
 Open access  Proceedings Article  DOI:10.1145/1807167.1807248

Non-homogeneous generalization in privacy preserving data publishing
— Source link 

Wai Kit Wong, Nikos Mamoulis, David W. Cheung

Institutions: University of Hong Kong

Published on: 06 Jun 2010 - International Conference on Management of Data

Topics: Generalization and Data publishing

Related papers:

 k -anonymity: a model for protecting privacy

 Mondrian Multidimensional K-Anonymity

 t-Closeness: Privacy Beyond k-Anonymity and l-Diversity

 L-diversity: Privacy beyond k-anonymity

 Incognito: efficient full-domain K-anonymity

Share this paper:    

View more about this paper here: https://typeset.io/papers/non-homogeneous-generalization-in-privacy-preserving-data-
ytkgozet98

https://typeset.io/
https://www.doi.org/10.1145/1807167.1807248
https://typeset.io/papers/non-homogeneous-generalization-in-privacy-preserving-data-ytkgozet98
https://typeset.io/authors/wai-kit-wong-4z5cqrus1i
https://typeset.io/authors/nikos-mamoulis-13ouii2wij
https://typeset.io/authors/david-w-cheung-2rh94k5ohw
https://typeset.io/institutions/university-of-hong-kong-1m2nmkpy
https://typeset.io/conferences/international-conference-on-management-of-data-1x852s0d
https://typeset.io/topics/generalization-6fzsd5yd
https://typeset.io/topics/data-publishing-10kh738o
https://typeset.io/papers/k-anonymity-a-model-for-protecting-privacy-1crq674ku8
https://typeset.io/papers/mondrian-multidimensional-k-anonymity-3wg6963j32
https://typeset.io/papers/t-closeness-privacy-beyond-k-anonymity-and-l-diversity-g56og4c91q
https://typeset.io/papers/l-diversity-privacy-beyond-k-anonymity-54qdj1526d
https://typeset.io/papers/incognito-efficient-full-domain-k-anonymity-322yflnwgr
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/non-homogeneous-generalization-in-privacy-preserving-data-ytkgozet98
https://twitter.com/intent/tweet?text=Non-homogeneous%20generalization%20in%20privacy%20preserving%20data%20publishing&url=https://typeset.io/papers/non-homogeneous-generalization-in-privacy-preserving-data-ytkgozet98
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/non-homogeneous-generalization-in-privacy-preserving-data-ytkgozet98
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/non-homogeneous-generalization-in-privacy-preserving-data-ytkgozet98
https://typeset.io/papers/non-homogeneous-generalization-in-privacy-preserving-data-ytkgozet98


Non-homogeneous Generalization in Privacy Preserving
Data Publishing∗

W. K. Wong, Nikos Mamoulis and David W. Cheung
Department of Computer Science, The University of Hong Kong

Pokfulam Road, Hong Kong

{wkwong2,nikos,dcheung}@cs.hku.hk

ABSTRACT

Most previous research on privacy-preserving data publishing, ba-
sed on the k-anonymity model, has followed the simplistic ap-
proach of homogeneously giving the same generalized value in all
quasi-identifiers within a partition. We observe that the anonymiza-
tion error can be reduced if we follow a non-homogeneous gen-
eralization approach for groups of size larger than k. Such an
approach would allow tuples within a partition to take different
generalized quasi-identifier values. Anonymization following this
model is not trivial, as its direct application can easily violate k-
anonymity. In addition, non-homogeneous generalization allows
for additional types of attack, which should be considered in the
process. We provide a methodology for verifying whether a non-
homogeneous generalization violates k-anonymity. Then, we pro-
pose a technique that generates a non-homogeneous generalization
for a partition and show that its result satisfies k-anonymity, how-
ever by straightforwardly applying it, privacy can be compromised
if the attacker knows the anonymization algorithm. Based on this,
we propose a randomization method that prevents this type of at-
tack and show that k-anonymity is not compromised by it. Non-
homogeneous generalization can be used on top of any existing par-
titioning approach to improve its utility. In addition, we show that
a new partitioning technique tailored for non-homogeneous gen-
eralization can further improve quality. A thorough experimental
evaluation demonstrates that our methodology greatly improves the
utility of anonymized data in practice.
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H.2.7 [Database Management]: Security, integrity, and protection
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Algorithms
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1. INTRODUCTION
The problem of privacy-preserving data publishing has been ex-

tensively studied since it was first introduced in [20, 21]. Consider
a large table which has to be released to the public for research pur-
poses. Privacy is typically compromised by careless publishing of
the table [3], since sensitive information may be leaked. Thus, the
goal of data publishing is to transform the table, such that individ-
uals may not be linked to specific tuples with high certainty. At the
same time, the published data should still be useful, so an optimiza-
tion problem arises: anonymize the data such that a certain degree
of privacy is preserved while data utility is maximized.

In the table to be published, apart from the keys that are sup-
pressed before publication, there is a set of attributes called the
quasi-identifier (QID). The QID of each tuple is known to the at-
tacker and may be used to identify an individual. A typical exam-
ple of QID is {ZIP code, gender, date of birth}, which can uniquely
identify 63% of the population in 2000 US Census data [8]. The
popular k-anonymity principle [20, 21] requires that the probability
of an adversary being able to find out the identity of an anonymized
tuple is at most 1

k
. The most common technique for achieving k-

anonymity is generalization [13, 14, 10, 6]. The table is divided
into groups having k tuples or more and the QID values in each
group are generalized to a range containing all original values. Ta-
ble 2 shows an exemplary 2-anonymized table using generalization.
The original data are shown in Table 1. (t′i in Table 2 is the gener-
alized version of ti in Table 1 for easy reference.) For example, the
age of t3 is originally 15 and after generalization, it is replaced by
the range 15-30. Apart from microdata publication, k-anonymity
has been largely adopted in applications like location-based ser-
vices [19, 11], to protect the identity of query issuers.

A wide range of algorithms using generalization are proposed
for addressing k-anonymity [10, 14, 6]. They share a common
framework: first partition the tuples into groups, then assign the
same generalized QID to tuples in the same group. The group of
tuples with the same QID is called equivalence class. Such an ap-
proach, to which we refer as homogeneous generalization, raises
an important question: does generalization have to be homoge-

QID Sens. attribute

Tuple ID Zip code Gender Age Disease

t1 901152 M 30 Flu

t2 901157 F 28 Cancer

t3 901578 M 15 Cancer

t4 902398 M 48 AIDS

t5 902301 M 20 None

Table 1: Original table



Tuple ID Zip code Gender Age Disease

t′1 901*** * 15-30 Flu

t′2 901*** * 15-30 Cancer

t′3 901*** * 15-30 Cancer

t′4 9023** M 20-48 AIDS

t′5 9023** M 20-48 None

Table 2: 2-anonymity using homogeneous generalization

Tuple ID Zip code Gender Age Disease

t′1 90115* * 28-30 Flu

t′2 901*** * 15-28 Cancer

t′3 901*** M 15-30 Cancer

t′4 9023** M 20-48 AIDS

t′5 9023** M 20-48 None

Table 3: 2-anonymity using non-homogeneous generalization

neous? For example, consider the possible publication of Table
1, as shown in Table 3. t′1, t′2 and t′3 have a different generalized
QID. This generalization is non-homogeneous. Assuming the ad-
versary knows the QIDs of all individuals contained in Table 1, he
can find out the identity of any anonymized tuple in Table 3 with
probability at most 1

2
. Hence, 2-anonymity is satisfied, as this is

also the case for Table 2. On the other hand, if we compare the
utility of the two tables, we can observe that Table 3 is better than
Table 2, regardless of the utility measure used; for each tuple and
QID attribute of Table 3, the generalized range is smaller than or
equal to the corresponding range in the corresponding tuple and at-
tribute in Table 2. This example shows that it is possible to achieve
higher utility using non-homogeneous generalization. The idea of
non-homogeneous generalization was first introduced in [7], which
studies techniques with a guarantee that an adversary cannot asso-
ciate a generalized tuple to less than k individuals. However, the
proposed solutions do not offer bounds for the probability of each
association. Hence, some individuals may have higher probability
to be associated to an anonymized tuple than others and this may
lead to privacy breaches.

In this paper, we systematically study the use of non-homoge-
neous generalization in anonymizing tables. We provide a method-
ology for verifying whether a non-homogeneous generalization vi-
olates k-anonymity. Then, we propose a technique that generates a
non-homogeneous generalization and show that its result satisfies
k-anonymity, however by straightforwardly applying it, privacy can
be compromised if the attacker knows additionally the anonymiza-
tion algorithm. Based on this, we propose a randomization method
that prevents this type of attack and show that k-anonymity is not
compromised by it. Although non-homogeneous generalization
can be used on top of any existing partitioning approach to improve
its utility, we show that a new partitioning technique tailored for
non-homogeneous generalization can further improve quality. Our
main focus throughout the paper is k-anonymity, however, we also
discuss how our methodology can be extended to improve utility
for other privacy principles. A thorough experimental evaluation
demonstrates that our methodology greatly improves the quality of
anonymized data in practice.

The rest of the paper is organized as follows. The next section
reviews related work and positions it against this paper. In Sec-
tion 3, we formally define the k-anonymity problem and provide
a partial ordering mechanism for comparing the utility of differ-
ent anonymization results. Section 4 discusses the main challenges
of non-homogeneous generalization and provides some properties

that can be used to define a good generalization. Our methodology
is described in Section 5. Section 6 discusses the extension of our
methodology for l-diversity [16] and in Section 7 we experimen-
tally evaluate it. Finally, Section 8 concludes the paper.

2. RELATED WORK
A privacy principle, k-anonymity, is developed in [20, 21] to

guard against adversaries having the QIDs of individuals as back-
ground knowledge. The goal of k-anonymity is to prevent an adver-
sary from identifying an individual with a probability higher than
1
k

. Generalization and suppression are used to protect privacy. Gen-
eralization replaces the exact QID value by a less concrete form.
For example, value 15 is generalized to range [15-30]. Suppression
removes some values or the entire tuple from T . The most popular
method studied by the community for k-anonymity has been homo-
geneous generalization. The tuples in the table are partitioned into
groups called equivalence classes. The QID of tuples in the same
equivalence class are generalized to be the same. As finding the
best partitioning that achieves k-anonymity, while maximizing util-
ity is NP-hard [18], different fast heuristics are developed. These
can be classified into two approaches: (i) global recording (e.g.,
[14, 13]): if any two tuples have the same QID value, they must
take the same generalized QID; (ii) local recoding (e.g., [10, 28,
6]): two tuples having the same QID may be generalized differ-
ently. Local recording generally gives published tables of higher
utility, due to its flexibility.

Apart from k-anonymity, there are other principles (e.g., [16, 26,
15, 25, 27, 24, 22, 17]) that target different privacy concerns and/or
different adversary assumptions. The relation to be anonymized
typically contains a sensitive attribute. Even if the adversary can-
not associate the tuples in the published table with individuals (i.e.,
k-anonymity is satisfied), he may associate an individual to a par-
ticular sensitive value with high probability if there are multiple
occurrences of the same sensitive value in the equivalence class
where the QID of the individual belongs. For example, suppose
Bob is a male of age 15 (t3 in Table 1). Although there are 3 possi-
ble tuples {t′1, t′2, t′3} for Bob in Table 2, an attacker can derive that
Bob is likely (with the high probability of 2

3
) to have cancer. The

l-diversity principle [16, 26] aims to bound the maximum of this
inference probability to be 1

l
. The t-closeness principle [15], on

the other hand, aims to control the inference probability so that it is
similar to the general distribution of the sensitive values. For exam-
ple, if 90% of population in T do not smoke, the goal is to ensure
that 90% of individuals in each equivalence class are non-smoking.
Both l-diversity and t-closeness assume the same basic adversary
capability: knowing the QID of individuals. Some works assume
that an adversary may obtain additional background knowledge.
For instance, [24] assumes the adversary may know the algorithm
used in generalization. In [22], the adversary may corrupt some
individuals, obtain the sensitive values of them, and use them to
infer the remaining sensitive values in the equivalence class. Nev-
ertheless solutions to all above problems may suffer from privacy
breaches; [12] has demonstrated how to breach privacy using de-
Finetti’s theorem.

Perturbation [1, 5] is another technique that has been used to
preserve privacy in data publishing. Recent works also use a hy-
brid approach, combining perturbation and generalization to pre-
serve privacy [22]. In perturbation, noise is added to the original
data, such that the resulting values randomly deviate from the orig-
inal ones. Compared to generalization, Perturbation may introduce
high error, especially for aggregate queries with small ranges. In
addition, noise filtering techniques may be used to breach privacy
[9].



The closest piece of work related to ours is [7], where non-
homogeneous generalization is introduced. The principle of global
(1, k)-anonymity is proposed, which guarantees that an individ-
ual is not associated to less than k generalized tuples. In addi-
tion, a generalization technique for global (1, k)-anonymity is de-
veloped. However, this work suffers from two major drawbacks.
First, the principle does not ensure that an adversary associates an
individual to at least k tuples with even probability. As a result,
an anonymized tuple may have probability > 1

k
to be associated

with an individual; thus, global (1, k)-anonymity has a weaker pri-
vacy level compared to k-anonymity. Second, the proposed algo-
rithm has a high complexity of O(k2n2.5) and is thus not suitable
in practice.

In this paper, our goal is to develop a methodology for non-
homogeneous generalization, which improves utility while main-
taining an adequate level of privacy. Our study is mainly focused
on the basic k-anonymity model, the reasons being that: (i) al-
gorithms for k-anonymity are simple and many works (e.g., [16])
have adapted them for different principles; (ii) k-anonymity is com-
monly used in applications like location-based services [19, 11],
where there are no additional (sensitive) attributes. Apart from
the basic k-anonymity model, we also consider the scenarios with
stronger adversaries, with knowledge of generation algorithm (Sec-
tion 4.2) and identities of some generalized tuples (corruption, Sec-
tion 5.2)

3. PROBLEM DEFINITION
Consider a relational table T , in which there are 3 classes of

attributes: (i) attributes that are keys in T : such attributes are re-
moved in the published table to prevent immediate identification of
individuals; (ii) attributes that are part of the quasi-identifier (QID):
the QID of every individual is known to the attacker as background
knowledge and can be used to link tuples in the table to individuals;
(iii) attributes that are not part of a key or QID: the values of such
attributes are retained in the published table.

Our goal is to generate a publishable table T ∗ such that (i) the
k-anonymity privacy constraint is satisfied; and (ii) utility is max-
imized. In Section 3.1, we describe our assumptions about the ad-
versary and define k-anonymity. In Section 3.2, we describe how
the utility of different anonymized tables can be compared.

3.1 Adversary assumption and k-anonymity
We assume an adversary may obtain the value of QID and the

identification of any tuple in T by sources other than T ∗ (e.g., a
public voters table). Let H be the adversary’s knowledge contain-
ing the QID and identity of all known individuals. In the worst
case, the adversary may have access to the QID of every individual,
thus by joining H and T ∗ on QID, tuples t′ in T ∗ may be linked
to individuals. k-anonymity aims at preventing the adversary from
finding an individual’s identity with a probability higher than 1

k
.

DEFINITION 1. (Identity notion) Given two tables H , T ∗, if a

tuple ti ∈ H and a tuple t′j ∈ T ∗ belong to the same individual,

we say they have the same identity, denoted as ti =I t′j .

DEFINITION 2. (k-anonymity) Given a table T , assume that

H is the projection of T on key and QID attributes. We say k-

anonymity is preserved in an anonymized table T ∗ if ∀ti ∈ H, ∀t′j ∈
T ∗,Pr(ti =I t′j) ≤

1
k

.

3.2 Measuring and comparing utility
Measuring the utility of an anonymized table is usually done by

means of an objective information loss measure that compares T ∗

with T . Popular measures include the discernibility metric [4],
which sums the squares of the equivalence class cardinalities, the
normalized certainty penalty (NCP ) [28] which is defined by the
sum of QID attribute ranges in each equivalence class, and the
global certainty penalty (GCP ) [6], which is a normalized version
of NCP . In Section 5.3, we provide a definition of GCP , which
we use in this paper, as it affects the functionality of our data par-
titioning algorithm. In general, the utility of the anonymized data
may not be easily captured by specific measures, as it depends on
the application of the published data. Our purpose is not to limit our
study to a particular utility metric but to develop a new methodol-
ogy, which generally improves the utility of existing methods that
apply homogeneous generalization. As generalization converts pre-
cise data to uncertain data, a method that restricts the uncertainty
of each tuple compared to the result of another method is certainly
better. Definition 3 formally states when one anonymized table
T ∗

a is strictly better than another T ∗
b in terms of utility (denoted by

T ∗
a ≻ T ∗

b ); we can use it to define a partial order for anonymization
results. In this paper, we aim at finding a local-optimal solution T ∗,
i.e., ∀T ∗

i such that T ∗
i ≻ T ∗, T ∗

i violates k-anonymity.

DEFINITION 3. (utility-based ordering) Consider two anony-

mized tuples t′1, t′2. We say that t′1 preserves a better utility than t′2,

denoted by t′1 ≻ t′2 if for all attributes i in the QID, t′1[i] ⊆ t′2[i],
and there is at least one attribute j in the QID, for which t′1[j] ⊂
t′2[j], e.g., 〈90115*,*,28-30〉 (t′1 in Table 3) ≻ 〈901***,*,15-30〉
(t′1 in Table 2). Consider two anonymized tables T ∗

a , T ∗
b , both with

n tuples, such that tuples T ∗
a [i] and T ∗

b [i] originate from T [i], for

all i ∈ [1, n]. We say T ∗
a preserves a better utility than T ∗

b , denoted

by T ∗
a ≻ T ∗

b , if ∀i ∈ [1, n], T ∗
a [i] ≻ T ∗

b [i] or T ∗
a [i] = T ∗

b [i] and

∃j ∈ [1, n], such that T ∗
a [j] ≻ T ∗

b [j].

As discussed earlier, k-anonymity can be achieved by first parti-
tioning the data into groups and then uniformly transform the QIDs
of all records in the same group to take the same generalized value.
Homogeneous generalization may not produce results of the high-
est possible quality. In the next section, we discuss the challenges
of a non-homogeneous generalization technique that could be ap-
plied alternatively.

4. CHALLENGES IN NON-HOMOGENEOUS

GENERALIZATION
Assume that the background knowledge of the adversary is a

table H containing the QID of every individual. Given a published
table T ∗, the adversary performs a linking attack by joining T ∗

with H; for each tuple t in H , the adversary finds all tuples t′ in
T ∗ such that t[QID ] is included in the generalized t′[QID ]. For
example, if the QID of t ∈ T is 10 and there is a tuple t′ ∈ T ∗

with t′[QID ] = [5-20], then t′ is a possible generalization of t.
We call the pair 〈t, t′〉 a match. A valid assignment is a maximal
1-to-1 assignment between tuples of H and T ∗. In this paper, we
identify two challenges to non-homogeneous generalization. We
will discuss the issue of ineffective matches when joining H and
T ∗ in Section 4.1 and how these can be identified and eliminated.
In Section 4.2, we will discuss a privacy threat, for the case where
the adversary knows the algorithm, which is used to generate the
anonymized table.

4.1 Pruning of ineffective matches
Intuitively, k-anonymity can be satisfied if an adversary finds

that there are at least k matches related to the same tuple in H/T ∗.
This is the case for homogeneous generalization; given a general-
ized QID, any of the k or more tuples from the original table T that



Tuple ID QID

t1 1

t2 2

t3 3

t4 4

t5 5

Tuple ID QID

t′1 1-5

t′2 2-3

t′3 3-4

t′4 3-4

t′5 1-5

(a) original table (b) anonymized table

Table 4: Non-homogeneous generalization

were grouped together and match that QID, have the same proba-
bility (at most 1/k) to match any tuple in T ∗ with that generalized
QID. However, the same does not apply in the non-homogeneous
case. Consider the original table T shown in Table 4a and an
anonymized table T ∗ using non-homogeneous generalization, as
shown in Table 4b. For every ti in T , there are at least two matches
in T ∗ and vice versa. However, 2-anonymity is not satisfied. Both
t1 and t5 in T match t′1, and t′5 in T ∗. t2 matches t′1, t′2 and t′5 in
T ∗. Since t′1 and t′5 must be either t1 or t5, t2 can only be matched
to t′2 in a valid assignment, violating 2-anonymity. We say that the
match of t2 to t′1 (and t′5) is ineffective if an adversary can eliminate
such a possibility.

DEFINITION 4. (Match and assignment) Given a table T and

its anonymized table T ∗, a match m is a 2-tuple 〈ti, t
′
j〉 where

ti ∈ T , t′j ∈ T ∗ and the QID of ti is included in that of t′j . An

assignment a is a set of matches mi = 〈txi , t
′
yj
〉, where txi ∈ T ,

t′yj
∈ T ∗, |a| = |T |, and for each pair of matches mi ∈ a, mj ∈

a, xi �= xj and yi �= yj .

DEFINITION 5. (Effective match) Given a table T and its ano-

nymized table T ∗, let H be the projection of T on key and QID

attributes. Given two tuples ti ∈ H , t′j ∈ T ∗, a match m = 〈ti, t
′
j〉

is said to be effective, if and only if there exists an assignment a
such that m ∈ a.

An assignment represents the scenario that an adversary gives a
unique identity to every anonymized tuple in T ∗ and vice versa.
If a match cannot be found in any of the assignments, then the
adversary will happily remove this match. If all ineffective matches
are removed and there are less than k matches left for a tuple in H ,
k-anonymity is violated. In the following, we first discuss how to
determine if a match is effective (Section 4.1.1). Then, we present
the property that the generalized table should satisfy in order for all
matches to be effective (Section 4.1.2).

4.1.1 Necessary condition for effective match

In order to satisfy k-anonymity, we must have at least k effective
matches for each tuple in T ∗. In order to determine if a match is
effective, we use an assignment graph which is used to visualize
the matches.

DEFINITION 6. (Assignment graph) Consider a table T and its

anonymized table T ∗. Assume that the tuples in both tables are

ordered, such that the assignment a = {〈ti, t
′
i〉} is valid, for all

ti ∈ T, t′i ∈ T ∗. An assignment graph G = (V, E) is a directed

graph with |T | vertices. For i = 1 to |T |, ni ∈ V represents

ti ∈ T and t′i ∈ T ∗, An edge ni → nj is present if and only if the

QID of ti is included in that of t′j .

Figure 1 shows the assignment graph constructed for Table 4b.
Each edge in the assignment graph represents a match that can be
found by joining T and T ∗. For example, the edge from n3 to n4

means that t3 in T joins to t′4 in T ∗. Next we show how to verify
the effectiveness of a match in the assignment graph.

n1 n2

n3n5

n4

Figure 1: Assignment graph of Table 4b

THEOREM 1. Consider a table T , its anonymized table T ∗,

and the corresponding assignment graph G = (V, E). The match

〈ti, t
′
j〉 (corresponding to edge (ni, nj) ∈ E) is effective if and

only if ni is reachable from nj .

PROOF. If part. Note that if a match is not effective, we cannot
find an assignment containing the match. So, we can prove the
statement by showing how to construct an assignment that contains
the target match 〈ti, t

′
j〉. Without loss of generality, we assume

j > i and a path from nj to ni is {nj , nj−1, ..., ni+1, ni}. Note
that a possible assignment is a = {〈ti, t

′
i〉}. For k > j and k < i,

the match 〈tk, t′k〉 is added to assignment a′. For k = j to i + 1,
since there is an edge from tk to tk−1, we can add 〈tk, t′k−1〉 to
a′. Finally, we include our target match 〈ti, t

′
j〉 to a′. Hence, an

assignment containing the target match is produced.
Only if part. Given an effective match 〈ti, t

′
j〉, there is an as-

signment a′ that contains this match. Each match in a′ is an edge
in G, thus a′ is a subset of E. We now show that we can find a
path from ni to nj using the matches in a′. Consider a subgraph
G′ = (V, a′) that only contains matches in a′. Each node in G′

has exactly one outgoing edge and one incoming edge. Hence, G′

must be composed of cycles. The match 〈ti, t
′
j〉 is represented by

the edge (ni, nj) which lies on a cycle as well. So, ni is reachable
from nj by traveling through the cycle.

For example in Figure 1, n2 is not reachable from n1. This
means the match of 〈t2, t

′
1〉 is not effective and cannot appear in

a valid assignment. Thus, all ineffective matches can be identified
and removed from the assignment graph by the adversary. This
results in a reduced assignment graph. Figure 2 shows the graph
derived from the initial one shown in Figure 1, containing only the
effective matches. This gives a clearer picture why Table 4b does
not satisfy 2-anonymity, as t2 can only be mapped to t′2 in a valid
assignment.

n1 n2

n3n5

n4

Figure 2: Effective matches in the graph of Table 4b



4.1.2 Impact of effective match on generalization

From Theorem 1, we know that the effectiveness of a match can
be determined by looking at the connectivity of nodes in a graph.
In fact, if we keep only effective matches, the graph will degenerate
to the set of its strongly connected components.

THEOREM 2. Consider a table T , its anonymized table T ∗, and

the corresponding assignment graph G = (V, E). If all matches

are effective, G is a set of strongly connected components, such that

there are no edges between any two components.

PROOF. A graph can always be decomposed to a number of
strongly connected components. We prove the theorem by show-
ing that each component in G is independent, i.e., there is no edge
between any two components. We prove the statement by contra-
diction. Without loss of generality, we assume C1 and C2 are two
components in G and there is a path from u to v where u ∈ C1

and v ∈ C2. Thus any node x ∈ C1 can reach any node y ∈ C2

via the path from u to v. Since there are effective matches only,
there must be a path from v to u due to Theorem 1. Hence, from
every node y ∈ C2, we can reach any node x ∈ C1. C1 and C2

are a single strongly connected component, which contradicts the
assumption.

Theorem 2 leads to an interesting observation: tuples are par-
titioned to strongly connected components in a non-homogeneous
generalization. Note that the complexity of finding the strongly
connected components is linear in the number of edges in G, due
to Tarjan’s algorithm [23].

4.2 Randomization in generalization
With non-homogeneous generalization, the generalized QID of

tuples in a partition (i.e., equivalent class) may vary. For exam-
ple, in Table 3, t′1, t′2 and t′3 have a unique generalized QID. This
offers additional information to an adversary in his quest for the
identities of the anonymized tuples. If we use a deterministic non-
homogeneous generalization approach, the generalized value of each
tuple in the table would be the same for every possible run of
such a method. Therefore if the adversary knows the generaliza-
tion algorithm, he can apply it on H , compare the result with the
anonymized table and infer the original QID of the anonymized tu-
ples and therefore their identities. Due to this problem, randomiza-
tion is necessary when anonymizing a table with non-homogeneous
generalization.

A good randomization technique implies that when an adversary
finds k tuples in H joined with an anonymized tuple t′i in T ∗, the
probability of each of these k tuples being the real identity of t′i
is the same (= 1

k
). We can achieve this goal by first computing

the generalized QID of tuples deterministically and then assigning
each generalized QID to a tuple in T in a randomized way. Figure
3 is an example, illustrating this process for 2-anonymity. First, we
generate for each original tuple ti in T a generalized QID t′i, which
contains ti and k − 1 additional ones from T . The QID generation
function, denoted by gen , takes as input a set of tuples and gives a
generalized QID range. Next, for each generalized QID, we assign
a random identity to it with a probability of 1

k
. In the example, we

have picked t2 =I t′1, t3 =I t′2, and t1 =I t′3. The other attributes
are copied to the anonymized table accordingly.

Thus, the generalization procedure is divided into two steps: (i)
generalized QID generation; (ii) random assignment generation.
The QID generation determines whether k-anonymity can be achi-
eved and affects the possible assignments that we can choose from
in the randomization. For example, if the QID generation for Ta-
ble 4a is done as shown in Table 4b, it is not possible to achieve

c<2, 1, 1>t3

b<1, 2, 1>t2

a<1, 1, 2>t1

OtherQIDID

t3’

t2’

t1’

ID

<1-2, 1, 1-2>gen({t1, t3})

<1-2, 1-2, 1>gen({t2, t3})

<1, 1-2, 1-2>gen({t1, t2})

QID

Table T

QID generation

t1

t2

t1

t3

t3

t2

Possible matches

Random assignment

a<1-2, 1, 1-2>t3

c<1-2, 1-2, 1>t2

b<1, 1-2, 1-2>t1

OtherQIDID

Anonymized table T*

’

’

’

Figure 3: The generalization process in achieving 2-anonymity

k-anonymity, as we have shown in Section 4.1.1. In the following
subsection, we will discuss how we can guarantee k-anonymity in
the QID generation process.

4.2.1 A sufficient condition for k-anonymity

In order to preserve k-anonymity, we have already shown that
a necessary condition is to have at least k effective matches for
each tuple. However, this condition alone cannot guarantee k-
anonymity. Consider the assignment graph shown in Figure 4. For
simplicity, self-loops are omitted and reciprocal edges connecting
the same pair of nodes are merged to a single bidirectional edge.
K3a and K3b are complete graphs of 3 nodes. Note that every edge
in the graph represents an effective match and every node has at
least three incoming and outgoing edges. However, 3-anonymity
cannot be achieved by randomization on top of this assignment
graph. For an edge n1 → ni where i �= 1, the path from ni to
n1 must go through edge n5 → n6. So, if t1 �=I t′1, we know that
t5 =I t′6. From this, we can draw a conclusion that either t1 =I t′1
or t5 =I t′6 is true (a probability of 1

2
to breach privacy).

n1

n2

n4

n6 n5

n3

n7

n8

K3b

K3a

Figure 4: An example of assignment graph that has 3 effective

matches for each tuple but violates 3-anonymity (self-loops are

removed for simplicity)

In the above example, each of the possible assignments contains
either the match 〈t1, t

′
1〉 or 〈t5, t

′
6〉. Thus, we can find at most

2 assignments with no overlapping matches. In fact, if there are
k = 3 assignments with no overlapping matches, we can achieve
k-anonymity. First, we define the concept of match-different con-
dition.



DEFINITION 7. (match-different assignments) Given two assign-

ments ai, aj . ai is match-different to aj if ai ∩ aj = ∅.

Having k match-different assignments, we can randomly pick
one of them as the resulting assignment of the randomization pro-
cess. For each anonymized tuple t′j , there are k different possi-
ble identities in total. Each identity of t′j is in a different match-
different assignment. Since each assignment has the same chance
to be picked, t′j is assigned to a particular tuple in T with the same
1
k

chance; hence, k-anonymity can be achieved. To ensure that
there are k match-different assignments in the set of generalized
QID, we prove that it is sufficient that in the assignment graph with
only effective matches each node has the same number (≥ k) of
incoming edges and outgoing edges.

LEMMA 1. Consider an assignment graph with only effective

matches, where each node has k outgoing edges and k incoming

edges. Given d match-different assignments a1, a2, ..., ad, where

1 < d < k, we can always find an assignment ad+1 such that ad+1

is match-different to ai for i = 1 to d.

PROOF. See Appendix A.

5. ANONYMIZATION USING NON-HOMO-

GENEOUS GENERALIZATION
In this section, we discuss how we can generate a k-anonymi-

zed table using non-homogeneous generalization, building on the
observations from the previous section. Although we can apply
non-homogeneous generalization directly on T , due to the large
scale of the data, the high cost of the necessary randomization, and
the natural partitions that possibly exist in the data, we first partition
the data into groups of k or more tuples and then apply non-homo-
geneous generalization to each group. In a nutshell we follow the
following framework:

1. Divide the tuples into partitions

2. Generalize the QID of each tuple in each partition

3. Assign generalized QIDs to tuples, based on a random as-
signment

We first discuss how we generalize the QID of each tuple (step
2) in Section 5.1. Then, we explain our randomization technique
(step 3) in Section 5.2. Finally, we outline our partitioning method
(step 1) in Section 5.3.

5.1 Ring generalization
Assuming that the data are partitioned, non-homogeneous gen-

eralization should be applied to each partition. In fact, we need
to determine for each tuple, which k − 1 other tuples will be in-
cluded in the generalization. Then, we can extend the QID of a
tuple to include the QID of the other tuples. Let gen be a QID gen-
eralization function that takes as input a set of tuples and returns
a generalized range on QID. For example, considering Table 4a,
gen({t2, t4, t5}) = [2-5]. Let PS(ti) be the set of tuples in T that
is used to produce a generalized QID for ti. In the above exam-
ple, PS(t2) = {t2, t4, t5}. Based on Lemma 1, we should have
|PS(ti)| = |PS(tj)| for all i, j. In order to minimize information
loss in the generalized QIDs and satisfy k-anonymity, we design a
generalization with |PS(ti)| = k for all ti.

Consider the set of tuples in a partition P and assume that the tu-
ples are ordered as t1, t2, ..., t|P |. An easy way to construct PS(ti)
is to assign the k consecutive tuples gen(ti, ti+1, . . . , ti+k−1) to

ti. (Note that if i + j > |P |, we use i + j − |P | instead.) We call
this ring generalization, as the assignment graph resulting from it
looks like a ring. Figure 5 illustrates the ring generalization for a
partition with 5 tuples and k = 3. The upper-left graph in Figure 6
is the corresponding assignment graph.

Tuple in T PS(ti) Tuple in T ∗

t1 t1 t2 t3 t′1 = gen(t1, t2, t3)
t2 t2 t3 t4 t′2 = gen(t2, t3, t4)
t3 t3 t4 t5 t′3 = gen(t3, t4, t5)
t4 t4 t5 t1 t′4 = gen(t1, t4, t5)
t5 t5 t1 t2 t′5 = gen(t1, t2, t5)

Figure 5: Ring generalization for a partition with 5 tuples and

k = 3
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ring generalization first assignment
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Figure 6: Generating three random assignments

Note that every match in the ring generalization is effective, as
it is part of a cycle. In addition, since each node in the assignment
graph represented by ring generalization has k incoming edges and
k outgoing edges, we can find k match-different assignments and
k-anonymity can be assured by randomly picking one of them as
the actual assignment (Lemma 1). The ring generalization is a local
optimal solution, because we cannot remove any more edges from
the graph. In addition, we can easily show that it can give equal or
better utility compared to any homogeneous generalization. If the
partition size is k, the ring generalization degenerates to a homoge-
neous generalization, where all original tuples in the group match
with all generalized tuples. If the partition size |P | is greater than
k, in the ring generalization, every tuple will match a set S of k
tuples as opposed to |P | in the homogeneous case. Since S ⊂ P ,
and all utility metrics are monotonic to subset relationships, only
better utility can be achieved by the ring generalization.

LEMMA 2. Ring generalization gives a k-anonymized partition

of equal or better utility than that given by a homogeneous gener-

alization on the same partition.

An additional benefit of this generalization is that, given a proper
ordering of the tuples (e.g., using Hilbert curves), the k values in
each generalized QID will be close to each other with high prob-
ability, maximizing the utility gain compared to a homogeneous
generalization.



5.2 Randomization
In this section, we will describe how we randomly assign each

generalized QID to a tuple in T (and replace the original QID of
the tuple by the generalized one). An intuitive idea is to generate
all possible assignments and pick one uniformly at random. Un-
fortunately, such an approach may violate k-anonymity. For exam-
ple, in a partition with 5 tuples, the generalized QIDs using ring
generalization for 3-anonymity will have 13 different possible as-
signments. Note that 13 is not divisible by 3, meaning that some
matches are contained in more assignments than other matches.
This allows the adversary to infer these matches with probability
higher than 1/k. In the example of Figure 5, matches 〈ti, t

′
i−1〉

have higher probability (5/13) than matches 〈ti, t
′
i〉 and 〈ti, t

′
i−2〉

(with probability 4/13).
As discussed in Section 4.2.1, the solution is to define k match-

different assignments, and randomly select one of them. One easy
construction of k match-different assignments is to set ai = {〈ti,
t′i−j〉} for j = 0 to k−1. (Note that if i−j < 1, we use i−j+ |P |
instead.) Consider the example in Figure 5, and assume that we
pick each column of PS(ti) as an assignment. By setting one of
these assignment as the real assignment randomly, there is a chance
of 1

k
a column is chosen. Thus the probability Pr(ti =I t′i−j) is 1

k

and k-anonymity is preserved.
However, if we apply this approach, privacy can easily be com-

promised when the adversary knows the identity of one anonymized
tuple as background knowledge. In practice, such background knowl-
edge can easily be acquired. For example, using the generalization
of Figure 5, if an adversary knows that t3 =I t′2, he knows that
the second column is the real assignment. Hence, he can find out
the identities of all anonymized tuples, e.g., t2 =I t′1. This type of
attack is called corruption and has been studied in [22].

In order to increase the resistance to corruption, the k match-
different assignments are defined randomly. The generation pro-
cess shares a similar framework as the proof of Lemma 1. The
pseudocode of an algorithm that generates a random assignment is
shown in Figure 7. In the followings, we briefly describe the ba-
sic idea of the algorithm. The algorithm is run k times to generate
the k assignments. At each run, it operates on the set of matches
M that are not present in assignments generated in previous runs.
It tries to find a set of cycles in the graph that cover all nodes by
random walks and use them to define an assignment. The cycles
are found incrementally, starting from an unassigned node. After
a cycle has been found, all its nodes are marked as “processed”
and searching for a new cycle starts until all nodes are processed,
in which case the assignment is committed and returned. Cycles
are not directly committed in the assignment once found, because
some of them, when removed, may result in a graph where there
does not exist any cycle. Thus, while finding a new cycle, matches
set by previous cycles may change. In addition, we limit each node
to be visited at most once in each random walk (by remembering
the nodes traveled in U ). The algorithm backtracks when it reaches
a dead end. Lemma 1 guarantees correctness and termination.

Figure 6 exemplifies three runs of the algorithm on the ring gen-
eralization of Figure 5 shown at the upper left of Figure 6. The
solid edges show the matches that are chosen for the current as-
signment. For example, the first assignment, containing cycles
n1 → n4 → n2 → n1, n3 → n3, and n5 → n5, will assign
t1 to t′4, t4 to t′2, t2 to t′1, t3 to t′3, and t5 to t′5. After the first
run, the corresponding edges are removed and the algorithm is run
again to generate the second assignment.

Regarding corruption, ring generalization gives a (k−1)-vertex-
connected assignment graph, i.e., the graph is still connected after
any k − 1 nodes in the graph are removed. Assume an adver-

Input: A partition of tuples P ; A set of anonymized tuples Q;
A set of possible matches M (excluding matches already used in
other assignments).
Output: An assignment a ⊆ M .

1. a = {〈ti, t
′
i〉} // initial assignment (possibly invalid)

2. L = P // L represents the set of unprocessed nodes
3. While (L �= ∅)
4. // pick an edge to start a loop
5. Pick ti ∈ L at random
6. Pick t′j ∈ Q randomly such that 〈ti, t

′
j〉 ∈ M

7. U = {t′j} // U remembers the nodes traveled

8. While (t′i /∈ U ) // find a cycle by random walk
9. // ti is assigned to t′j , so the one that is assigned

10. // to t′j before has to find another pair

11. Select tx where 〈tx, t′j〉 ∈ a
12. Pick t′y �∈ U randomly where 〈tx, t′y〉 ∈ M
13. if such t′y does not exist

14. t′j = t′j’s parent // backtracking
15. else
16. Add t′y to U and set t′j as t′y’s parent
17. End while
18. // a loop is found
19. update a and remove nodes in the loop from L
20. End while
21. return a

Figure 7: Algorithm for generating a random assignment

sary obtains background knowledge about the identity of a set of
anonymized tuples Q, belonging to the same partition. The ad-
versary can remove the corresponding nodes from the assignment
graph. If |Q| < k − 1, the assignment graph is still connected, i.e.,
all matches are still effective. There are at least k − |Q| outgoing
edges and k − |Q| incoming edges for each remaining node. So,
there are at least k − |Q| possible identities for each anonymized
tuple. Due to randomization, an adversary cannot find out the ac-
tual identity of an anonymized tuple. Therefore, non-homogeneous
generalization with randomization offers a similar privacy protec-
tion to k-anonymity corruption as homogeneous generalization.

5.2.1 Cost analysis and optimizations

The cost in randomization for a partition P is dominated by gen-
erating the k match-different assignments. When generating a new
assignment, we maintain a list of unprocessed nodes L (line 2).
Then, we find a cycle in the assignment graph which starts with a
node in L by a depth-first random walk. Note that each node can
be visited at most once. The complexity for that is O(|V | + |E|)
where |V | is number of nodes and |E| is the number of edges in the
graph. |V | = |P | and |E| = k|P | in the assignment graph. Hence,
it takes O(k|P |) to generate a random cycle. Note that each new
cycle contains at least one node in L. In the worst case, we need
|P | iterations to assign every node in L. So, the overall cost to
generate a match-different assignment is O(k|P |2).

Since |P | ≥ k, randomization becomes expensive for large val-
ues of k, or when the partitions are very large compared to k.
Therefore a good partitioning strategy should avoid generating huge
groups. We now describe two simple optimizations to reduce this
cost in practice. In Section 7, we experimentally evaluate the cost
of the optimized randomization algorithm and show that it is bear-
able in practical cases, as it only depends on the size of the parti-
tions and not the database size.

Reducing the number of generated match-different assign-

ments. In the randomization process, we first generate k match-



different assignments, and then choose one of them randomly. Let
a1, a2, ... ak be the generated assignments in order. Since which
assignment will be picked is independent of the generation process,
we can first determine which ai of the k assignments will be picked
to be the real assignment and then generate up to the i-th assign-
ment. This will, on average, reduce half of the randomization cost.
Note that the assignments before the i-th should be generated, as
they determine which edges remain at the time of the generation
of the i-th assignment. Generating and picking always the first as-
signment would result in the selection of some matches with higher
probability and is not acceptable, as discussed in the beginning of
Section 5.2.

Using a random permutation to generate initial assignment.

The goal of the algorithm in Figure 7 is to generate a random
match-different assignment. A fast Monte Carlo way is to use a
random permutation. The resulting permutation may not be a valid
assignment because some of the matches may not be in the set of
possible matches M . However, some matches in the permutation
may be valid. We use this as the initial assignment to the algorithm
(line 1 in Figure 7). L is initialized to be the set of anonymized
tuples that do not have a valid match. This reduces the initial size
of L and hence the computational cost of assignment generation.

5.3 Partitioning
In this section, we discuss how to choose a good partitioning

strategy for non-homogeneous generalization. Before this, we will
provide an appropriate measure for utility, which we adopt from
previous work. Based on our discussion so far, value ranges are
used to define a generalized QID of tuples. For example, for a QID
which is generated by the three values 15, 20, 48, we use range
[15-48]. This format is compact and is easy to use in data analy-
sis, however, it introduces some unnecessary information loss, as
values within the range but not present in the generating set of val-
ues are included in it. For example, value 17 is implicitly included
in the generalized range [15-48]. In fact, the QID generalization
model that has the minimum information loss is the set representa-
tion, e.g., set {15, 20, 48} is used as the generalized QID. The set
representation offers a significant improvement in utility and it is
also more general, as it is appropriate for both ordered and nominal
attributes. Therefore, we adopt it in this paper and use it in subse-
quent discussions. In addition, we use the Global Certainty Penalty
(GCP ) [6] as a measure for utility.

DEFINITION 8. (Information loss metric - GCP ) Let t′i be an

anonymized tuple in anonymized table T ∗ using set representa-

tion. Let A be a QID attribute, |A| be the cardinality of A, and

countA(ti) be the number of distinct values of A in t′i. The normal-

ized certainty penalty NCP of t′i on attribute A is NCPA(t′i) =
countA(ti)−1

|A|−1
. NCP(T ∗) =

∑
A∈QID

∑
t′
i
∈T∗ NCPA(t′i), for

the whole table T ∗. Finally, GCP(T ∗) is defined as
NCP(T∗)

d|T∗|

where d is the number of attributes in the QID.

As discussed, similar to the homogeneous case, for scalability
reasons we should divide the tuples of T into partitions before ap-
plying non-homogeneous generalization to each of them. One op-
tion is to use an off-the-shelf partitioning method for homogeneous
generalization (e.g., [14]) and then apply our ring generalization at
each partition. However, existing partitioning strategies may not
be the most appropriate as they do not take into account the use
of non-homogeneous generalization. The main difference between
homogeneous and non-homogeneous generalization is that, in the
former, it is always better to divide a large group into two. For ex-
ample, consider a set of four QID t1 = 〈1, 1, 1〉, t2 = 〈1, 1, 2〉,

t3 = 〈2, 1, 2〉, t4 = 〈1, 2, 1〉 and assume the domains of all QID
attributes are the same. Suppose that we put partition t1, t2 into
group G1 and t3, t4 into another group G2. t1 and t2 differ in one
value, whereas t3 and t4 differ in 3 values. Thus, with this group-
ing the value of NCP is 8

|A|−1
. If we apply ring generalization

directly on the four tuples, without partitioning, the value of NCP

is 1+1+3+1
|A|−1

= 6
|A|−1

. Hence, we obtain a higher information loss

after we partition the tuples. In the non-homogeneous case, even
if the partition size is much larger than k, each generalized QID is
generated from exactly k tuples. Thus, low information loss can be
still achieved in large partitions, as opposed to homogeneous gen-
eralization, which suffers from high information loss if the size of
partitions is large. On the other hand, the size of the partitions af-
fects the cost of randomization in our approach (see Section 5.2.1),
therefore it should be controlled.

5.3.1 Partitioning based on lexicographical order

We now discuss our partitioning strategy for non-homogeneous
generalization. As discussed, we consider a set representation for
the QIDs, i.e., in an anonymized tuple t′i each QID attribute takes
the set of values of that attribute in the k tuples that generate the
QID. Hence, the distinct count countA(t′i) of A’s values in t′i is
less than or equal to k. According to the NCP measure, if the
domain size of A is small, we lose more information if more than
one values of A exist in a generalized tuple. For example, consider
attributes ‘sex’ and ‘birthday’ with domain sizes 2 and 366, respec-
tively. If we put two tuples in a group with different ‘sex’ values the
NCP for that attribute in the group will be maximized, but if we
put two tuples with different birthday, the introduced NCP error is
small. Thus, during partitioning, we should prioritize the reduction
of countA(ti) for attributes with small domains.

To achieve this goal, we order the attributes according to their
domain size; then the tuples in T are sorted in lexicographical QID
order, based on the attribute ordering. The tuples are partitioned in
a top-down fashion. First, we consider attribute A1 with the small-
est domain size and put tuples with the same A-value in the same
partition. This results in a set of partitions P1, P2, ... Pm, such that
the NCP of A1 will be 0 in all partitions. However, some partitions
may have less than k tuples. For each such partition Pj , we find a
neighboring partition Px, either Pj−1 or Pj+1, that can either be
merged with Pj or some tuples can be moved from Px to Pj in or-
der for both of them to have at least k tuples. If |Px| + |Pj | < 2k,
we merge Px with Pj ; otherwise, we move tuples from Px to Pj

such that |Pj | = k. After we are done with A1, we recursively
partition the resulting groups using the next attribute in order (i.e.,
A2). In some partitions, the tuples may have different A1 values
(due to merging). For such partitions, we do not attempt to further
decompose them recursively using another attribute. The partition-
ing strategy is repeated until all partitions are finalized or there are
no more attributes that can be used for recursive partitioning. Fig-
ure 8 shows a pseudocode of the partitioning algorithm. On each
finalized partition, we apply non-homogeneous generalization, as
explained in Sections 5.1 and 5.2.

5.3.2 Cost analysis of partitioning

Before we apply the partitioning algorithm, shown in Figure 8,
we need to sort the attributes and the tuples. Assuming that the
number of attributes in the QID is negligible compared to the num-
ber of tuples, sorting costs O(|T |log(|T |)). Moving data between
partitions or merging, is applied only for consecutive partitions.
Each partition defined by the first attribute can recursively be re-
partitioned up to d times, assuming a d-dimensional QID. As the
data having the same values in attributes A1, A2, . . . Ai are sorted



Input: a set of tuples P ; parameter in k-anonymity k; Attribute
used for partitioning Ax;
Precondition: (i) attributes in QID are sorted in ascending order
of domain size A1, A2, ..., A|QID|; (ii) tuples are sorted in lexi-
cographical order according to attribute-order; (iii) all tuples in P
have the same value on A1, A2, ... Ax−1.

1. // minimize the uncertainty for attribute Ai

2. Partition P into P1, P2, ... Pm using Ai

3. // if there are not enough tuples in a group
4. For each Pj where |Pj | < k
5. Find Px as a neighboring partition of Pj

6. If |Pj | + |Px| > 2k
7. move k − |Pj | tuples from Px to Pj

8. Else
9. Merge Pj and Px

10. End for
11. For each Pj

12. If (∃ta, tb ∈ Pj , ta[Ai] �= tb[Ai]) or (Ai = A|QID|)
13. Apply non-homogeneous generalization on Pj

14. Else
15. partition(Pj , k, Ai+1) // recursive call
16. End for

Figure 8: Partitioning Algorithm

w.r.t. attribute Ai+1, no additional sorting is required. In the worst
case, where all tuples have the same values in all attributes the table
will be read d times, so the worst-case cost is |T |(d + log|T |).

6. EXTENSION TO L-DIVERSITY
In this section, we discuss how we can apply non-homogeneous

generalization for other privacy principles. In particular, we focus
on l-diversity, described in Definition 9.

DEFINITION 9. (l-diversity) Let T be a table with a sensitive

attribute S, and H be the projection of T on key and QID at-

tributes. l-diversity is preserved by an anonymized table T ∗ if

∀ti ∈ H, ∀s ∈ S,Pr(ti[S] = s) ≤ 1
l

in a linking attack by

joining H and T ∗.

By definition, in order to satisfy l-diversity each partition P should

not contain a sensitive value that occurs more than
|P |
l

times. In
such a partition, we can order the tuples in P such that no con-
secutive l tuples have a sensitive value that occurs more than once.
For example, consider a partition of size 4, where there are 2 sen-
sitive values s1 and s2, each appearing 2 times in the partitions. In
order to achieve 2-diversity, we can arrange the tuples with sensi-
tive values in the order of {s1, s2, s1, s2}. By applying ring gen-
eralization to the ordered tuples, each generalized QID will cover
two tuples with different sensitive values. Hence, 2-diversity is
satisfied. Thus, non-homogeneous generalization can directly be
applied on the partitions generated by any existing algorithm for
l-diversity, like [6, 26]. The utility will be higher than or equal to
that of applying homogeneous generalization. However, as exist-
ing algorithms do not take into account non-homogeneous general-
ization, they tend to generate partitions with minimal sizes, so the
utility improvement by non-homogeneous generalization may not
be maximal.

We now discuss how our partitioning strategy (described in Sec-
tion 5.3) can be adapted to generate l-diverse partitions. Note that,
the original table should satisfy l-diversity, otherwise it cannot be
split to partitions which all satisfy l-diversity [26]. Recall that our
partitioning strategy recursively divides the tuples using one at-
tribute at a time. In each iteration, we obtain a set of partitions P1,

P2, ..., Pm. For a partition Pj that does not satisfy l-diversity, we
find a partition Px such that l-diversity is satisfied by the merged
partition Pj ∪ Px. If such a partition cannot be found, we merge
Pj with a random partition and merging continues until the result-
ing partition satisfies l-diversity. In the worst case, the algorithm
will merge all partitions into a single one, which must satisfy l-
diversity. Hence, this scheme always gives a set of partitions that
satisfy l-diversity. Then, for each partition, we order the tuples and
apply non-homogeneous generalization.

As we have discussed in Section 5.2.1, the cost of randomization
is highly correlated to the partition size. So, if a huge partition is
generated by the above process, the generalization cost for it may
be extremely high. In order to reduce the cost, we perform arbi-
trary splits to such partitions, making sure that each sensitive value
appears in each smaller partition at most once. This way, each par-
tition has a maximum size equal to the domain of the sensitive at-
tribute, which is usually small in practice.

7. EMPIRICAL EVALUATION
In this section, we experimentally compare our developed ano-

nymization scheme, denoted by NH (non-homogeneous generaliza-
tion), with the state-of-the-art k-anonymity algorithm of [6]. The
algorithm of [6] sorts the the tuples based on their values on a
Hilbert curve and then generates partitions using a dynamic pro-
gramming algorithm that is optimal for homogeneous generaliza-
tion of 1-dimensional QID. Although the resulting partitions may
not be optimal, they have low information loss, since two nearby
values on the Hilbert curve are also near in the original high dimen-
sional space with high probability. Range representation is used
for generalized QIDs in [6], however, a set representation can di-
rectly be applied on the partitions to improve utility. We use HR
to denote the original algorithm of [6] with range representation
and HS its version with set representation. Our NH algorithm ap-
plies non-homogeneous generalization on top of the partitioning
scheme proposed in Section 5.3 and uses set representation for the
generalized QID. All optimizations for randomization as described
in Section 5.2.1 are implemented in NH. In addition, we imple-
mented a method that uses our partitioning strategy followed by
homogeneous generalization (using set representation), to verify
whether any improvement in the information loss is achieved due
to our partitioning strategy or due to non-homogeneous generaliza-
tion. We denote this method by HP (homogeneous partitioning).
HP, after partitioning, uses a single generalized QID to represent
all data in each partition. Randomization is not applied by this al-
gorithm, since generalization is homogeneous. All algorithms are
implemented in C++ and the experiments are run on an Intel Core
2 Duo 2.8GHz machine with 2GB RAM, running Windows.

Our experiments are done mainly on a real dataset CENSUS
(downloadable from ‘http://www.ipums.org’) that is widely used
in the literature (e.g., in [27, 26, 6]). The dataset contains infor-
mation about 500K individuals. A summary of the attributes in the
dataset is shown in Table 5. Note that the majority of attributes are
nominal, indicating that a set representation for a generalized QID
is more appropriate than a range representation, since there is no
natural order for most of the attributes. In the experiments, we vary
the following parameters: (i) number of tuples n: we sample the
CENSUS dataset to generate input tables of varying size; (ii) num-
ber of attributes d in the QID: we use the first d attributes as the
QID while other attributes are treated as ‘others’; (iii) value of k in
k-anonymity. The range of each parameter and the default value is
shown in Table 6.

We measure the information loss of the generalized tables using
GCP (defined in Section 5.3), which is a commonly used metric



Attribute Cardinality
Age 79

Gender 2
Education Level 17
Marital Status 6

Race 9
Work Class 10

Country 83
Occupation 50

Table 5: Attributes in CENSUS dataset

Parameter Values
Size of table n 100K, 200K, 300K, 400K, 500K

QID dimensionality d 2, 3, 4, 5, 6, 7
Privacy parameter k 2, 4, 6, 8, 10, 20, 40, 60, 80, 100

Table 6: Parameters used in experiments on CENSUS. Default

values in bold font.

[6, 28]. In addition, we measure the computational cost of the al-
gorithms. We also use another widely used dataset (ADULT) from
the UCI repository [2]. The dataset contains information of 32561
individuals and has 15 attributes. The entire dataset is used in each
experiment and we vary d and k.

7.1 Varying the dataset size
The information loss and the computational cost of each algo-

rithm, as a function of the table size, are shown in Figure 9. As HR
and HS differ only in the final representation of the QID, there is
no difference in the execution time. So, we only compare HS with
NH and HP when evaluating computational cost.
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Figure 9: Information loss and execution time; varying n on

CENSUS dataset; k = 10, d = 3

The information loss of all methods is low in all cases and fur-
ther decreases with n. This is because when the database size in-
creases, more tuples are sharing the same or very similar QID. As a
result, it is easier for the partitioning strategies to find very similar
tuples and generalize them. We observe a huge difference between
HR/HS and NH/HP. Since the set representation is always better
than range generalization, a drop of information loss from HR to
HS is expected. However, the improvement of HS over HR is only
marginal, indicating that the partitioning strategy of [6] may not
be the most appropriate for set generalization. On the other hand,
our partitioning scheme is more suitable for set representation and
non-homogeneous generalization, as indicated by the plot. There is
only a slight difference between HP and NH. This happens because
the partitions for this dataset happen to have size close to k, or the
tuples in the partition have very few differences in the QID. Hence,
the difference between homogeneous and non-homogeneous gener-
alization is not significant on our partitioning scheme in this setting.
However, we remark that this case is not general; in subsequent ex-
periments we will see cases where HP does not behave well. The

execution cost of the algorithms is linear to the number of tuples
and NH/HP have slightly lower cost than HS. All methods scale
well with the database size.

7.2 Varying QID dimensionality
Figure 10 shows the information loss and the computational cost

of each algorithm, for different QID dimensionality values. The
information loss of the algorithms increases in general with d (ex-
cept for HR and HS which have the minimum information loss at
d = 3). This is due to the increase of data sparsity, as the QID do-
main is multiplied by the domains of additional attributes. NH/HP
sustains a big improvement over HS/HR and the gap between HS
and NH is increasing with d. HS/HR and NH follow similar trends
on the ADULT dataset (see Figure 11). However, HP does not have
stable performance. We observe a sudden increase in the GCP
of HP for d = 5. This happens because there is a sudden in-
crease in the average partition size for d = 5. The GCP of HP
is even higher than that of HR and HS. As our partitioning does not
aim at minimizing the average partition size, there could be cases
of large partitions that result in a high information loss when ho-
mogeneous generalization is applied on them. On the other hand,
NH consistently achieves a low information loss as it applies non-
homogeneous generalization on these large partitions.
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Figure 10: Information loss and execution time; varying d on

CENSUS dataset; n = 100K, k = 10
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Figure 11: Information loss and execution time; varying d on

ADULT dataset; k = 10

The execution time of the algorithms is only slightly affected
by dimensionality and NH has a similar cost to HS. This result
is expected, as the main cost factor is the size of the database n,
due to sorting; all methods are capable of handling well data with
high-dimensional QIDs. We only observe a spike in the cost of
NH for d = 5 in the ADULT dataset, which is due to the large
partitions generated in this setting. Large partitions, increase the
cost of randomization, as discussed in Section 5.2.1.

7.3 Varying privacy level
As Figure 12 and Figure 13 show, the GCP of all algorithms

grows linearly with k. This is reasonable, as the generalized QIDs
should include more tuples. NH has the lowest GCP among the



0

0.002

0.004

0.006

0.008

0.01

0 20 40 60 80 100

k

In
fo

rm
a

ti
o

n
 l

o
s

s
HR
HS
HP
NH

0

1

2

3

4

0 20 40 60 80 100

k

T
im

e
 (

s
)

HS

HP

NH

Figure 12: Information loss and execution time; varying k on

CENSUS dataset; n = 100K, d = 3
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Figure 13: Information loss and execution time; varying k on

ADULT dataset; d = 4

four and the absolute improvement over HS/HR is steady. On the
other hand, the computational cost of NH has a super-linear in-
crease with k. This is due to cost of randomization; recall that the
cost of generating a random assignment is O(k|P |2) (see Section
5.2.1). Since |P | ≥ k, the worst case complexity is in the order of
k3. The cost of HP reflects the cost of partitioning in NH; therefore
for k ≥ 40 the cost of randomization becomes the dominant factor
in NH. However, even at k = 100, the execution time of the entire
anaonymization process is 2.95s, which is reasonable. In typical
applications, we do not expect values of k much greater than 100,
so NH is expected to be applicable in practice, especially since its
execution cost scales well with the database size (see Figure 9).

7.4 l-diversity
We now evaluate the extension of our methodology for l-diversity,

described in Section 6. As before, we use NH to denote our al-
gorithm. We implemented two algorithms as competitors: (i) l-
diversification with homogeneous generalization based on Hilbert
curve transformation [6], denoted by HS; (ii) anatomy [26], de-
noted by AT. A set representation is used for the generalized QIDs
in all cases, as it always has lower GCP than a range represen-
tation. In HS, the tuples are first ordered using a Hilbert curve
mapping and then a greedy partitioning algorithm is used to group
together l or more tuples with different sensitive values. AT ran-
domly picks from the dataset a group of l tuples with different
sensitive values such that the remaining mircodata still satisfy l-
diversity. This process is repeated until less than l tuples remain.
Each remaining tuple t is assigned to a random group, such that no
other tuple in the group has the same sensitive value as t.

For our experiments, we used a random sample of CENSUS with
100K tuples. We assume the last attribute (Occupation) is the sen-
sitive one. We vary d from 2 to 7 and set l = 5 and then vary l from
2 to 9 and set d = 3. Figures 14 and 15 show the results.

NH outperforms both HS and AT by a large factor in terms of
GCP . As AT groups tuples at random, it is expected that tuples
with very different QID are grouped together, which results in a
high information loss. However, HS shows a similar performance
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CENSUS dataset; n = 100K, d = 3
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Figure 15: Information loss and execution time; varying l on

CENSUS dataset; n = 100K, l = 5

as AT in general, meaning that the partitioning used in HS fails to
group tuples having the same values in QID attributes. The primary
focus of the partitioning in HS is to form groups with size close to
l and different sensitive attributes. Thus, the selection of groups
(which should be as small as possible) is not primarily based on
the common QID attribute values. On the other hand, our parti-
tioning strategy brings together tuples for which a large subset of
QID attributes have common values without placing a hard con-
straint on the group sizes. The average partition size is high in NH
(e.g., at 11.2 at l = 5, d = 2), but the partitions are formed based
on QID similarity. With the help of non-homogeneous general-
ization, we can achieve low information loss as each generalized
QID is derived from l tuples only, irrespectively to the size of the
group. Summing up, our non-homogeneous generalization strategy
on larger partitions can achieve much higher utility compared to
homogeneous generalization on small groups. In terms of compu-
tational cost, all algorithms are very efficient and AT is the fastest
method in all cases, due to its simplicity.

8. CONCLUSIONS
In this paper, we developed a novel anonymization framework

based on non-homogeneous generalization. We have shown that it
is not necessary to uniformly give all tuples the same QID in a parti-
tion, in order to achieve k-anonymity. For partitions of size greater
than k, non-homogeneous generalization can always lead to better
utility. Applying non-homogeneous generalization is not trivial, as
the adversary can identify and remove invalid matches between a
public table and the anonymized one, or infer that some matches
have higher probability than others. We identify these problems
and propose solution based on deterministic a ring genereralization
scheme and a randomization process, which ensures that the result
has the same security level as homogeneously generalized parti-
tions. In addition, we proposed a partitioning algorithm, which
is tailored for non-homogeneous generalization. Our experimental
results show that our methodology can greatly reduce the informa-
tion loss compared to the state-of-the-art, while its execution cost is
only sensitive to high values of k, therefore it is scalable for small to



medium values of k. We also implemented and tested an adaptation
of our technique for l-diversity and experimentally showed that it
may achieve even higher improvement in terms of information loss,
compared to k-anonymity. In the future, we plan to investigate ad-
ditional partitioning schemes targeting the further reduction of the
information loss and alternative randomization approaches of re-
duced cost (e.g., based on non-greedy assignment generation), in
order to improve scalability with k.
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APPENDIX

A. PROOF OF LEMMA 1
All possible matches are visualized as edges in the assignment

graph. Due to the match-different requirement, ad+1 cannot con-
tain any match in ai for i = 1 to d. We remove the corresponding
edges from the graph. Each assignment contains |T | matches, each
defined by a different tuple in the original table and a different tuple
in the anonymized table. So, for each assignment we remove |T |
edges: one incoming edge and one outgoing edge for each node.
In the resulting graph G′, there will be k − d incoming edges and
k − d outgoing edges for each node. First, we show that each edge
is part of a loop in G′.

LEMMA 3. Given a directed graph such that each node has x
incoming edges and x outgoing edges, where x ≥ 1. If there is an

edge ni → nj , then there is a path from nj to ni.

PROOF. We prove the lemma by contradiction. Assume that
there is an edge (ni → nj) such that we cannot reach ni from nj .
We classify the nodes in two groups: (i) U : the set of nodes that can
reach ni; W : the set of nodes that can be reached from nj . Since
there is no path from nj to ni, U∩W = ∅. Considering only nodes
in W , there are |W |x incoming edges and |W |x outgoing edges.
Note that for each node in W , all outgoing edges should point to
a node in W (otherwise ni can be reached from nj). On the other
hand, there is an incoming edge to W (ni → nj), which is from
outside W . Hence, there are at most |W |x − 1 incoming edges to
nodes in W from nodes in W , but there are |Wj |x outgoing edges
from nodes in W to nodes in W . This leads to contradiction by
pigeonhole principle.

Now we show how we can construct ad+1. The objective is to
find a set of cycles that cover all nodes in G′. First we initial-
ize ad+1 = {〈ti, t

′
i〉}. This assignment is not necessarily match-

different, as some ni → ni edges may have been taken by pre-
vious assignments (i.e., may not be present in G′). We need to
pick another match for these tuples; we mark all these tuples as
“unassigned”. We pick an unassigned tuple and one of its out-
going edges at random and find a path back to the starting node.
Assume the loop contains l nodes: ny1

, ny2
, ..., nyl

. An edge
in the loop nyi → nyi+1

represents the match 〈tyi , tyi+1
〉. We

use the matches to replace the corresponding matches in ad+1, i.e.,
〈tyi , tyi〉 in ad+1 is replaced by 〈tyi , ty′

i+1
〉. This gives us an up-

dated assignment ad+1. Note that by updating the assignment, the
represented tuples by a node in the assignment graph are updated
as well; thus, cycles in later iterations are computed on the up-
dated assignment graph. The l matches satisfy the match-different
requirement since they are defined by edges in G′. While there ex-
ist more unassigned tuples, we repeat this process by selecting an-
other unassigned tuple ty and one of its outgoing edges at random,
finding a loop, and updating ad+1. The new loop ensures that the
updated ad+1 will result in at least one new matched node, so the
process is guaranteed to terminate with an assignment ad+1, where
all edges are present in G′, i.e., a match-different assignment.




