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Abstract: The Bragg resonance (BR) of a reflection coefficient resulting from the propagation of
monochronic waves over periodically submerged breakwater was studied using the non-hydrostatic
numerical model SWASH (Simulating WAves till SHore). Bragg resonance occurs when the incident
wavelength is approximately twice the structural length of a periodic structural breakwater according
to Bragg’s law and conditions. This study aimed to investigate the dynamics of Bragg resonance at
water depths of 0.2, 0.3, and 0.4 m as the number of periodically submerged breakwater and their
wavelengths changed. Specifically, this study focused on the Bragg resonance point of occurrence
at a ratio of two structural wavelengths to the incoming wavelengths (2S/L). Regular waves were
propagated over two periodically submerged breakwaters, with increasing structural wavelengths
from 1 to 2 m at 0.2 m intervals. The results showed that Bragg resonances rapidly increase in value as
the water depth decreases, but do not shift in their point of occurrence as the number of periodically
submerged breakwaters increases. However, the Bragg resonance shifts leftward in 2S/L as the
structural wavelength increases, with a slight increase in value at shallower water depths. More
incident wave energy is reflected when the number of periodically submerged breakwater increases
compared with when the structural wavelength of the periodically submerged breakwater increases.
The differences in the Bragg resonance values are associated with the changes in the number of
periodically submerged breakwater. Additionally, the shift in the point of occurrence was influenced
by both water depth and structural length. This causes the Resulted Bragg resonance to deviate from
the Expected Bragg resonance, which could be the reason why Bragg resonance does not mainly
occur at 2S/L = 1, as stated by Bragg’s law.

Keywords: Bragg resonance; reflection coefficient; monochronic waves; periodically submerged
breakwater; Bragg’s law; non-hydrostatic; numerical model

1. Introduction

The propagation of regular surface waves over an undulating seabed topography
results in different waveforms. The reflection of waves by the undulating seabed can
provide coastal engineers with a mechanism to protect the coastal area from wave attack by
introducing an artificial sandbar such as periodically submerged breakwater. The reflected
wave should be at its peak when the wavelength of the undulating seabed is approximately
twice that of the incident surface wavelength. This phenomenon is known as Bragg
resonance (BR). Understanding the phenomenon behind Bragg resonance is important
in understanding how new sandbars are formed from erodible beds [1–5], as well as in
developing techniques for introducing artificial bars for coastal protection [6–10].

Natural surface wave propagation over undulating seabeds and ripples was previ-
ously studied by Davies [11] and further expanded upon both theoretically and experi-
mentally [12]. Based on their studies and observational interest in using different wave
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properties and submerged structure configurations, Bragg resonance reflection, has previ-
ously been defined by different scholars. The reflection from multiple submerged sinusoidal
structures could be at its peak if the incident wavelength is approximately twice the struc-
tural length, which is known as Bragg resonance. It can be deduced that Zhang et al. [13]
ratio of the incident wavelength to the distance between structures for Bragg resonance re-
flection is 1:2. Additionally, Gao, Ma et al. [14] numerically investigated the effect of Bragg
resonance on harbor by propagating a regular long waves over series of sinusoidal bars
with different properties; their studies show that periodic bar topographies can effectively
mitigate harbor oscillations through Bragg resonant reflection, and the alleviating effect
is enhanced as the number or amplitude of bars increases, with an optimal normalized
wavelength that is usually less than 1.0 and fluctuates with the amplitude of bars.

Additionally, Bragg’s resonance reflection occurs twice when the bar distance is equal
to the wavelength of the incident waves [15]. Jeon and Cho [7] consider the concept of
Bragg reflection to occur when the wave number of the incident wave is approximately
double that of the corrugated bottom topography. This is the relationship between the
wave number of the incident wave and the wave number of the submerged structures.
Similarly, Liu, Zeng, and Huang [16] defined Bragg resonance reflection as occurring when
the wavelength of surface waves is approximately two times the wavelength of the seabed
undulations, which is similar to how Jeon and Cho [7] described it. However, using the
term wavelength instead of the wave number is the same, because the relationship between
the two properties is 2π.

Furthermore, various model setups have been used to study Bragg resonance reflec-
tion through one or a combination of laboratory experiments, numerical simulations, and
theoretical analyses. With respect to bar-shaped configurations, a trapezoidal shape-like
breakwater is considered more economical than other shapes. However, the rectangular bar
shape reflects more waves than the trapezoidal, although the trapezoidal covers less area,
making it preferable in practice [17,18]. Cho, Lee, and Kim [17] conducted experimental
studies on the strong reflections of permeable and impermeable submerged breakwaters
with trapezoidal and rectangular bar configurations. The results show a good relationship
between the experimental data and the eigenfunction expansion method for the imper-
meable breakwater, which has a high peak reflection compared to that of the permeable
breakwater; both increase as the number of breakwaters increases.

Zhang et al. [13] compared their numerical simulation data with experimental
measurements [17] to demonstrate how Bragg’s resonance reflection on a permeable
trapezoidal bar behaves. Their results were closely related, and their conclusion agreed
that an increase in the number of breakwaters significantly reflects the generated wave.
However, Zhang et al. [13] concluded that this significant impact on wave motion could
also be related to the wave period, which is in turn related to the wave number.

Liu, Luo, and Zeng [9] reported that the peak of Bragg resonance reflection depends
on the number of bars, relative bar height, and the relative bar width after showing the
influence of these three structural parameters on the Bragg resonance. Three closed-form
analytical solutions were used for three sets of submerged Bragg breakwaters: triangular,
rectified cosinusoidal, and idealized trapezoidal bar-shaped. The curve for the optimal
collocation was developed for the three sets of bars, relative bar height, and relative bar
width for the three breakwater types. Additionally, it was concluded that for long waves,
the peak Bragg resonance reflection does not precisely occur when the wavelength is twice
the distance between structures as obtained by Mile’s method (Bragg’s law), but there is a
slight positive deviation [16,19].

Additionally, a recent study has shown that the peak values of subharmonic Bragg
resonance reflections are not always lower than that of the primary Bragg resonance
reflection [16,19]. They also revealed that the downward shift in the peak phase of the
Bragg resonance reflection was limited to a few bars and that a further increase in the
number of bars did not change the peak phase and values.
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Several studies have made similar assumptions and drawn similar conclusions regard-
ing Bragg resonance reflection, albeit using different approaches. Many of Miles, theories
which have been a reference point for most theoretical analysis, have shown that Bragg res-
onance reflection phenomena occur when the wavelength of the propagated wave is twice
or approximately twice the distance between adjacent submersible breakwaters [16,19–22].
The phase and peak magnitude of Bragg resonance reflections are influenced by the break-
water configuration, including the bar number, bar shape, bar height, bar width, and bar
spacing. This study’s experimental and numerical simulation approach has shown good
agreement with the above findings [7,13,17,23].

Simulating WAves till SHore (SWASH) is a non-hydrostatic numerical model based
on the simulation of a non-linear shallow water equation [24]. It reduces the vertical
resolution by adequately computing the free surface flow through single-valuing the free
surface functions and implementing the fundamental conservation of mass and momentum.
Although it has computation efficiency similarities with Boussinesq models, it is less
complex in implementation, maintenance, and the improvement of its robustness, making
it suitable for numerical studies with limited timing [25].

Previous studies on Bragg resonance have often overlooked the importance of using
an incident wave with a specific breakwater configuration that complies with Bragg’s law.
This law composed that a regular wave must propagate over a regular wavelike breakwater
(sinusoidal) in order to observe Bragg resonance reflection, similar to the experimental
study by Heathershaw [26]. However, many studies have deviated from this condition
and chosen parameters without considering the fundamental principles of Bragg’s law. In
contrast, our study places great emphasis on Bragg’s law and the conditions surrounding
the Bragg resonance phenomenon in both wave properties and structural configurations.

In addition to using the correct breakwater configuration, our study also considers
a range of constraints and conditions that must be considered when studying Bragg
resonance reflection. These include parameters such as 2πa/L, 2πb/L, 2πb/S, ah, b/h,
aL2/4π2h3 � 1, as well as the wave parameters (incident wave amplitude a, wavelength
L, and water depth h) and structural parameter (structure amplitude b, and structure
wavelength S). By carefully controlling these variables, our study aims to provide a more
comprehensive understanding of the effects of periodically submerged breakwater numbers
and wavelengths on Bragg resonance at different water depths.

This current study is unique from previous studies in that it focuses specifically on
Bragg resonance studies and their differences from resonance and reflection coefficient
studies. While previous studies have investigated various aspects of wave structure inter-
action, our study is dedicated to understanding the underlying principles and conditions
that govern Bragg resonance reflection. By using a non-hydrostatic numerical model, we
are able to simulate and analyze the effects of different breakwater configurations on Bragg
resonance, and to make meaningful comparisons with previous studies. Overall, our
study provides a valuable contribution to the field of wave structure interaction and Bragg
resonance and sheds new light on this fascinating phenomenon.

2. Methodology
Governing Equations and Boundary Conditions

The governing equations guiding the SWASH model are the Navier–Stokes equations
under three-dimensional unsteady incompressible and Reynolds average conditions [24].
Non-linear shallow-water and non-hydrostatic pressure equations govern the model. The
governing equations for a two-dimensional vertical model under the Cartesian coordinate
system oxz can be expressed as

∂u
∂x

+
∂w
∂z

= 0 (1)

∂u
∂t

+
∂u2

∂x
+

∂uw
∂z

+
1
ρ0

∂q
∂x

+
1
ρ0

∂η

∂x
=

∂τxx

∂x
+

∂τxz

∂z
(2)
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∂w
∂t

+
∂uw
∂x

+
∂w2

∂z
+

1
ρ0

∂q
∂z

=
∂τxz

∂x
+

∂τzz

∂z
(3)

where u and w are the flow velocity in the x- and z-directions, respectively, η(x,t) is the
free-surface elevation, ρ0 indicates fluid density, t is time, g is the gravity acceleration, q is
the non-hydrostatic pressure, and τij represents the horizontal turbulent stresses.

The turbulent stresses may be written as:

τxx = 2νt
∂u
∂x

, τxz = νt
∂w
∂x

, τzx = νt
∂u
∂z

, τzz = 2νt
∂w
∂z

(4)

where vt is the horizontal eddy viscosity.
In this study, d represents the bottom, i.e., vertical depth along x-direction, and ac-

cording to the impenetrable condition, the boundary condition equation of the bottom and
wave surfaces of the model can be expressed as

w|z=η =
∂η

∂t
+ u

∂d
∂x

(5)

w|z=−d = −u
∂d
∂x

(6)

Using the above boundary condition equation and integrating Equation (1) over the
water depth h, the final free surface equation is given as follows:

∂η

∂t
+

∂

∂x

∫ η

−d
udz = 0 (7)

The pressure boundary condition is written as follows when the surface tension is
ignored at the free surface.

q|z=η = 0 (8)

SWASH model generates waves on the open boundary of the computational domain
by setting the velocity change at the boundary. In order to simulate an incident wave
without reflection occurring at the boundary, the weak reflection boundary condition in the
SWASH model was written as

ub = ±
√

h
g
(2ηb − η) (9)

Assuming that both the incident wave and the outgoing wave are perpendicular to the
boundary, this weak reflection boundary condition has proved its efficiency in simulating
shallow-water waves. The positive and negative signs depend on the boundary position in
the equation and ub is the velocity of the incident wave and ηb is the free-surface elevation
at the boundary. In addition, SWASH adopts the Sommerfeld radiation boundary condition
to absorb the waves at the boundary so that no reflection occurs when the waves pass the
boundary. Assuming that the boundary is parallel to the y-axis, the Sommerfeld radiation
boundary condition is expressed as

∂u
∂t

+
√

gh
∂u
∂x

= 0 (10)

At the same time, the radiation condition can be used together with the sponge layer
boundary condition, and the sponge layer boundary condition formula is

µ =


1
4

(
tanh

[
sin(π

(
4
∼
x−1)2/2

)
1−
(

4
∼
x−1

)
]
+ 1

)
, 0 <

∼
x < 1

2

1
4

(
tanh

[
sin(π

(
3−4

∼
x)2/2

)
1−
(

3−4
∼
x
)

]
+ 1

)
, 1

2 <
∼
x < 1

(11)
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where
∼
x = (x− l0)/l, l represents the length of the sponge layer starting from x = l0, and

µ is the linear damping coefficient, which needs to be added to the momentum equation of
u, and can be expressed as

∂u
∂t

+
∂u2

∂x
+

∂uw
∂z

+
1
ρ0

∂p
∂x

+
1
ρ0

∂η

∂x
+ µu =

∂τxx

∂x
+

∂τxz

∂z
(12)

3. Model Setup and Validation

As shown in Figure 1, the figure illustrated the model is designed with a computational
wave flume measuring 60 m in length, consisting of a 10 m damping zone and a 50 m
working area. The wave propagated through this flume are intermediate regular waves
with an amplitude a of 0.02 m, and Table 1 lists the variation in wave parameters used in
this study. The number N and the structural wavelength S of the periodically submerged
breakwater differ depending on the case study. The Goda and Suzuki [27] methods were
used in calculating the reflection coefficient Kr from a two-point reading of the surface
wave elevation.
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Figure 1. Schematic numerical model setup for regular wave over periodically submerged breakwater
(N = 2).

Table 1. Wave parameters at different water depths.

h Range of T Range of L Range of kh

0.2 m 0.86 s ≤ T ≤ 3.60 s 1 m ≤ L ≤ 5 m 0.251327 ≤ kh ≤ 1.256637
0.3 m 0.81 s ≤ T ≤ 2.98 s 1 m ≤ L ≤ 5 m 0.376991 ≤ kh ≤ 1.884956
0.4 m 0.80 s ≤ T ≤ 2.62 s 1 m ≤ L ≤ 5 m 0.502655 ≤ kh ≤ 2.513274

The experiment conducted by Davies and Heathershaw [12] and the analytical solution
by Liu, Li, and Lin [3] using the modified mild-slope equation are similar to the cases in
the present study using a numerical method, the data from both were used to validate the
present numerical model. The experiment was carried out in a 45.72× 0.91× 0.91 m wave
tank with fixed sinusoidal bars of 0.05 m amplitude b, and 1 m structural wavelength S.
Monochromatic sinusoidal waves generated ranges in wave period of 0.7802 ≤ T ≤ 3.2629
with a time steps of 0.02 s for N = 2 and 0.01 s for N = 4 resulting in 0.2454 ≤ kh ≤ 1.2271
at 0.156 m water depth h. The results in Figure 2 show good agreement in the present
numerical model, experiment, and analytical solution data.
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4. Results and Discussion
4.1. Bragg Resonance on Different Structural Wavelength

As previously discussed in the introduction, Bragg resonance is the peak point of the
prominent resonance of the reflection coefficient. This subsection explores the relationship
between periodically submerged breakwater of different wavelengths and at different
water depths. First, we examine the influence of the ripple structural wavelength S on
the reflection coefficient Kr. The study considers mean water depths of h = 0.2 m, 0.3 m,
and 0.4 m, with S = 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0 and b = 0.05 m as the wavelengths and
amplitude of the periodically submerged breakwater, respectively; N = 2 is the number of
the periodically submerged breakwater.

The reflection coefficient Kr results are presented in Figures 3–5; three phenomena
were noticed around the resonance of the reflection coefficients Kr: length, positioning,
and number of resonances. As the structural wavelength S increases from 1 to 2 m, the
bandwidth becomes narrower, with a leftward shift in 2S/L from 0.96 to 1.06 at 0.2 m, 0.98
to 1.02 at 0.3 m, and 0.92 to 1.02 at 0.4 m water depth, and frequent occurrence of the
resonance from approximately 2 to 6. More waves are reflected at different wave properties
when the periodically submerged breakwater have a shorter structural wavelength, owing
to their wider resonance in the reflection coefficient. It is not surprising that the magnitude
of their reflection coefficients Kr decreases as the mean water depth increases from 0.2 to
0.4 m; however, this broadens the resonance of the reflection coefficient.

The reflection coefficient is the standard way to report the Bragg resonance phe-
nomenon, so we zoomed in to the peak of the first resonance of the reflection coeffi-
cient to provide greater detail of the study of Bragg resonance with different structural
wavelengths S. Bragg resonance is known to occur approximately when the incident
wavelength is twice the structural wavelength 2S/L ≈ 1. The deviation of Bragg res-
onance around this point at different structural wavelengths S at 0.2 m, 0.3 m, and
0.4 m water depth are shown in Figures 6–8, respectively. The reflection coefficient Kr
around the expected BR at 2S/L = 1 (Table 2) becomes more precise as the structural
wavelength S decreases and increases with water depth h. This is another way to show
that periodically submerged breakwater with shorter structural wavelengths is capable
of having a high reflection coefficient Kr at different incident wavelengths L. However,
the slight deviation of the reflection coefficient Kr for the expected BR and the resulted
BR in Figure 4 as the structural wavelength S varies, is a result of the shallow water,
0.2 m in depth, as the variation becomes minimal as the water depth increases to 0.4 m
(Figures 7 and 8). The mutual trend of both the expected BR and the resulted BR shows
an increase in the Bragg resonance as the structural wavelength S increases.
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Figure 3. Reflection coefficient of 2 periodically submerged breakwater with different structural
wavelengths at 0.2 m water depth. (a) S = 1.0 m (b) S = 1.2 m (c) S = 1.4 m (d) S = 1.6 m (e) S = 1.8 m
(f) S = 2.0 m.

Figure 9 shows the relation of the expected BR and resulted BR in different water
depth h at different structural wavelengths S. Bragg resonance decreases as the water depth
h increases from 0.2 to 0.4 m as the structural amplitude b = 0.05 m is constant. Similarly,
as shown in Figure 10, the differences in the reflection coefficient at a single structural
length with different water depths are resonance peaks. The reduction in the water column
between the structure and water surface caused the Bragg resonance to increase as the
impact of the structure on the incoming wave increased as the water depth decreased.
Additionally, an increase in structural wavelength S from 1 to 2 m with a slight increase in
the Bragg resonance of 0.300 to 0.328 at 0.2 m, 0.158 to 0.259 at 0.3 m, and 0.087 to 0.170
at 0.4 m water depth; however, its inverse relationship with the resonance’s bandwidth is
more pronounced. The bandwidth, leftward shift, and frequent occurrence of resonance
are similar at different water depths h for each structural wavelength S.

4.2. Bragg Resonance on Multiple Periodically Submerged Breakwater

The multiple periodically submerged breakwaters range from 2 to 5, with each ripple
having a 1 m structural wavelength S and 0.05 m ripple amplitude. The influence of
multiple periodically submerged breakwater on the reflection coefficient Kr was studied at
mean water depth of 0.2 m, 0.3 m, and 0.4 m.
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The length, positioning, and resonance numbers of reflection coefficient Kr are shown
in Figures 11–13 show that as the number of ripples increases from two to five ripples,
the prominent resonance of the reflection coefficient Kr; reduces in bandwidth length and
increases in their peak values of 0.295 to 0.631 at 0.2 m, 0.157 to 0.370 at 0.3 m, and 0.087
to 0.205 at 0.4 m water depth. The positioning of the resonance is the same at each water
depth, with their peaks occurring at 0.616, 0.924, and 1.232 kh in 0.2, 0.3, and 0.4 m mean
water depth, respectively. Although the resonance bandwidth decreases as the number of
ripples increases, more resonance occurs around the prominent resonance of the reflection
coefficient, Kr.
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and 0.4 m, respectively. The consistency in the deviation of the resulted BR from the expected
BR as the number of ripples increases has also shown that at a single water depth, the point
at which Bragg resonance occurs at approximately 2S/L is constant at a finite number of
periodically submerged breakwater; in this case, it occurs at 2S/L = 0.98. Furthermore, as
the mean water depth h increases from 0.2 to 0.4 m, the deviation of the resulted BR from
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the expected BR becomes more significant, which is also evidence of a shift in the Bragg
resonance when there is a change in water depth. In addition, the increase in Bragg resonance
as the number of ripples increases results from more structures being introduced, leading to
more area being covered by the structures, and more waves being reflected.
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wavelengths at 0.4 m water depth. (a) S = 1.0 m (b) S = 1.2 m (c) S = 1.4 m (d) S = 1.6 m (e) S = 1.8 m
(f) S = 2.0 m.

The reflection coefficient Kr values of the expected BR and resulted BR at different
mean water depths of 0.2, 0.3, and 0.4 m were compared at a constant 1.0 m structural
wavelengths S, as shown in Figure 17. The results show that the influence of the change in
water depth on the reflection coefficient Kr values of the expected BR and the resulted BR is
negligible; however, as the number of ripples increases from 2 to 5, the difference in their
values becomes significant. These differences can also be observed in Figures 14–16. as
the number of periodically submerged breakwater increases, the precision of the reflection
coefficient Kr values around the expected BR increases.
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Table 2. Data sampling of the expected BR and ±1 in 2S/L.
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(f) S = 2.0 m.

Figure 18 shows the similarity in the reflection coefficient Kr curve of the multiple
ripples at different water depths; bandwidth, position, and number of resonances are
similar at each periodically submerged breakwater number. However, as the ratio of the
structural amplitude b to the mean water depth h increases from 0.125 to 0.250, the peak
of the resonance of the reflection coefficient Kr increases at each number of periodically
submerged breakwater with a slight shift to the right, and more waves are reflected as the
number of ripples increases.
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Figure 10. Reflection coefficient of 2 periodically submerged breakwaters along different structural
wavelength at different water depths: (a) S = 1.0 m (b) S = 1.2 m (c) S = 1.4 m (d) S = 1.6 m
(e) S = 1.8 m (f) S = 2.0 m.
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Figure 18. Reflection coefficient of multiple periodically submerged breakwaters with 1.0 m wave-
length at different water depths. (a) N = 2 (b) N = 3 (c) N = 4 (d) N = 5.

5. Conclusions

A detailed study on Bragg resonance was carried out using the SWASH model at
0.2, 0.3, and 0.4 m water depths, 1 to 5 m structural lengths, and 2 to 4 periodically
submerged breakwater. The model has previously been numerically used in similar cases
as in this study and was validated using an experimental, theoretical, and numerical results
from previous studies. Using this numerical model, the influence of multiple ripple beds
and their length on the Bragg resonance, the peak point of the prominent resonance of
the reflection coefficient, was studied. The following conclusions were drawn from a
comparison of the results.

The resonances of the reflection coefficient become higher and narrower as the struc-
tural wavelength S and the number of ripples beds N increase from 1 to 5 m and 2 to 4,
respectively. The wave energy reflected by an increase in the number of ripples increases,
unlike the increasing structural wavelength, which subsequently reduces the wave energy.

The values of Bragg resonances slightly increase as the structural wavelength S in-
creases from 1 to 2 m, with a leftward shift in 2S/L at various water depths. However,
Bragg resonances rapidly increase as the number of periodically submerged breakwaters
increases, with no shift in its point of occurrence at 2S/L = 0.98. The shift in the point of
occurrence of Bragg resonance is affected by changes in water depth, but not by changes in
its value.

The dispersion of the reflection coefficient Kr values of the resulted BR from the
expected BR is a phenomenon that shows why Bragg resonance will not occur mainly at
2S/L = 1. The differences in the values are associated with the changes in the number of
periodically submerged breakwater, and the shift in the point of occurrence is influenced
by the water depth and structural length.sa.
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