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1385, University of California, Irvine, Irvine, California 92697, sleu@uci.edu
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Abstract

The genetic crossover interference is usually modeled with a stationary renewal process to
construct the genetic map. We propose two non-homogeneous, also dependent, Poisson process
models applied to the known physical map. The crossover process is assumed to start from an
origin and to occur sequentially along the chromosome. The increment rate depends on the
position of the markers and the number of crossover events occurring between the origin and the
markers. We show how to obtain parameter estimates for the process and use simulation studies
and real Drosophila data to examine the performance of the proposed models.
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1. INTRODUCTION

Reproduction is the basis of heredity. In order for offspring to preserve genetic information
from both parents and still keep the same number of chromosomes, each parent will only
pass, on average, half of their chromosomes to the offspring. The process for the diploid
chromosome number reducing to the haploid state is called meiosis, which occurs during
gamete formation in animals. During the meiosis process, each cell first replicates its
chromosomes and the two sister chromatids joined together by the centromere with the ends
of the chromosome named telomeres. The homologous chromosomes then line up and pair
together to form tight bundles of four chromatids. At some locations along the
chromosomes, one chromatid from each of the two homologous chromosomes contacts each
other and crosses over for physical materials to separate, exchange, and recombine. The
locations of crossover or recombination are called chiasmata (sing.=chiasma). The replicated
cell is then followed by two separate cell divisions and thus each diploid cell results in four
haploid cells. Eventually, every haploid reproductive cell may contain different
combinations of genes from the parents. (Snustad, 1992)

The actual crossover events cannot be seen, but there are two observable outcomes, the
formation of chiasmata and the recombination between genes on the opposite sides of the
crossover point. Chiasmata can be observed cytologically, but there are technical
difficulties. The recombination events can only be observed at the next generation when the
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genes on the recombinant chromosomes are expressed. If two genes on two loci of the same
chromosome are from different paternal origin, we can confirm that an odd number of
crossovers have occurred between the two loci and that they are recombinants.

Interference is a phenomenon where the formation of crossover events in adjacent regions
are non-independent. The actual mechanism is not yet fully understood but it is a cause of
the inconsistency between genetic distance and physical distance. Genetic distance of 1
centiMorgan (cM) or 0.01 Morgan (M) is about the distance with average 1 percent
recombinants. Physical distance is the distance of nucleotide bases, in base pairs (bp),
kilobases pairs (kb, 1000 bp), or megabases pairs (Mb, 1 million bp). There are two types of
interference: crossover interference, in which the number and location of crossovers in a
given region depend on the numbers and locations of crossovers in disjoint regions; and
chromatid interference, in which each pair of non-sister chromatids is not equally likely to
be involved in a crossover and depends on which were involved in other crossovers
(McPeek and Speed, 1995). Crossover interference has been observed in almost all
organisms, while no consistent evidence of chromatid interference has been found (Zhao et
al., 1995b). Since inferences about chromatid interference require data from all four
products of meiosis (tetrad data), which are not available in most species, the assumption of
no chromatid interference (NCI) is usually made (McPeek and Speed, 1995; Zhao et al.,
1995a; Zhao and Speed, 1996). Thus NCI is also assumed throughout this paper.

By assuming NCI with the four-strand crossover process, Mather’s (1938) formula below
can be applied to construct the relationship between the unobservable four-strand crossover
probability and the observable single-strand recombination probability. Let N(a, b) be the
random number of chiasmata occurring in interval [a, b] of the four-strand chromatid
bundle, and Rh(a, b), h = 1, 2, 3, 4, represent the index binary variable of whether or not a
and b are recombinants for the h-th chromatid, Mather showed that

The formula can be extended for multiple markers with disjoint genomic regions Ij, j = 1, 2,
…, k.

(1)

where Ej is the event of recombination in Ij (requiring an odd number of crossover events)
for a single-strand meiotic product, and Fj is the event of at least one crossover occurs
within Ij for the four-strand chromatid bundle. The boundary for the probability of

recombination occurring in all k intervals is . When chromatid interference is allowed, the
boundary may go up to 1. (Karlin and Liberman, 1983; Risch and Lange, 1983)

The unobservable crossover process has usually been modeled with a stationary renewal
process so the genetic distance between markers can be estimated. Available models include
homogeneous Poisson model (Haldane, 1919), chi-square model (Fisher et al. 1947; Owen,
1949; Zhao et al. 1995a) and gamma model (Broman and Weber, 2000). The homogeneous
Poisson model does not allow for interference, while the chi-square model and the gamma
model allow for interference. However, it has always been known that the genetic distance
and the actual physical distance between markers do not match. Now, with molecular
biology advances, the physical positions of many genes along the same chromosome in
some organisms have been confirmed. It is more possible for us to study the crossover
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formation process directly using the physical map; and a counting process is a good start for
this purpose.

In a Poisson process, there are generally three elements, the distance or time t, the number of
events n, and the increment rate λ. When λ does not depend on t or n, the process has
homogeneous and independent increments. When λ depends on t, the process becomes non-
homogeneous, and when λ depends on n, the process becomes dependent. The λ in our
proposed models actually depends on both t and n, so the crossover process depends not
only on the physical position of the markers, but also on the number of crossover events that
have occurred.

In this paper, we propose two non-homogeneous and dependent Poisson process models
with different rates of positive interference which limits the number of chiasmata. The
crossover events are assumed to start from a point of origin, which can be the centromere or
one of the telomeres, and consecutive events occur sequentially along the chromosome. The
increment rate λ(t, n) increases with the position of marker t, but decreases with the number
of crossover events n occurring between the marker and the origin. Our models can be
reduced to homogeneous models but are always dependent. Since the physical position starts
from the telomere of the p arm (the short arm), for consistency and simplicity, we set the
origin point to be the same telomere throughout this paper.

2. METHODS

2.1. MODEL SETUP

Suppose, including the origin point, there are l + 1 markers along the chromosome and these
markers construct l intervals starting from the origin, labeled as I1, I2, …, Il. Let tj, j = 1, 2,
…, l, be the physical distance (in bp) for interval Ij, and nj = N(tj) be the number of

crossovers occurred within Ij for the four-strand chromatid bundle. Then, 

represents the physical position of the j-th marker on the chromosome, and 
represents the number of crossovers occurred before the j-th marker for the four-strand
chromatid bundle. The position of the marker at the origin point T0 is set to be 0, and also
N(T0) is set to be 0. Note that Tl and N(Tl) are both considered finite.

Let ql = q(x1, x2, …, xl) be the joint probability of the unobservable crossover pattern (x1, x2,
…, xl) for the four-strand chromatid bundle and pl = p(y1, y2, …, yl) be the joint probability
of the observable recombination pattern (y1, y2, …, yl) for a single-strand meiotic product in
marker intervals (I1, I2, …, Il), and for j = 1, 2, …, l,

Then, for the l + 1 markers, the crossover probability ql is defined as
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(2)

where x0 = 0, , and ; and the marginal and conditional
probabilities are derived from the non-homogeneous Poisson process models as proposed in
Section 2.1.1 and 2.1.2.

By assuming NCI, the extended version of Mather’s formula in equation (1) can be
reformulated (Speed, 1996) and the recombination probability becomes

(3)

Taking 0, T1 and T2 as an example, the relationship between the recombination probability
and the crossover probability can be expressed as

2.1.1. MODEL I—The increment rate λ1(t, n), as defined below, of the first proposed

model is a linear increasing function of t and a monotone decreasing function of n.
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Various increment rates are shown in Figure 1(a) and it can be seen that  and  are,
respectively, the intercept and the slope of λ1(t, n) with respect to t when n = 0. With smaller
μ, the reduction of λ1(t, n) from n = 0 to n = 1 is greater. The lower bound of λ1(t, n) is 0 and

the upper bound is , where L represents the length of the chromosome in bp. When α

= 0, this model reduces to a homogeneous Poisson process model with .

By working through the Poisson process theory, the probability components of ql in
equation (2) are found to be

where j = 1, 2, …, l, A1j = Tj − Tj−1, and . We can further obtain the first
derivatives of ql with respect to (α, β, μ) as below and the second derivatives as shown in the
Supplement.

With ql defined, pl can then be obtained. In Figure 1(b), we display the expected
recombination probability between various pairs of markers (T1 and T2) from the
corresponding increment rates shown in Figure 1(a). We can see that the expected
recombination probability between two markers increases with α and β but decreases with μ.
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The rate also changes almost linearly with T1 for the same distance between T1 and T2.

When the ratio  is the same, as the two panels on the left and the two panels on the right,
the distributions of the expected recombination probability of paired markers look similar.
The distributions are more distinguishable when α gets larger (bottom panel vs. top panel).
Also, on the left two panels, when β = 0, some of the recombination probabilities are too
close to distinguish, while on the right panels they spread out.

2.1.2. MODEL II—For the second proposed model, the increment rate λ2(t, n) decreases

with n at the same rate as in Model I but increases with t as a concave function when t is
small and a convex function when t gets larger.

Figure 2(a) shows that λ2(t, n) is upper bounded by  and larger α slows down the rate of
λ2(t, n) increasing with t. The effect of μ is the same as in Model I and this model reduces to
the same homogeneous Poisson process model as in Model I when α = 0.

Following the Poisson process theory, the probabilities in ql for the second model are found
to be

where j = 1, 2, …, l and . The first derivatives of ql with respect
to (α, β, μ) are shown below and the second derivatives can be found in the Supplement.
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Figure 2(b) demonstrates the expected recombination probability between various pairs of
markers (T1 and T2) from the corresponding increment rates in Figure 2(a). The figure
shows that the expected recombination probability increases with β and decreases with α and
μ; and it changes nonlinearly with T1 for the same distance between T1 and T2 and the

nonlinearity seems to be affected by α and . Also like in Model I, the distributions of the
expected recombination probabilities are very similar if they have the same α and the same

 (not shown).

2.2. PARAMETER ESTIMATION

2.2.1. MAXIMUM LIKELIHOOD ESTIMATOR—Let (yi1, …, yil), i = 1, …, m, be m i.i.d.

random variables with p.d.f. pl as defined in equation (3) and parameter vector θ = (α, β, μ)′.
Then the likelihood function and the log-likelihood function are simply

The score function Um(θ) and the information matrix Vm(θ) are further defined as

where
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Let θ̂m = (α̂, β̂, μ̂)′ be the MLE of θ. An explicit form of the MLE cannot be found by setting
the score function Um(θ)|θ=θ̂m= 0. Hence, an iteration method needs to be applied to solve

for MLE. Suppose  is an initial guess of θ that is close to the true MLE, and  lies

between θ̂m and . According to the following Taylor expansion,

it is found that

Based on the above equation, the Newton-Raphson method was further applied to the
following repeated iteration,

where  is the estimator of θ at the i-th iteration. The MLE can then be found when the

difference between  and  is almost 0. Other methods such as EM algorithm and
Markov chain Monte Carlo (MCMC) may also be considered for obtaining the MLE.

2.2.2. STARTING VALUE—The starting values  can be obtained using method of

moments estimator (MME). Let Rj1,j2,…,js, where {j1, j2, …, js} is a subset of {0, 1, …, l}
and j1 < j2 < … < js, be the observed joint recombination rate between the j1-th, j2-th, …,
and js-th markers. By equating some of the observed recombination rates to the
corresponding recombination probabilities, the starting values for θm can be found.

We use the origin, the first and the last known markers as an illustration. Let R0,j1 and R0,js
represent the observed recombination rates between T0 and Tj1 and between T0 and Tjs,
respectively. As detailed in the Supplement, the starting value of μ, say μ(0), can be obtained
through iteration. Then the starting value of α and β for Model I can be found as

and for Model II as

Note that if R0,j1 = 0 in Model II, it will be necessary to use a different marker.
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2.2.3. MARKER INFORMATION UNKNOWN AT THE ORIGIN—In reality, marker

information is usually unknown at the origin point, so R0,j1 and R0,js are unobservable.
Unfortunately, the crossover probabilities based on markers without the origin are too
complicated to provide a formula for a starting value of θm. Thus, an estimate for R0,j1 and
R0,js may be necessary. We use the following summary information from the observed
recombination rate of all pairs of markers to obtain the estimates.

Since R0,j1 should be relatively small and R0,js should be no more than 0.5, the following
estimates are employed assuming L is the length of the chromosome.

We also suggest a small arbitrary value, say 0.1, for μ(0), instead of running iteration using
R ̂0,j1 and R ̂0,js, and let the Newton-Raphson method play the primary role for finding the
MLE of the parameters.

3. SIMULATION

In the simulation study, we assume that the crossover process occurs at a hypothetical
chromosome of 10 Mb length. There are a total of 10 markers located at evenly distributed
physical positions 0 Mb (the origin), 1 Mb, 2 Mb, …, and 9 Mb. For each proposed model,
we present the results of four simulations with different parameters. For Model I, the
parameters are α = 0.0025, β = 0, μ = 0.2 [same as Figure 1(a)(5)] for Simulation (1a); α =
0.0025, β = 0.01, μ = 0.5 for Simulation (1b); α = 0.0004, β = 0.01, μ = 0.2 for Simulation
(1c); and α = 0.0004, β = 0.05, μ = 0.5 [same as Figure 1(a)(4)] for Simulation (1d). For
Model II, the parameters are α = 6.5, β = 0.1, μ = 0.5 [same as Figure 2(a)(8)] for Simulation
(2a); α = 6.5, β = 0.5, μ = 1 for Simulation (2b); α = 2, β = 0.05, μ = 0.5 [same as Figure 2(a)
(2)] for Simulation (2c); and α = 2, β = 0.1, μ = 0.4 for Simulation (2d).

For each proposed model and assumed parameters, the crossover probabilities were first
calculated based on the marker location and the crossover events which occurred previously.
Next, 10,000 random samples with different crossover patterns were generated according to
the above crossover probabilities and then the recombination rates were obtained for all
recombination patterns among the 10 markers. Furthermore, the recombination information
with the origin was removed from the dataset to represent the typical situation where the
information at the origin point is unknown. The process was repeated and 100 replicated
datasets were created.

For each dataset, 12 subsets with four different markers were further produced. The four
markers are considered as the observed markers and are used for parameter estimation. The
12 subsets were chosen to represent different allocation of existing markers: the first four
subsets [1236], [1239], [2356] and [1456] have markers located mainly at the first half of the
chromosome; the last four subsets [4569], [4578], [1789] and [5789] have the markers
mainly located at the latter half of the chromosome; and the remaining subsets [1347],
[2468], [1289] and [3679] are considered to have markers more evenly distributed along the
entire chromosome.
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Figure 3 and Figure 5 display the parameter estimation results from Model I and Model II,
respectively. The mean estimate and the corresponding 95% confidence interval (CI) of the
three parameters from the 100 replicates are presented for each subset of each simulation.

The figures also include the ratio , which is λ1(t, n) when t = 0 and n = 0 and the upper
bound of λ2(t, n). Most of the figures are plotted within 2 units scale of the base unit of the
true parameter, 1 unit above and 1 unit below. For example, 0.001 is considered as the base
unit for parameter 0.0025 and the scale is from 0.0015 to 0.0035, and 0.0001 is considered
as the base unit for parameter 0.0004 and the scale is from 0.0003 to 0.0005. One parameter
in Figure 3 and two parameters in Figure 5 are shifted with half unit and five parameters in
Figure 3 have scales over 2 units.

From the estimated parameters, we can obtain the estimated recombination rate between any
two markers. The mean difference and the corresponding 95% CI between the estimated and
the observed recombination rate are demonstrated in Figure 4 for Model I and Figure 6 for
Model II. Since each subset contains four markers, there are six pairs of markers for each
subset and 72 CIs, in total, for each simulation. All figures are centered at 0 and scaled from
−0.002 to 0.002.

For Model I, Simulation (1c) has the best estimation, where only one CI does not cover the
true parameter, one replicate for subset [1235] could not converge, and seven CIs, all for
subsets [1789] and [5789], in Figure 4 do not cover 0. In Simulation (1d), the performance
of the parameter estimation also does well with only three CIs not covering the true

parameter and four CIs not covering ; but 25% of the recombination rate estimates are

biased. Interestingly, although the α, μ and  are biased for subset [5789], the recombination
rate estimates are unbiased. This shows some inconsistencies between the parameter
estimation and the recombination rate estimation. In Simulation (1b), most of the parameter
estimates tend to overestimate with over 50% of the CIs not covering the true parameter.

However, all of the CIs cover  and there are only three biased estimates for recombination
rate. For Simulation (1a), although the estimates for α are all unbiased, they are all biased
for β because the true value 0 is at the boundary and five of the CIs do not cover the true μ.
The recombination rate estimation is also the worst with no more than 20% of the CIs
covering 0.

For Model II, most of the parameter estimates and the recombination rate estimates are
unbiased. The exceptions include β and μ from subsets with markers mainly located at the

first half in Simulation (2a), two βs and five μs in Simulation (2b), four s in Simulation
(2c), all parameters for subset [5789] and two others in Simulation (2d), and a total of 13
recombination rates in Figure 6. There are only two replicates, one from subset [1456] in
Simulation (2b) and one from subset [5789] in Simulation (2d), which could not converge.
Also, the variation of the estimates for α tends to be larger when the markers are mainly
located at the latter part of the chromosome.

4. APPLICATION

There are two large datasets of Drosophila X-chromosome, from Morgan et al. (1935) and
Weinstein (1936), that have been used in other papers (McPeek and Speed, 1995; Zhao et
al., 1995a; Risch and Lange, 1985). Morgan et al.’s (1935) dataset (M-data) contained the
counts of recombination events of 16,136 Drosophila offsprings on nine markers based on
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the phenotype of the flies, while Weinstein’s (1936) dataset (W-data) had 28,239 events on
seven markers and six of them were the same as in the M-data. The X-chromosome of
Drosophila has a total length of 21.78 Mb of DNA with one arm and recombination occurs
only in females. Table 1 summarizes the six markers with their cytogenetic position, genetic
position and physical position from the telomere. The number of recombination events and
rates among the six markers from both M-data and W-data are listed in Table 2. From the
table, we find that the non-recombination rate is lower in the W-data than in the M-data
(0.45 vs. 0.58), the recombination rates between pairs of markers are all higher in the Wdata
except between ec and cv, and the recombination rate between v and f in the W-data is
almost 3 times the rate in the M-data (0.22 vs. 0.08).

For each dataset, the two proposed models were first applied to all six markers. Then one
marker was removed and the models were fit to each of the six different combinations of
five markers. Results for parameter estimation are shown in Table 3. The β in Model I is
estimated to be close to 0 from both datasets except when one of the first two markers, sc or
ec, is removed. We also observe that the estimates of α and μ in Model I and β and μ in
Model II with five markers are similar to those with six markers except when the last marker
f in W-data and when one of the last two markers, v or f, in M-data is removed. The estimate
of α in Model II is inconsistent in M-data but is similar in W-data except when sc is
excluded.

Furthermore, for each of the seven different combinations of markers, we obtained the
estimated recombination rate between any two markers using the estimated parameters.
Figure 7 illustrates the difference between the estimated and observed recombination rate
using box-plots and showing that the estimation for W-data (range −0.026, 0.019) is much
better than for M-data (range −0.029, 0.098). For M-data, the recombination rates tend to be
over-estimated for most combinations of markers except for models not involving either the
first marker sc or the last marker f. For most combinations of markers except [ec,cv,ct,v,f],
the differences obtained from Model II have a smaller range and the median is closer to 0
compare to Model I. For W-data, the differences from Model I are slightly tighter than from
Model II and the rates seem to be slightly under-estimated from Model II.

5. DISCUSSION

The crossover process has long been studied for building the genetic map since the physical
map was not well constructed. It is usually modeled with a stationary renewal process so
that different pairs of markers with the same recombination rate are considered to have the
same genetic distance between the two markers in each pair. However, this is not the case
for physical distance, where different pairs of markers with the same physical distance
between the two markers may not have the same recombination rate. Now, since the
physical map on nucleotide bases is available for many species, we have more information
to model the crossover process based directly on the physical positions of genetic markers.

In order to incorporate crossover interference, we propose two non-homogeneous Poisson
process models with positive interference. The assumptions include (1) the crossover
process is for the four-strand chromatid bundle with no chromatid interference; (2) the
crossover process starts from an origin point and continues sequentially along the
chromosome; and (3) the crossover interference depends on the location of the markers, and
the number of crossover events that have occurred previously.
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The increment rates of the two proposed models are  and

, and both models decrease with n, the number of events occurred
previously, at the same rate. λ1(t, n) is a simple linear increasing function of distance t and is

bounded by 0 and . Since L is the length of the chromosome, λ1(t, n) can be quite
large. Alternatively, λ2(t, n) is also an increasing function of t but has more flexibility and is

upper bounded by .

In order to better understand these two models, we present in Figure 1 and Figure 2 various
increment rates and provide the expected recombination probability between various pairs of
markers. In Model I, while the increment rate increases with t linearly, the expected
recombination probability also changes with T1 relatively linearly when the distance
between T1 and T2 is the same. In Model II, the changes are both nonlinear and the expected
recombination probability between two markers with the same distance can be much higher
when T1 is located in the middle of the chromosome compare to its location at the two ends
of the chromosome. This flexibility makes Model II more preferred.

From the simulation study, we learned that the performance of estimation depends on the
values of the true parameters. Take graph (3) in Figure 2 as an example, since the increment
rate increases quickly from 0 to 0.4 in a short distance and the expected recombination
probability between markers located close to the origin is quite high, it takes much longer
time for the model to converge and also leads to a higher rate of convergence failure.
Another example is Simulation (1a) for Model I, since the true β is 0, the parameter
estimation is obviously biased and also results in a biased estimation for the recombination
rate. The performance also depends on the subsets involved in the model. Depending on the
values of the parameters, when observable markers are confined to certain part of the
chromosome, the estimation tends to have larger variation and be more biased.

Since some values of the parameters may not be appropriate for the crossover process, the
values chosen for the simulation study are modified from the parameters estimated from the
Drosophila data in order for the simulations to be more realistic. Based on the selected
simulations, the estimation from Model II seems to perform better than that of Model I, and
this may be due to the flexibility of Model II and also the choice of true parameters. The

performance of the recombination rate estimation seems to be more related to  although
there are several exceptions such as subset [5789] in Model I Simulation (1d). Some of the
biased estimates may be due to the loss of information at the origin or that only
recombination events instead of crossover events are observed. When the recombination
information between the existing markers and the origin is restored for Model I (results not
shown), most of the estimates become unbiased in Simulations (1c) and (1d) but only the
variation is reduced in Simulations (1a) and (1b).

When working with the two Drosophila X-chromosome data, we observed that the
recombination rates are quite different between the two datasets. The rates between pairs of
markers are all higher in the W-data except for one pair (difference −0.003), and the
differences involving marker f are much larger (range 0.075, 0.14) than the differences not
involving marker f (range −0.003, 0.03). Figure 7 shows that both of our models fit the W-
data better than the M-data, and the performance improves in the M-data when marker f is
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removed. Neither model shows obvious advantages over the other one although Model II
seems to fit the M-data a little better then Model I.

In McPeek and Speed (1995), they summarized several crossover process models for genetic
distance and used the Monte Carlo methods to fit the recombination data from the first five
markers [sc,ec,cv,ct,v] from the M-data. Figure 8 shows the difference between the
estimated and the observed recombination rate between all pairs markers from the six
models they presented. All the models in their paper tend to underestimate the
recombination rate, however, the estimation from the gamma model, the count-location
model and the King-Mortimer II model is very good with the difference ranging from
−0.006 to 0.0015. The difference from our two models for these five markers ranges more
similarly to the other three models but is not as biased.

The following issues may limit the performance of our proposed models. First, only the
recombination events not the actual crossover events are observed; second, recombination
information is only obtained from some observable markers; and third, recombination
information related to the origin point is missing. Furthermore, the estimates in our models
are nonlinear and hence as in many cases of MLE, the unbiasedness of the estimating
equations may not transmit to the unbiasedness of the derived estimators. If the order of bias

of the estimators is , one could use the jackknife method to reduce the bias to the order

. However, in the present context that needs further appraisal.

In the actual data application, our proposed models are compatible with some of the renewal
process models. The relatively larger difference between the estimated and the observed
recombination rate suggests that additional parameters may be needed for the proposed
models or different increment rates should be considered. We also recognize that the
underlying assumptions of our proposed crossover process may not be accurate. A thorough
discussion of various crossover processes can be found in Karlin and Liberman (1994).

We consider this paper a starting point to construct alternative modeling for the crossover
interference based on the physical map. Since the positions of markers are known, the model
is not burdened with estimating the genetic distance and hence can focus on modeling the
recombination events. With the model parameters estimated, it is also possible to predict the
location of new unknown markers, which is not shown in this paper. The two models we
propose are non-stationary and thus provide more flexibility. However, because the
proposed models do require information about the physical positions of some markers, they
are not for the purpose of constructing a genetic map but rather an additional and potentially
useful tool for modeling the crossover process and interference. We intend to undertake
more studies in developing such models based on the physical map and hope to have
provided useful information in this area.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Model I — Various Increment Rates and Expected Recombination Probabilities
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Figure 2.
Model II — Various Increment Rates and Expected Recombination Probabilities
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Figure 3.
Model I — Parameter Estimation for Simulated Data
Dash line represents the true parameter, dot is the mean and the bars are the upper and lower
95% CI.
!: The 95% CI does not cover the true parameter. *: Could not converge in one replicate.
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Figure 4.
Model I — Difference between Estimated and Observed Recombination Rate between Two
Markers (T1, T2)
Dash line represents 0, dot is the mean and the bars are the upper and lower 95% CI.
!: The 95% CI does not cover 0.
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Figure 5.
Model II — Parameter Estimation for Simulated Data
Dash line represents the true parameter, dot is the mean and the bars are the upper and lower
95% CI.
!: The 95% CI does not cover the true parameter. *: Could not converge in one replicate.
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Figure 6.
Model II — Difference between Estimated and Observed Recombination Rate between Two
Markers (T1, T2)
Dash line represents 0, dot is the mean and the bars are the upper and lower 95% CI.
!: The 95% CI does not cover 0.
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Figure 7.
Difference between Estimated and Observed Recombination Rate between Two Markers for
Morgan et. al. (1935) and Weinstein (1936)
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Figure 8.
Difference between Estimated and Observed Recombination Rate between Two Markers in
Morgan et al. (1935) from Various Models for Genetic Maps Presented in McPeek and
Speed (1995)
* Five markers sc, ec, cv, ct, v are included for modeling.
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Table 1

Summary of Six Markers on Drosophila X-chromosome Used in Both Morgan et al. (1935) and Weinstein
(1936)

Marker
(Abbreviation)

Cytogenetic
Position

Genetic Position
(cM)

Physical Position
(mb)

scute (sc) 1A8 0.0 0.29

echinus (ec) 3F3 5.5 3.73

crossveinless (cv) 5A13 13.7 5.59

cut (ct) 7B4-6 20.0 7.54

vermilion (v) 9F11 33.0 10.82

forked (f) 15F4-7 56.7 17.16

Source: All information is obtained from Flybase website at University of Indiana, http://flybase.bio.indiana.edu/ (Version FB2007\_03, released

November 1,
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Table 3

Parameter Estimation for Morgan et al. (1935) and Weinstein (1936)

Markers Included
for Modeling

α (se) β (se) μ (se)

Morgan et al. (1935) – Model I

[sc,ec,cv,ct,v,f] 4.3e-4 (2.2e-5) 1e-8 0.030 (0.0016)

[ec,cv,ct,v,f] 4.6e-4 (2.8e-5) 0.0014 (2.0e-4) 0.031 (0.0019)

[sc,cv,ct,v,f] 4.1e-4 (2.2e-5) 5.3e-4 (1.8e-4) 0.033 (0.0023)

[sc,ec,ct,v,f] 4.4e-4 (2.3e-5) 1e-8 0.031 (0.0017)

[sc,ec,cv,v,f] 4.3e-4 (2.3e-5) 1e-8 0.029 (0.0016)

[sc,ec,cv,ct,f] 5.8e-4 (3.3e-5) 1e-8 0.047 (0.0029)

[sc,ec,cv,ct,v] 0.0010 (9.4e-5) 1e-8 0.097 (0.0095)

Morgan et al. (1935) – Model II

[sc,ec,cv,ct,v,f] 6.99 (0.24) 0.013 (7.1e-4) 0.055 (0.0041)

[ec,cv,ct,v,f] 4.10 (0.22) 0.013 (8.5e-4) 0.056 (0.0039)

[sc,cv,ct,v,f] 4.61 (0.25) 0.014 (8.1e-4) 0.086 (0.0070)

[sc,ec,ct,v,f] 7.33 (0.25) 0.014 (7.4e-4) 0.055 (0.0042)

[sc,ec,cv,v,f] 7.40 (0.25) 0.013 (7.2e-4) 0.047 (0.0036)

[sc,ec,cv,ct,f] 5.38 (0.18) 0.020 (0.0013) 0.13 (0.010)

[sc,ec,cv,ct,v] 7.15 (0.19) 0.023 (0.0021) 0.11 (0.011)

Weinstein (1936) – Model I

[sc,ec,cv,ct,v,f] 0.0025 (6.4e-5) 1e-8 0.21 (0.0060)

[ec,cv,ct,v,f] 0.0023 (2.1e-5) 0.10 (0.0062) 0.15 (0.0085)

[sc,cv,ct,v,f] 0.0025 (6.6e-5) 0.0048 (7.8e-4) 0.25 (0.011)

[sc,ec,ct,v,f] 0.0026 (6.7e-5) 1e-8 0.22 (0.0064)

[sc,ec,cv,v,f] 0.0027 (7.0e-5) 1e-8 0.22 (0.0065)

[sc,ec,cv,ct,f] 0.0028 (9.3e-5) 1e-8 0.23 (0.0086)

[sc,ec,cv,ct,v] 0.0017 (9.3e-5) 1e-8 0.14 (0.0082)

Weinstein (1936) – Model II

[sc,ec,cv,ct,v,f] 6.38 (0.14) 0.088 (0.0027) 0.41 (0.018)

[ec,cv,ct,v,f] 7.88 (0.28) 0.085 (0.0030) 0.38 (0.020)

[sc,cv,ct,v,f] 6.22 (0.19) 0.091 (0.0029) 0.43 (0.021)

[sc,ec,ct,v,f] 6.49 (0.14) 0.094 (0.0030) 0.43 (0.019)

[sc,ec,cv,v,f] 6.45 (0.14) 0.096 (0.0031) 0.43 (0.020)

[sc,ec,cv,ct,f] 6.31 (0.14) 0.097 (0.0039) 0.45 (0.024)

[sc,ec,cv,ct,v] 6.42 (0.13) 0.038 (0.0022) 0.17 (0.011)

se: estimated standard error.
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