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Abstract

Background: Accurately modeling the sequence substitution process is required for the correct

estimation of evolutionary parameters, be they phylogenetic relationships, substitution rates or

ancestral states; it is also crucial to simulate realistic data sets. Such simulation procedures are

needed to estimate the null-distribution of complex statistics, an approach referred to as

parametric bootstrapping, and are also used to test the quality of phylogenetic reconstruction

programs. It has often been observed that homologous sequences can vary widely in their

nucleotide or amino-acid compositions, revealing that sequence evolution has changed importantly

among lineages, and may therefore be most appropriately approached through non-homogeneous

models. Several programs implementing such models have been developed, but they are limited in

their possibilities: only a few particular models are available for likelihood optimization, and data

sets cannot be easily generated using the resulting estimated parameters.

Results: We hereby present a general implementation of non-homogeneous models of

substitutions. It is available as dedicated classes in the Bio++ libraries and can hence be used in any

C++ program. Two programs that use these classes are also presented. The first one, Bio++

Maximum Likelihood (BppML), estimates parameters of any non-homogeneous model and the

second one, Bio++ Sequence Generator (BppSeqGen), simulates the evolution of sequences from

these models. These programs allow the user to describe non-homogeneous models through a

property file with a simple yet powerful syntax, without any programming required.

Conclusion: We show that the general implementation introduced here can accommodate

virtually any type of non-homogeneous models of sequence evolution, including heterotachous

ones, while being computer efficient. We furthermore illustrate the use of such general models for

parametric bootstrapping, using tests of non-homogeneity applied to an already published

ribosomal RNA data set.

Background
In phylogenetics, simulations have been widely used to
study the robustness of inference methods [1] and have

been involved in parametric bootstrapping [2]. For
instance, simulations have shown that maximum likeli-
hood methods often more accurately reconstructed the
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evolution of an alignment than distance or parsimony
methods [3,4], but could also fail in conditions where
compositional biases (a condition here referred to as non-
homogeneity) or rate heterogeneity along branches (a
phenomenon named heterotachy, [5]) were too intense
[6-8]. Similarly, simulations have been used to compare
topologies with respect to an alignment [9], or to assess
the fit of a model to a particular data set [10-13]. In this
last case, a model has a good fit to a particular data set if
the alignments it generates have properties similar to the
properties of the real alignment. Both for investigating
reconstruction methods and for parametric bootstrap-
ping, it is highly desirable that simulation methods model
as precisely as possible the conditions that shaped biolog-
ical sequences through evolution. However, widely-used
simulation programs cannot be easily tuned to precisely
reproduce the peculiar evolution of a particular data set.
Noticeably, non-homogeneity cannot be simulated by
Seq-Gen [14] or PAML [15], even if these phenomena are
all known to affect the evolution of many data sets [5,16-
20].

The ability to estimate parameters of sequence evolution
with realistic models, and then computationally evolve
sequences using these fitted parameters is crucial to better
characterize the behavior of reconstruction methods in
realistic settings.

Here we introduce extensions to the Bio++ package [21]
that permit first to estimate parameters of evolution on a
specific data set in a maximum likelihood framework, and
second to simulate the evolution of sequences using these
estimated parameters. Importantly, nearly any combina-
tion of non-homogeneous (including non-stationary
models) and heterotachous models of evolution can be
fitted to data, so that simulations may mimic very pre-
cisely the evolution of a data set. Such a flexibility should
enable one to probe how robust methods of phylogenetic
tree or ancestral state reconstruction are to more realistic
evolutionary conditions. Moreover, it offers the possibil-
ity to compare a large variety of models by assessing
through parametric bootstrapping their respective ability
to reproduce a given characteristic of interest, measured
on a real data set.

Implementation
Molecular phylogenetic methods are used by a wide range
of biologists, from bioinformaticians willing to character-
ize and improve models of sequence evolution to molec-
ular biologists trying to grasp the particular evolutionary
history of their gene of interest. These different types of
users have different needs: the former may benefit from
easy-to-assemble, high-level object-oriented code to con-
duct phylogenetic analysis, while the latter likes user-
friendly interfaces. However, both demand programs able

to run the most recent models of evolution. The newly
introduced extensions are available in two flavors that
might fit different users' needs: (i) as classes in the Bio++
phylogenetic library, including a special class called Sub-
stitutionModelSet which implements the relationships
between models, parameters and branches, and (ii)
through the BppML and BppSeqGen programs, which can
respectively adjust these models to a data set and simulate
data from these models. These programs share a common
syntax for model specification and are hence fully inter-
operational and easy-to-use.

The SubstitutionModelSet class

The Bio++ libraries [21] provide data structures and algo-
rithms dedicated to analysis of nucleotide, codon and
amino acid sequences, phylogenetics and molecular evo-
lution, and are designed in an object-oriented way. These
include classes for storing phylogenetic trees, computing
likelihood under various models of substitution, and esti-
mating parameters. The likelihood classes take as input a
phylogenetic tree and a substitution model, and were
extended to allow the computation under non-homoge-
neous models (figure 1). This support is achieved through
the addition of parameters for the rooting of the tree, since
the likelihood may not be independent of the root posi-
tion with a non-homogeneous model [6], and through a
new class named SubstitutionModelSet. The Substitution-
ModelSet class essentially associates a substitution model
with each branch of the phylogenetic tree, and links each
substitution model to a list of corresponding parameters
(figure 2). It also provides a series of methods for the
developer to set up the general model, to assign parame-
ters to substitution models and substitution models to
branches.

Substitution models can be totally independent of each
other, or can share any number of parameters. Virtually
any non-homogeneous model can thus be set up, pro-
vided the alignment is not a mix of nucleotide, amino-
acid or codon sequences. All models available in Bio++
can be used with this class (e.g. K80, T92, HKY85, GTR,
JTT92, etc), including heterotachous models (Galtier's
model [22] and Tuffley and Steel's model [23]) and any
rates across sites model (i.e. Gamma and Gamma + invar-
iant distributions). The developer can also use the Substi-
tutionModelSet class with his own substitution model
through the Bio++ SubstitutionModel interface. The Sub-
stitutionModelSet class can be used in conjunction with
other Bio++ classes to reconstruct ancestral states or to
map substitutions, and hence allows to perform these
analyses in the general non-homogeneous case.

Estimating parameters

Estimation of numerical parameters is performed using a
modified Newton-Raphson optimization algorithm,
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commonly used in phylogenetics [4,24,25], and therefore
requires computing derivatives with respect to parameters
of the model. Because the use of the cross derivatives leads
to numerical instabilities in the optimization (Nicolas
Galtier, personal communication), they are set to zero in
the Hessian matrix. Derivatives regarding branch lengths
are computed analytically, whereas derivatives regarding
the rates across sites distribution are computed numeri-
cally. Although the substitution model derivatives can be
computed analytically in the homogeneous case as well as
in Galtier and Gouy's model, they are difficult to compute
analytically in the more general case, and are conse-
quently computed numerically in Bio++. To prevent con-
vergence issues due to erroneous derivative values we use,
in the last optimization steps, Powell's multi-dimensions
algorithm, which does not rely on parameter derivatives
[26].

A general file format to describe non-homogeneous models

We introduced a new user-intuitive property file format to
describe non-homogeneous substitution models. This
format is an extension of PAML or NHML property file
formats, and uses a syntax of the kind

property_name = property_value

A parser that automatically instantiates the appropriate
SubstitutionModelSet object is included in the Bio++
libraries and is used by all programs in the Bio++ pro-
grams suite. Moreover, the same format is used for the
input file of the programs and for their output, so that the
output of one program (e.g. which adjusts a model to real
data) can easily be used as the input of another one (e.g.
which simulates data from a model). Figure 3 shows how
the models in figure 1 are coded using this format. The
core part of the description is the "model" property, which
is associated to one or several nodes of the phylogenetic
tree through node identifiers. These node identifiers can
be obtained from the programs in the Bio++ program
suite, or set by the user in his own program.

The BppML and BppSeqGen programs

Parameter estimation and simulation procedures are
available as dedicated classes in the Bio++ phylogenetic
library, and can hence be used in any C++ program. How-
ever, for users who would rely on appropriate software
rather than program their own tools, the Bio++ program
suite was designed. These programs, including BppML
(for Bio++ Maximum Likelihood) and BppSeqGen (Bio++
Sequence Generator) are command line driven and fully
parametrized using property files, as introduced above.

General non-homogeneous model of substitutionFigure 1
General non-homogeneous model of substitution. The substitution model depicted here is Tamura's 1992 model of 
substitution, which contains two parameters: κ, the transitions/transversions ratio and θ the equilibrium G+C content. In the 
homogeneous case, θ and κ are constant over the tree (case 'a'). In Galtier and Gouy's 1998 model, κ is constant over the tree 
and one distinct θ is allowed per branch (case 'b'). Between these two extrema lay models with certain branches, but not all, 
sharing a common value of θ (case 'c'). In the most general case 'd', there are two sets of parameters, one for κ and another for 
θ, that are shared by the branches of the tree.
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They can thus easily be pipelined with scripting languages
as bash, python or perl. In addition to the BppML and
BppSeqGen programs, the Bio++ program suite also con-
tains programs for distance-based phylogenetic recon-
struction, sequence file format conversion and tree
manipulation.

Results and Discussion
Our new general non-homogeneous model implementa-
tion was applied to Boussau and Gouy's data set of con-
catenated small and large subunit ribosomal RNA
sequences and tree [6]. This data set contains 92
sequences and 527 complete sites. We first compare com-
putation time, memory usage and parameter estimation
for various models and software. We then show how the
general non-homogeneous model introduced here can be
used to study model fit through parametric bootstrap-
ping.

In this section, we use the following model notations:

H Homogeneous model, using a Tamura 1992 substitu-
tion model [27].

NH1 One-theta-per-branch non-homogeneous model
[24]. This model uses Tamura's 1992 substitution model,
with one θ (equilibrium G+C content) per branch in the
tree, whereas κ (transitions/transversions ratio) is shared
by all branches.

NH2 One-theta-per-kingdom non-homogeneous model.
In this general model, we allowed each kingdom (Bacte-
ria, Eukaryotes or Archaea) to have its own equilibrium
G+C content, while sharing the same transitions/transver-
sions ratio.

NH3 Same as NH2, but in addition the (hyper)ther-
mophilic Bacteria on one hand, and the eukaryote G+C-
rich genus Giardia on the other hand were allowed to
have their own equilibrium G+C content.

NH4 One-kappa-per-branch non-homogeneous model.
This model has one κ per branch in the tree, whereas θ is
shared by all branches.

Performance

We compared the likelihood of our implementation with
the NHML [22,24] and [nh]PhyML [4,6] programs (see

Relations between branches, models and parametersFigure 2
Relations between branches, models and parameters. In the general non-homogeneous case, model parameters are 
shared by different branches across the tree. These parameters are part of branch-specific substitution models, which specify 
branch-wise probabilities of replacement between states. Branches are here defined according to their rightmost node. The 
SubstitutionModelSet class stores dependencies between nodes, models and parameters.
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table 1 and Additional file 1). Several models have been
tested: Kimura two parameters (K80) for the homogene-
ous case, and Tamura 1992 (T92) derived models for the
non-homogeneous cases, with constant rate, Gamma dis-
tributed rates (4 classes), Gamma (4 classes) + invariant
and Galtier's 2001 site-specific rate variation model (cov-
arion-like). On all tested models, the optimization algo-
rithm in Bio++, while using numerical derivatives, leads
to similar or better likelihood values than other programs,
although at the price of an increase in computational
time. However this increase is not sufficient to prevent the
use of complex models on data sets of usual sizes, as it
takes a little bit more than an hour and a quarter to opti-
mize parameters with the richest models on a data set con-
taining 92 sequences. It is also noteworthy that the Bio++
implementation requires less memory than other pro-
grams. This is partly explained by differences in the algo-
rithms used to compute the likelihood [28]. The PhyML
programs, including nhPhyML, use a double-recursive
algorithm [6], which saves a lot of computation when
exploring the space of tree topologies but results in a three
fold increase in memory usage compared to the simple-
recursive algorithm. Because no tree space exploration
was involved, BppML computations used the simple-

recursive algorithm. If desired, however, Bio++ also offers
the double-recursive algorithm.

The convergence of the optimization algorithm was
assessed by two methods, using the NH3 model. First, we
used 100 distinct randomly chosen initial sets of parame-
ter values and the RNA data set (see methods). We found
that the estimated values obtained in each run were the
same for all parameters up to the 5th decimal. Second, we
simulated 100 data sets using the NH3 model with a
Gamma + invariant rate distribution, with parameter val-
ues estimated from the real data set and the same number
of sites. These parameters were then re-estimated for each
simulated data set using random initial values. The results
are displayed on figure 4, and show that the parameter
values are recovered without bias and with a good preci-
sion. The only exception is the proportion of invariant
sites which is slightly overestimated. These results also val-
idate the simulation procedure.

Example of application: parametric bootstrap and 

Bowker's test for non-homogeneity

As most phylogenetic reconstruction models are homoge-
neous, they do not properly model the evolution of

Model specification in BppML and BppSeqGenFigure 3
Model specification in BppML and BppSeqGen. A general file format is introduced to allow for the user-friendly descrip-
tion of virtually any non-homogeneous model. The tree shows the nodes identifiers, which can be obtained from the programs 
or defined by the user in its own program. Each case presented here corresponds to a particular model in figure 1, and was 
labeled accordingly. Each parameter can be fixed to a specific value or optimized with BppML.
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homologous sequences that vary widely in their composi-
tions. Analyzing compositionally heterogeneous data sets
with homogeneous models of sequence evolution may
therefore lead to incorrect inferences, provided the heter-
ogeneity is large enough. Several tests have been devel-
oped to assess the amount of heterogeneity present in a
data set (see [29] for a review).

Estimating the amount of compositional heterogeneity in a data set

Most commonly, a matrix is assembled that contains
compositions in all characters for all sequences, and this
matrix is analyzed through χ2 statistics [29]. However, this
approach usually does not distinguish between constant
and variable sites, and therefore may underestimate the
true amount of heterogeneity in a data set [29].

Recently, Ababneh et al. [30] re-introduced Bowker's pair-
wise test [31] for symmetry. Given two aligned sequences
S1 and S2 on a given alphabet of size n and characters

x{1,2...n}, it compares the numbers of substitutions
between xi in S1 and xj in S2, {i,j} ∈ [1 : n], with the num-
bers of substitutions between xj in S1 and xi in S2. If these
pairs of numbers are equal for all {i, j} ∈ [1 : n], the two
sequences may have evolved according to two identical
processes. Otherwise, the two processes were necessarily
different.

Bowker's test therefore permits to assess whether compo-
sitional differences have accumulated between two
sequences through non-homogeneous evolution. To
apply it to more than two sequences, Rodriguez-Ezpeleta
et al. [32] computed all pairwise Bowker's tests in their
alignment and computed the median value; one could
also have counted the number of Bowker's tests that are
significant at a 5% threshold according to a χ2 table.

However, none of these tests permit to estimate if the
amount of heterogeneity that they detect in a given data

Table 1: Comparison of the NHML, (NH)PhyML and BppML programs. Likelihood: - log (likelihood) of the optimized parameters, with 

a fixed tree topology. 

Likelihood

Rate Constant Γ(4) Γ(4) + I Covarion

Model H NH1 NH3 H NH1 NH3 H NH1 NH3 H NH1 NH3

NHML 15307 15034 -- 14145 13828 -- -- -- -- 13750 13397 --

PhyML 15187 15011 -- 14141 13824 -- 14128 -- -- -- -- --

BppML 15187 14920 15109 14141 13821 14029 14128 13810 14018 13747 13399 13615

Time

Rate Constant Γ(4) Γ(4) + I Covarion

Model H NH1 NH3 H NH1 NH3 H NH1 NH3 H NH1 NH3

NHML 0:01:40 0:02:28 -- 0:03:07 00:02:13 -- -- -- -- 0:19:24 0:19:09 --

PhyML 0:00:07 0:01:43 -- 0:00:34 00:02:29 -- 0:00:35 -- -- -- -- --

BppML 0:00:27 0:11:57 0:01:12 0:00:47 00:35:46 0:00:48 0:01:01 0:29:40 0:01:38 0:02:52 1:14:32 0:14:27

Memory

Rate Constant Γ(4) Γ(4) + I Covarion

Model H NH1 NH3 H NH1 NH3 H NH1 NH3 H NH1 NH3

NHML 16.38 20.48 -- 55.30 65.54 -- -- -- -- 55.30 65.54 --

PhyML 10.24 28.67 -- 30.73 77.82 -- 30.72 -- -- -- -- --

BppML 08.19 08.19 08.19 14.34 14.34 14.34 14.34 16.38 16.38 12.29 14.34 12.29

Time is shown as hours:minutes:seconds. Numbers in bold font correspond to the best performance for each comparison. Memory corresponds to 
the maximum memory usage during the program execution in megabytes. H: homogeneous case, with a K80 substitution model, NH1: theta per 
branch model, with a T92 substitution model, NH3: clade-specific and G+C-rich species theta model, see methods. The PhyML program was used 
for the H model, and nhPhyML for the NH1 model.
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set is sufficient to bias inferences made using homogene-
ous models, although this is likely the question an average
user would like to answer.

Assessment of the fit of evolutionary models with respect 

to compositional heterogeneity

Here, we describe a method to reveal the ability of evolu-
tionary models to account for the compositional hetero-
geneity in a sequence alignment, which we measure using
the median of all Bowker's pairwise statistics, or the
number of significant Bowker's pairwise tests (in the fol-
lowing, we note the measure of compositional heteroge-
neity h). This method is tree-based, and uses parametric
bootstrapping [10-12]. In this respect, it is similar to the
method recently introduced in [13] in the Bayesian set-
ting. Our approach requires 5 steps to estimate the fit of a
model M to a data set D.

1. Compute the compositional heterogeneity measure h
for the data set D.

2. Estimate the parameters of model M based on the data
set D according to the Maximum Likelihood criterion.

3. Simulate a large number of data sets D' using the model
M previously estimated.

4. Compute the compositional heterogeneity measure h'
for each alignment D'.

5. Compare the measure h obtained on data set D to meas-
ures h' obtained on data sets D'. If h is outside 95% of the
distribution of h', the model does not properly reproduce
the heterogeneity of data set D.

Using such an approach, any model can be compared
with others with respect to their ability to handle the com-
positional heterogeneity of a given data set: the closest the
distribution of h' is from h, the highest is the fit. Ideally,
the distribution of measures h' obtained on the paramet-
ric bootstrap replicates of a good model should be cen-

Assessing parameter estimation using simulationsFigure 4
Assessing parameter estimation using simulations. Left: boxes show the median and quartiles of the distribution of 
parameter estimates for 100 simulations. The 'true' value used in the simulation is shown in red. Right: boxes show the distri-
bution of the bias (estimated value – real value), as a function of the (pooled) real values of the branch length. θ*: GC content, 
ω GC content at root, α : shape of the Gamma distribution of rates across sites, p proportion of invariant sites (see text for 
details on the model used).
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tered around the value obtained for the real alignment h,
with a very low variance. If one neglects potential prob-
lems linked with over-parametrization, the inferences of
the best model should be preferentially trusted compared
to a model that fails to account for an important feature
of a data set. Overall, our approach can be used for model
selection, although contrary to criteria such as AIC or BIC
[28] this approach does not take into account the number
of parameters; more importantly, it can also be used for
estimating model adequacy.

Application to an rRNA data set

Our approach to assess the composition-wise fit of evolu-
tionary models to a data set was applied to an alignment
containing ribosomal RNA sequences from Archaea, Bac-
teria and Eukaryotes [6]. First, several homogeneous and
non-homogeneous models were fitted to the data set,
using a Tamura 1992 model of substitution with a four
classes Gamma + invariant distribution of rates across
sites. Then, 10,000 artificial data sets were simulated in
each case using these estimated parameters. Eventually,
the real data set and the simulated data sets were com-
pared with respect to their compositional heterogeneity:
models able to simulate data sets with similar amounts of
heterogeneity as the real data set appropriately account for
this specific aspect of the data.

Results are shown in figure 5 and table 2. Both the
number of significant Bowker's tests and the median of
their values give similar results. For instance, both indices
find that the real data set shows significantly more heter-
ogeneity than the distributions of data sets simulated
under the homogeneous model of sequence evolution (p-
value = 0.0008 for the number of significant pairwise tests
and p-value = 0.0028 for the median). The homogeneous
model therefore lacks parameters useful to account for
this particular feature of the data. Allowing different tran-
sition/transversion rates for each branch as in model NH4
does not solve this problem, as the obtained bootstrapped
distribution also significantly underestimates the hetero-
geneity in the real data (p-value = 0.0015 and p-value =
0.0047, respectively). It is noteworthy, however, that the
likelihood ratio test finds that this model describes the
data significantly better than the homogeneous one,
whereas the AIC and BIC criteria do not. On the contrary,
the NH1 model simulated sequences distribution sur-
rounds the value obtained on the real data set (p-value >
0.7 in both cases). This suggests that Galtier and Gouy's
modeling [24] properly accounts for the heterogeneity in
rRNA data sets, and that there may be no point in using
more parameter-rich models such as Yang and Roberts'
[33] on these molecules. The results even suggest that
NH1 might be slightly prone to over-estimating the
amount of heterogeneity. For instance, the median
Bowker's test value for simulated data sets are most often

higher than the value obtained on the real data set. NH1's
behavior may be explained by over-parametrization: it is
likely that during sequence evolution, not all branches
witnessed significant shifts in mutational parameters or
selection pressures. To investigate further the impact of
the number of parameters on model fit, two other models
were tested: NH2, in which different equilibrium G+C
contents are associated to each kingdom, and NH3, which
further adds two equilibrium G+C contents, one for the
hyperthermophilic (G+C rich) Bacteria, and one for the
G+C rich Eukaryote Giardia. Hyperthermophilic (G+C
rich) Archaea were not considered separately from the
others as nearly all Archaea in our data set were ther-
mophilic or hyperthermophilic. The NH2 model seems to
lack useful parameters to properly account for the hetero-
geneity in the real data set, as its simulated data sets are
less heterogeneous than the real one (p-value = 0.0040 for
the number of pairwise tests, and 0.0141 for the median).
The NH3 model improves upon NH2 as its bootstrapped
distribution is more centered upon the observed value,
which is no longer rejected (p-value = 0.14 and 0.27).
However, the observed value is still on the right side of the
null-distribution, and it is very likely that the correct par-
ametrization lays between NH1, too rich with its 182
equilibrium G+C contents, and NH3, maybe too poor
with its 5 equilibrium G+C contents. However, as NH3
provides a fit nearly as good as NH1 with a much lower
amount of parameters, the best model may well have less
than a dozen equilibrium G+C contents. Interestingly,
Bowker's tests are in agreement with the Bayesian infor-
mation criterion (BIC, see table 2) and favor the NH3
model. Conversely, Akaike's information criterion (AIC)
and the likelihood ratio test (LRT) favor the more param-
eter-rich model NH1. Obviously, although a few works
already addressed this issue in the Bayesian framework
[11,13,34], automatic ways to explore and choose among
heterogeneous models in a maximum likelihood frame-
work are much needed. All the tools required for such a
project are now available in the Bio++ libraries.

Conclusion
Bio++ is a growing set of libraries designed for sequence,
phylogenetic and molecular evolution analyzes. In this
article extensions allowing to implement a wide variety of
non-homogeneous models of sequence evolution were
introduced. Combined with support for rates across sites
and heterotachous models of evolution, and with rou-
tines for optimizing parameters and tree topology in the
maximum likelihood framework, they provide a compre-
hensive platform for phylogenetic studies, either for bio-
informaticians willing to develop their own software, or
for biologists characterizing the evolution of a particular
set of sequences using the BppML and BppSegGen pro-
grams. Whilst being a generalist program implementing a
large variety of models, BppML was shown to be of a sim-
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Distributions of the Bowker's test statistics under various modelsFigure 5
Distributions of the Bowker's test statistics under various models. First column: number of pairwise tests significant 
at the 5% level. Second column: median of the pairwise statistics. First row: homogeneous model (H). Second row: one theta 
per branch non-homogeneous model (NH1). Third row: 3 thetas non-homogeneous model (NH2). Fourth row: 5 thetas non-
homogeneous model (NH3). Fifth row: one kappa per branch non-homogeneous model (NH4). All models use the Tamura 
1992 substitution model with a 4-classes discrete Gamma + invariant rate distribution. The arrows indicate the observed val-
ues from the real data set and the resulting p-values.
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ilar quality as programs dedicated to particular homoge-
neous or non-homogeneous models of evolution,
achieving higher likelihood scores with smaller memory
requirements while conserving reasonable running-times.
Its joint use with BppSeqGen permits to precisely study
the evolution of a particular data set through parametric
bootstrapping, and may be used to generate realistic arti-
ficial data sets to study the robustness of phylogenetic
reconstruction methods in the presence of heterogeneity
and heterotachy. Further developments may involve
methods to optimize the number of models necessary to
account for the heterogeneity in a data set, or methods to
explore the space of tree topologies with a broad range of
non-homogeneous models of sequence evolution.

Methods
Data and phylogeny reconstruction

RNA sequences from the small and the large subunit of
the ribosome were aligned and concatenated. Sequences
coming from 22 Archaea, 34 Bacteria and 36 Eukaryotes
were selected to yield a data set containing 92 sequences
and 527 complete sites, with G+C contents ranging from
43% to 71%. A phylogenetic tree was built with nhPhyML
[6]. For additional information, please refer to [6].

Comparing likelihood optimizations

The NHML, (NH)PhyML and BppML programs were used
to compare optimization performances. The programs
were run on the data set from [6], after all columns in the
alignment containing at least either a gap or an unknown
character had been removed. The phylogenetic tree from
[6] was used as a fixed topology, and the branch lengths
used as initial values for the optimization. To allow the
comparison between the three programs, the Kimura two
parameters model of substitution [35] was used for
homogeneous models and models derived from Tamura's
1992 model [27] for non-homogeneous models. Initial
values were set to 1 and 0.5 for the κ and θ parameters
respectively. A Gamma (4 classes) + invariant rates across

sites distribution was also tested, with initial value set to
0.5 for the Gamma shape parameter, and 0.2 for the pro-
portion of invariants. Galtier's 2001 [22] heterotachous
model was also tested, with 4 rate classes, initial values of
the shape parameter set to 0.5, and initial value of the rate
change parameter set to 0.5. The precision in the optimi-
zation algorithm was set to 0.000001 for the three pro-
grams. The total length of execution was corrected
according to the average CPU usage, and the memory
usage corresponds to the maximum reached during pro-
gram execution, as reported by the Unix "top" command.
All calculations were performed on a 64 bits Intel(R)
Core(TM)2 Duo, CPU 2.66 GHz.

Assessing the convergence of the optimization procedure

Different initial values were used as initial guesses for the
optimization algorithm. The GC frequencies and the pro-
portion of invariant sites were chosen randomly from a
uniform distribution between 0 and 1. The transitions/
transversions ratio and the alpha parameter of the rate dis-
tribution were picked from a [0, 5] and [0.2, 2] uniform
distributions, respectively. Branch lengths were taken
from a uniform distribution between 0 and 0.1.

Computing p-values for Bowker tests

Alignment-wise tests for non-homogeneity were per-
formed using two types of statistics:

• The number of 5% significant pairwise tests,

• The median of pairwise statistics.

In both cases, the global p-value was computed as

where N1 is the number of simulations performed under
the null model, and N2 is the number of values of the sta-

p value− =
+

+

N

N
2 1

1 1
, (1)

Table 2: Model comparisons. 

Model lnL k LRT AIC BIC Bowker

H NH2 NH3 # tests median

H -14110.628293 185 28591.26 29380.69 0.0008 0.0028

NH1 -13810.371502 368 600.51 556.74 416.97 28356.74 29927.07 0.7010 0.8110

NH2 -14088.739682 189 43.78 28555.48 29361.98 0.0040 0.0141

NH3 -14018.854234 191 183.55 139.77 28419.71 29234.74 0.1448 0.2672

NH4 -13970.841467 368 279.57 28677.68 30248.01 0.0015 0.0047

Comparison of the various non-homogeneous models with the homogeneous case, using different criteria. k is the number of parameters and lnL is 
the log likelihood of each model. The Akaike's information criterion (AIC) of each model is defined as 2k - 2·lnL, and the lowest value, 
corresponding to the best model according to this criterion is in bold font. The Bayesian information criterion (BIC) is computed as k· ln(n) - 2·lnL, 
n = 527 being the number of observations. The lowest value is in bold font. The likelihood ratio test (LRT) allows to compare nested models only, 
and is defined as minus two times the logarithm of the ratio of likelihoods. All LRT are significant at the 0.1% level. This ratio follows a χ2 

distribution with the number of additional parameters as the degrees of freedom. The last two columns show the p-values of the two Bowker's test 
introduced in this paper.
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tistic in the simulations that were greater or equal to the
observed one, measured from the real data set. In this
study, N1 was set to 10,000.

Program source code for performing Bowker's test is pro-
vided as Additional file 2. The data and scripts to run the
analyses are in Additional file 3.

Availability and requirements
Project name: The Bio++ libraries (version 1.6) and pro-
grams suite (version 1.0).

Project home page: http://kimura.univ-montp2.fr/BioPP
and http://home.gna.org/bppsuite

Operating systems: Any platform with a C++ compiler
and supporting the Standard Template Library

Programming language: C++

Other requirements: The C++ Standard Template Library

License: The CeCILL free software license (GNU compat-
ible)
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