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1 Introduction

Many supersymmetric string theory compactifications contain “non-Higgsable” gauge

groups that cannot be broken by charged matter in a way that preserves supersymme-

try. In the simplest cases, the non-Higgsable gauge group is a single simple factor such as
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SU(3), SO(8), or E8 under which there are no charged matter fields. Such string vacua

have long been known to arise in heterotic string compactifications, and in many cases have

dual F-theory descriptions [1–3]; a simple set of examples are given by 6D supergravity

theories arising from heterotic compactifications on K3 and dual F-theory compactifica-

tions on Hirzebruch surfaces Fm. For example, a non-Higgsable E8 arises in the E8 × E8

heterotic theory when all of the 24 instantons needed for tadpole cancellation in the 10D

theory are placed in one of the two E8 heterotic factors, corresponding on the F-theory

side to compactification on F12. While in the simplest cases there is no charged matter,

there are also cases where a gauge group is non-Higgsable even in the presence of charged

matter. For example, in a 6D heterotic compactification where the numbers of instantons

in the two E8 factors are 5 and 19, corresponding on the F-theory side to a compactification

on F7, there is a non-Higgsable gauge group E7 carrying a half hypermultiplet in the 56

representation. This matter cannot be Higgsed in the low-energy theory since the D-term

constraints cannot be satisfied by matter in a single real representation.

In heterotic constructions that use smooth bundles over smooth Calabi-Yau manifolds

the non-Higgsable gauge groups contain only a single simple factor. In F-theory, however,

many geometries give rise to non-Higgsable gauge groups with multiple factors and jointly

charged matter. In [4], we performed a systematic analysis of the possible non-Higgsable

structures that can arise in 6D F-theory compactifications, and identified all possible “non-

Higgsable clusters” of gauge group factors connected by jointly charged matter that cannot

be broken by Higgsing. The analysis was carried out by looking at configurations of inter-

secting curves on the (two complex dimensional) base surface, with each curve having a

negative self-intersection. The complete list of non-Higgsable gauge groups in 6D F-theory

models contains, in addition to the single group factors SU(3), SO(8), F4, E6, E7, and E8,

the two product groups G2×SU(2) and SU(2)×SO(7)×SU(2), with non-Higgsable matter

jointly charged under the adjacent factors in each gauge group.1

In this paper we initiate a systematic analysis of non-Higgsable clusters for 4D F-theory

models. Non-Higgsable clusters give rise to gauge groups and matter at generic points in

the moduli spaces of Calabi-Yau fourfolds over many bases that can be used for F-theory

compactification. From our current understanding of the space of elliptically fibered Calabi-

Yau manifolds, it seems that in fact the vast majority of F-theory compactifications will

have such structure. Non-Higgsable clusters can give rise to the nonabelian part of the

standard model [5], as well as decoupled or weakly interacting sectors that have a natural

possible interpretation as dark matter. In section 8.3, we comment on some aspects of

these constructions that may be relevant to phenomenology.

There are several issues that make the analysis of non-Higgsable clusters, and F-theory

vacua in general, more complex for four-dimensional models than for six-dimensional mod-

els. In six dimensions the geometric complex structure moduli space of an elliptically

fibered Calabi-Yau threefold matches with a continuous moduli space of flat directions in

the corresponding 6D supergravity theory, so that there is a close correspondence between

1The non-Higgsable structure imposed from geometry determines only the gauge algebra, so that these

groups may in principle be reduced through a quotient by a finite subgroup in some cases.
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the structure of the physical theory and the geometric data of F-theory (see for exam-

ple [6]). In four dimensions this connection is obscured by the presence of a superpotential

that lifts some of the flat directions. Viewing F-theory as dual to a limit of M-theory,

the superpotential is produced by G-flux on a Calabi-Yau fourfold (see [7] for an intro-

ductory review). There are also additional degrees of freedom on the world-volume of

IIB seven-brane configurations that are as yet not well understood or incorporated into

the F-theory context. Even for perturbative (e.g. SU(N)) seven-brane stacks, off-diagonal

excitations of the world-volume adjoint scalar fields encode expansion of Dp-branes into

higher-dimensional D(p+ 2k)-branes [8–11]; these degrees of freedom are not encompassed

in the complex structure moduli of the elliptically fibered Calabi-Yau used for F-theory and

have been studied in that context as “T-branes” [12–15]. While such excitations can be de-

scribed locally, unlike for the complex structure degrees of freedom in F-theory which have

a global characterization in terms of Weierstrass models there is no analogous general global

formulation of the full set of open string degrees of freedom associated with perturbative

brane configurations on a general compact space (see e.g. [16, 17] for some initial efforts

in this direction, and [18–20] for more recent developments and further references). For

nonperturbative seven-brane configurations associated with exceptional groups, the open

string dynamics is even less transparent from the F-theory complex structure point of view.

The effects of G-flux and additional degrees of freedom can not only lift flat directions

in the moduli space, but can also modify the spectrum of the theory. On the one hand,

the potential produced by G-flux can drive the theory to a point of enhanced symmetry,

while on the other hand flux in the world-volume fields on a set of seven-branes can also

break the apparent geometric symmetry to a smaller group. G-flux also affects the matter

spectrum of the theory, and can give rise to chiral matter although the underlying Calabi-

Yau geometry in the F-theory picture describes only non-chiral (4D N = 2) matter. Some

of these issues are discussed in more detail in [5]. Though there has been substantial

work on various aspects of G-flux in 4D F-theory compactifications (see for example [21–

27]), there is still no completely general way of analyzing these effects in an arbitrary 4D

compactification. In this paper, we focus only on the underlying geometry of the F-theory

compactification, in particular on the continuous moduli space of complex structures for a

given elliptically fibered Calabi-Yau fourfold parameterized by a Weierstrass model. When

we refer to the geometric gauge group and geometric matter, we refer only to the gauge

group and non-chiral matter associated with the singularities of the Weierstrass model.

This analysis thus gives only a first-order picture of the space of possibilities that can exist

in complete F-theory models. To determine the actual physical gauge group and matter

the further incorporation of G-flux effects is necessary, and we leave this further analysis to

future work. Another complication in the analysis of 4D F-theory models is the presence

of codimension three loci where the Weierstrass coefficients f , g vanish to degrees (4, 6).

As we discuss in the next section, it is not yet understood whether such singularities pose

a problem for consistency of 4D F-theory models, and we include vacua with such loci in

the analysis here.

After a brief review of some basic aspects of F-theory in section 2, we begin in section 3

with a general set of formulae that can be used to give a lower bound for the orders
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of vanishing of the Weierstrass coefficients f and g over any given divisor in a complex

threefold base. These formulae control the local singularity structure of the Weierstrass

model and determine the factors that can appear in a non-Higgsable cluster. In section 4,

as a warm-up exercise we use a simplified version of the local divisor formulae to describe

non-Higgsable clusters in 6D theories, and reproduce the results of [4] in a simple and direct

way. We then proceed in section 5 and the following sections to analyze the local structure

of 4D clusters using the general formulae. We find a rich range of behavior, including

branchings, loops, and long linear chains of connected gauge group factors. We conclude

in section 8 with a discussion of some of the possible applications of 4D non-Higgsable

clusters.

2 Review of F-theory basics

Here we summarize a few of the basic features of F-theory that are central to the analysis

of this paper. More comprehensive reviews can be found in [7, 28, 29].

We consider F-theory as a nonperturbative formulation of type IIB string theory. A

supersymmetric F-theory compactification to 10 − 2n dimensions is defined by a complex

n-fold base Bn that supports an elliptic fibration with section π : X → Bn where the total

space X is a Calabi-Yau (n+1)-fold. The data of such an elliptic fibration can be described

by a Weierstrass model [30]

y2 = x3 + fx+ g , (2.1)

where f , g are sections of line bundles O(−4K), O(−6K) over the base Bn, with −K
the anti-canonical class on Bn. The Weierstrass parameters f and g can be described in

terms of polynomials of fixed degrees in a local coordinate system on Bn. The (geometric)

gauge group of the corresponding supergravity theory is determined by the codimension

one singularity structure of the Weierstrass model, where the discriminant ∆ = 4f3 + 27g2

vanishes. When f , g, and ∆ vanish to certain orders on a divisor (i.e., a codimension

one algebraic subspace) then the total space of the elliptic fibration is singular, and can

be viewed as a degenerate limit of a smooth Calabi-Yau manifold; in IIB language the

singularities can be interpreted in terms of coincident seven-branes (but of more general

types than occur in the perturbative IIB string). In either picture, the physical result is the

appearance of a nonabelian gauge symmetry in the supergravity theory. The classification

of codimension one singularities, following Kodaira [31, 32], is listed in table 1, along with

the resulting gauge algebra factors (which are inferred from gauge symmetry enhancement

in M-theory [33, 34]). In some cases, for compactifications to six dimensions or fewer

the gauge group depends not only on the orders of vanishing of f , g, ∆, but also on

the more detailed monodromy structure of the singularity locus [3, 31, 32, 35–37]. The

(geometric) matter content of the theory is determined by the codimension two singularity

locus on the base. In simple cases, the representation content of the matter is determined

in a simple fashion from the enhancement of the Kodaira singularity type on the singular

codimension two locus [35, 38], but more complicated matter representations can also arise.

A complete dictionary between codimension two singularities and matter representations

has not yet been developed, though a number of recent works have made progress in this
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Type ord(f) ord(g) ord(∆) singularity nonabelian symmetry algebra

I0 ≥ 0 ≥ 0 0 none none

In 0 0 n ≥ 2 An−1 su(n) or sp(bn/2c)
II ≥ 1 1 2 none none

III 1 ≥ 2 3 A1 su(2)

IV ≥ 2 2 4 A2 su(3) or su(2)

I∗0 ≥ 2 ≥ 3 6 D4 so(8) or so(7) or g2

I∗n 2 3 n ≥ 7 Dn−2 so(2n− 4) or so(2n− 5)

IV∗ ≥ 3 4 8 e6 e6 or f4

III∗ 3 ≥ 5 9 e7 e7

II∗ ≥ 4 5 10 e8 e8

non-min ≥ 4 ≥ 6 ≥ 12 does not occur for susy vacua

Table 1. Table of codimension one singularity types for elliptic fibrations and associated non-

abelian symmetry algebras. In cases where the algebra is not determined uniquely by the degrees of

vanishing of f , g, the precise gauge algebra is fixed by monodromy conditions that can be identified

from the form of the Weierstrass model.

direction [37, 39–47]. For the purposes of this paper, the most relevant fact is that, in

general, matter arises at codimension two loci within codimension one divisors carrying

gauge group factors, where the degrees of vanishing of f , g, and/or ∆ are enhanced. In

particular, when two divisors each carry a gauge group factor, and they intersect along a

codimension two locus (a set of points in the case of 6D compactifications, or a complex

curve in the case of 4D compactifications), then there is generally (geometric) matter that

carries a charge under both of the gauge group factors.

A non-Higgsable gauge group factor arises on a given divisor D when all sections f of

O(−4K) and all sections g of O(−6K) vanish to orders φ ≥ 1, γ ≥ 2 respectively on D.

In such a situation, the orders of vanishing φ, γ force a gauge group factor according to

the Kodaira conditions in table 1. Note that only certain gauge groups can be forced to

appear in this way. In particular, type In and type I∗n singularities with n > 0 cannot be

forced to arise in a generic Weierstrass model over any base.

If f , g vanish to orders (4, 6) on a divisor, then there is a “non-minimal singularity”

that cannot be resolved to give a total space that is Calabi-Yau (and hence the data does

not describe a supersymmetric vacuum). If f , g vanish to orders (4, 6) on a codimension

two locus in the base, then there is again a non-minimal singularity. By blowing up the

codimension two locus in the base a new base arises with a reduced degree of singularity, so

that the total space of the fibration may either be resolvable into a Calabi-Yau directly, or

after further blowups. It is also possible to describe the structure associated with a (4, 6)

vanishing on a codimension two locus in terms of a superconformal field theory [48]; while

such field theories have been the subject of some recent work [49–53], we do not investigate

such structure here. In 4D models, the situation is less clear when f , g vanish to degrees

(4, 6) at a codimension three locus (point). At such points, like at (4, 6) codimension two

loci, it seems that extra massless states appear in the theory [54]; the degree of vanishing is

not sufficient at such points, however, to lead directly to a blowup of the point — for this
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we would need additional vanishing to order (8, 12). Thus, while it is possible that there

is some problem or inconsistency in models with such codimension three singularities, it is

also plausible that such models represent perfectly acceptable F-theory vacua.2 We do not

try to resolve this question in this paper, but we do note some circumstances when this

issue may affect some of the structures we describe for 4D non-Higgsable clusters.

3 Local conditions

Classifying the possible non-Higgsable clusters that can arise in F-theory compactifications

to four dimensions is more difficult than for compactifications to six dimensions, even at the

level of pure geometry. The approach used in [4] to classify non-Higgsable clusters on base

surfaces incorporated a method known as the Zariski decomposition, whose generalization

to three-dimensional bases has many complications [55]. Thus, we develop here some

general local methods for placing constraints on the possible structure of non-Higgsable

clusters for 4D F-theory models.

For a local or global base geometry with a toric description, it is straightforward to

use the lattice of monomials dual to the lattice containing the toric fan [56] to compute

the orders of vanishing of f , g on any given divisor in a generic Weierstrass model. This

method is described explicitly in [57] for base surfaces (where it was used to analyze the

set of all toric bases that support elliptically fibered Calabi-Yau threefolds), and in [58] for

threefold bases. We use this approach for explicit calculations in some specific examples in

this paper, complementing the general methods developed in this section.

In section 3.1, we derive local conditions that can be used to show that f , g have certain

minimal orders of vanishing on divisors on a completely general base B. The results of this

analysis are summarized in section 3.2 in a succinct fashion useful for explicit computations.

3.1 Derivation of local conditions

In [58], a general class of 4D F-theory models were considered where the base B3 had the

structure of a P1 bundle over a complex surface B2, constructed from the projectivization

of a line bundle L over B2. As described in that paper, when there is a good coordinate z

in an open region containing a section Σ of the P1 bundle (as is true, for example, when B2

is toric), there is a series expansion f = f̂0 + f̂1z + f̂2z
2 + · · · whose coefficients f̂k restrict

to sections of OΣ

(
−4KΣ−(4−k)T

)
on Σ, and similarly ĝk|Σ ∈ Γ

(
OΣ

(
−6KΣ−(6−k)T

))
,

where T = c1(L) characterizes the “twist” of the line bundle L, and KΣ is the canonical

class of the complex surface Σ ∼= B2 ⊂ B3. The key way that this expansion is used is in

demonstrating that certain of these coefficients must vanish upon restriction to Σ (showing

that f or g must vanish to certain orders) by checking that the corresponding line bundles

on Σ have no non-vanishing sections at all.

This characterization of vanishing conditions for f and g can be made more precise

and generalized to an arbitrary divisor in a general base B (of any dimension). In the

above description, the local geometry around the divisor Σ is characterized by the normal

2We thank Antonella Grassi for discussions on this point.
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line bundle, which is NΣ = NΣ/B3
= −T , so the conditions on f and g depend only on the

local geometry and not on the global structure as a P1 bundle. In general, therefore, if we

have a base B containing an effective divisor D, we initially have

f |D ∈ Γ
(
OD(−4KD + 4ND)

)
(3.1)

g|D ∈ Γ
(
OD(−6KD + 6ND)

)
, (3.2)

where KD and ND = ND/B are the canonical and normal line bundles for D ⊂ B, and we

have used the adjunction formula, which tells us that −KB|D = −KD +ND.

There are exact sequences that help to measure the vanishing of f and g along D:

0→ O(−4KB −D)→ O(−4KB)→ OD(−4KD + 4ND)→ 0 (3.3)

0→ O(−6KB −D)→ O(−6KB)→ OD(−6KD + 6ND)→ 0 . (3.4)

Thanks to these sequences, if f |D vanishes then we can write f = f̂1z with f̂1 a section of

O(−4KB −D). Similarly, if g|D vanishes then we can write g = ĝ1z with ĝ1 a section of

O(−6KB −D).

We can continue, and try to detect if f or g vanishes to order 2. For this purpose, we

use the pair of exact sequences

0→ O(−4KB − 2D)→ O(−4KB −D)→ OD(−4KD + 3ND)→ 0 (3.5)

0→ O(−6KB − 2D)→ O(−6KB −D)→ OD(−6KD + 5ND)→ 0 . (3.6)

To understand these sequences it is helpful to recall that OD(−D) is an alternate way of

writing the line bundle OD(−ND), and we have used this equivalence in the exact sequence.

Note that f̂1 or ĝ1, when they exist, are sections of the middle term in the exact sequence;

we restrict them to D, and if one of them is zero, then we will be able to write f̂1 = f̂2z

(or ĝ1 = ĝ2z), i.e., f = f̂2z
2 (or g = ĝ2z

2). This happens if and only if f (respectively g)

vanishes to order at least 2 along D.

We now see the general pattern: if f vanishes to order at least k then we can write

f = f̂kz
k with f̂k a section of O(−4KB − kD) and restrict f̂k to D. The corresponding

exact sequence is

0→ O
(
− 4KB − (k+ 1)D

)
→ O(−4KB − kD)→ O

(
− 4KD + (4− k)ND

)
→ 0 . (3.7)

The restriction vanishes if and only if f vanishes to order at least k + 1 along D, and in

that case we can write f̂k = f̂k+1z so that f = f̂k+1z
k+1.

Similarly, if g vanishes to order at least k then we can write g = ĝkz
k with ĝk a section

of O(−6KB − kD) and restrict ĝk to D. The corresponding exact sequence is

0→ O
(
− 6KB − (k+ 1)D

)
→ O(−6KB − kD)→ O

(
− 6KD + (6− k)ND

)
→ 0 . (3.8)

The restriction vanishes if and only if g vanishes to order at least k + 1 along D, and in

that case we can write ĝk = ĝk+1z so that g = ĝk+1z
k+1.

– 7 –
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More generally, given a set of effective divisors Da in B together with the information

that f vanishes on Da to order at least φa and g vanishes on Da to order at least γa, then

we can write

f = f [a]
∏
b 6=a

zφbb (3.9)

g = g[a]
∏
b 6=a

zγbb (3.10)

where zb is a local coordinate vanishing on Db.

We now go through the same reasoning with analogous exact sequences, starting from

−4KB −
∑

b 6=a φbDb instead of −4KB, and −6KB −
∑

b 6=a γbDb instead of −6KB, to de-

termine the orders of vanishing of f [a] and g[a]. If the order of vanishing is at least k, then

the restricted leading coeffient lies in

f
[a]
k |Da ∈ Γ

(
ODa

(
− 4K(a) + (4− k)N (a) −

∑
b 6=a

φbCab

))
(3.11)

or

g
[a]
k |Da ∈ Γ

(
ODa

(
− 6K(a) + (6− k)N (a) −

∑
b 6=a

γbCab

))
, (3.12)

where Cab = Da ∩ Db, considered as a curve in Da. The terms proportional to Cab arise

because the vanishing of f , g around Db appear on Da as additional vanishings on the

curves Cab.

The properties of the bundles in (3.11) and (3.12) can be used to determine the minimal

possible orders of vanishing φa, γa of f , g on each divisor Da in a self-consistent fashion.

By using the fact that e.g. f
[a]
k |Da must vanish if the line bundle of which it is a section

corresponds to a non-effective divisor on Da, (3.11) and (3.12) specify a collection of bundles

which can be checked for the existence of non-zero sections, and if those sections are absent,

the corresponding leading coeffients must vanish (i.e., the order of vanishing will be greater

than might have been expected).

For the monodromy conditions associated with each divisor, and to identify the com-

plete (geometric) matter content, we need to consider these coefficients more generally as

sections of (3.1), (3.2) that vanish to orders φb, γb on Cab, and we use f̂
[a]
k |Da , ĝ

[a]
k |Da in

such situations.

3.2 Summary of local conditions

We summarize here the constraints derived in the previous section and define some notation

that will be useful for explicit calculations. For a compactification of F-theory on a base

B, for each effective divisor Da in B we define corresponding families of divisors

F
(a)
k = −4K(a) + (4− k)N (a) −

∑
b 6=a

φbCab (3.13)

G
(a)
k = −6K(a) + (6− k)N (a) −

∑
b 6=a

γbCab . (3.14)

– 8 –
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Here, as above, −K(a), N (a) are the divisors associated with the anti-canonical and normal

line bundles to Da, φa, γa are the orders of vanishing of f , g on Da, and Cab is the curve

Da ∩Db considered as a divisor class on Da.

When there is no effective divisor in any of the divisor classes F
(a)
j for j = 0, 1, . . . , k−1,

then f must vanish to at least order k on Da. Similarly, when there is no effective divisor

in any of the divisor classes G
(a)
j for j = 0, 1, . . . , k−1, then g must vanish to at least order

k on Da. This determines a set of conditions on the vanishing orders of f , g on different

divisors in the base that must be satisfied in a self-consistent fashion. Note that these

conditions determine a minimum order of vanishing of f , g on each divisor through the

structure of the local geometry. We have not ruled out the possibility that further nonlocal

structure may force f , g to vanish to higher orders in some circumstances.

In the following sections we use the divisors specified in (3.13) and (3.14) to analyze

various situations in which the vanishing of f , g to particular orders guarantees the ex-

istence of non-Higgsable clusters of different kinds in Calabi-Yau threefolds and fourfolds

corresponding to F-theory compactifications to 6D and 4D respectively.

In general the restriction of the leading non-vanishing term in an expansion of f around

the divisor Da can be described as a section of the line bundle over Da associated with Fk

f
(a)
k = f

[a]
k |Da ∈ Γ

(
ODa(Fk)

)
, k = φa (3.15)

and the restricted leading term in g can similarly be described as a section of

g
(a)
k = g

[a]
k |Da ∈ Γ

(
ODa(Gk)

)
, k = γa . (3.16)

Note that for a general base these equations are only meaningful for the first non-vanishing

term in each of f and g, though in special cases such as toric bases where there are good

global coordinates, these expressions are valid for all k.

As discussed above, when determining monodromy conditions and matter content, it

is useful to consider the leading terms f̂
(a)
k = f̂

[a]
k |Da , ĝ(g) = ĝ

[a]
k |Da as sections of the line

bundles Γ
(
ODa(F̂k)

)
, Γ
(
ODa(Ĝk)

)
, with F̂k = −4K(a) + (4 − k)N (a), Ĝk = −6K(a) +

(6− k)N (a).

3.3 Additional constraints

We conclude this section by briefly mentioning a further local constraint that is not used

directly in the analysis of this paper, but which may be useful in further analyzing the

set of possible local divisor configurations and associated non-Higgsable clusters in general

F-theory models.

In addition to the constraints described in the preceding sections, we have the geometric

constraint

N (b) · Cba = Cab · Cab . (3.17)

As can be inferred from the notation, the intersection on the left is carried out within Db,

while that on the right is in Da.

This constraint follows from a general fact about intersection theory: if D1, D2, and

D3 are three divisors, then D1 ·D2 ·D3 can be computed as an intersection of two divisors
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on D3, namely, the intersection of the divisors D1|D3 and D2|D3 . Permuting the Di’s gives

multiple ways to compute the same intersection property. To apply this to derive (3.17),

we consider the intersection product Db ·Db ·Da. On the one hand, this can be evaluated

on Db as the intersection of Db|Db
= ND with Da|Db

= Cba. On the other hand, the same

triple intersection can be evaluated on Da as the intersection of Db|Da with Db|Da, i.e., as

Cab · Cab.
In the toric situation, the relation (3.17) follows directly from the structure of the

fan for a toric threefold. Assuming that the geometry is smooth, and taking a choice of

coordinates where Da, Db are associated with rays va = (0, 0, 1), vb = (0, 1, 0), and there

are 3D cones connecting these two rays to the rays vc = (1, 0, 0) and vd = (−1, y, z), we see

that both sides of (3.17) are identified with the value −y. In the left-hand side, we have

N (b) = −yCbd and Cbd · Cba = 1, so N (b) · Cba = −y, and on the right-hand side we have

the same result since Cab is a curve of self-intersection −y from the fact that on projection

to the plane z = 0, yvb = vc + vd.

4 Warm-up: 6D non-Higgsable clusters

As an illustration of how the constraints derived in the previous section can be used to

characterize non-Higgsable clusters, we begin as a warm-up exercise with the 6D case.

A complete classification of non-Higgsable clusters for 6D F-theory compactifications was

given in [4]. Here we show how these results can be reproduced easily using the constraint

equations derived in the previous section.

4.1 Constraints on individual curves

In six dimensions, we are concerned with Calabi-Yau threefolds that are elliptically fibered

over a complex base surface B2. In this situation, the divisors that support codimension

one singularities of the elliptic fibration associated with gauge group factors are curves,

and codimension two singularities are associated with points. This simplifies the analysis

significantly, since all points on a curve represent the same homology class, so we can

represent all divisors on a curve simply as an integer in Z. Specializing the discussion of

the previous section to the case of a base of dimension 2, and denoting the divisors by Ca
since they are now curves on the base, we find

F
(a)
k = −4K(a) + (4− k)N (a) −

∑
b

φbZab , (4.1)

G
(a)
k = −6K(a) + (6− k)N (a) −

∑
b

γbZab . (4.2)

Here, as before, K(a) is the canonical class of Ca, N
(a) is the class of the normal bundle,

while Zab is the intersection of Ca with Cb, considered as a zero-cycle on Ca. (When Ca is a

rational curve, the only thing that matters about this zero-cycle is its degree pab = degZab,

which is the intersection number Ca · Cb).
We begin by noting that if the anti-canonical class −KC = −K(a) is not effective (i.e.

a nonnegative integer class) for a given curve C = Ca, then (dropping the superscript (a)
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henceforth on fk, gk, which we take to be assumed for any given curve C) Fk, Gk could not

be effective and fk, gk would vanish for all k unless NC were effective, in which case no fk,

gk could be non-vanishing unless the same were true of f0, g0. Similarly, if −KC = 0 then

either all fk, gk can be nonvanishing or none can. Since −KC = 2 − 2g on an irreducible

curve of genus g, this leads us to the conclusion that there cannot be a non-Higgsable

cluster on any curve of higher genus; this was shown from a different point of view in [4].

We assume then that all irreducible curves Ca supporting a non-Higgsable cluster are

rational curves (i.e., equivalent to P1). We have then −K(a) = 2, and N (a) = Ca ·Ca is the

self-intersection of Ca.

Consider for example the case where Ca is a curve of self-intersection −2. In this case,

degFk = 2k − φ, degGk = 2k − γ, where φ =
∑

b 6=a φbpab. If φ = 0, so there is no forced

vanishing of f on any curves that intersect Ca, then degF0 = degG0 = 0. We then have

f0 ∈ O(0) = C, and similarly for g0, so there is no forced vanishing of f , g on Ca.

Now consider the case of a curve of self-intersection N (a) = −3. In this case,

degFk = −4 + 3k − φ (4.3)

degGk = −6 + 3k − γ . (4.4)

It follows that f0, f1, g0, g1 must all vanish, so the curve Ca must support a Kodaira type IV

(2, 2, 4) singularity. Furthermore, g2 = ĝ2 ∈ O(0) = C (assuming φ = 0), which satisfies

the monodromy condition so that the associated gauge group is SU(3). This analysis

is essentially equivalent to the Zariski decomposition method used in [4], in which −K is

decomposed over the rationals, so that for a self-intersection −3 curve C, with −K ·C = −1,

−K = C/3+X with X (Q-)effective (actually nef) from which it follows that −4K contains

two factors of C as irreducible components, as does −6K. The method of analysis used here,

however, generalizes more readily to four-dimensional F-theory compactifications than the

Zariski approach.

Systematically applying these methods for any irreducible rational curve Ca of given

self-intersection, the divisors Fk, Gk are easily computed and determine the orders of

vanishing of f , g over the curve Ca, as tabulated in table 2. From the data in this table, we

can determine many features of the gauge groups and matter that arise at generic points

in complex structure moduli space for bases that contain one or more intersecting curves

of negative self-intersection. In particular, we can determine the precise minimal gauge

group, including effects of monodromy; we can ascertain the generic matter content; we

can identify cases where there is a (4, 6) singularity at a point; and we can classify non-

Higgsable clusters containing multiple gauge group factors. We describe a few details of

each of these aspects in the following subsections.

4.2 Monodromy

In the cases of Kodaira singularities of types IV, I∗0, and IV∗, the gauge group of the

low-energy theory depends upon an additional monodromy condition; the Dynkin diagram

describing the set of cycles produced when a codimension one singularity is resolved can be

mapped to itself non-trivially under a closed path in the relevant divisor that goes around
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C · C Divisors Fk Divisors Gk singularity type

−1 degFk = 4 + k − φ degGk = 6 + k − γ (0, 0, 0)

−2 degFk = 2k − φ degGk = 2k − γ (0, 0, 0)

−3 degF2+n = 2 + 3n− φ degG2+n = 3n− γ (2, 2, 4)⇒ IV(su3)

−4 degF2+n = 4n− φ degG3+n = 4n− γ (2, 3, 6)⇒ I∗0(so8)

−5 degF3+n = 3 + 5n− φ degG4+n = 2 + 5n− γ (3, 4, 8)⇒ IV∗(f4)

−6 degF4 = 2 + 6n− φ degG4+n = 6n− γ (3, 4, 8)⇒ IV∗(e6)

−7 degF3+n = 1 + 7n− φ degG5+n = 5 + 7n− γ (3, 5, 9)⇒ III∗(e7)

−8 degF3+n = 8n− φ degG5+n = 4 + 8n− γ (3, 5, 9)⇒ III∗(e7)

−9/10/11 degF4 = 8− φ degG5 = 3/2/1− γ (4, 5, 10)⇒ II∗(e8)

−12 degF4 = 8− φ degG5 = −γ (4, 5, 10)⇒ II∗(e8)

Table 2. Table of degrees of divisors Fk, Gk and resulting non-Higgsable singularity types on single

rational curves C of self-intersection −1 through −12.

a codimension two singularity. The details of how the gauge group is determined in this

case are worked out in [35, 37]; when considering the generic structure in the moduli space

as is relevant for non-Higgsable clusters, the monodromy condition can be read off directly

from the form of the leading terms in f , g in the expansion around the divisor. These

monodromy conditions on monomials for non-Higgsable clusters are described briefly in

section 9 of [58], and analyzed and explained further in appendix A. These monodromy

conditions are valid for F-theory compactifications in any dimension below eight, and will

also be used in analyzing compactifications to 4D in later sections.

For type IV and IV∗, the monodromy is determined by the leading coefficient in g. For

a type IV codimension one singularity, if ĝ2 is a perfect square, then there is no nontrivial

monodromy and the gauge algebra is su3; otherwise it is su2. For ĝ2 to generically be a

perfect square, every section of OD(−6KD + 4ND/B) that comes from the restriction of a

section of OB(−6KB − 2D) must be the square of a section of OD(−3KD + 2ND/B). (In

particular, it’s not hard to see that the space of these sections can only be one-dimensional.)

This is clearly the case for a −3 curve that does not intersect any other curves where g

vanishes (γ = 0), where ĝ2 ∈ O(0) so the non-Higgsable gauge group there has an algebra

su3. Similarly, for a type IV∗ singularity the gauge algebra is e6 (no monodromy) if ĝ4 is a

perfect square, and f4 otherwise. This allows us to immediately read off the f4 and e6 gauge

algebras of the non-Higgsable cluster over curves of self-intersection −5, −6 respectively.

For a non-Higgsable type I∗0 singularity, the gauge algebra is so8 (no monodromy) only

when f̂2, ĝ3 are both in one-dimensional spaces of sections Γ
(
O(2X)

)
, Γ
(
O(3X)

)
, and are

proportional to second and third powers of some section u in the one-dimensional space of

sections Γ
(
O(X)

)
, where X = −KD +ND/B. In this case, the cubic x3 + f̂2x+ ĝ3 can be

algebraically factorized to a product (x−A)(x−B)(x−C) for generic choices of f , g. This

condition is clearly satisfied for the non-Higgsable cluster over a −4 curve, where X = 0.

The remaining monodromy condition is that for a non-Higgsable type I∗0 singularity, we

have a gauge algebra so7 when x3 + f̂2x+ ĝ3 factorizes into the product of a quadratic times

a linear term for generic f , g. When f and g are generic so that maximal Higgsing has been
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done, this occurs only when ĝ3 vanishes identically and f̂2 is not a perfect square; in all

other cases the gauge algebra (of generic models) is g2. The so7 condition does not occur

for any of the non-Higgsable clusters over a single curve, but does occur over a combination

of curves −2,−3,−2 as discussed below.

4.3 Matter

Matter can arise in F-theory constructions either from nonlocal structure, associated in

6D compactifications with the genus of the divisor on which a gauge group is supported,

or from local structure associated with codimension two singularities. For gauge groups

without monodromy, the presence of matter can be identified when there are codimension

two loci on the gauge group divisor where the Kodaira singularity type is enhanced. A

specific example of this can be seen for a −7 curve, where F3 = 1 − φ and f̂3 ∈ O(1), so

generically there is a point where f̂3 vanishes and the singularity type becomes II∗ (4, 5, 10).

This corresponds to the appearance of a half-hypermultiplet in the 56 representation. For

the other single non-Higgsable gauge group factors without monodromy, such as su3 on a

−3 curve, there are no points where the Kodaira singularity type is enhanced, since e.g.

g2 ∈ Γ
(
O(−γ)

)
= C when γ = 0. For a −5 curve, there are generically two points where

g4 vanishes. These, however, are the points around which there is monodromy; a double

cover of P1 with two branch points is again a P1, and there is again no matter in this case

(see e.g. [39, 59]).

4.4 Superconformal fixed points

Analogous to the appearance of matter, at loci on a II∗ curve where g5 vanishes, there is a

(4, 6, 12) vanishing of (f, g,∆). Such points correspond to theories where gravity is coupled

to a superconformal field theory [48]; these are branch points in the moduli space that are

associated with tensionless string transitions [60, 61]. By blowing up the (4, 6) point in

the base, one enters a different branch of the moduli space where the 6D theory has an

extra tensor multiplet [3, 49]. Such tensionless string transitions unify the space of all 6D

F-theory compactifications into a single connected space [6, 62, 63].

4.5 Clusters with multiple factors

From table 2 we can also determine the set of possible non-Higgsable clusters containing

multiple intersecting curves of negative self-intersection, reproducing the results of [4].

Restricting attention to bases that do not include (4, 6) points, clearly there cannot be

an intersection between two curves where the orders of vanishing of f , g add to (4, 6) or

more. This rules out any intersection between two curves each of self-intersection −4 or

below. Even for two intersecting −3 curves, since g vanishes on each to order at least

two, we must have for each γ ≥ 2, which implies g2 = 0 on each, so there is a (4, 6) point

at the intersection. Any intersection between a −3 curve and a curve of self-intersection

−4 or below is even worse. So the only intersections that we need to consider for curves

of self-intersection −2 or below are between −2,−2 or −2,−3 curves. Any combination

of −2 curves alone cannot give rise to a non-Higgsable factor since we can have f0, g0 ∈
Γ
(
O(0)

)
= C on each −2 curve. Considering configurations with −3 and −2 curves, it is
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easy to check that the only nontrivial combinations giving non-Higgsable clusters are the

−2,−3 and −2,−2,−3 combinations giving su2 ⊕ g2 algebras and the −2,−3,−2 cluster

that gives su2 ⊕ so7 ⊕ su2, as found in [4]. For example, on a −2 curve C that intersects

a −3 curve D, we must have φC , γC ≥ 2, which implies ordC f , ordC g ≥ 1, which pushes

γD ≥ 1, so gD2 = 0, so γC ≥ 3, and we have then type I∗0 and III singularities on the −3, −2

curves respectively, with generic monodromy on the I∗0 since gD3 ∈ Γ
(
O(1)

)
is nonzero and

is not a constant. This reproduces the g2 ⊕ su2 gauge algebra found in [4] for the −3,−2

non-Higgsable cluster. The story is similar the other cases. Note that for the −2,−3,−2

cluster, on the −3 curve we have γ = 4, so g3 = 0, while φ = 2, so f2 ∈ Γ
(
O(0)

)
and

f̂2 ∈ Γ
(
O(2)

)
, where f̂2 has two distinct roots (corresponding to the points of intersection

with the two −2 curves) and is not a perfect square, so x3− f̂2x cannot factorize completely

and the monodromy is so7. Further analysis of this type can be used to confirm the various

combinations of non-Higgsable clusters that can be connected by −1 curves as enumerated

in [4].

5 4D non-Higgsable clusters with single gauge group factors

We now turn to F-theory compactifications to four dimensions, which involve compactifi-

cation on Calabi-Yau fourfolds that are elliptically fibered over a threefold base B3. While

the story is in some ways parallel to that of six dimensions, there are a number of additional

complications for four-dimensional theories, and the set of possible non-Higgsable clusters

seems to be substantially richer than for 6D models. One issue that makes a general anal-

ysis of non-Higgsable clusters in threefold bases more complicated than in twofold bases is

the wide range of possible surfaces that can arise as divisors in the threefold base. In the

case of Calabi-Yau threefolds, as discussed in the previous section, curves in the twofold

base are classified by genus, and the only curve topology that can support a non-Higgsable

cluster is a P1. In base threefolds, on the other hand, a vast range of surfaces can be realized

as divisors. Restricting to toric surfaces alone, each of the 61,539 toric surfaces enumerated

in [57] can arise as a codimension one divisor in a threefold base that supports an elliptic

fibration (in the simplest case by taking a product with P1). Hundreds of distinct choices

of these divisor geometries can support non-Higgsable clusters [67]. A complete analysis of

all algebraic surfaces that can act as divisors supporting non-Higgsable clusters represents

a substantial project for future investigation.

The simplest non-Higgsable gauge groups are single nonabelian factors. We describe

the possible single factor groups in section 5.1. In section 5.2 we describe the possible

appearance (at the level of geometry) of matter localized on curves in the threefold base,

which presents richer possibilities than in 6D.

5.1 Possible single gauge factors

The set of possible isolated simple gauge algebras for 4D models is basically the same as for

6D, with the additional possibilities of su2 and so7. The only possibilities from the Kodaira

table that are ruled out, in fact, are those where the order of vanishing of ∆ exceeds that
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determined by f , g:

ord(∆) > max
(
3 ord(f), 2 ord(g)

)
. (5.1)

For this to occur, we would need to have a cancellation between the leading terms in

∆ = 4f3 + 27g2. But such a cancellation cannot occur between generic sections, since we

can always multiply f and g by different constant complex factors and preserve the section

property while eliminating the cancellation of leading terms.

Thus, the only possible nonabelian gauge algebra components that can be realized are

su2 , su3 , g2 , so7 , so8 , f4 , e6 , e7 , e8 . (5.2)

We can identify explicit examples in which each of these gauge algebras is realized

in a non-Higgsable cluster. The simplest set of examples corresponds to the case where

the divisor supporting the gauge group is the surface S = P2. In this case, similar to the

6D case where non-Higgsable gauge groups arise on rational curves P1, all divisors in the

surface S are linearly equivalent to a multiple of the hyperplane class H, so the relevant

line bundles can be classified by a single integer. In particular, the normal bundle can be

chosen so that N = −nH for any integer n. This local condition can be realized explicitly

in the context of a global model by taking a compact base B3 = F̃n that is a P1 bundle over

P2 formed by projectivization of the line bundle O(−nH). Such geometries were described

previously in [58, 64–66]. In this case, the divisors (3.13) and (3.14) become

Fk =
(
12− (4− k)n

)
H (5.3)

Gk =
(
18− (6− k)n

)
H ,

where we assume φ = γ = 0 so that the divisor S does not intersect other divisors on

which f , g must vanish, in accord with the assumption that this is an isolated single-factor

non-Higgsable cluster. It is straightforward to read off the Kodaira singularity types on

S associated with different values of n. For example, for n = 4, Fk = (4k − 4)H, Gk =

(4k − 6)H, so (f, g) vanish to degrees (1, 2), corresponding to a type III codimension one

singularity supporting an su2 gauge algebra. Similarly, for n = 5, 6, . . . , 12, the associated

gauge algebras are g2, so8, f4, f4, e6, e7, e7, e7, and for n = 18 the gauge algebra is e8.

For 13 ≤ n ≤ 17, there is a codimension two (4, 6) locus associated with a curve on S,

analogous to the (4, 6) points on curves of self-intersection −9,−10,−11 in the 6D case.

This gives explicit examples of all the single-factor non-Higgsable gauge group possibilities

other than su3 and so7.

While su3 cannot be realized as a single-factor non-Higgsable cluster on a divisor P2

that does not intersect other divisors on which f , g vanish, su3 can be realized on divisors

that realize other types of surfaces. Several explicit examples were given in [5, 58]; in one

case, if S = F0 = P1 × P1, which has −K = 2S + 2F where S, F are the curves associated

with the two P1 factors, we can take N = −3S − 3F , and we have

Fk = (3k − 4)(S + F ) (5.4)

Gk = (3k − 6)(S + F ) . (5.5)
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It follows that f0 = f1 = g0 = g1, and g2, ĝ2 ∈ O(0), so we have a type IV singularity with

no monodromy, and the gauge algebra is su3. This geometry can be realized in the context

of a P1 bundle over F0, produced from projectivization of a line bundle O(3S + 3F ).

It may seem näıvely that it should not be possible to realize so7 as a single-factor

non-Higgsable cluster on any divisor that does not intersect other divisors on which f , g

vanish. In this case we must have f2 ∈ O(2X), g3 ∈ O(3X), where X = −2K + 2N ,

and one might think that if 2X is effective then so is 3X. This is not true, however, for

surfaces in threefold bases, illustrating one of the subtle aspects of generalizing the Zariski

decomposition to threefolds. The issue is that −2K may be an effective divisor, while −3K

may only be in the effective cone (e.g. an effective Q-divisor) without a realization as an

integer linear combination of irreducible algebraic hypersurfaces.

An explicit example of an isolated so7 non-Higgsable cluster that illustrates this

phenomenon can be constructed as follows. Consider a set of toric divisors B, D, F ,

H on F0 that each have self-intersection zero and intersect cyclically with intersections

H · B = B ·D = D · F = F ·H = 1. Now blow the surface up at these four intersection

points giving exceptional divisors A, C, E, G. We then have a toric surface S with a

set of toric divisors A–H having self-intersections (−1,−2,−1,−2,−1,−2,−1,−2). The

anti-canonical class is

−K = A+B + C +D + E + F +G+H (5.6)

and there are two equivalence relations (from the Stanley-Reisner ideal)

A+B + C ∼ E + F +G , C +D + E ∼ G+H +A . (5.7)

Now, we consider embedding this surface into a threefold with normal bundle

N = −C − 2D − 4E − 3F − 3G−H . (5.8)

We can then write

− 4K + 2N = B +D + F +H , (5.9)

which is clearly effective, so f2 is generically nonzero. In this geometry, however, the divisor

−6K + 3N = 3A+ 3B + 3H − 3E, while in integer homology cannot be written as a sum

of effective irreducible divisors with nonnegative integer coefficients. Thus, in this case ĝ3

vanishes, f̂2 is not a perfect square, and we have an isolated so7 non-Higgsable cluster.

This local geometry can be realized globally by simply considering a P1 bundle over the

surface S with an appropriate twist T = −N . An explicit computation of the orders of

vanishing of f , g on the divisors in this threefold base using toric methods confirms the

presence of a non-Higgsable so7 [58].

5.2 Matter

While in 6D the only single gauge factor that can have associated non-Higgsable matter

is e7, 4D constructions can provide a much richer range of matter associated with isolated

non-Higgsable gauge factors. The primary reason for this difference is that while the
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possible classes of zero-cycles that could support a codimension two matter locus for a 6D

theory are labeled by a single integer (the degree), in 4D, the codimension two matter is

supported on curves, and there can be many topologically distinct curve classes within a

single surface that could each in principle support matter.

In fact, there is no clear a priori bound on the number of curves that may support

matter associated with any given kind of gauge group factor on a complex surface of

sufficiently complicated topology. In principle, a complex surface could have a very large

number of mutually disjoint complex curves, each appearing in the anti-canonical class and

each supporting matter. We expect that there is a bound on the set of surface types S that

can arise as divisors in complex threefold bases B3, analogous to the bound on surfaces

that can act as bases for elliptically fibered Calabi-Yau threefolds. We do not, however,

have an explicit statement about the existence of such a bound. Note that surfaces S that

cannot act as bases B2 = S for an elliptically fibered Calabi-Yau threefold can nonetheless

arise as divisors in a base B3; for example, in the example above of B3 a P1 bundle over P2,

with n = 18, one of the divisors associated with a curve in the base P2 has the form of a

Hirzebruch surface F18, which cannot support an elliptically fibered Calabi-Yau threefold.

In general, localized matter appears on a curve C within a divisor D in B3 when

the Kodaira singularity type on C exceeds that of generic points on D. For each gauge

algebra type, for generic coefficients in the Weierstrass model, this occurs when certain

coefficients fk, gk vanish. For example, on a divisor carrying a type III∗ (e7) codimension

one singularity, matter will be localized along the vanishing locus of f̂3, where the (3, 5) III∗

singularity is enhanced to a (4, 5) II∗ singularity.3 Like the 6D case of the −7 curve that

carries an e7 gauge algebra and matter in the 1
256 representation, a divisor D ∼= P2 ⊂ B3

with a normal bundle of N = −10H or −11H carries an e7 algebra; the matter locus is

determined by f̂3 ∈ Γ
(
O(12H + N)

)
, so the geometric matter lies on a conic or pair of

lines in the case N = −10H, and on a single line in the class H when N = −11H.

As an example of a situation where multiple curves support geometric matter in a non-

Higgsable cluster, consider the case where the divisor D = dP3 is a del Pezzo surface formed

by blowing up P2 at three points, giving three exceptional curves Ei with Ei · Ei = −1,

and three lines Lij = H −Ei−Ej . The anti-canonical class is −K = 3H −E1−E2−E3 =

L12 + L13 + L23 +E1 +E2 +E3. If we take the normal bundle of D to be the line bundle

associated with the divisor N = 2E1 − 4L12 − 4E2 − 6L23, it is straightforward to verify

that the gauge algebra on D is e7, and

f3 ∈ Γ
(
O(−4K +N)

)
= Γ

(
O(2H + 2E1 + 2E2 + 2E3)

)
. (5.10)

It follows that matter is supported on the three disjoint curves Ei. This local geometry can

be embedded in a global threefold base B3 that is a P1 bundle over dP3, by simply taking

B3 to be the projectivization of the line bundle N . This example is one of the complete set

of possible P1 bundles over del Pezzo and generalized del Pezzo surfaces that were classified

and studied in [58].

3The “Kodaira type” along the matter curve is simply the type associated with the specified order of

vanishing. As observed in [40, 41], this does not imply that the resolved Calabi-Yau manifold has a fiber of

that particular type in the codimension two locus.
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Similar examples of non-Higgsable gauge groups associated with geometric matter on

one or more curves can be constructed for other choices of gauge algebra. Two examples

of this type with a non-Higgsable su3 realized through a type IV singularity are described

explicitly in [5]. In one of these examples, for instance, B3 is a P1 bundle over dP2 with

N = E1 + E2 − L12, which gives a type IV singularity over the section Σ−, which is itself

a dP2 with normal bundle N . We have

g2 ∈ Γ
(
O(−6K + 4N)

)
= Γ

(
O(2L12)

)
. (5.11)

Since L12 = H − E1 − E2 is a −1 curve, and hence a rigid divisor within the surface Σ−,

this means that g2 vanishes to order 2 on L12 and is a perfect square. So the gauge algebra

is su3, and matter is localized on the curve L12.

Other examples in which multiple curves within a divisor D carry matter can arise

in situations where D itself carries a gauge group but also intersects with multiple other

divisors that also carry nonabelian gauge group factors. We describe some explicit examples

of this kind in the following sections.

6 Products of two factors

We now consider situations where a pair of divisors Da and Db intersect on a curve Cab
and both carry non-Higgsable gauge groups. Because the order of vanishing of f , g on

Cab is at least the sum of that on Da, Db, the same is true for g, and the minimal orders

of vanishing that give a non-Higgsable gauge group factor are (1, 2), we cannot have a

product containing anything larger than a type I∗0 (2, 3) singularity. Furthermore, as noted

above and in appendix A, an so7 algebra can only arise when the orders of vanishing are

(2, 4), which would lead to a (4, 6) singularity when combined with an su3 component.

This restricts us to the eight possibilities su2⊕ su2, su2⊕ su3, su3⊕ su3, g2⊕ su2, g2⊕ su3,

so7 ⊕ su2, so8 ⊕ su2, so8 ⊕ su3.

Some simple examples of product groups can be found by taking bases of the form

B3 = P1 × B2 where B2 contains a (−2,−3) non-Higgsable cluster; in these cases B3 has

a non-Higgsable cluster associated with the lifts of the corresponding divisors, with gauge

algebra su2 ⊕ g2; note that the generic monodromy condition is not modified in this case

as the available set of Weierstrass monomials simply increases in the product space.

Examples with a gauge algebra su2⊕ su3, corresponding to the nonabelian part of the

gauge group of the standard model of particle physics, were described in [5].

In [67], a systematic analysis of all models where the base B3 is a P1 bundle over

one of the toric bases B2 from [57] will be described. These models contain a wide range

of examples of non-Higgsable gauge groups, including examples of five possible two-factor

combinations:
su2 ⊕ su2 , su2 ⊕ su3 , su3 ⊕ su3 ,

g2 ⊕ su2 , so7 ⊕ su2

(6.1)

In fact, these are the only possible algebras associated with two-factor gauge products.

All other possibilities can be ruled out by a local analysis.
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Considering the remaining possibilities in turn, first assume that there exist divisors

A,B that have nonzero intersection and that support gauge algebra factors su3 ⊕ so8 or

su3 ⊕ g2, with the su3 supported on A. We can choose local coordinates so that z = 0 on

A and w = 0 on B. Then there must be a leading term in g of the form z2w3. If there

were no such term than we would have a (4, 6) singularity on A∩B. If such a term exists,

however, then g/z2|z=0 cannot be a perfect square. So A cannot support a non-Higgsable

su3, giving a contradiction. It follows that neither su3 ⊕ so8 nor su3 ⊕ g2 can be realized

in a non-Higgsable cluster.

Now assume that A,B intersect and support non-Higgsable algebra factors su2 ⊕ so8.

Using the same coordinate system as above, the singularity on A cannot be type IV, since

there would again be a leading term in g of the form z2w3, and g/w3|w=0 would not be a

perfect cube. If there is no term in g of the form z2w3 and we have a type III singularity on

A, then there must be a leading term in f of the form zw2. But then f/w2|w=0 cannot be a

perfect square, so B cannot support a non-Higgsable so8. Again we have a contradiction, so

there is no non-Higgsable gauge group containing a connected pair of factors with algebra

su2 ⊕ so8.

Thus, all two-factor products are ruled out in non-Higgsable clusters except for those

having the five algebras listed in (6.1).

7 More complicated “quiver diagrams”

While in 6D, there are only two possible gauge algebras with multiple components that

can arise from a non-Higgsable cluster, in 4D the structure is much richer. As in the case

of matter, this occurs because while all points on a curve represent the same element of

homology, on a surface there can be many distinct curves that are mutually non-intersecting

and are non-homologous. A given divisor that carries a non-Higgsable gauge group factor

can thus intersect with many other divisors, each of which carries a non-Higgsable gauge

group factor of its own, along a set of distinct curves.

This means that there is no obvious constraint that limits the number of gauge factors

that a given non-Higgsable gauge group factor can be connected to through (geometric)

matter in 4D models. The set of connected gauge group factors in the non-Higgsable cluster

can thus contain “branchings” where a single gauge group factor is connected to three or

more other factors. Furthermore, since a gauge factor can in general be connected to two

other factors, with no constraint other than the limit on pairings from (6.1), it is possible

to have long chains connecting one branching point to another, or to itself, which could in

principle produce graphs of arbitrary complexity in the absence of some global bound.

The graphs describing non-Higgsable clusters for 4D theories are conveniently described

by the standard diagrammatic convention of “quivers”, discussed in the physics literature

in [68]. In a quiver diagram, each gauge group factor is represented by a node in a graph,

and a directed arrow from a group factor G to a group factor H corresponds to matter in a

bifundamental representation (RG, R̄H). Since we are here only focused on the geometric

aspect of the gauge groups and matter involved, all matter will be represented by bi-

directional arrows, corresponding to N = 2 type matter in the 4D theory.
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The local rules that we have derived here do not seem to place any significant con-

straints on the complexity of quivers that can arise from non-Higgsable geometries in

F-theory constructions of 4D vacua. It seems likely that, as for Calabi-Yau threefolds,

the number of distinct topological classes of in elliptically fibered Calabi-Yau fourfolds is

finite and hence that there are some actual bounds on the complexity of possible quivers

from compact threefold bases B3. We leave a global analysis of these issues for future

work. Here, we simply give a few examples in which the branching and chain features just

mentioned are realized explicitly.

7.1 Branchings

An explicit example of a base B3 that gives a non-Higgsable cluster exhibiting branching

can be constructed as follows. We begin with a toric base B2 chosen from the bases

computed in [57], characterized by a sequence of toric divisors (curves) C1, . . . , C9 with

self-intersections −ni

(−n1, . . . ,−n9) = (2,−3,−1,−3,−1,−4,−1,−4, 0) . (7.1)

We then construct B3 as a P1 bundle over B2 from the projectivization of the line bundle

N =
∑

i aiCi, where

(−a1, . . . ,−a9) = (0, 0,−1, 0, 1, 1, 3, 2, 5) . (7.2)

While the non-Higgsable cluster associated with this base can be worked out in principle

using the methods we have derived here, in practice for a toric base like this it is generally

easier to simply analyze the orders of vanishing of f , g on the various divisors using the

toric approach, which is easily automated. To do this, the divisors Ci and the sections

Σ± are represented as rays vi in N = Z3. The monomials in the Weierstrass model are

then the elements of the dual lattice M = N∗ that satisfy 〈m, vi〉 ≥ −4,−6 for f , g

respectively. The orders of vanishing on any divisor or curve can be determined by simply

considering the set of available monomials. In this case, carrying out this analysis shows

that there is a type III singularity on Σ− carrying a su2 gauge algebra, and type IV, I∗0,

and I∗0 singularities on C4, C6, C8 carrying gauge factors su2, g2, and g2. The branched

quiver diagram representing this non-Higgsable cluster is depicted in figure 1. Note that

for this particular construction, there are no codimension three points where f , g vanish

to orders 4, 6. Many constructions exhibiting branching do have such codimension three

points. Further examples of non-Higgsable clusters exhibiting branching appear in the full

set of P1 bundles over B2’s from [57], and will be described further in [67].

7.2 Chains

In six dimensions, there is only one situation (the su2 ⊕ so7 ⊕ su2 cluster) in which a non-

Higgsable cluster contains a gauge factor that intersects (carries jointly charged matter

with) more than one other gauge factor. In four dimensions, however, this can happen in

a variety of ways, as discussed above. In particular, there are many local configurations

in which a non-Higgsable gauge group can be supported on a divisor S that intersects two
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Figure 1. The quiver diagram associated with a non-Higgsable cluster having gauge algebra

su2 ⊕ su2 ⊕ g2 ⊕ g2, with bifundamental (geometrically non-chiral) matter connecting the first su2
component with the other three gauge factors.

other divisors S′, S′′ that both carry non-Higgsable gauge groups themselves. This opens

the possibility of a long linear chain of connected gauge factors in a non-Higgsable cluster.

Such chains cannot be ruled out by the local analysis we have presented here. Furthermore,

some exploration of the space of possible configurations shows that there are global models

in which relatively long non-Higgsable chains of this kind can arise.

As an explicit example, we demonstrate how it is possible in a simple class of toric

models to realize non-Higgsable clusters with gauge algebras of the form su2⊕ su3⊕ su3⊕
· · · su3 ⊕ su2, where the number of su3 summands can go up to at least 11.

Conceptually, the idea of the examples we describe here is that we can take a set

of surfaces Si in B3 to be a chain of dP3 del Pezzo surfaces, each with normal bundle

N = −K. The surfaces will be connected so that, for example, Ci = Si ∩ Si+1 will be the

curve E1 in Si and L23 in Si+1, using the notation of section 5.2. On each surface in such

a sequence we have f0, g0 ∈ Γ
(
O(0)

)
. If we blow up a curve on one such surface, it forces

f0, g0 to vanish on that surface. This contributes to φ, γ on the adjoining surfaces, where

f0, g0 must also vanish, etc.

To realize this explicitly in a 3D toric base B3, consider the following construction: we

start with P1 × Fm, m ≤ 8, considered as a trivial P1 bundle over Fm, and denote by S̃, F

the divisors given by the lift of curves in the base that are in the classes of the section with

self-intersection +m and the fiber. We blow up on the curve S̃ ∩ F , giving an exceptional

divisor E1; we repeat, blowing up on the curve E1 ∩ S̃, then on the new curve E2 ∩ S̃ with

E2 the new exceptional divisor, etc., for a total of 2m times. We then blow up the curves

E2 ∩ Σ−, . . . , E2m−2 ∩ Σ− in ascending order, and the curves E2m−2 ∩ Σ+, . . . , E2 ∩ Σ+ in

descending order, where Σ± are two sections of the original trivial P1 bundle, giving further

exceptional divisors E′i, E
′′
i for i ∈ {2, . . . , 2m − 2}. This geometry contains within it a

linear chain of 2m− 3 del Pezzo surfaces dP3 with normal bundles N = −K as described

above; these are the proper transforms of the surfaces E2, . . . , E2m−2. We then blow up the

curve E2∩E′2. This leads to (4, 6) singularities over Ei∩E′i, Ei∩E′i−1 for i = 3, . . . , 2m−4,

which are resolved by blowing up these curves. The final geometry has no (4, 6) divisors

or curves when m ≤ 8, and can be analyzed most easily by toric methods to have a non-

Higgsable gauge algebra su2⊕su3⊕· · ·⊕su3⊕su2 on the chain of divisors E2 . . . , E2m−2. In
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the case m = 8, we thus have a chain of 13 non-Higgsable gauge group factors, including 11

copies of su3. For 8 < m < 12, the situation becomes more complicated as an e8 singularity

with (4, 6) matter curves develops on the surfaces S, S̃; we do not analyze the details of

these geometries here.

This construction is most easily visualized in the toric language, where the toric divisors

can be defined through the fan

(Σ±) v1,2 = (0, 0,±1) (7.3)

(S̃) v3 = (0, 1, 0) (7.4)

v4 = (1, 0, 0) (7.5)

(S) v5 = (0,−1, 0) (7.6)

(F ) v6 = (−1,−m, 0) (7.7)

(Ei) v6+i = (−1,−m+ i, 0) , 1 ≤ i ≤ 2m (7.8)

(E′i) v5+2m+i = (−1,−m+ i, 1) , 2 ≤ i ≤ 2m− 2 (7.9)

(E′′i ) v2+6m−i = (−1,−m+ i,−1) , 2 ≤ i ≤ 2m− 2 (7.10)

v6m−1+i = (−2,−2m+ 2i, 1) , 2 ≤ i ≤ 2m− 4 (7.11)

v8m−6+i = (−2,−2m+ 2i+ 1, 1) , 2 ≤ i ≤ 2m− 5 (7.12)

The triangulation associated with the cone structure for this fan is shown schematically in

figure 2 for the case m = 4.

This family of examples illustrates the possibility that long chains of connected gauge

group factors can arise in a 4D non-Higgsable cluster geometry.

7.3 Loops

Another complication that can arise in a 4D non-Higgsable cluster is the presence of a closed

loop in the quiver diagram. Locally, such a loop looks much like the chains described in

the previous subsection, and there is no way to rule out such loops based on purely local

considerations.

We have identified a number of examples where a loop arises in a non-Higgsable cluster

geometry. In one simple example, there is a loop consisting of four su2 factors, so that the

total gauge algebra is su2 ⊕ su2 ⊕ su2 ⊕ su2, with matter curves supporting matter in the

bifundamental of each adjacent pair of gauge group factors, as well as between the initial

and final factors. This example can be constructed as follows: beginning with P1×P1×P1,

with divisors X±, Y±, Z± associated with two distinct points on each of the three P1’s,

and labeling Di = Y+, X+, Y−, X− for i = 1, 2, 3, 4, we first blow up the curves Z± ∩ Di,

giving new exceptional divisors Ei±. We then blow up on the curves Ei+ ∩ Di. Blowing

up four more (4, 6) curves gives us a good F-theory base with no (4, 6) divisors, curves, or

points. In the final geometry, the proper transforms of the initial divisors Di each carry an

su2 gauge factor, and they are connected in a cyclic chain as described above. This can all

be done in the toric language, starting with the fan spanned by the rays v1 = (0, 0,+1),

v2 = (0, 0,−1), v3 = (0, 1, 0), v4 = (1, 0, 0), v5 = (0,−1, 0), v6 = (−1, 0, 0), corresponding

to Z+, Z−, Y+, X+, Y−, X−, and then blowing up on the appropriate edges of the toric
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Figure 2. A global model with a non-Higgsable geometry giving rise to a linear chain in the quiver

structure of the gauge algebra, su2⊕su3⊕su3⊕su3⊕su2. (A) The quiver diagram of the chain, (B) a

schematic depiction of the triangulation of the 3D toric fan describing the global geometry, formed

from a sequence of blowups at points 7(E1), . . ., from an initial fan describing the threefold P1×F4.

(Note that points associated with the toric rays v3–v6 and v14 are not shown.) Large blue dots

represent divisors supporting an su3 gauge summand, smaller red dots are divisors supporting an

su2 gauge algebra. Open circles represent (4, 6) curves that must be blown up to divisors after the

blow-ups up to v25. Note that before blowing up to v25, the divisors associated with points 9, 10, 11

are connected del Pezzo dP3 surfaces (as can be seen from the structure of solid lines). Similar

constructions are possible with up to (at least) 11 factors of su3 in the linear chain.

fan in the sequence described above. A schematic picture of the triangulation of the final

fan, with vertices labeled in the order of blowups, is given in figure 3.

8 Conclusions

8.1 Summary and open questions

We have initiated a systematic analysis of geometric non-Higgsable clusters that can arise in

threefolds B3 for F-theory compactifications that give N = 1 supergravity theories in four

dimensions. These structures describe gauge groups and matter that cannot be Higgsed

at the geometric level by deformation of complex structure moduli, and which therefore

arise at generic points in the moduli space of the corresponding Calabi-Yau fourfold. More

work must be done to ascertain whether these geometrically non-Higgsable structures are

truly present in the low-energy supergravity theory of any specific F-theory vacuum. The

presence of G-flux, the corresponding superpotential, and extra degrees of freedom not

yet incorporated systematically into F-theory may affect this conclusion. Unless one of

these factors causes a generic change in qualitative behavior, however, it seems that the

non-Higgsable structures we have analyzed here will be generic features of F-theory vacua.
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Figure 3. A global model with a non-Higgsable geometry giving rise to a loop in the quiver

structure of the gauge algebra. (A) The quiver diagram of the loop, (B) a schematic depiction of

the triangulation of the 3D toric fan describing the global geometry, formed from a sequence of

blowups at points 7, . . ., from an initial fan describing the threefold P1 × P1 × P1. (Note that the

points on the left should be identified with the points on the right with the same labels.)

We have developed a set of local equations that govern the possible non-Higgsable

structures that can appear on a combination of divisors in the F-theory base manifold. For

toric bases, a straightforward monomial analysis can be used to determine non-Higgsable

structures in any specific case.

The set of individual gauge factors that can arise in a non-Higgsable cluster is quite

limited, and contains only nine distinct possible simple Lie algebras. Similarly, the number

of products of two gauge factors that can arise is also quite limited, and consists of only

five possibilities, including that of the nonabelian part of the standard model SU(3) ×
SU(2), which was analyzed specifically in [5]. Unlike in 6D, however, the topological

structure of the gauge groups in a non-Higgsable cluster, which can be depicted in a

quiver diagram, can apparently be quite complicated. From the local analysis there is no

constraint that prohibits branching, loops, or long linear chains of gauge factors. Indeed,

we have identified explicit global geometries that contain each of these three features. An

interesting open question is the extent to which global constraints limit the complexity of

the graph structures that can arise for large non-Higgsable clusters. Indeed, since unlike

for elliptically fibered Calabi-Yau threefolds, there is as yet no proof that the number of

distinct topological types of elliptically fibered Calabi-Yau fourfolds is finite, there is no

clear argument at this time that would bound the size of possible non-Higgsable clusters

for 4D F-theory compactifications.

One issue that we have not addressed here is whether geometries with codimension

three (4, 6) singularities at points need to be treated in any special way. Such singularities

cannot be blown up without tuning additional complex structure moduli. These therefore

do not represent additional branches in the space of fourfolds, unlike (4, 6) singularities in
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codimension two. Like codimension two (4, 6) singularities, however, which correspond to

superconformal field theories coupled to gravity, the codimension three singularities may

also represent some kind of more exotic gravitationally coupled theory.

8.2 Classifying Calabi-Yau fourfolds

The classification of non-Higgsable clusters on 2D bases [4] has enabled a systematic anal-

ysis of the space of elliptic Calabi-Yau threefolds, giving a fairly clear global picture of the

space of 6D F-theory models [57, 69–72]. It is hoped that the results presented here will

similarly provide a useful tool for exploring the space of 3D bases for F-theory compacti-

fications to four dimensions. Such analysis of elliptic Calabi-Yau fourfolds, however, will

be significantly more complicated than the corresponding analysis for elliptic Calabi-Yau

threefolds. For elliptic Calabi-Yau threefolds, the minimal model program [73] and the

work of Grassi [62] give a simple characterization of the set of possible bases as blowups of

the Hirzebruch surfaces Fm,m ≤ 12, P2, and the Enriques surface. For elliptic Calabi-Yau

fourfolds, where the base is a complex threefold, no such simple characterization of minimal

bases is known; constructing such a classification using the minimal model approach (Mori

theory) in higher dimensions is an interesting open problem. The analysis of non-Higgsable

clusters given here may provide some guidance in attempting to systematically address this

problem.

One physical motivation for attempting a systematic global characterization of the

space of possible elliptic Calabi-Yau fourfolds and associated non-Higgsable clusters is

the goal of identifying generic features or specific constraints that F-theory places on 4D

supergravity theories. In six dimensions, F-theory geometry places various constraints on

the possible effective theories that can be realized. Some of these constraints are understood

in the physical theory as anomaly constraints, while other constraints place additional

consistency conditions on the low-energy theory [6, 74]. F-theory geometry also places

strong constraints on the compactification geometry that have manifestations in the low-

energy 4D supergravity theory. Some initial exploration of such constraints was carried

out in [58, 66], but it seems likely that as our understanding of the global space of F-theory

vacua matures further insights into the constraints produced on low-energy theories will

emerge.

The approach of analyzing elliptic fibrations through the geometry of the base provides

a complementary approach to the long-studied toric approach to describing Calabi-Yau

manifolds as hypersurfaces in toric varieties pioneered by Batyrev [75] and the complete

intersection (CICY) approach taken in [76]. While both these approaches give a large class

of Calabi-Yau manifolds, and can be used to study elliptic Calabi-Yau’s (see e.g. [77–83], the

classification of bases using non-Higgsable clusters is in principle both a simpler approach

as it reduces the complexity of the geometry involved, and a more complete approach as

it is in principle possible to describe all elliptic Calabi-Yau’s from this point of view. We

expect that the complementary insights provided by these different approaches, all of which

are currently under active investigation, will provide many new insights into the geometry

of elliptic Calabi-Yau fourfolds in the near future.
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8.3 Physical consequences of non-Higgsable clusters

At the present time, F-theory represents one of the most general approaches to constructing

vacuum solutions of string theory for which analytic tools are available. While, unlike in

6D, F-theory in its current formulation does not seem to in any sense cover the full space

of 4D string vacua, the vacua formed from F-theory seem to represent a much larger

and broader sample than those 4D vacua constructed from many other approaches. For

example, F-theory vacua with a smooth heterotic dual are a small subset of the full set

of possible F-theory constructions [58]. And since the Hodge numbers of generic elliptic

Calabi-Yau fourfolds are much larger than those of threefolds, the number of flux vacua

formed from F-theory constructions is estimated to be much much larger than those from

other constructions such as IIB flux vacua [7]. On the other hand, the apparently infinite

number of topologically distinct type IIA flux vacua [84] and the potentially even greater

number of non-geometric string compactifications may provide even larger families of vacua

than those realized through standard F-theory compactifications. F-theory also, however,

provides a window on the nonperturbative dynamics of string vacua in a way that is not

available from other string constructions that require a weak coupling limit. Given these

observations, it seems that F-theory gives one of the best pictures we have so far for the

behavior of a “generic” class of nonperturbative string vacua. Assuming that issues such

as G-flux do not substantially change the structure of the gauge factors that are forced

by non-Higgsable clusters in the F-theory geometry, a suggestive picture emerges of the

physics of a “typical” F-theory vacuum in the landscape. In particular, as emphasized

also in [5], non-Higgsable clusters provide a mechanism that may make light matter fields

and gauge symmetries a natural consequence of generic string compactifications, without

requiring any special tuning.

Non-Higgsable structures seem to be highly prevalent in F-theory vacua. In six dimen-

sions, of the more than 100,000 possible base manifolds studied in [57, 70] that support

elliptic Calabi-Yau threefolds, only 27 lack non-Higgsable gauge groups. Typical elliptic

threefolds with large Hodge numbers have many non-Higgsable clusters, with numerous fac-

tors of the gauge algebras e8, f4, g2 ⊕ su2. We expect a similar story to hold for fourfolds,

though the types of factors that are typical in 4D models has not yet been systematically

analyzed. In particular, we expect that for fourfolds with large Hodge numbers, which are

likely to give rise to the largest number of distinct flux vacua, there will typically be many

non-Higgsable gauge group factors. Some initial systematic investigation in this direction

will be presented in [67].

While the possible structures that can arise in non-Higgsable clusters for 4D models

may be quite complicated, the set of possible gauge groups, and in particular the products

of two gauge groups that can appear in these clusters, is actually quite limited. Specifically,

the nonabelian part of the standard model gauge group, SU(3)× SU(2), is one of only five

possible two-summand Lie algebra structures that can arise from non-Higgsable clusters.

If we assume that matter, and at least two nonabelian gauge factors, are the minimal

necessary components for “interesting” (i.e., anthropic) physics in the landscape, then the

nonabelian part of the standard model arises as simply one of five natural minimal possibil-
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ities that may arise throughout the landscape. While this is certainly suggestive, and may

provide an alternative framework for F-theory phenomenology to the well-studied F-theory

GUT approach [85–89], many significant questions must be answered to provide realistic

models of particle physics from this approach. The abelian U(1) factor in the standard

model, for example, must either be tuned by hand, or must also arise in a non-Higgsable

fashion. While the latter possibility has been shown to be possible in 6D models [70, 90],

such a mechanism is not yet well understood in four dimensions. It is also necessary to

understand better how geometric non-Higgsability relates to the field theory description

of the low-energy theory, and for a more realistic model further structure such as the

Yukawa couplings would need to be computed in any specific geometry with the proper

gauge groups and matter content. Note that while of course the SU(2) of the standard

model seen in nature is broken by the Higgs field, this could in principle occur even in a

4D F-theory model with the SU(2) in a non-Higgsable cluster, if there is an appropriate

geometrically non-Higgsable matter field charged under the SU(2) that acquires a negative

mass through radiative corrections after SUSY is broken; further discussion and analysis

of the non-Higgsable su3 ⊕ su2 structure appears in [5].

If we assume that all nonabelian gauge groups and matter arising in nature come from

generic (i.e. non-Higgsable) structures, then the structure of non-Higgsable gauge group

factors would also place interesting constraints on dark matter. One possibility for dark

matter is a non-Higgsable cluster (or multiple clusters) with one or more gauge group factors

that are completely disconnected from the standard model; such disconnected dark matter

sectors have also been considered in the F-theory GUT literature [87]. In the context of

non-Higgsable clusters, this would correspond to hidden sector dark matter with specific

possible gauge groups and matter content. In the simplest cases, this could be simply an

additional supersymmetric su2, su3, g2, so7, so8, f4, e6, e7 or e8 sector with a spectrum of

glueballs that would interact only gravitationally with ordinary matter. Another possibility

for dark matter can arise if the nonabelian standard model components SU(3) × SU(2) lie

in a non-Higgsable cluster, but with other gauge factors connected in the quiver diagram.

For example, the standard model factors could arise as part of a non-Higgsable cluster with

gauge algebra SU(3)× SU(2)×G, with additional matter charged under the SU(2) and G

factors; this would correspond to a weakly interacting dark matter sector. An interesting

consequence is that if such a dark matter sector arises from a non-Higgsable cluster then

it would have to be associated with an internal gauge group G that would be restricted to

have one of the gauge algebras su2, su3, g2, or so7. In fact, these are the only possibilities

for gauge algebras that can connect to the su2 of the standard model in any non-Higgsable

cluster. The discovery of matter charged under a hidden gauge group in this family would

thus fit naturally with the predictions of a generic F-theory model. On the other hand,

discovery of weakly interacting matter with, for example, an additional SU(N) gauge group

sector where N > 3 would rule out the hypothesis that the low-energy spectrum seen in

nature arises from non-Higgsable geometric structures in generic F-theory models.

Combining these features, the simplest picture of the “typical” F-theory vacuum that

we have available at this time would be a model where the visible light fields consist of

one or more single or multi-factor gauge groups with or without matter, with only five

– 27 –



J
H
E
P
0
5
(
2
0
1
5
)
0
8
0

possibilities including SU(3) × SU(2) for two-factor visible gauge group products carrying

jointly charged matter. There could also be dark matter sectors corresponding to other

additional, completely decoupled, non-Higgsable clusters, or additional sectors that come

from the same cluster and that could be charged for example under an SU(2) in an SU(3)×
SU(2) product as well as another hidden gauge group that would have to have the algebra

su2, su3, g2, or so7 as just discussed above. Clearly, supersymmetry breaking, which we

have completely ignored here, would need to be incorporated in any realistic model. This

would also give rise to possible pseudoscalar axion-like fields from the lifting of scalar moduli

from the supersymmetric model. The structure of light fields that we see in the observed

universe is not too different from this highly simplified picture of what we might expect

from a generic F-theory vacuum. At our current state of understanding, this picture of the

typical F-theory vacuum is still quite incomplete and cannot yet be used to make specific

predictions for low-energy non-supersymmetric physics. While the analysis of geometric

non-Higgsable clusters in this paper is based on rigorous mathematical reasoning, the

connection between the underlying geometry and low-energy physics is not as direct in 4D

F-theory models as in six dimensions, where the low-energy physics precisely mirrors the

geometry. Much more work must be done to understand the role of G-flux and 7-brane

world-volume degrees of freedom in F-theory, and to incorporate supersymmetry breaking

into supersymmetric 4D F-theory vacuum models. It seems possible, however, that even

as our understanding improves the non-Higgsable clusters described here may continue to

play an important and perhaps predictive role in describing the generic properties of 4D

supersymmetric vacua of F-theory.
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A The gauge algebra of maximally Higgsed models

In this appendix we discuss the monodromy conditions for F-theory seven-branes of type I∗0.

If D = {z = 0} describes the location of the brane (in local coordinates), then f , g,

and ∆ have orders ≥ 2, ≥ 3, and 6 along D, respectively. We let f̂ = (f/z2)|{z=0},

ĝ = (g/z3)|{z=0} and ∆̂ = (∆/z6)|{z=0} (all in the local coordinate chart). These are

sections of line bundles

OD(−2kKB − kND/B) = OD(−2kKD + kND/B)

for k = 2, 3, 6, respectively.

The monodromy and gauge algebra are now determined by the behavior of the cubic

polyomial

x3 + f̂x+ ĝ .

• If there are sections α, β ∈ Γ
(
OD(−2KD + ND/B)

)
such that f̂ = −(α2 + αβ + β2)

and ĝ = αβ(α+ β), then

x3 + f̂x+ ĝ = (x− α)(x− β)(x+ α+ β)

and the gauge algebra is so(8). To ensure that the seven-brane has type I∗0, we

also need

∆̂ = −(α− β)2(2α+ β)2(α+ 2β)2

to be not identically zero. That is, three things must be avoided:

(i) β = α, which would imply f̂ = −3α2 and ĝ = 2α3.

(ii) β = −2α, which would imply f̂ = −3α2 and ĝ = 2α3.

(iii) β = −1
2α, which would imply f̂ = −3

4α
2, ĝ = −1

4α
3.

• If there are sections λ ∈ Γ
(
OD(−2KD + ND/B)

)
and µ ∈ Γ

(
OD(−4KD + 2ND/B)

)
such that λ2− 4µ is not the square of a section of OD(−2KD +ND/B) and such that

f̂ = µ− λ2 and ĝ = −λµ, then

x3 + f̂x+ ĝ = (x− λ)(x2 + λx+ µ)

and the gauge algebra in so(7). To ensure that the seven-brane has type I∗0, we

also need

∆̂ = (µ+ 2λ2)2(4µ− λ2)

to not vanish identically.

• In all other cases, the gauge algebra is g2.

We point out two particular ways to solve these constraints (although these solutions

are not the most general ones possible).
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Solution 1. If the spaces of sections Γ
(
OD(−2KD+ND/B)

)
, Γ
(
OD(−4KD+2ND/B)

)
and

Γ
(
OD(−6KD + 3ND/B)

)
, are all one-dimensional and û ∈ Γ

(
OD(−2KD +ND/B)

)
is

not identically zero, then there are constants A and B so that f̂ = Aû2 and ĝ = Bû3.

There are then constants r1, r2, r3 such that the constant polynomial X3 +AX +B

can be factored into linear factors:

X3 +AX + b =
3∏
i=1

(X − ri) (A.1)

and there is a corresponding factorization of a section of OD(−6KD+3ND/B), namely,

x3 + f̂x+ ĝ =

3∏
i=1

(x− riu) . (A.2)

In this case, we get gauge algebra so(8) for any choice of f̂ and ĝ provided that ∆̂ 6≡ 0.

Solution 2. If ĝ ≡ 0 and f̂ is not a square, then the gauge algebra must be so(7). For

in this case, we can set λ = 0, µ = f̂ to satisfy the criterion given above. Note that

∆̂ = 4µ3 6≡ 0 since µ is not a square.

We now consider what monodromies can occur in the case of an F-theory seven-brane

of type I∗0 in a model which has been maximally Higgsed. Fixing the base B and the divisor

D at which the seven-brane is located, there are restriction maps

ρk : Γ
(
OB(−2kKB + kD)

)
→ Γ

(
OD(−2kKD + kND)

)
(identifying OD(D) with OD(ND)). If f and g are generic, i.e., the model is maximally

Higgsed, then f̂ will be a generic element of the image of ρ2, while ĝ will be a generic

element of the image of ρ3. Here is how we will use the “maximally Higgsed” property: if

we scale (f̂ , ĝ)→ (c1f̂ , c2ĝ), we should obtain the same gauge algebra for general constants

c1, c2. (If not, then further Higgsing is possible by scaling f and g.)

Consider first the case that the gauge algebra is so(8), and let α, β ∈ Γ
(
OD(−2KD +

ND/B)
)

be sections such that f̂ = −(α2 + αβ + β2) and ĝ = αβ(α − β). Suppose that α

and β are linearly independent in the complex vector space Γ
(
OD(−2KD + ND/B)

)
. We

first remark that this implies that {α2, αβ, β2} are linearly independent in Γ
(
OD(−4KD +

2ND/B)
)

and that {α2β, αβ2} are linearly independent in Γ
(
OD(−6KD + 3ND/B)

)
. This

is because a linear dependence relation among powers of degree N ,
∑
Kjα

jβN−j ≡ 0 with

constant coefficients Kj , would lead to a linear dependence relation among powers of degree

1 by factoring the homogeneous polynomial
∑
Kjξ

jηN−j ∈ C[ξ, η] into homogeneous linear

factors and choosing a factor which vanishes upon subtituting α for ξ and β for η.

Since α and β are assumed to be linearly independent, none of α, β, and α + β can

vanish identically. Thus, the locus {ĝ = 0} must decompose as a union of {α = 0}, {β = 0},
and {α+ β = 0}. After generic scaling (f̂ , ĝ)→ (c1f̂ , c2ĝ) we get the same locus:

{c2ĝ = 0} = {ĝ = 0} .
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Thus, in order to get the same kind of decomposition, after permuting {α, β,−α − β} if

necessary (which can be achieved with a linear transformation on the span of α and β), we

can assume that the sections α′ and β′ that are needed after scaling take the form

α′ = c3α ; β′ = c4β .

Now we get several equations from the linear independence of {α2, αβ, β2} and {α2β, αβ2}.
Since c1(α2 + αβ + β2) = c2

3α
2 + c3c4αβ + c2

4β
2, we see that c1 = c2

3 = c3c4 = c2
4. On the

other hand, since c2(α2β + αβ2) = c2
3c4α

2β + c3c
2
4αβ

2, we see that c2 = c2
3c4 = c3c

2
4. It

follows that c2
2 = c3

3c
3
4 = c3

1 which does not hold for general c1, c2.

The conclusion is that α and β must in fact be linearly dependent in the complex

vector space Γ
(
OD(−2KD +ND/B)

)
, so both of them can be written as constant multiples

of a section û. It follows that f̂ = Aû2 and ĝ = Bû3 for some constants A and B.

Suppose that dim Γ
(
OD(−2KD + ND/B)

)
> 1. Then not every element of

Γ
(
OD(−4KD + 2ND/B)

)
is the square of an element of Γ

(
OD(−2KD + ND/B)

)
, so the

generic f̂ is not of the form Aû2 for any û. Thus. if the gauge algebra is so(8),

dim Γ
(
OD(−2KD +ND/B)

)
must be 1.

Suppose that dim Γ
(
OD(−2KD + ND/B)

)
= 1 with generator û, but

dim Γ
(
OD(−4KD+2ND/B)

)
> 1 (respectively dim Γ

(
OD(−6KD+3ND/B)

)
> 1). Then the

generic element of Γ
(
OD(−4KD + 2ND/B)

)
does not have the form Aû2 (respectively, the

generic element of Γ
(
OD(−6KD+3ND/B)

)
does not have the form Bû3), so the maximally

Higgsed gauge algebra is not so(8).

It follows that any maximally Higgsed model with so(8) gauge symmetry must take

the form of Solution 1 above.

Consider now the case that the gauge algebra is so(7), and let λ ∈ Γ
(
OD(−2KD +

ND/B)
)
, µ ∈ Γ

(
OD(−4KD + 2ND/X)

)
be sections such that f̂ = µ− λ2 and ĝ = −λµ. We

cannot have µ ≡ 0 or else f̂ would be a perfect square and the gauge algebra would be

so(8). So µ 6≡ 0. If in addition λ 6≡ 0, then the locus {ĝ = 0} is the union of {λ = 0} and

{µ = 0}. Thus, if we scale the coefficients (f̂ , ĝ) → (c1f̂ , c2ĝ), the new sections λ′ and µ′

must satisfy λ′ = c3λ, µ′ = c4µ. It follows that c2 = c3c4 and (c1 − c4)µ− (c1 − c2
3)λ2 = 0.

If µ and λ2 are linearly independent, then c1 = c4 = c2
3 which implies that c2

2 = c2
3c

2
4 = c3

1,

but this is not true for general c1, c2. Thus, µ and λ2 must be linearly dependent and

so λ2 = Kµ (since µ 6≡ 0). But if K 6= 0, then µ − λ2 =
(

1
K − 1

)
λ2 is a perfect square,

which would force the gauge algebra to be so(8). Thus, K must be 0 and λ must vanish

identically, and we have solution 2 as above. Thus, we find that a non-Higgsable so7 is

only possible when ĝ3 = 0 identically, and f̂2 is not a perfect square. This is only possible

for generic choices of f̂2 when either f̂2 contains only a single non-even monomial in a local

coordinate system, or contains multiple independent monomials. Note that this implies

that for a maximally Higgsed so7 algebra, g must vanish to order at least 4 (rather than

order 3) along the gauge divisor.
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[21] J. Marsano, N. Saulina and S. Schäfer-Nameki, Monodromies, fluxes and compact

three-generation F-theory GUTs, JHEP 08 (2009) 046 [arXiv:0906.4672] [INSPIRE].

– 32 –

http://dx.doi.org/10.1016/0550-3213(96)00172-1
http://arxiv.org/abs/hep-th/9602022
http://inspirehep.net/search?p=find+EPRINT+hep-th/9602022
http://dx.doi.org/10.1016/0550-3213(96)00242-8
http://arxiv.org/abs/hep-th/9602114
http://inspirehep.net/search?p=find+EPRINT+hep-th/9602114
http://dx.doi.org/10.1016/0550-3213(96)00369-0
http://arxiv.org/abs/hep-th/9603161
http://inspirehep.net/search?p=find+EPRINT+hep-th/9603161
http://dx.doi.org/10.2478/s11534-012-0065-4
http://arxiv.org/abs/1201.1943
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.1943
http://dx.doi.org/10.1007/JHEP01(2015)086
http://arxiv.org/abs/1409.8295
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.8295
http://dx.doi.org/10.1007/JHEP11(2010)118
http://arxiv.org/abs/1008.1062
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.1062
http://arxiv.org/abs/0803.1194
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.1194
http://arxiv.org/abs/hep-th/9801182
http://inspirehep.net/search?p=find+EPRINT+hep-th/9801182
http://dx.doi.org/10.1016/S0550-3213(99)00431-9
http://arxiv.org/abs/hep-th/9904095
http://inspirehep.net/search?p=find+EPRINT+hep-th/9904095
http://dx.doi.org/10.1016/S0550-3213(00)00006-7
http://arxiv.org/abs/hep-th/9910052
http://inspirehep.net/search?p=find+EPRINT+hep-th/9910052
http://dx.doi.org/10.1088/1126-6708/1999/12/022
http://arxiv.org/abs/hep-th/9910053
http://inspirehep.net/search?p=find+EPRINT+hep-th/9910053
http://dx.doi.org/10.4310/ATMP.2004.v8.n5.a3
http://arxiv.org/abs/hep-th/0309270
http://inspirehep.net/search?p=find+EPRINT+hep-th/0309270
http://dx.doi.org/10.1007/JHEP07(2011)030
http://arxiv.org/abs/1010.5780
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.5780
http://dx.doi.org/10.1007/JHEP05(2013)068
http://arxiv.org/abs/1104.2610
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.2610
http://dx.doi.org/10.1007/JHEP05(2014)080
http://arxiv.org/abs/1310.1931
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.1931
http://dx.doi.org/10.1016/S0920-5632(98)00173-X
http://arxiv.org/abs/hep-th/9707228
http://inspirehep.net/search?p=find+EPRINT+hep-th/9707228
http://arxiv.org/abs/hep-th/9708012
http://inspirehep.net/search?p=find+EPRINT+hep-th/9708012
http://dx.doi.org/10.1016/j.nuclphysb.2013.02.005
http://arxiv.org/abs/1301.3722
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.3722
http://arxiv.org/abs/1410.4178
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.4178
http://arxiv.org/abs/1410.4867
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.4867
http://dx.doi.org/10.1088/1126-6708/2009/08/046
http://arxiv.org/abs/0906.4672
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.4672


J
H
E
P
0
5
(
2
0
1
5
)
0
8
0

[22] R. Blumenhagen, T.W. Grimm, B. Jurke and T. Weigand, Global F-theory GUTs,

Nucl. Phys. B 829 (2010) 325 [arXiv:0908.1784] [INSPIRE].

[23] T.W. Grimm, S. Krause and T. Weigand, F-theory GUT vacua on compact Calabi-Yau

fourfolds, JHEP 07 (2010) 037 [arXiv:0912.3524] [INSPIRE].
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