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Abstract

Video retargeting is the process of transforming an ex-

isting video to fit the dimensions of an arbitrary display. A

compelling retargeting aims at preserving the viewers’ ex-

perience by maintaining the information content of impor-

tant regions in the frame, whilst keeping their aspect ratio.

An efficient algorithm for video retargeting is introduced.

It consists of two stages. First, the frame is analyzed to de-

tect the importance of each region in the frame. Then, a

transformation that respects the analysis shrinks less im-

portant regions more than important ones. Our analysis is

fully automatic and based on local saliency, motion detec-

tion and object detectors. The performance of the proposed

algorithm is demonstrated on a variety of video sequences,

and compared to the state of the art in image retargeting.

1. Introduction

With the recent advent of mobile video displays, and

their expected proliferation, there is an acute need to dis-

play video on a smaller display than originally intended.

Two main issues need to be confronted. The first is the need

to change the aspect ratio of a video. The second is the

need to down-sample the video whilst maintaining enough

resolution of objects-of-interest. An example of the first

challenge, is the display of wide screen movies on a 4:3 TV

screen. Displaying a ball game on a cellular screen is a good

example for the need of a smart down-sampling technique,

where the ball needs to remain large enough to be easily

seen on screen.

The current industry solutions are basic and not very

effective. They include: blunt aspect ratio free resizing;

cropping the middle of the video; resizing while preserv-

ing the aspect ratio by adding black stripes above and below

the frame; and keeping the middle of the frame untouched

while warping the sides. In fact, it is common nowadays

to have printed lines on movie-cameras’ screens that mark

the region that will be visible in the frame after it would be

cropped to the aspect ratio of a regular 4:3 TV screen.

We have developed a method that assigns a saliency

score to each pixel in the video. An optimized transforma-

tion of the video to a downsized version is then calculated

(a) (b) (c)
Figure 1. An example of retargeting. (a) original frame from the

standard benchmark news sequence ”Akiyo”; (b) the half width

retargeted frame achieved by our method; (c) a conventionally re-

sized frame.

that respects the saliency score. The algorithm is designed

to work efficiently in an online manner, ultimately leading

to a real-time retargeting of a streaming input video to sev-

eral output formats. The saliency score is composed of three

basic components: spatial gradient magnitude, a face detec-

tor, and a block-based motion detector. The optimization

stage amounts to solving a sparse linear systems of equa-

tions. It considers spatial constraints as well as temporal

ones, leading to a smooth temporal user experience.

2. Related work

In previous decades, large amount of image processing

research, that focused on down-sampling and up-sampling

images, accumulated. These classical methods, however,

are not “content aware” – they apply the same local operator

everywhere across the image, oblivious to the semantics of

the image and to the varying importance and sensitivity to

distortion of each image region.

Recently, with the ever increasing need to alter the di-

mensions and aspect ratio of images and videos, the subject

of retargeting has regained an increased academic attention,

and a number of contributions have been published. Suh et

al. [8] considered the problem of cropping optimal thumb-

nails from an input image. Although the task is different

from that of retargeting (thumbnails are used for easy ac-

cess, not to convey the entire content of an image), some

of the components in their system have reappeared in later

retargeting systems. Most notably, defining an importance

measure which is based on both a local low-level saliency
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Figure 2. System overview. A saliency score is computed for each frame based on the gradient magnitude, face detection and motion

detection. Next, an optimization stage recovers the retargeting warp. The warp is then applied to the original frame.

(a) (b)
Figure 3. (a) original, (b) retargeted frame (half width). Note that

a cropped window cannot achieve the same frame area utilization.

measures, and on high level object detectors.

An extended cropping mechanism, applied to video is

presented by Liu and Gleicher [3]. Compared to our system

their system is not designed to be an online system (they

use the whole shot), and is limited to displaying a sequence

of cropped windows. Figure 3 demonstrates that cropping

alone is sub-optimal.

A non-photorealistic solution for retargeting stills is pro-

posed by Setlur et al. [7]. Their system is based on separat-

ing foreground from background, and relies heavily on their

capability to solve this separation problem.

Recently, two systems introduce photorealistic solutions

for content-aware remapping of still images. Gal et al. [2]

introduce a method to modify an arbitrarily image warp

while preserving the shape of important regions by con-

straining their deformation to be a similarity or a rigidity

transformation. Although their method differs from ours,

both methods define the mapping as the solution of a linear

system of equations. Nevertheless, in Gal et al.’s method

the important regions are manually marked by the user. A

different approach is proposed by Avidan and Shamir [1],

where the retargeting is applied by reducing the width (or

the height) of the image by one pixel at a time, through

deleting a vertical (or horizontal) connected paths of low

importance pixels. While they show excellent results on

images, their method seems to be overly expensive to be

extended to video and their solution is greedy and discrete.

Unlike the above two, our work is designed for video, and

in particular for video streaming.

3. Overview

Our system, described in Figure 2, consists of two main

stages. A computation of the saliency matrix and a mapping

calculation stage. Then, the retargeted frame is rendered by

a forward-mapping technique.

Given a new frame, we compute a per-pixel importance

measure. This measure (see Sec. 4) is a combination of

three factors: a simple, gradient based, local saliency; an

off-the-shelf face detector; and a high-end motion detector.

The optimization of the mapping function from the

source resolution to the target resolution is set through a

linear systems of equations. Each pixel (i,j) at each frame

t is associated with two variable xi,j,t, yi,j,t that determine

its location on the retargeted frame. We optimize for hor-

izontal warps and for vertical warps separately, using the

same technique. The horizontal post-warp location is first

constrained to have the same coordinates as the warp of

the pixel just below it xi,j+1,t, and the pixel just before it

xi,j,t−1. Then it is constrained to have a distance of one

from the warping of its left neighbor xi−1,j,t.

For obvious reasons, it is impossible to satisfy all of the

constraints and yet fit into smaller retargeting dimensions.

To these space preserving constraints, we add weight in

proportion to the pixel’s importance value. A pixel with

high importance is mapped to a distance of approximately

one from its left neighbor, while a pixel of less saliency

is mapped closer to its neighbor. Time smoothness is also

taken into consideration, in order to generate a continuous

natural-looking video.

Our algorithm is designed for video streaming. There-

fore, time smoothness and motion analysis considerations

are limited to the previous frames only. Such considerations

need only apply to frames of the same shot (a sequence of

video frames taken from a continuous viewpoint).

The proposed system automatically breaks a long video

into a sequence of shots using a simple online algorithm,

similar to the one shown in [6], where the block match-

ing operation is replaced with the efficient algorithm of

[5].First, motion estimation is applied on each macro-block

(16 × 16 pixels). A shot boundary is detected wherever the

number of blocks for which the motion estimation fails ex-

ceeds a threshold.



4. Importance determination

We define the content preservation weight matrix:

S = min(SE +
∑

i

Si
F + SMD,111) (1)

Each entry in the matrix represents the saliency of a single

pixel in the source frame I . Values range between 0 and 1,

where zero values are, content wise, non-important pixels.

Local saliency We employ the simplest measure for local

information content in the frame. Namely, we use the L2-

Norm of the gradient: SE = (( ∂
∂xI)2 + ( ∂

∂y I)2)1/2.

Face detection Human perception is highly sensitive to

perspective changes in faces, more specifically to frontal

portraits. In order to avoid deforming frontal portraits we

employ the Viola and Jones face detection mechanism [9].
The detector returns a list of detected faces. Each de-

tected face i has a 2D center coordinate F i
p and a radius

F i
r . The face detection score of each pixel is a func-

tion of the distance of that pixel from the face’s center:
Di(x, y) = ‖F i

p − (x, y)‖2, and is given by the cubic func-
tion:

ŜF i(x, y) = max(1 −
−Di(x, y)3 + .5 ∗ Di(x, y)2

−(F i
r)3 + .5 ∗ (F i

r)2
,000) (2)

This function, which ranges between 0 and 1, is used to

weight the importance of the face as an almost constant

function with a drastic fall near the end of the face. This

allows some flexibility at the edges of the face whilst avoid-

ing face deformation.
We further introduce a rescaling measure,

F
i
rn =

F i
r

max(CWidth, CHeight)

S
i
F (x, y) = Ŝ

i
F (x, y)(1 − 2.5 ∗ (F i

rn)4 − 1.5 ∗ (F i
rn)2)

(3)

used to rescale the general saliency of a detected face in

relation to the area it occupies in a CWidth × CHeight pix-

els frame. A 1 factor is used where the size of the face is

relatively small, while extremely large faces tend to be ig-

nored. The above prevents a distorted zooming effect, i.e.

retargeting of the frame such that it is mostly occupied by

the detected face.

Since, as stated below, when shrinking the width of an

image, we demand smoothness over the columns, a detected

face also prevents thinning the regions below it. Therefore,

human bodies are shrunk less, as necessitated.

Motion detection Moving objects in video draw most of

the viewers’ attention and are content-wise important. By

using a motion detection mechanism we mange to retarget

the video while preserving the temporal context.

(a) (c)

(b) (d)
Figure 4. Retargeting examples of a frame (a) from the movie

“300” with and without face detection. (b) the gradient map, with

the faces detected imposed. (c) the result of retargeting to half

the width without face detection. (d) the result of retargeting with

face detection. The result of the whole shot compared to bicubic

interpolation is available in the supplemental material.

(a) (b)

(c) (d) (e)
Figure 5. Retargeting a frame taken from the MPEG/ITU-T com-

mittee benchmark video “football” (a). (b) The saliency map

which contains the motion component. (c) the result of bicubic in-

terpolation to half the width. (d) retargeting without motion based

saliency. (e) the result of retargeting with the full saliency map.

The second motion detector suggested in [4] is imple-

mented. The selected algorithm is efficient and effec-

tive.The image is divided into 8 × 8 blocks. The motion

based saliency SMD(x, y) is set to one if the block contain-

ing (x, y) has motion, and zero otherwise.

As can be seen in Figure 5 the moving objects gain

saliency, thus seizing a larger area in the retargeted video.

5. Optimization

We cast the problem of finding the optimal mapping be-

tween the source image and the retargeted image as a sparse



linear system of equations that we solve in a least squares

manner. A more natural formalization is to cast the problem

as a constrained linear system. This way one can guarantee

that no pixel falls out of bounds and that the mapping pre-

serves the order of the pixels along the scan lines in the

image. However, the solution to the unconstrained system

is more efficient, and, in practice, the mappings recovered

using the unconstrained systems of equations do not contain

noticeable artifacts due to changes in the order of the pixels.

In the retargeting process a pixel (i,j) in frame t of the

video is being mapped into a pixel in frame t of the output

video with some computed location (xi,j,t, yi,j,t). Hence,

there is twice the number of variables (xi,j,t and yi,j,t) to

solve for then the number of pixels in the input video. We

compute the y variables separately from the computation

of the x variables, using the same linear method (described

below). The mapping computation is done one frame at a

time (see below), and so our system of equations has (ap-

proximately) the same number of unknowns as the number

of pixels in one input frame.

Consider the problem of recovering the new x-axis loca-

tions xi,j,t of pixels (i,j), i = 1..CWidth, j = i..CHeight,

in frames t = 1..CDuration. The problem of determin-

ing yi,j,t is the transpose of this problem and is solved in

a similar manner. Also, consider first the more applica-

ble problem, in which we would like to shrink the frame,

i.e., to map the frame to a narrower frame with width

CTargetWidth < CWidth. The expanding problem is simi-

lar, though its goal is more application dependent (a detailed

discussion of expansion is omitted for brevity).

There are four types of constraints. First, we constrain

each pixel to be at a fixed distance from its left and right

neighbors. Second, each pixel needs to be mapped to a lo-

cation similar to the one of its upper and lower neighbors.

Third, the mapping of a pixel at time t needs to be similar

to the mapping of the same pixel at time t + 1. The forth

constraint fits the warped locations to the dimensions of the

target video frames.

Importance modeling. If a pixel is not “important” it can

be mapped close to its left and right neighbors consequently

blending with them. An “important” pixel, however, needs

to be mapped far from its neighbors, thus a region of im-

portant pixels is best mapped into a region of a similar

size. We formulate these insights into equations stating that

every pixel should be mapped at a horizontal distance of

1 from its left and right neighbors. These equations are

weighted such that equations associated with pixels with

higher importance-score are more influential on the final so-

lution. The first type of equations is therefore:

Si,j,t(xi,j,t − xi−1,j,t) = Si,j,t

Si,j,t(xi+1,j,t − xi,j,t) = Si,j,t,
(4)

Where S is the saliency matrix of Eq. 1, except the time

index appears explicitly.

Boundary substitutions. In order to make the retargeted

image fit in the new dimensions the first pixel in each row of

the frame (1, j, t) is mapped to the first row in the retargeted

video, i.e., ∀j,∀t x1,j,t := 1. Similarly, the last pixel of

each row is mapped to the boundary of the remapped frame:

xCW idth,j,t := CTargetWidth.

Spatial and time smoothness It is important to have each

column of pixels in the input image mapped within the

boundaries of a narrow strip in the retargeted image. Oth-

erwise, the image looks jagged and distorted. These type of

constraint are weighted uniformly, and take the form:

W s(xi,j,t − xi,j+1,t) = 0 (5)

In our system W s = 1. In order to prevent drifting, we

also add a similar constraint that states that the first and the

last pixels of each column have a similar displacement.

W s(xi,1,t − xi,CHeight,t) = 0 (6)

The mapping also has to be continuous between adjacent

frames, as stated bellow:

W t
i,j,t(xi,j,t − xi,j,t−1) = 0, (7)

where, in order to prevent distortion of faces, the weight-

ing depends on the face detector saliency map W t =
0.2(1+SF ). Note that in our system, we work in an on-line

mode, which means that we do not build a system of equa-

tions for the whole shot. Instead we compute the mapping

for each frame given the previous frame’s computed map-

ping. This limited-horizon online time-smoothing method

is good enough for our purpose and, as can be seen in Fig-

ure 6 can improve results significantly.

6. Results

Altering the aspect ratio. Examples of aspect ratio alter-

ing are exhibited in Figure 7 and in other figures throughout

this manuscript. See the accompanied supplemental ma-

terial for retargeted videos. The format of the retargeted

videos is as follows: each frame is divided into three sub

frames. The bottom one is the original video frame. The

top right sub-frame is the result of applying bicubic inter-

polation to obtain a new frame of half the input width. The

top-left sub-frame is our retargeted result.

While our algorithm does not explicitly crop frames,

whenever the unimportant regions in the frame lie away

from the frame’s center, an implicit cropping is created.

See, for example, the retargeting result of the sequence

Akiyo (Figure 1). Many pixels at the left and right sides



(a) (b) (c)
Figure 7. (a) “Paris” sequence, from the MPEG/ITU-T standard benchmark, retargeted to half the frame’s width; (b) Retargeting a frame

taken from the motion picture “The Departed”; (c) Retargeting a frame from the video “Top 100 moments in NBA history”. The original

frame is shown at the bottom of each triplet, a bicubic interpolation is shown on the top-right. Our retargeting method (top left of each

triplet) prevents much of the thinning effect caused by the rescaling and preserves details.

(a) (b) (c)
Figure 6. Retargeting examples of frames from the benchmark

video “tennis” with and without time smoothness. The top row de-

picts the retargeting results of frame 10, and the bottom of frame

15. Retargeting results are shown for bicubic interpolation (a),

frame by frame retargeting (b), and time smoothed retargeting (c).

Time smoothing prevents the video from “jumping around”.

of the input frames are mapped into the first and last few

columns of the retargeted frames, hence disappearing.

Down-sizing results The down-sampling results (pre-

serving the aspect ratio) are exhibited in Figure 8. The x-

axis and the y-axis warps were computed independently on

(“The Departed”) (“Akiyo”)

(“300”) (“Football”)

Figure 8. Down-sizing results. The bicubic interpolation is shown

at the bottom of each pair. Our retargeting method (top) applies a

non-homogenous zooms to the objects of interest.

the original frame and then applied together to produce the

output frames. As can be seen, there is a strong zooming-in

effect in our results, as necessitated by the need to display

large enough objects on a small screen.



(a) (b) (c) (d) (e)
Figure 9. Comparison with the Seam Carving technique [1], for both the L1-norm saliency advocated by [1], and the L2-norm we use in

our work. (a) Original, (b) our retarget using L1-norm to half the width, (c) retarget using L2-norm, (d) Seam Carving using L1-Norm, (e)

Seam Carving using L2-Norm. Our method is more robust to the Saliency measure selection (little difference between (a) and (b)). Due

to the continuous nature of our method, it also creates less jagged lines (note the jagged lines in the Ford images and on the buildings on

columns (d) and (e)). The advantages of optimizing the entire mapping at once are also visible, for example, when examining the flowerpot.

Comparison with Seam Carving [1]. Figure 9 shows a

side by side comparison of our method and the method of

Avidan and Shamir [1], where the two algorithms use the

same importance measures. As can be seen, our method

does not suffer from artifacts as much as the Seam Carv-

ing method does. We contribute this to the discrete and

greedy nature of the Seam Carving method, while tends to

uniformly distribute the error across the whole image.

7. Summary

We introduce a method for video retargeting, where in-

stead of cropping the frames, we shrink them while respect-

ing the salient regions and maintaining the user experience.

The proposed system is efficient and the optimization stage

consists of solving a sparse N × N system, where N is

the number of pixels in each frame. The method is well

adapted to batch applications, but is designed for streaming

video since it computes the warp of a given frame based

on a small time-neighborhood only, and it is fast enough to

avoid delays.
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