = heff(k) · σσσ = i

T ln[e−iH2(k)T2e−iH1(k)T1 ]
with heff(k) = − arccos(ε)r/T and [74]

ε = cos(T1h1) cos(T2h2)− h1 · h2 sin(T1h1) sin(T2h2),(9)

r = h1 × h2 sin(T1h1) sin(T2h2)− h2 cos(T1h1)

× sin(T2h2)− h1 cos(T2h2) sin(T1h1). (10)

The bands touch at zero and π/T when ε = 1 and −1,
respectively. Thus, the EPs fulfill either

Tjhj = njπ, nj ∈ Z, (11)

or

{
h1 · h2 = ±1,

T1E1 ± T2E2 = nπ, n ∈ Z.
(12a)

(12b)

With the help of the GBZ, we can determine the Weyl
points of our periodic system. The advantage over the
static case is that we can freely manipulate the number
and position of the EPs by tuning the driving parameters.
This offers us sufficient room to explore the exotic NHWS
absent in static systems.

We can prove that the GBZ is not changed by the
periodic driving [87]. It is obtained from hj in the GBZ
that Eq. (12a) is fulfilled when kx = p and ky = p′ are
zero or π. Then we obtain from Eq. (12b) that the EPs
satisfy

∑

j=1,2

(±1)jTj

∣∣∣
√
F 2
p′,kz

− γ2/4 + qjfe
ip
∣∣∣ = n±π. (13)

Note that condition (11) does not cause a kz-dependent
topological phase transition and thus does not form Weyl
points in our system, which is similar to the periodic

FIG. 2. (a) Exceptional rings in CBZ (blue solid lines) and
points in GBZ (red stars). (b) Phase diagram described by
C(kz) [C0(kz), Cπ/T (kz)]. The red solid lines are from Eq.
(13). (c) Quasienergy spectrum under x-direction OBC for
ky = 0 and C(kz) when fx = 1.3fy. The one under the
PBC is shown by the gray area. Quasienergy spectra under
the x-direction OBC when kz = π (d) and 0 (e). (f) Hall
conductivity from Eq. (6). We use m = 2fy, fz = 0.2fy,
γ = 0.4fy, q1 = 1, q2 = 3.5, and T1 = T2 = 0.6f−1

y .

Haldane mode [82]. Equation (13) supplies us a guideline
to control the number and the position of the Weyl EPs
by designing the periodic driving.

The periodic driving makes the topological character-
ization nontrivial. We develop the following scheme.
First, a Chern number C(kz) describing the topology of
the overall bands of the zero and π/T modes is calculated
from Heff(k̃). Second, a Chern number describing only
the zero mode can be defined by the dynamical way [91]

C0(kz) = −C(t = 0)−
∑

j

Qj , (14)

where C(t = 0) is the Chern number of the initial Hamil-
tonian andQj is the topological charge for jth EP at time
t ∈ [0, T ]. The charge Qj is defined as Qj = 1

2π

∮
S [555×

A(k, t)] · dS, where A(k, t) = −i〈uL(t)|∇∇∇|uR(t)〉 is the
Berry curvature, S is a close surface enclosing the EP
[92], and |uL,R(t)〉 are the left and right eigenstates of
the evolution operator U(t). Combined with Eq. (13)
for finding the EPs, we can characterize the zero-mode
topology. The π/T -mode topology is characterized by

Cπ/T (kz) = C(kz) + C0(kz). (15)

The numbers of the zero- and π/T -mode boundary states
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are |C0(kz)| and |Cπ/T (kz)| if they have the same chiral-
ity [82].

To reveal the impact of the skin effect, we plot in
Fig. 2(a) the EPs in CBZ and GBZ. The first ones form
a ring (see the blue solid line), which depicts a Weyl-
exception-ring semimetal, while the second ones still take
discrete points (see the red stars), which support a Weyl-
exceptional-point semimetal. It reflects the significance
of the skin effect in determining the feature of the NHWS
in our periodic system. The topologies in both the zero-
and π/T -mode gaps are well described by C0(kz) and
Cπ/T (kz) defined in GBZ. The phase diagram in Fig.
2(b) reveal that the more colorful 2D sliced phases with
widely tunable C(kz) than the static case in Fig. 1(b)
are created by the periodic driving. Matching the ana-
lytical condition (13) [see the red solid lines in Fig. 2(b)],
the critical points are just the Weyl EPs. Different from
the static case, where the Weyl EPs separate the normal
and topological insulators, the ones in our periodic sys-
tem also separate the topological insulators with different
Chern numbers.

An interesting consequence of the Weyl EPs separating
the phases with different C(kz) is that composite topo-
logical phases of NHWS and the topological insulator can
be formed. Such exotic phases are signified by the coex-
isting Fermi arcs and the gapless Chiral boundary states.
This can be confirmed by the quasienergy spectrum and
Chern number. Since two EPs are formed in the ky = 0
plane, we plot in Fig. 2(c) the quasienergy spectrum
when ky = 0 and its Chern number. The Chern number
goes from 1 to 2 and back to 1 at the two EPs. A Fermi
arc is formed between them in the regime of C(kz) = 2.
However, there is a pair of gapless chiral boundary states
supporting C(kz) = 1 in the full kz regimes [see Figs.
2(d) and 2(e)], which reveals the existence of a topological
insulator. It depicts a composite topological phase with
coexisting surface Fermi arc for the NHWS and the chiral
boundary states for the 3D topological insulator. A simi-
lar phase was reported in Ref. [93], but it is in Dirac type
and Hermitian system. A result of this widely tunable
C(kz) is that the Hall conductivity is much enhanced to
exhibit multiple quantized plateaus than the static case
[see Fig. 2(f)]. When the system is the 3D topological
insulator, σxy exhibits a plateau equaling −e2/(2h) mul-
tiplied by the associated C(kz). When the system is a
NHWS, σxy is proportional to the length of the Fermi arc
and its Chern number. Such widely tunable conductivity
supplies us a useful way to detect the colorful NHWSs in-
duced by the periodic driving and might inspire a promis-
ing application in developing quantum-transport devices.

Another exotic phase induced by the periodic driving
is a NHWS with anomalous Fermi arcs. The Fermi arc
is generally formed by the crossings of the gapless chi-
ral boundary states of the 2D sliced topological insula-
tors [31]. We find a counterexample to this. Figures
3(a) and 3(b) indicate that the zero- and π/T -mode EPs

FIG. 3. Exceptional rings in CBZ (blue solid lines) and points
in GBZ (red stars) for the zero-mode (a) and π/T -mode (b)
gaps. Quasienergy spectra under x-direction OBC for ky = 0
(c) and π in (e), and for kz = π (d) and 0 (f). We use
m = 1.2fy, fx = fy, fz = 0.5fy, γ = 0.4fy, q1 = 1, q2 = 3.5,
and T1 = T2 = 0.6f−1

y .

are present at ky = 0 and π planes, respectively. The
quasienergy spectrum for ky = 0 in Fig. 3(c) confirms
the zero-mode EPs connected by a Fermi arc. To reveal
the feature of the Fermi arc, we plot in Fig. 3(d) the
quasienergy spectrum when kz = π. It is interesting to
see that the EP at ky = 0 is not an intersecting point
of the gapless chiral boundary states, but the one of two
gapped bound states. This reveals that the zero-mode
Fermi arc occurring at ky = 0 in Fig. 3(c) is formed
by the intersecting points of these gapped bound states
instead of the generally believed gapless chiral bound-
ary states. Such a type of exotic Weyl semimetal is also
present in the π/T mode. The quasienergy spectrum
when ky = π in Fig. 3(e) confirms the EPs in Fig. 3(b)
connected by a Fermi arc. The quasienergy spectrum
when kz = 0 in Fig. 3(f) reveals that this π/T -mode
Fermi arc is also formed by the intersecting point of two
gapped bound states. Having not been found before, such
exotic NHWS enriches the family of semimetals.

Conclusion.—In summary, we investigated the NHWS
and its Floquet engineering in a 3D system. The domi-
nant role of the skin effect in determining the feature of
NHWS is revealed in both the static and the periodically
driven cases. A complete topological characterization to
the NHWS for the two cases is established by introduc-
ing the GBZ. Exotic topological phases, e.g., a composite
phase of NHWS and topological insulator with the co-
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existing surface Fermi arc and chiral boundary states, a
widely tunable Hall conductivity with multiple quantized
plateaus, and a NHWS with anomalous Fermi arc formed
by the crossing of the gapped bound state, are created
by the periodic driving. Our results indicate that, by
supplying a feasible way to engineer novel topological
semimetals, the periodic driving is useful in artificially
synthesizing the exotic topological phases absent in nat-
ural materials. These exotic phases with good control-
lability might inspire the application and exploration of
non-Hermitian topological semimetals.
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Phys. Rev. B 100, 045423 (2019).
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I. GENERALIZED BRILLOUIN ZONE OF THE
STATIC SYSTEM

We consider a non-Hermitian Weyl semimetal model
on a cubic lattice as shown in Fig. S1. Its Hamiltonian
is

Ĥ =
∑

n

{1

2

[
fxĈ

†
n+x(τx − iτy)Ĉn + fyĈ

†
n+y(τx − iτz)Ĉn

+fzĈ
†
n+zτxĈn + H.c.

]
+ Ĉ†n(mτx + i

γ

2
τy)Ĉn

}
, (S1)

where Ĉn = (ĉn,A, ĉn,B)T , ĉn,j is the annihilation oper-
ator at j = A,B sublattice of the site n = (nx, ny, nz),
fα are the hopping rates along α = x, y, and z direc-
tions with the unit vectors x, y, and z, τα are the Pauli
matrices acting on the sublattice degrees of freedom, m
is the mass term, and the non-Hermitian term γ is the
nonreciprocal intracell hopping rate. Under the periodic-

boundary condition, Eq. (S1) reads Ĥ =
∑

k Ĉ
†
kH(k)Ĉk

with Ĉk = (ˆ̃ck,A, ˆ̃ck,B)T and

H(k) = (fx cos kx + Fky,kz )σx

+(fx sin kx + i
γ

2
)σy + fy sin kyσz, (S2)

where σα are the Pauli matrices and Fky,kz = m +
fy cos ky+fz cos kz. Related model in the Hermitian case
was studied in [1].

The unique feature of the non-Hermitian system is
the skin effect [2], which breaks the bulk-boundary cor-
respondence manifesting in the mismatching of the ex-
ceptional points under the open- and periodic-boundary
conditions. It can be readily seen from Fig. S1 that the
non-Hermiticity introduced by the nonreciprocal intra-
cell hopping only occurs along the x direction. It nat-
urally results in that the skin effect only exists in the
x direction. This conclusion can be confirmed by the
symmetries of the system. Equation (S2) possesses the
anomalous time-reversal symmetry along the y direction,
i.e.,

σxKTH(kx, ky, kz)KTσx = H(kx,−ky, kz), (S3)

where KT is the transpose operator, and the inversion
symmetry alone the z direction, i.e.,

H(kx, ky, kz) = H(kx, ky,−kz). (S4)

∗ anjhong@lzu.edu.cn

FIG. S1. Schematics of non-Hermitian Weyl semimetal on
a cubic lattice with nonreciprocal intracell hopping rates
m± γ/2, and intercell ones fx and fy in the single layer and
fz between two neighboring layers, respectively. The green
dashed lines denote the hopping rates with a π-phase differ-
ence from the green solid lines.

It has been proven that the anomalous time-reversal sym-
metry or the inversion symmetry or both makes the skin
effect absent [3]. Therefore, our system does not show
the skin effect in the y and z directions.

The y and z directions can be well described by the
conventional Brillouin zone, which can be obtained by
the Fourier transform under the periodic boundary con-
dition. Then Eq. (S1) is converted into an effective one-
dimensional non-Hermitian system parameterized by the
conserved momenta ky and kz, i.e.,

Ĥ =
∑

ky,kz

∑

nx

[(Fky,kz −
γ

2
)b̂†nx,ky,kz

ânx,ky,kz

+(Fky,kz +
γ

2
)â†nx,ky,kz

b̂nx,ky,kz

+fy sin ky(â†nx,ky,kz
ânx,ky,kz − b̂†nx,ky,kz

b̂nx,ky,kz )

+fx(â†nx,ky,kz
b̂nx−1,ky,kz + H.c.)]. (S5)

where Fky,kz = m+ fy cos ky + fz cos kz and

ĉn,A =
1√
NyNz

∑

ky,kz

ei(kyny+kznz)ânx,ky,kz , (S6)

ĉn,B =
1√
NyNz

∑

ky,kz

ei(kyny+kznz)b̂nx,ky,kz . (S7)
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This is just the one-dimensional non-Hermitian Su-
Schrieffer-Heeger model [2] with an additional fy term.
According to the method developed in Ref. [2], we can
remove the skin effect by a similarity transformation

Ŝ = exp[
∑

nx

(â†nx,ky,kz
ânx,ky,kz ln rnx−1

+b̂†nx,ky,kz
b̂nx,ky,kz ln rnx)]. (S8)

It converts Eq. (S5) into ˆ̄H = Ŝ−1ĤŜ with

ˆ̄H =
∑

ky,kz

∑

nx

[r−1(Fky,kz −
γ

2
)b̂†nx,ky,kz

ânx,ky,kz

+r(Fky,kz +
γ

2
)â†nx,ky,kz

b̂nx,ky,kz

+fy sin ky(â†nx,ky,kz
ânx,ky,kz − b̂†nx,ky,kz

b̂nx,ky,kz )

+fx(â†nx,ky,kz
b̂nx−1,ky,kz + H.c.)]. (S9)

One can readily check that, as long as r = |(Fky,kz −
γ/2)/(Fky,kz + γ/2)|1/2, all the bulk states of ˆ̄H do not
reside in the edges anymore and thus the skin effect is re-
moved [2]. Rewriting Eqs. (S9) in the momentum space,

we have ˆ̄H =
∑

k C
†
k

ˆ̄H(k)Ck with

ˆ̄H(k) =

[
fy sin ky r(Fky,kz + γ

2 + fx
β )

r−1(Fky,kz − γ
2 + fxβ) −fy sin ky

]
,

(S10)

where β ≡ eik̃x = reikx . Comparing Eq. (S10) with Eq.
(2) in the main text, we see that, except for the unimpor-

tant pre-factors r±1, which do not affect the eigenvalues,
they have the same form after replacing kx with k̃x. This
gives us an insight to remove the skin effect in the origi-
nal non-Hermitian system by directly replacing kx in Eq.
(2) of the main text by k̃x [2]. Such complex vector k̃ as
well as ky and kz form a generalized Brillouin zone.

II. GENERALIZED BRILLOUIN ZONE OF THE
PERIODICALLY DRIVEN SYSTEM

We can see that the similarity transformation Ŝ to re-
move the skin effect is independent on fx. When the
periodic driving

fx(t) =

{
q1f, t ∈ [zT, zT + T1)

q2f, t ∈ [zT + T1, (z + 1)T )
, (S11)

is applied on fx, we readily have

ˆ̄UT = Ŝ−1ÛT Ŝ = e−i
ˆ̄H2T2e−i

ˆ̄H1T1 , (S12)

where ˆ̄Hj are Eq. (S9) with fx = q1f and q2f , respec-

tively. Since no skin effect is present in ˆ̄Hj , neither in
ˆ̄Heff = i

T ln[ ˆ̄UT ]. Therefore, we conclude that the gener-
alized Brillouin zone of the periodically driven system is
the same as that of static case.
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