KaZUhiro Konno

Non-hyperelliptic fibrations of small genus and certain irregular canonical surfaces

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4 e série, tome 20, no 4 (1993), p. 575-595

http://www.numdam.org/item?id=ASNSP_1993_4_20_4_575_0

L'accès aux archives de la revue «Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Non-hyperelliptic Fibrations of Small Genus and Certain Irregular Canonical Surfaces

KAZUHIRO KONNO

Introduction

Let S be a minimal surface of general type defined over \mathbb{C}. We call S a canonical surface if the rational map associated with $|K|$ is birational onto its image. Assume that S is a canonical surface with a non-linear pencil, and let $f: S \rightarrow B$ be the corresponding fibration. Since S is canonical, any general fibre of f is a non-hyperelliptic curve. A natural question is then: what is the genus of a general fibre? This leads us to studying the slope of non-hyperelliptic fibrations. For a hyperelliptic fibration of genus $g, 4-4 / g$ is the best possible lower bound of the slope by $[\mathrm{P}]$ and $[\mathrm{H} 1]$. Later, Xiao $[\mathrm{X}]$ showed that the slope is not less than $4-4 / g$ even when non-hyperelliptic. But, for non-hyperelliptic fibrations, it may not be the best bound. In fact, we showed in [K2] that the slope is not less than 3 when $g=3$ (see also [H2] and [R2]), and Xiao himself conjectured that the slope is strictly greater than $4-4 / g$ for non-hyperelliptic fibrations ([X, Conjecture 1]).

At present, we have two methods for studying the slope. The first is Xiao's method $[\mathrm{X}]$ of relative projections and the second is counting relative hyperquadrics which is still at an experimental stage (see [R2] and [K2]). Combining these two, we show that the slope is not less than $24 / 7$ for $g=4$ and give a bound $40 / 11$ for $g=5$ (Theorems 4.1 and 5.1). We also answer affirmatively to Xiao's conjecture referred above (Proposition 2.6).

As an application, we show in Section 6 that, for an irregular canonical surface S (with a non-linear pencil), the canonical image cannot be cut out by quadrics when $K^{2} \leq(10 / 3) \chi\left(\mathcal{O}_{S}\right)$. For irregular surfaces, Reid's conjecture [R1, p. 541] may be shown along the same line if we can sufficiently develop the second method.

This paper was written during a research visit to Pisa in 1992. The author would like to thank, among others, Professor Catanese for his hospitality. After writing the manuscript, the author received a preprint [C] in which our Theorem 4.1 is shown independently.

1. - Relative hyperquadrics

Let B be a non-singular projective curve of genus b, and let \mathcal{E} be a locally free sheaf on B. We put $\mu(\mathcal{E})=\operatorname{deg}(\mathcal{E}) / \operatorname{rk}(\mathcal{E})$. According to $[\mathrm{HN}], \mathcal{E}$ has a uniquely determined filtration by its sub-bundles \mathcal{E}_{i}

$$
0=\mathcal{E}_{0} \subset \mathcal{E}_{1} \subset \cdots \subset \mathcal{E}_{\ell}=\mathcal{E}
$$

which satisfies
(i) $\mathcal{E}_{i} / \mathcal{E}_{i-1}$ is semi-stable for $1 \leq i \leq \ell$,
(ii) $\mu\left(\mathcal{E}_{i} / \mathcal{E}_{i-1}\right)>\mu\left(\mathcal{E}_{i+1} / \mathcal{E}_{i}\right)$ for $1 \leq i \leq \ell-1$.

As usual, we call such a filtration the Harder-Narashimhan filtration of \mathcal{E}. Put $\mu_{i}=\mu\left(\mathcal{E}_{i} / \mathcal{E}_{i-1}\right)$ and $r_{i}=\operatorname{rk}\left(\mathcal{E}_{i}\right)$. Then

$$
\operatorname{deg}(\mathcal{E})=\sum_{i=1}^{\ell-1} r_{i}\left(\mu_{i}-\mu_{i+1}\right)+r_{\ell} \mu_{\ell} .
$$

Let $\pi: \mathbb{P}(\mathcal{E}) \rightarrow B$ be the projective bundle associated with \mathcal{E}. We denote by $T_{\mathcal{E}}$ and F a tautological divisor such that $\pi_{*} O\left(T_{\mathcal{E}}\right)=\mathcal{E}$ and a fibre of π, respectively. Note that for any \mathbb{R}-divisor D on $\mathbb{P}(\mathcal{E})$, there are real numbers x, y satisfying $D \equiv x T_{\mathcal{\varepsilon}}+y F$, where the symbol \equiv means numerical equivalence.

The following can be found in [N].
Lemma 1.1. An \mathbb{R}-divisor which is numerically equivalent to $T_{\varepsilon}-x F$ is pseudo-effective if and only if $x \leq \mu_{1}$. It is nef if and only if $x \leq \mu_{\ell}$.

Assume that $\ell \geq 2$. For $1 \leq i \leq \ell-1$ let

$$
\rho_{i}: W_{i} \rightarrow \mathbb{P}(\mathcal{E})
$$

denote the blowing-up along $B_{i}=\mathbb{P}\left(\mathcal{E} / \mathcal{E}_{i}\right)$. Then W_{i} has a projective space bundle structure $\pi_{i}: W_{i} \rightarrow \mathbb{P}\left(\mathcal{E}_{i}\right)$. We put $\mathbb{E}_{i}=\rho_{i}^{-1}\left(B_{i}\right)$. Then $\pi_{i}^{*} T_{\mathcal{E}_{1}}$ is linearly equivalent to $\rho_{i}^{*} T_{\mathcal{E}}-\mathbb{E}_{i}$. Furthermore, \mathbb{E}_{i} is isomorphic to the fibre product $\mathbb{P}\left(\mathcal{E}_{i}\right) \times_{B} B_{i}$. Let $p_{1}: \mathbb{E}_{i} \rightarrow \mathbb{P}\left(\mathcal{E}_{i}\right)$ be the projection map onto the first factor. Then $p_{1}=\pi_{i} \mid \mathbb{E}_{i}$. Similarly, if $p_{2}: \mathbb{E}_{i} \rightarrow B_{i}$ denotes the projection to the second factor, then $p_{2}=\rho_{i} \mid \mathbb{E}_{1}$. In particular, $\left.\left[-\mathbb{E}_{i}\right]\right|_{\mathbb{E}_{i}}$ is given by $p_{1}^{*} T_{\mathcal{E}_{\mathrm{i}}}-p_{2}^{*} T_{\mathcal{E} / \mathcal{E}_{\mathrm{i}}}$.

The following is essentially the same as [N , Claim (4.8)].
Lemma 1.2. Assume that an \mathbb{R}-divisor $Q \equiv p_{1}^{*} T_{\varepsilon_{\mathrm{i}}}+p_{2}^{*} T_{\varepsilon / \varepsilon_{i}}-x F$ on \mathbb{E}_{i} is pseudo-effective. Then $x \leq \mu_{1}+\mu_{\ell}+\operatorname{deg}\left(\mathcal{E}_{\ell-1} / \mathcal{E}_{i}\right)$.

Proof. Since $T_{\varepsilon / \varepsilon_{i}}-\mu_{\ell} F$ is nef on $B_{i}, H_{y}=T_{\varepsilon / \varepsilon_{i}}-\left(\mu_{\ell}-y\right) F$ is ample for any positive rational number y. Let m be a sufficiently large positive integer such that $m H_{y}$ is a very ample \mathbb{Z}-divisor, and choose $s-1$ general members $H_{j} \in\left|m H_{y}\right|$ so that $C=\cap_{j} H_{j}$ is an irreducible non-singular
curve, where $s=\operatorname{rk}\left(\mathcal{E} / \mathcal{E}_{i}\right)$. Let $\tau: C \rightarrow B$ denote the natural map. Then $\mathbb{P}\left(\mathcal{E}_{i}\right) \times_{B} C \simeq \mathbb{P}\left(\tau^{*} \mathcal{E}_{i}\right)$. Since the restriction of Q to this space is numerically equivalent to

$$
T_{r^{*} \mathcal{E}_{i}}-\mu_{1}\left(\tau^{*} \mathcal{E}_{i}\right) F_{C}+\left\{\left(T_{\mathcal{E} / \varepsilon_{i}}+\left(\mu_{1}-x\right) F\right) \cdot C\right\} F_{C},
$$

where F_{C} denotes a fibre of $\mathbb{P}\left(\tau^{*} \mathcal{E}_{i}\right) \rightarrow C$, and since it must be pseudo-effective, it follows from Lemma 1.1 that $\left(T_{\mathcal{E} / \mathcal{E}_{1}}+\left(\mu_{1}-x\right) F\right) \cdot C \geq 0$, that is, $\left(T_{\varepsilon / \varepsilon_{i}}+\left(\mu_{1}-x\right) F\right) H_{y}^{s-1} \geq 0$. Letting $y \downarrow 0$, we get

$$
x \leq \operatorname{deg}\left(\mathcal{E} / \mathcal{E}_{i}\right)-s \mu_{\ell}+\mu_{1}+\mu_{\ell}=\operatorname{deg}\left(\mathcal{E}_{\ell-1} / \mathcal{E}_{i}\right)+\mu_{1}+\mu_{\ell} .
$$

An effective divisor Q on $\mathbb{P}(\mathcal{E})$ is called a relative hyperquadric if it is numerically equivalent to $2 T_{\mathcal{E}}-x F$ for some $x \in \mathbb{Z}$. It is said to be of rank r, $\operatorname{rk}(Q)=r$, if it induces a hyperquadric of rank r on a generic fibre of $\mathbb{P}(\mathcal{E})$.

LEMMA 1.3. Assume that $\ell \geq 2$ and consider a relative hyperquadric $Q \equiv 2 T_{\mathcal{E}}-x F$ on $\mathbb{P}(\mathcal{E})$. If Q is not singular along $B_{\ell-1}$, then $x \leq \mu_{1}+\mu_{\ell}$.

Proof. We may assume that $x>2 \mu_{\ell}$. Then, by Lemma $1.1, Q$ vanishes on $B_{\ell-1}$, since $\left.Q\right|_{B_{\ell-1}} \equiv 2 T_{\mathcal{E} / \varepsilon_{\ell-1}}-x F$. However, since Q is not singular along $B_{\ell-1}$, it cannot vanish twice along $B_{\ell-1}$. Let \tilde{Q} be the proper transform of Q by $\rho_{\ell-1}$. Then

$$
\tilde{Q} \equiv \rho_{\ell-1}^{*}\left(2 T_{\mathcal{E}}-x F\right)-\mathbb{E}_{\ell-1}=\rho_{\ell-1}^{*} T_{\mathcal{E}}+\pi_{\ell-1}^{*} T_{\mathcal{E}_{\ell-1}}-x F
$$

Hence $\left.\tilde{Q}\right|_{\mathbb{E}_{\ell-1}} \equiv p_{1}^{*} T_{\varepsilon_{\ell-1}}+p_{2}^{*} T_{\varepsilon / \varepsilon_{\ell-1}}-x F$. Since it must be effective, we get $x \leq \mu_{1}+\mu_{\ell}$ by Lemma 1.2.

Lemma 1.4. Let $Q \equiv 2 T_{\mathcal{E}}-x F$ be a relative hyperquadric on $\mathbb{P}(\mathcal{E})$. If $x>\mu_{1}+\mu_{i}$, then $\mathrm{rk}(Q) \leq r_{i-1}$ and Q is singular along B_{i-1}.

Proof. Since $x>\mu_{1}+\mu_{\ell}$, it follows from Lemma 1.3 that Q is singular along $B_{\ell-1}$. Let \tilde{Q} be the proper transform of Q by $\rho_{\ell-1}$. Then

$$
\tilde{Q} \equiv \rho_{\ell-1}^{*}\left(2 T_{\mathcal{E}}-x F\right)-2 \mathbb{E}_{\ell-1}=\pi_{\ell-1}^{*}\left(2 T_{\mathcal{E}_{\ell-1}}-x F\right) .
$$

Hence there exists a relative hyperquadric $Q_{\ell-1} \equiv 2 T_{\mathcal{E}_{\ell-1}}-x F$ on $\mathbb{P}\left(\mathcal{E}_{\ell-1}\right)$ satisfying $\operatorname{rk}(Q)=\operatorname{rk}\left(Q_{\ell-1}\right) \leq r_{\ell-1}$. Now, the assertion can be shown by induction.

Lemma 1.5. Let $Q \equiv 2 T_{\mathcal{E}}-x F$ be a relative hyperquadric on $\mathbb{P}(\mathcal{E})$. If $\operatorname{rk}(Q) \geq 3$, then the following hold.
(1) If $r_{1} \geq 3$, then $x \leq 2 \mu_{1}$.
(2) If $r_{1}=2$, then $x \leq \mu_{1}+\mu_{2}$.
(3) If $r_{1}=1$ and $r_{2} \geq 3$, then $x \leq 2 \mu_{2}$.
(4) If $r_{1}=1$ and $r_{2}=2$, then $x \leq \min \left\{2 \mu_{2}, \mu_{1}+\mu_{3}\right\}$.

PROOF. (1) follows from Lemma 1.1 applied to a \mathbb{Q}-divisor $Q / 2$. We only have to show that $x \leq 2 \mu_{2}$ in (3) and (4), since the other assertions follow from Lemma 1.4. Assume that $r_{1}=1$. Then B_{1} is a relative hyperplane on $\mathbb{P}(\mathcal{E})$. Since $\operatorname{rk}(Q) \geq 3$, we see that Q cannot vanish identically on B_{1}. Note that $0 \subset \mathcal{E}_{2} / \mathcal{E}_{1} \subset \cdots \subset \mathcal{E} / \mathcal{E}_{1}$ is the Harder-Narashimhan filtration of $\mathcal{E} / \mathcal{E}_{1}$. Since $\left.Q\right|_{B_{1}} \equiv 2 T_{\mathcal{E} / \mathcal{\varepsilon}_{1}}-x F$, we get $x \leq 2 \mu_{2}$ by Lemma 1.1.

Lemma 1.6. Let $Q \equiv 2 T_{\mathcal{E}}-x F$ be a relative hyperquadric on $\mathbb{P}(\mathcal{E})$. If $\operatorname{rk}(Q) \geq 4$, then the following hold.
(1) If $r_{1} \geq 4$, then $x \leq 2 \mu_{1}$.
(2) If $r_{1}=3$, then $x \leq \mu_{1}+\mu_{2}$.
(3) If $r_{1}=2$ and $r_{2} \geq 4$, then $x \leq \mu_{1}+\mu_{2}$.
(4) If $r_{1}=2$ and $r_{2}=3$, then $x \leq \mu_{1}+\mu_{3}$.
(5) If $r_{1}=1$ and $r_{2} \geq 4$, then $x \leq 2 \mu_{2}$.
(6) If $r_{1}=1$ and $r_{2}=3$, then $x \leq \min \left\{2 \mu_{2}, \mu_{1}+\mu_{3}\right\}$.
(7) If $r_{1}=1, r_{2}=2$ and $r_{3} \geq 4$, then $x \leq \mu_{2}+\mu_{3}$.
(8) If $r_{1}=1, r_{2}=2$ and $r_{3}=3$, then $x \leq \min \left\{\mu_{2}+\mu_{3}, \mu_{1}+\mu_{4}\right\}$.

Proof. We show that $x \leq \mu_{2}+\mu_{3}$ in (7) and (8). Assume by contradiction that $x>\mu_{2}+\mu_{3}$. Since $r_{1}=1, B_{1}$ is a relative hyperplane on $\mathbb{P}(\mathcal{E})$. We have $\left.Q\right|_{B_{1}} \equiv 2 T_{\mathcal{E} / \mathcal{E}_{1}}-x F$. Since $x>\mu_{2}+\mu_{3}$, it follows from Lemma 1.4 that $\left.Q\right|_{B_{1}}$ is singular along B_{2} which is a relative hyperplane of B_{1}. This implies that, on $F \simeq \mathbb{P}^{r-1}, Q$ is defined by $X_{1} L\left(X_{1}, \ldots, X_{r}\right)+c X_{2}^{2}=0$ with a system of homogeneous coordinates $\left(X_{1}, \ldots, X_{r}\right)$ on F satisfying $\left.B_{1}\right|_{F}=\left(X_{1}\right)$, where L is a linear form and c is a constant. In particular, Q cannot be of rank ≥ 4. Hence $x \leq \mu_{2}+\mu_{3}$.

The other assertions can be shown similarly as in Lemma 1.5.
REMARK 1.7. Put $\nu_{j}=\mu_{i}$ when $r_{i-1}<j \leq r_{i}(1 \leq i \leq \ell)$. Then $\nu_{1} \geq \cdots \geq \nu_{r}, r=\operatorname{rk}(\mathcal{E})$, and $\operatorname{deg}(\mathcal{E})=\sum \nu_{j}$. With this notation, the conditions in Lemma 1.5 (resp. Lemma 1.6) can be written as $x \leq \min \left\{2 \nu_{2}, \nu_{1}+\nu_{3}\right\}$ (resp. $x \leq \min \left\{\nu_{2}+\nu_{3}, \nu_{1}+\nu_{4}\right\}$).

2. - Some inequalities

Let $f: S \rightarrow B$ be a surjective holomorphic map of a non-singular projective surface S onto a non-singular projective curve B with connected fibres. We always assume that f is relatively minimal, that is, no fibre of f contains a (-1)-curve. If a general fibre of f is a (non-)hyperelliptic curve of genus $g \geq 2$, we call f a (non-)hyperelliptic fibration of genus g. Let $K_{S / B}$ be the relative
canonical bundle. It is nef by Arakelov's theorem [B].
Lemma 2.1. Let $f: S \rightarrow B$ be a relatively minimal fibration of genus $g \geq 2$, and put $b=g(B)$. Then $f_{*} \omega_{S / B}$ is a locally free sheaf of rank g and degree $\Delta(f):=\chi\left(O_{S}\right)-(g-1)(b-1)$. Furthermore, the following hold.
(1) $\Delta(f)>0$ unless f is locally trivial.
(2) Every locally free quotient of $f_{*} \omega_{S / B}$ has nonnegative degree.

Proof. $\operatorname{rk}\left(f_{*} \omega_{S / B}\right)$ equals the genus of a fibre. The assertion about the degree follows from the Riemann-Roch theorem (on S and B) and the Leray spectral sequence, since we have $R^{1} f_{*} \omega_{S / B}=f_{*} O_{S}$ by the relative duality theorem. (1) and (2) can be found in $[B]$ and $[F]$, respectively.

When f is not locally trivial, we put $\lambda(f)=K_{S / B}^{2} / \Delta(f)$ and call it the slope of f.

NOTATION 2.2. Let $f: S \rightarrow B$ be a relatively minimal fibration of genus $g \geq 2$. Put $\mathcal{E}=f_{*} \omega_{S / B}$ and let $0 \subset \mathcal{E}_{1} \subset \cdots \subset \mathcal{E}_{\ell}=\mathcal{E}$ be its Harder-Narashimhan filtration. The natural sheaf homomorphism $f^{*} \mathcal{E} \rightarrow \omega_{S / B}$ induces a rational map $h: S \rightarrow \mathbb{P}(\mathcal{E})$. The image $V=h(S)$ is called the relative canonical image. To be more precise, let \AA be a sufficiently ample divisor on B, and put $L(A)=K_{S / B}+f^{*} \mathcal{A}$. Let $\sigma: \tilde{S} \rightarrow S$ be a composition of blowing-ups such that the variable part $|M(\mathcal{A})|$ of $\left|\sigma^{*} L(\mathcal{A})\right|$ is free from base points. We assume that σ is the shortest among those with such a property. Let Z be the fixed part of $\left|\sigma^{*} L(\mathcal{A})\right|$ and let E be an exceptional divisor with $\tilde{K}=\sigma^{*} K+[E]$, where \tilde{K} is the canonical bundle of \tilde{S}. Since A is sufficiently ample, we can assume that Z has no horizontal components. In particular, we see that $M(\mathcal{A})$ induces a canonical divisor on a general fibre D of the induced fibration $\tilde{f}: \tilde{S} \rightarrow B$. The holomorphic map associated with $M(\mathcal{A})$ factors thorugh $\mathbb{P}(\mathcal{E})$ and we have a holomorphic map $\tilde{h}: \tilde{S} \rightarrow \mathbb{P}(\mathcal{E})$ over h which satisfies $M(\mathcal{A})=\tilde{h}^{*}\left(T_{\mathcal{E}}+\pi^{*} \mathcal{A}\right)$. Then $V=\tilde{h}(\tilde{S})$. When f is non-hyperelliptic, V is birational to S and any general fibre of $V \rightarrow B$ can be identified with a canonical curve of genus g.

Put $M=\tilde{h}^{*} T_{\varepsilon}$. Since $M-\mu_{\ell} D$ is nef by Lemma 1.1 and since $\mu_{\ell} \geq 0$ by Lemma 2.1, (2), we see that M is nef.

We have (at least) two methods for studying the slope of non-hyperelliptic fibrations, which we recall below.

(I) Relative projections ([$X]$)

Here we recall Xiao's method. For each $1 \leq i \leq \ell$, the natural sheaf homomorphism $f^{*} \mathcal{E}_{i} \subset f^{*} f_{*} \omega_{S / B} \rightarrow \omega_{S / B}$ induces a rational map $h_{i}: S \rightarrow \mathbb{P}\left(\mathcal{E}_{i}\right)$ over B. We let $\sigma_{i}: S_{i} \rightarrow S$ be a composition of blowing-ups which eliminates the indeterminacy of h_{i}. We choose a non-singular model S^{*} which dominates all the S_{i} 's, and we denote by $\rho: S^{*} \rightarrow S$ the natural map. Let M_{i} be the pull-back to S^{*} of $T_{\varepsilon_{i}}$. Let D^{*} be a general fibre of the induced fibration
$S^{*} \rightarrow B$ and put $N_{i}=M_{i}-\mu_{i} D^{*}, Z_{i}=\rho^{*} K_{S / B}-M_{i}$. Then Z_{i} is effective and, by Lemma $1.1, N_{i}$ is a nef \mathbb{Q}-divisor. Note that, modulo exceptional curves, Z_{ℓ} corresponds to Z. In particular, we see that $Z_{\ell} D^{*}=0$. Note also that $Z_{i}-Z_{\ell}$ corresponds to the inverse image of the center B_{i} of a relative projection $\mathbb{P}(\mathcal{E}) \rightarrow \mathbb{P}\left(\mathcal{E}_{i}\right)$.

Put $d_{i}=N_{i} D^{*}(1 \leq i \leq \ell)$. Note that $d_{\ell}=2 g-2$. For $1 \leq i \leq \ell-1$, d_{i} is the degree of an $r_{i}-1$ dimensional linear system $\mid M_{i} \|_{D^{*}}$ and hence Clifford's theorem shows that $d_{i} \geq 2 r_{i}-1$ unless $\left(d_{1}, r_{1}\right)=(0,1)$ when f is non-hyperelliptic. We recall two inequalities which follow from [X, Lemma 2].

$$
\begin{align*}
K_{S / B}^{2} & \geq \sum_{i=1}^{\ell-1}\left(d_{i}+d_{i+1}\right)\left(\mu_{i}-\mu_{i+1}\right)+4(g-1) \mu_{\ell} \tag{2.1}\\
K_{S / B}^{2} & \geq\left(d_{1}+2 g-2\right)\left(\mu_{1}-\mu_{\ell}\right)+4(g-1) \mu_{\ell} \tag{2.2}
\end{align*}
$$

(II) Counting relative hyperquadrics

Let $f: S \rightarrow B$ be a non-hyperelliptic fibration. We can assume that \mathcal{A} is taken so that the holomorphic map associated with $\left|T_{\mathcal{E}}+\pi^{*} \mathcal{A}\right|$ gives a quadratically normal embedding of $\mathbb{P}(\mathcal{E})$. Then we have

$$
\begin{equation*}
h^{0}(2 M(\mathcal{A})) \geq h^{0}\left(2 T_{\mathcal{E}}+2 \pi^{*} \mathcal{A}\right)-h^{0}\left(I_{V}\left(2 T_{\mathcal{E}}+2 \pi^{*} \mathcal{A}\right)\right) \tag{2.3}
\end{equation*}
$$

where I_{V} denotes the ideal sheaf of V if $\mathbb{P}(\mathcal{E})$. Since the restriction map $H^{0}(M(A)) \rightarrow H^{0}\left(K_{D}\right)$ is surjective, we can lift all the quadric relations in $S^{2} H^{0}\left(K_{D}\right)$ to $S^{2} H^{0}(M(\mathcal{A}))$. Since $H^{0}(M(\mathcal{A})) \simeq H^{0}\left(T_{\mathcal{E}}+\pi^{*} \mathcal{A}\right)$, it follows that $H^{0}\left(I_{V}\left(2 T_{\varepsilon}+\pi^{*} \mathcal{A}\right)\right) \rightarrow H^{0}\left(I_{D^{\prime}}(2)\right)$ is surjective, where $I_{D^{\prime}}$ is the ideal sheaf of $D^{\prime}=\tilde{h}(D)$ in $F \simeq \mathbb{P}^{g-1}$. Since f is non-hyperelliptic, we have $h^{0}\left(I_{D^{\prime}}(2)\right)=(g-2)(g-3) / 2$. Put

$$
x_{i}=\max \left\{\operatorname{deg} \delta \mid \operatorname{rk}\left\{H^{0}\left(I_{V}\left(2 T_{\mathcal{E}}-\pi^{*} \delta\right)\right) \rightarrow H^{0}\left(I_{D^{\prime}}(2)\right)\right\} \geq i\right\}
$$

where δ ranges over $\operatorname{Pic}(B)$. Then $x_{1} \geq x_{2} \geq \cdots \geq x_{k}$, where $k=(g-2)(g-3) / 2$. We can find a set of divisors $\left\{\delta_{i}\right\}$ with $\operatorname{deg} \delta_{i}=x_{i}(1 \leq i \leq k)$ and relative hyperquadrics Q_{i} linearly equivalent to $2 T_{\mathcal{E}} \pi^{*} \delta_{i}$ such that they induce a basis for $H^{0}\left(I_{D^{\prime}}(2)\right)$. Furthermore, we can assume that $H^{0}\left(I_{V}\left(2 T_{\varepsilon}+2 \pi^{*} \mathcal{A}\right)\right)$ is generated by them in the sense that

$$
H^{0}\left(I_{V}\left(2 T_{\mathcal{E}}+2 \pi^{*} \mathcal{A}\right)\right)=\bigoplus_{i} H^{0}\left(2 \mathcal{A}+\delta_{i}\right) Q_{i}
$$

Since A is sufficiently ample, $2 A+\delta_{i}$ cannot be a special divisor. Hence

$$
h^{0}\left(I_{V}\left(2 T_{\mathcal{E}}+2 \pi^{*} A\right)\right)=\sum_{i} x_{i}+(g-2)(g-3)(2 a+1-b) / 2
$$

where $a=\operatorname{deg} \mathcal{A}$. We have

$$
h^{0}\left(2 T_{\mathcal{E}}+2 \pi^{*} \mathcal{A}\right)=(g+1) \Delta(f)+g(g+1)(2 a+1 b) / 2
$$

by the Riemann-Roch theorem. Therefore, we can re-write (2.3) as

$$
\begin{equation*}
h^{0}(2 M(\mathcal{A})) \geq(g+1) \Delta(f)+3(g-1)(2 a+1-b)-\sum_{i} x_{i} . \tag{2.4}
\end{equation*}
$$

Lemma 2.3. $h^{1}(E+Z-M(\tilde{\mathcal{A}})) \leq M(E+Z) / 2$, where $\tilde{\mathcal{A}}=2 \mathcal{A}-K_{B}$.
Proof. Since $E+Z$ has no horizontal components with respect to \tilde{f}, we can find an effective divisor A_{1} on B satisfying $\tilde{f}^{*} \mathcal{A}_{1} \geq E+Z$. We assume that $\operatorname{deg} A_{1}$ is minimal among those divisors with such a property, and put $L_{1}=\tilde{f}^{*} A_{1}$. Since \AA is sufficiently ample, there exists an irreducible non-singular member $L_{2} \in\left|M\left(\tilde{\mathcal{A}}-\mathcal{A}_{1}\right)\right|$. Put $L_{3}=\left(L_{1}-E-Z\right)+L_{2}$. Since $L_{3} \geq L_{2}$, we can assume that $\left|L_{3}\right|$ induces a birational map of \tilde{S} onto the image. Then, by Ramanujam's theorem, we get $h^{1}\left(-L_{3}\right)=h^{0}\left(\mathcal{O}_{L_{3}}\right)-1$. Consider the cohomology long exact sequences for

$$
\begin{gathered}
0 \rightarrow \mathcal{O}_{L_{3}} \rightarrow \mathcal{O}_{L_{1}+L_{2}}(E+Z) \rightarrow \mathcal{O}_{E+Z}(E+Z) \rightarrow 0, \\
0 \rightarrow \mathcal{O}_{L_{1}}\left(E+Z-L_{2}\right) \rightarrow \mathcal{O}_{L_{1}+L_{2}}(E+Z) \rightarrow \mathcal{O}_{L_{2}}(E+Z) \rightarrow 0 .
\end{gathered}
$$

From these, we get

$$
h^{0}\left(\mathcal{O}_{L_{3}}\right) \leq h^{0}\left(\mathcal{O}_{L_{1}+L_{2}}(E+Z)\right) \leq h^{0}\left(\mathcal{O}_{L_{1}}\left(E+Z-L_{2}\right)\right)+h^{0}\left(\mathcal{O}_{L_{2}}(E+Z)\right) .
$$

Since, on fibres, $[E+Z]$ is trivial and L_{2} looks like a canonical divisor, we have that

$$
h^{0}\left(\mathcal{O}_{L_{1}}\left(E+Z-L_{2}\right)\right)=h^{0}\left(\mathcal{O}_{L_{1}}\left(-L_{2}\right)\right)=0 .
$$

Hence we get

$$
h^{1}\left(-L_{3}\right) \leq h^{0}\left(O_{L_{2}}(E+Z)\right)-1 \leq L_{2}(E+Z) / 2=M(E+Z) / 2
$$

by Clifford's theorem.
Since $\chi(2 M(\mathcal{A}))=M^{2}+\Delta(f)+3(g-1)(2 a+1-b)-M(E+Z)$ by the Riemann-Roch theorem, and since we have $h^{i}(2 M(\mathcal{A}))=h^{2-i}(E+Z-M(\tilde{A}))$, it follows from (2.4) and Lemma 2.3 that

$$
\begin{equation*}
M^{2} \geq g \Delta(f)-\sum_{i=1}^{(g-2)(g-3) / 2} x_{i}+\frac{1}{2} M(E+Z) . \tag{2.5}
\end{equation*}
$$

Since $K_{S / B}^{2}=M^{2}+\left(\sigma^{*} K_{S / B}+M\right) Z$, we have in particular

$$
\begin{equation*}
K_{S / B}^{2} \geq g \Delta(f)-\sum_{i=1}^{(g-2)(g-3) / 2} x_{i} . \tag{2.6}
\end{equation*}
$$

Remark 2.4. There is another version due to Reid [R2]. It is easy to see that $f_{*}\left(\omega_{S / B}^{\otimes 2}\right)$ is a locally free sheaf of rank $3 g-3$ and degree $K_{S / B}^{2}+\Delta(f)$. If f is non-hyperelliptic, then the sheaf homomorphism $S^{2}\left(f_{*} \omega_{S / B}\right) \rightarrow f_{*}\left(\omega_{S / B}^{\otimes 2}\right)$ is generically surjective by Max Noether's theorem. Hence we have an exact sequence of sheaves on B :

$$
\begin{equation*}
0 \rightarrow R \rightarrow S^{2}\left(f_{*} \omega_{S / B}\right) \rightarrow f_{*}\left(\omega_{S / B}^{\otimes 2}\right) \rightarrow \tau \rightarrow 0 \tag{2.7}
\end{equation*}
$$

where \mathcal{T} is a torsion sheaf and \mathcal{R} is a locally free sheaf of rank $(g-2)(g-3) / 2$. Since $\operatorname{deg} S^{2}\left(f_{*} \omega_{S / B}\right)=(g+1) \Delta(f)$, it follows from (2.7) that

$$
\begin{equation*}
K_{S / B}^{2}=g \Delta(f)-\operatorname{deg} R+\text { length } \tau \geq g \Delta(f)-\operatorname{deg} R . \tag{2.8}
\end{equation*}
$$

We close the section giving an application of method (II).
Lemma 2.5. Let $f: S \rightarrow B$ be a non-hyperelliptic fibration of genus g. Suppose that $f_{*} \omega_{S / B}$ is semi-stable. Then

$$
\begin{equation*}
K_{S / B}^{2} \geq\left(5-\frac{6}{g}\right) \Delta(f) . \tag{2.9}
\end{equation*}
$$

PROOF. We give here two proofs using (2.6) and (2.8), respectively.
(1) Since $Q_{i} \equiv 2 T_{\varepsilon}-x_{i} F$ is effective, it follows from Lemma 1.1 that $x_{i} \leq 2 \Delta(f) / g$ since $f_{*} \omega_{S / B}$ is semi-stable. Hence we get (2.9) from (2.6).
(2) Since $f_{*} \omega_{S / B}$ is semi-stable, so is $S^{2}\left(f_{*} \omega_{S / B}\right)$ (see, e.g., [G]). Hence we have $\mu(\mathcal{R}) \leq \mu\left(S^{2}\left(f_{*} \omega_{S / B}\right)\right)$, that is, $g \operatorname{deg} R \leq(g-2)(g-3) \Delta(f)$. Substituting this in (2.8) we get (2.9).

Proposition 2.6. Let $f: S \rightarrow B$ be a non-hyperelliptic fibration of genus g, and assume that it is not locally trivial. Then $\lambda(f)>4-4 / g$. Hence the conjecture of Xiao [X, Conjecture 1] is true.

Proof. Xiao [X, Theorem 2] showed that $\lambda(f)>4-4 / g$ when $f_{*} \omega_{S / B}$ is not semi-stable, by using (2.1) and (2.2). Hence we can assume that $f_{*} \omega_{S / B}$ is semi-stable. But then, we have a stronger inequality (2.9).

Lemma 2.7. Let $f: S \rightarrow B$ be a non-hyperelliptic fibration of genus $g \geq 4$. Assume that the Harder-Narashimhan filtration of $f_{*} \omega_{S / B}$ is $0 \subset \mathcal{E}_{1} \subset f_{*} \omega_{S / B}$ and $\operatorname{rk}\left(\mathcal{E}_{1}\right)=1$. Then (2.9) holds without equality.

Proof. Since all the Q_{i} 's have rank ≥ 3, we have $x_{i} \leq 2 \mu_{2}<2 \Delta(f) / g$ by Lemma 1.5. Hence (2.6) implies (2.9).

3. - The case $g=3$

In this section, we consider non-hyperelliptic fibrations of genus 3 in order to supplement [K2] and give a geometric interpretation of length τ in (2.8). Some results here overlap with [H3].

Let $f: S \rightarrow B$ be a non-hyperelliptic fibration of genus 3 and let the notation be as in 2.2. The relative canonical image V is a divisor on $\mathbb{P}(\mathcal{E})$ linearly equivalent to $4 T_{\mathcal{E}}-\pi^{*} \AA_{0}$ for some divisor \AA_{0} on B. Put $a=\operatorname{deg} A$ and $a_{0}=\operatorname{deg} \mathcal{A}_{0}$. Since \tilde{h} is a birational holomorphic map onto the image and since $M(A)=\tilde{h}^{*}\left(T_{\mathcal{E}}+\pi^{*} \mathcal{A}\right)$, we have

$$
M(\mathcal{A})^{2}=\left(T_{\varepsilon}+\pi^{*} \mathcal{A}\right)^{2}\left(4 T_{\mathcal{E}}-\pi^{*} \mathcal{A}_{0}\right)=4 \Delta(f)+8 a-a_{0}
$$

Hence

$$
\begin{equation*}
M^{2}-3 \Delta(f)=\Delta(f)-a_{0} \tag{3.1}
\end{equation*}
$$

Since $K_{S / B}^{2}=M^{2}+\left(\sigma^{*} K_{S / B}+M\right) Z$, (3.1) is equivalent to

$$
\begin{equation*}
K_{S / B}^{2}-3 \Delta(f)=\Delta(f)-a_{0}+\left(\sigma^{*} K_{S / B}+M\right) Z \tag{3.2}
\end{equation*}
$$

In view of (2.8), the right hand side of (3.2) is nothing but length τ (since $R=0$).

Let C be a general member of $|M(\mathcal{A})|$. Then

$$
\begin{aligned}
2 g(C)-2 & =M(A)(\tilde{K}+M(\not A)) \\
& =8 \Delta(f)+12 a-2 a_{0}+8(b-1)+M(E+Z)
\end{aligned}
$$

On the other hand, the arithmetic genus of $C^{\prime}=\tilde{h}(C)$ is given by

$$
\begin{aligned}
2 p_{a}\left(C^{\prime}\right)-2 & =\left(T_{\mathcal{E}}+\pi^{*} \mathcal{A}\right)\left(4 T_{\mathcal{E}}-\pi^{*} A_{0}\right)\left(2 T_{\mathcal{E}}+\pi^{*}\left(\operatorname{det} \mathcal{E}+\omega_{B}+\mathcal{A}-\mathcal{A}_{0}\right)\right) \\
& =12 \Delta(f)+8(b-1)+12 a-6 a_{0}
\end{aligned}
$$

Hence

$$
\begin{equation*}
p_{a}\left(C^{\prime}\right)-g(C)=2 \Delta(f)-2 a_{0}-M(E+Z) / 2 \geq 0 \tag{3.3}
\end{equation*}
$$

Note further that the conductor of $C \rightarrow C^{\prime}$ is given by

$$
\begin{equation*}
\tilde{h}^{*} \omega_{C^{\prime}}-\omega_{C}=\left.\tilde{f}^{*}\left(\operatorname{det} \mathcal{E}-A_{0}\right)\right|_{C}-\left.(E+Z)\right|_{C} \tag{3.4}
\end{equation*}
$$

The following is a refinement of [K2, Theorem 1.2].
LEMMA 3.1. Let the notation be as above. For a non-hyperelliptic fibration $f: S \rightarrow B$ of genus $3, K_{S / B}^{2} \geq M^{2} \geq 3 \Delta(f)$ holds. If $M^{2}=3 \Delta(f)$, then $K_{S / B}^{2}=3 \Delta(f)$.

Proof. It follows from (3.3) that $\Delta(f) \geq a_{0}$. Hence we have $M^{2} \geq 3 \Delta(f)$ by (3.1). Assume that $M^{2}=3 \Delta(f)$, that is, $a_{0}=\Delta(f)$. Then, by (3.3), we have $M(E+Z)=0$. Since $0 \leq\left(\sigma^{*} K_{S / B}\right) Z=M Z+Z^{2}=Z^{2}$, Hodge's index theorem shows that $Z=0$. Hence (3.2) implies that $K_{S / B}^{2}=3 \Delta(f)$.

The above equalities are sometimes useful in determining the singularity of V.

Theorem 3.2. When $K_{S / B}^{2}=3 \Delta(f), V$ has at most rational double points, and it is linearly equivalent to $4 T_{\varepsilon}-\pi^{*} \operatorname{det} \varepsilon$. When $K_{S / B}^{2}>3 \Delta(f), V$ is non-normal. In particular, if $K_{S / B}^{2}=3 \Delta(f)+1, V$ has at most rational double points except for a double conic curve described in $[\mathrm{K} 1, \S 9]$.

Proof. Assume first that $K_{S / B}^{2}=3 \Delta(f)$. Then $a_{0}=\Delta(f)$, and $|L(\mathcal{A})|$ has no base locus as we saw in the proof of Lemma 3.1. We have $p_{a}\left(C^{\prime}\right)=g(C)$ by (3.3). It follows that V has at most isolated singular points. We have

$$
\begin{aligned}
\chi\left(\mathcal{O}_{V}\right) & =\chi\left(\mathcal{O}_{\mathbb{P}(\mathcal{E})}\right)-\chi(-V) \\
& =1-b+\chi\left(T_{\mathcal{E}}+\pi^{*}\left(\operatorname{det} \mathcal{E}+K_{B}-\mathcal{A}_{0}\right)\right) \\
& =\Delta(f)+2 b-2=\chi\left(\mathcal{O}_{S}\right)
\end{aligned}
$$

Hence V has at most rational singular points. Since V is a hypersurface of a non-singular 3 -fold $\mathbb{P}(\mathcal{E})$, it has at most rational double points. In particular, we have $\omega_{S / B}=h^{*} \omega_{V / B}$. Since $\omega_{V / B}$ is induced from $T_{\mathcal{E}}+\pi^{*}\left(\operatorname{det} \mathcal{E}-\mathcal{A}_{0}\right)$ and $K_{S / B}=h^{*} T_{\mathcal{E}}$, we see that $f^{*}\left(\operatorname{det} \mathcal{E}-\mathcal{A}_{0}\right)$ is linearly equivalent to zero. That is, $\mathcal{A}_{0}=\operatorname{det} \mathcal{E}$.

It follows from (2.5), (3.1) and (3.3) that $p_{a}\left(C^{\prime}\right)-g(C) \geq M^{2}-3 \Delta(f)$. Hence, by Lemma 3.1, we have $p_{a}\left(C^{\prime}\right)-g(C)>0$ when $K_{S / B}^{2}>3 \Delta(f)$. Since C^{\prime} is obtained by cutting V by a general member of $\left|T_{\mathcal{E}}+\pi^{*} \mathcal{A}\right|$, it follows that V has more than isolated singular points.

Assume that $K_{S / B}^{2}=3 \Delta(f)+1$. By Lemma 3.1, we must have $M^{2}=K_{S / B}^{2}$. It follows that $\Delta(f)=a_{0}+1$ and that $|L(\mathcal{A})|$ has no base locus. By (3.3) and (3.4), we have $p_{a}\left(C^{\prime}\right)-g(C)=2$ and $h^{*} \omega_{C^{\prime}}-\omega_{C}=\left.f^{*}\left(\operatorname{det} \mathcal{E}-\mathcal{A}_{0}\right)\right|_{C}$. Hence C^{\prime} has two double points contained in a unique fiber. Since V has no horizontal singular locus, we see that V has a double curve along a conic traced out by the singular points of C^{\prime}. The rest follows from an argument in [K1, §9].

Remark 3.3. Horikawa [H2] announced that he classified degenerate fibres in genus 3 pencils. Though a part of it can be found in [H3], the whole body has not appeared yet.
4. - The case $g=4$

In this section we show the following theorem with several lemmas.
THEOREM 4.1. $f: S \rightarrow B$ be a non-hyperelliptic fibration of genus 4. Then

$$
\begin{equation*}
K_{S / B}^{2} \geq \frac{24}{7} \Delta(f) \tag{4.1}
\end{equation*}
$$

If a general fibre of f has two distinct g_{3}^{1} ', then

$$
\begin{equation*}
K_{S / B}^{2} \geq \frac{7}{2} \Delta(f) \tag{4.2}
\end{equation*}
$$

For the proof of Theorem 4.1, we freely use the notation of the previous sections. In particular, we set $\mathcal{E}=f_{*} \omega_{S / B}$ and let $0 \subset \mathcal{E}_{1} \subset \cdots \subset \mathcal{E}_{\ell}=\mathcal{E}$ be the Harder-Narashimhan filtration. By $\S 2$, (II), there exists a relative hyperquadric $Q \equiv 2 T_{\mathcal{E}}-x F$ through the relative canonical image V and

$$
\begin{equation*}
K_{S / B}^{2} \geq 4 \Delta(f)-x \tag{4.3}
\end{equation*}
$$

Since $\operatorname{rk}(Q)=4$ if and only if a general fibre of f has two distinct g_{3}^{1} 's, the second part of Theorem 4.1 is nothing but the following:

LEMMA 4.2. If $\operatorname{rk}(Q)=4$, then (4.2) holds.
PROOF. In view of (4.3), we only have to check that $x \leq \Delta(f) / 2$. But this is straightforward applying Lemma 1.6. Let ν_{1}, \ldots, ν_{4} be as in Remark 1.7. Then it follows from Lemma 1.6 that $x \leq \min \left\{\nu_{2}+\nu_{3}, \nu_{1}+\nu_{4}\right\}$. Hence $2 x \leq \sum_{j=1}^{4} \nu_{j}=\Delta(f)$.

LEMMA 4.3. If $x \leq \mu_{1}+\mu_{\ell}$, then (4.1) holds.
PROOF. By (2.2), we have $K_{S / B}^{2} \geq\left(d_{1}+6\right)\left(\mu_{1}-\mu_{\ell}\right)+12 \mu_{\ell} \geq 6\left(\mu_{1}+\mu_{\ell}\right)$. Hence (4.1) holds if $\mu_{1}+\mu_{\ell} \geq(4 / 7) \Delta(f)$. Assume that $\mu_{1}+\mu_{\ell} \leq(4 / 7) \Delta(f)$. Then $x \leq \mu_{1}+\mu_{\ell} \leq(4 / 7) \Delta(f)$ and we get (4.1) from (4.3).

Recall that a canonical curve of genus 4 cannot meet the vertex of the quadric through it, if the quadric is of rank 3.

LEMMA 4.4. If $x>\mu_{1}+\mu_{\ell}$, then $r_{\ell-1}=3$ and $d_{\ell-1}=6$.
Proof. If $x>\mu_{1}+\mu_{\ell}$ then, by Lemma $1.3, Q$ is singular along $B_{\ell-1}$. Since $\operatorname{rk}(Q) \geq 3$ and $r_{\ell}=4$, we must have $r_{\ell-1}=3$ by Lemma 1.4.

We have $d_{\ell-1}=6-Z_{\ell-1} D^{*}$. Since $\operatorname{rk}(Q)=3$ and since $B_{\ell-1}$ is the (relative) vertex of Q, we see that any general fibre of $V \rightarrow B$ cannot meet $B_{\ell-1}$. Since $Z_{\ell-1}-Z_{\ell}$ corresponds to $B_{\ell-1} \cap V$ as we remarked in $\S 2$, (I), we have $\left(Z_{\ell-1}-Z_{\ell}\right) D^{*}=0$. It follows that $d_{\ell-1}=6$, since we always have $Z_{\ell} D^{*}=0$.

We complete the proof of Theorem 4.1 with the following:
LEMMA 4.5. Even if $x>\mu_{1}+\mu_{\ell}$, (4.1) holds.
Proof. We can assume that $r_{\ell-1}=3$ and $d_{\ell-1}=6$ by Lemma 4.4.
Assume that $\ell=2$. Since $r_{1}=3$, we get $x \leq 2 \mu_{1}$ by Lemma 1.5. On the other hand, since $d_{1}=6$, it follows from (2.1) that $K_{S / B}^{2} \geq 12\left(\mu_{1}-\mu_{2}\right)+12 \mu_{2}=$ $12 \mu_{1}$. Hence, if $\mu_{1} \geq(2 / 7) \Delta(f)$, we get (4.1). If $\mu_{1} \leq(2 / 7) \Delta(f)$, then $x \leq(4 / 7) \Delta(f)$ and (4.1) follows from (4.3).

Assume that $\ell=3$. Since $r_{1} \leq 2$ and $r_{2}=3$, we have $x \leq \mu_{1}+\mu_{2}$ by Lemma 1.5. Since $d_{2}=6$, it follows from (2.1) that

$$
K_{S / B}^{2} \geq\left(d_{1}+6\right)\left(\mu_{1}-\mu_{2}\right)+12\left(\mu_{2}-\mu_{3}\right)+12 \mu_{3} \geq 6\left(\mu_{1}+\mu_{2}\right)
$$

Hence we can show (4.1) as we did in Lemma 4.3.
Assume that $\ell=4$. By Lemma 1.5, we have $x \leq \min \left\{2 \mu_{2}, \mu_{1}+\mu_{3}\right\}$. Since $d_{3}=6$, it follows from (2.1) that

$$
K_{S / B}^{2} \geq 3\left(\mu_{1}-\mu_{2}\right)+9\left(\mu_{2}-\mu_{3}\right)+12\left(\mu_{3}-\mu_{4}\right)+12 \mu_{4}=3\left(\mu_{1}+2 \mu_{2}+\mu_{3}\right)
$$

Hence $K_{S / B}^{2} \geq 6 \min \left\{2 \mu_{2}, \mu_{1}+\mu_{3}\right\}$ and we can show (4.1) as we did in Lemma 4.3.

5. - The case $g=5$

In this section we show the following theorem with several lemmas.
THEOREM 5.1. Let $f: S \rightarrow B$ be a non-hyperelliptic fibration of genus 5 . When a general fibre of f is non-trigonal we have:

$$
\begin{equation*}
K_{S / B}^{2} \geq M^{2} \geq 4 \Delta(f) \tag{5.1}
\end{equation*}
$$

When a general fibre is trigonal we have:

$$
\begin{equation*}
K_{S / B}^{2} \geq \frac{40}{11} \Delta(f) \tag{5.2}
\end{equation*}
$$

By (II), there are three relative hyperquadrics $Q_{i} \equiv 2 T_{\mathcal{E}}-x_{i} F, 1 \leq i \leq 3$, through V satisfying $x_{1} \geq x_{2} \geq x_{3}$ and

$$
\begin{equation*}
K_{S / B}^{2} \geq 5 \Delta(f)-x, \quad x=\sum_{i=1}^{3} x_{i} \tag{5.3}
\end{equation*}
$$

LEMMA 5.2. Let $f: S \rightarrow B$ be a non-hyperelliptic, non-trigonal fibration of genus 5. Then $K_{S / B}^{2} \geq M^{2} \geq 4 \Delta(f)$. If $M^{2}=4 \Delta(f)$ then $K_{S / B}^{2}=4 \Delta(f)$.

Proof. Since a general fibre of f is non-trigonal, the relative canonical image V is an irreducible component of $\bigcap_{i=1}^{3} Q_{i}$. Hence, comparing degrees, we get $M(\mathcal{A})^{2} \leq\left(T_{\mathcal{E}}+\pi^{*} \mathcal{A}\right)^{2} \Pi_{i}\left(2 T_{\mathcal{E}}-x_{i} F\right)$, that is, $M^{2} \leq 8 \Delta(f)-4 x$. Eliminating x from (2.5) using this, we get

$$
M^{2} \geq 4 \Delta(f)+\frac{2}{3} M(E+Z)
$$

from which the assertion follows immediately.
In the rest of the section, we assume that $f: S \rightarrow B$ is a trigonal fibration of genus 5. Recall that, for a suitable choice of homogeneous coordinates (X_{0}, \ldots, X_{4}) on \mathbb{P}^{4}, any quadric through a trigonal canonical curve of genus 5 can be written as $c_{1}\left(X_{1}^{2}-X_{0} X_{2}\right)+c_{2}\left(X_{0} X . X_{1} X_{3}\right)+c_{3}\left(X_{2} X_{3}-X_{1} X_{4}\right)$. Hence there is only one quadric of rank 3 , and the vertices of any two independent members cannot meet. Without loosing generality, we can assume that $\operatorname{rk}\left(Q_{1}\right) \geq 3$, $\mathrm{rk}\left(Q_{3}\right) \geq \operatorname{rk}\left(Q_{2}\right) \geq 4$.

Lemma 5.3. If $r_{i}=2$ then $x_{3} \leq 2 \mu_{i+1}$.
Proof. Assume contrarily that $x_{3}>2 \mu_{i+1}$. Then all the Q_{j} 's vanish identically on B_{i} which is a \mathbb{P}^{2}-bundle on B. This contradicts the fact that $\cap Q_{j}$ induces a Hirzebruch surface on a general fibre of $\mathbb{P}(\mathcal{E}) \rightarrow B$.

Lemma 5.4. Assume that there are rational numbers y_{1} and y_{2} satisfying $x \leq y_{1}, K_{S / B}^{2} \geq y_{2}$ and $8 y_{1} \leq 3 y_{2}$. Then (5.2) holds. In particular, (5.2) holds when $x \leq 3\left(\mu_{1}+\mu_{\ell}\right)$.

Proof. It follows from (5.3) that $K_{S / B}^{2} \geq 5 \Delta(f)-y_{1}$. Hence (5.2) holds when $y_{1} \leq(15 / 11) \Delta(f)$. Assume that $y_{1} \geq(15 / 11) \Delta(f)$. Since $3 y_{2} \geq 8 y_{1}$, we have $K_{S / B}^{2} \geq y_{2} \geq(8 / 3) y_{1}$. Hence (5.2) holds. In particular, since we have $K_{S / B}^{2} \geq 8\left(\mu_{1}+\mu_{\ell}\right)$ by (2.2), we get (5.2) if $x \leq 3\left(\mu_{1}+\mu_{\ell}\right)$.

We can assume that $x>3\left(\mu_{1}+\mu_{\ell}\right)$. Then $x_{1}>\mu_{1}+\mu_{\ell}$.
Lemma 5.5. Assume that $x_{1}>\mu_{1}+\mu_{\ell}$. Then $x_{i} \leq \mu_{1}+\mu_{\ell}$ for $i=2,3$ and $r_{\ell-1} \geq 3$. If $r_{\ell-1}=3$ then $d_{\ell-1}=6$. If $r_{\ell-1}=4$ then $d_{\ell-1} \geq 7$.

Proof. Since $x_{1}>\mu_{1}+\mu_{\ell}, Q_{1}$ is singular along $B_{\ell-1}$ by Lemma 1.3. Since $\operatorname{rk}\left(Q_{1}\right) \geq 3$, we have $r_{\ell-1} \geq 3$. Furthermore, Q_{2} and Q_{3} cannot be singular along $B_{\ell-1}$ as we remarked just before Lemma 5.3. Hence $x_{2}, x_{3} \leq \mu_{1}+\mu_{\ell}$ by Lemma 1.3 again. If $r_{\ell-1}=3$, then $\operatorname{rk}\left(Q_{1}\right)=3$. Since a trigonal curve of genus 5 meets the vertex of rank 3 quadric through it at two points, we get $d_{\ell-1}=8-2=6$. If $r_{\ell-1}=4$ then $d_{\ell-1} \geq 7$ by Clifford's theorem.

Lemma 5.6. Assume that $\ell=2$ and $x_{1}>\mu_{1}+\mu_{2}$. Then $K_{S / B}^{2} \geq(15 / 4) \Delta(f)$.

Proof. Since we have $x_{1} \leq 2 \mu_{1}$ by lemma 1.5 and $x_{i} \leq \mu_{1}+\mu_{2}$ for $i=2,3$ by Lemma 5.5, we get $x \leq 4 \mu_{1}+2 \mu_{2}$.

Assume that $r_{1}=3$. We have $K_{S / B}^{2} \geq 5 \Delta(f)-2\left(2 \mu_{1}+\mu_{2}\right)$ by (5.3). On the other hand, it follows from (2.2) that $K_{S / B}^{2} \geq 14 \mu_{1}+2 \mu_{2}$, since $d_{1}=6$ by Lemma 5.5. Since $\Delta(f)=3 \mu_{1}+2 \mu_{2}$, these inequalities imply $K_{S / B}^{2} \geq(15 / 4) \Delta(f)$.

Assume that $r_{1}=4$. Since $\Delta(f)=4 \mu_{1}+\mu_{2}$, we have $x \leq \Delta(f)+\mu_{2}<$ $\Delta(f)+\Delta(f) / 5$. Hence we get $K_{S / B}^{2}>(19 / 5) \Delta(f)$ from (5.3).

We assume that $\ell \geq 3$ in the sequel.
LEMMA 5.7. Assume that $\ell \geq 3, x>3\left(\mu_{1}+\mu_{\ell}\right)$ and $r_{\ell-1}=3$. Then (5.2) holds.

PROOF. We have $\ell=3$ or 4 . Note that $\operatorname{rk}\left(Q_{1}\right)=3$ and $\operatorname{rk}\left(Q_{i}\right) \geq 4$ for $i=2,3$.

We have $x_{1} \leq \mu_{1}+\mu_{\ell-1}$ by Lemma 1.5, $x_{2} \leq \mu_{1}+\mu_{\ell}$ by Lemma 5.5 and $x_{3} \leq 2 \mu_{\ell-1}$ by Lemmas 1.6 and 5.3. Hence $x \leq 2 \mu_{1}+3 \mu_{\ell-1}+\mu_{\ell}$. On the other hand, applying [X, Lemma 2] for the sequence $\left\{\mu_{1}, \mu_{\ell-1}, \mu_{\ell}\right\}$, we get

$$
K_{S / B}^{2} \geq 6\left(\mu_{1}-\mu_{\ell-1}\right)+14\left(\mu_{\ell-1}-\mu_{\ell}\right)+16 \mu_{\ell}=6 \mu_{1}+8 \mu_{\ell-1}+2 \mu_{\ell}
$$

since $d_{1} \geq 0, d_{\ell-1}=6$ and $d_{\ell}=8$. We have $\mu_{1}>\mu_{\ell}$. It follows that

$$
8\left(2 \mu_{1}+3 \mu_{\ell-1}+\mu_{\ell}\right)<3\left(6 \mu_{1}+8 \mu_{\ell-1}+2 \mu_{\ell}\right)
$$

Applying Lemma 5.4, we see that (5.2) holds without equality.
LEMMA 5.8. Assume that $\ell \geq 3, x>3\left(\mu_{1}+\mu_{\ell}\right)$ and $r_{\ell-1}=4$. If $r_{\ell-2} \leq 2$, then (5.2) holds.

Proof. We have $\ell=3$ or 4 . Since $r_{\ell-2} \leq 2$, it follows from Lemma 1.4 that $x_{1} \leq \mu_{1}+\mu_{\ell-1}$. We have $x_{2} \leq \mu_{1}+\mu_{\ell}$ by Lemma 5.5. Furthermore, we can assume that $x_{3} \leq 2 \mu_{\ell-1}$ by Lemmas 1.6 and 5.3. Hence $x \leq 2 \mu_{1}+3 \mu_{\ell-1}+\mu_{\ell}$. On the other hand, applying [X, Lemma 2] for the sequence $\left\{\mu_{1}, \mu_{\ell-1}, \mu_{\ell}\right\}$, we get

$$
K_{S / B}^{2} \geq 7\left(\mu_{1}-\mu_{\ell-1}\right)+15\left(\mu_{\ell-1}-\mu_{\ell}\right)+16 \mu_{\ell}=7 \mu_{1}+8 \mu_{\ell-1}+\mu_{\ell}
$$

since $d_{1} \geq 0, d_{\ell-1} \geq 7$ and $d_{\ell}=8$. It follows from $\mu_{1}>\mu_{\ell}$ that

$$
8\left(2 \mu_{1}+3 \mu_{\ell-1}+\mu_{\ell}\right)<3\left(7 \mu_{1}+8 \mu_{\ell-1}+\mu_{\ell}\right)
$$

Hence, as in the the previous lemma, we see that (5.2) holds without equality.

LEMMA 5.9. Assume that $\ell \geq 3, x>3\left(\mu_{1}+\mu_{\ell}\right)$ and $r_{\ell-1}=4$. If $r_{\ell-2}=3$ and $x_{1}>\mu_{1}+\mu_{\ell-1}$, then (5.2) holds.

Proof. Since $x_{1}>\mu_{1}+\mu_{\ell-1}, B_{\ell-2}$ is the relative vertex of Q_{1} and it follows that $d_{\ell-2}=6$.

Assume that $\ell=3$. Since $d_{1}=6$, we have $K_{S / B}^{2} \geq 14 \mu_{1}+2 \mu_{3}$ by (2.2). By Lemmas 1.5 and 5.5, we have $x_{1} \leq 2 \mu_{1}$ and $x_{2}, x_{3} \leq \mu_{1}+\mu_{3}$. Hence $x \leq 4 \mu_{1}+2 \mu_{3}$. We can show that $K_{S / B}^{2}>(15 / 4) \Delta(f)$ using (5.3).

Assume that $\ell=4$ or 5 . We have $x_{1} \leq \mu_{1}+\mu_{\ell-2}$ and $x_{2} \leq \mu_{1}+\mu_{\ell}$ by Lemmas 1.5 and 5.5 , respectively. Furthermore, we have $x_{3} \leq 2 \mu_{\ell-2}$ by Lemmas 1.6 and 5.3. Hence $x \leq 2 \mu_{1}+3 \mu_{\ell-2}+\mu_{\ell}$. On the other hand, applying [X, Lemma 2] for the sequence $\left\{\mu_{1}, \mu_{\ell-2}, \mu_{\ell}\right\}$, we get

$$
K_{S / B}^{2} \geq 6\left(\mu_{1}-\mu_{\ell-2}\right)+14\left(\mu_{\ell-2}-\mu_{\ell}\right)+16 \mu_{\ell}=6 \mu_{1}+8 \mu_{\ell-2}+2 \mu_{\ell}
$$

since $d_{1} \geq 0, d_{\ell-2}=6$ and $d_{\ell}=8$. Hence we see that (5.2) holds without equality as in the proof of Lemma 5.7.

We finish the proof of Theorem 5.1 with the following:
Lemma 5.10. Assume that $\ell \geq 3, x>3\left(\mu_{1}+\mu_{\ell}\right)$ and $r_{\ell-1}=4$. If $r_{\ell-2}=3$ and $x_{1} \leq \mu_{1}+\mu_{\ell-1}$, then (5.2) holds.

Proof. Assume that $\ell=3$. Since $x \leq\left(\mu_{1}+\mu_{2}\right)+2\left(\mu_{1}+\mu_{3}\right)=3 \mu_{1}+\mu_{2}+2 \mu_{3}$ and $\Delta(f)=3 \mu_{1}+\mu_{2}+\mu_{3}$, it follows from (5.3) that $K_{S / B}^{2}>(19 / 5) \Delta(f)$, which is stronger than (5.2).

Assume that $\ell=4$ and $r_{1}=1$. Then $x_{1} \leq 2 \mu_{2}$ and $x_{2}, x_{3} \leq \mu_{1}+\mu_{4}$ by Lemmas 1.5 and 5.5. Since $x_{1}>\mu_{1}+\mu_{4}$, we have in particular $\mu_{1}+\mu_{4}<2 \mu_{2}$. We have $x \leq 2\left(\mu_{1}+\mu_{2}+\mu_{4}\right)$. Applying [X, Lemma 2] for the sequence $\left\{\mu_{1}, \mu_{2}, \mu_{4}\right\}$ we get

$$
K_{S / B}^{2} \geq 5\left(\mu_{1}-\mu_{2}\right)+13\left(\mu_{2}-\mu_{4}\right)+16 \mu_{4}=5 \mu_{1}+8 \mu_{2}+3 \mu_{4}
$$

since $d_{1} \geq 0, d_{2} \geq 5$ and $d_{4}=8$. Since $6\left(\mu_{2}-\mu_{4}\right)+\left(2 \mu_{2}-\mu_{1}-\mu_{4}\right)>0$, we have $3\left(5 \mu_{1}+8 \mu_{2}+3 \mu_{4}\right)>16\left(\mu_{1}+\mu_{2}+\mu_{4}\right)$ and therefore (5.2) holds without equality.

Assume that $\ell=4$ and $r_{1}=2$. We get $x_{1} \leq \mu_{1}+\mu_{3}$ and $x_{2}, x_{3} \leq \mu_{1}+\mu_{4}$ by Lemma 5.5. Hence $x \leq 3 \mu_{1}+\mu_{3}+2 \mu_{4}$. Applying [X, Lemma 2] for the sequence $\left\{\mu_{1}, \mu_{3}, \mu_{4}\right\}$, we get

$$
K_{S / B}^{2} \geq 10\left(\mu_{1}-\mu_{3}\right)+15\left(\mu_{3}-\mu_{4}\right)+16 \mu_{4}>8 \mu_{1}+7 \mu_{3}+\mu_{4}
$$

since $d_{1} \geq 3, d_{3} \geq 7$ and $d_{4}=8$. Since $\mu_{3}>\mu_{4}$, we have $3\left(8 \mu_{1}+7 \mu_{3}+\mu_{4}\right)>$ $8\left(3 \mu_{1}+\mu_{3}+2 \mu_{4}\right)$ and, therefore, (5.2) holds without equality.

Assume that $\ell=5$. We have $x_{1} \leq \min \left\{2 \mu_{2}, \mu_{1}+\mu_{4}\right\}, x_{2} \leq \min \left\{\mu_{2}+\right.$ $\left.\mu_{3}, \mu_{1}+\mu_{5}\right\}$ and $x_{3} \leq \min \left\{2 \mu_{3}, \mu_{1}+\mu_{5}\right\}$ by Lemmas 1.5, 1.6, 5.3 and 5.5. If $\mu_{2}+\mu_{3} \leq \mu_{1}+\mu_{5}$, then we get $x \leq 2 \mu_{2}+\left(\mu_{1}+\mu_{5}\right)+2 \mu_{3} \leq 3\left(\mu_{1}+\mu_{5}\right)$ which contradicts the assumption of the lemma. Hence $\mu_{2}+\mu_{3}>\mu_{1}+\mu_{5}$. Then we have $x \leq\left(\mu_{1}+\mu_{4}\right)+\left(\mu_{1}+\mu_{5}\right)+2 \mu_{3}=2 \mu_{1}+2 \mu_{3}+\mu_{4}+\mu_{5}$. Note that we have $11 x \leq 15 \Delta(f)=15 \sum \mu_{i}$ when $7\left(\mu_{1}+\mu_{3}\right) \leq 15 \mu_{2}+4\left(\mu_{4}+\mu_{5}\right)$. In particular, (5.2)
will follow from (5.3) if $2 \mu_{2} \geq \mu_{1}+\mu_{3}$. So, we may assume that $2 \mu_{2}<\mu_{1}+\mu_{3}$. Then, since $\mu_{3}-\mu_{5}>\mu_{1} \mu_{2}$ and $\mu_{1}-\mu_{2}>\mu_{2}-\mu_{3}$, we get

$$
3\left(\mu_{3}-\mu_{5}\right)>\left(\mu_{1}-\mu_{2}\right)+\left(\mu_{2}-\mu_{3}\right)+\mu_{3}-\mu_{5}=\mu_{1}-\mu_{5}>\mu_{1}-\mu_{4} .
$$

We apply [X, Lemma 2] for the sequence $\left\{\mu_{1}, \mu_{3}, \mu_{4}, \mu_{5}\right\}$ to get

$$
K_{S / B}^{2} \geq 5\left(\mu_{1}-\mu_{3}\right)+12\left(\mu_{3}-\mu_{4}\right)+15\left(\mu_{4}-\mu_{5}\right)+16 \mu_{5}=5 \mu_{1}+7 \mu_{3}+3 \mu_{4}+\mu_{5},
$$

since $d \geq 0, d_{3} \geq 5, d_{4} \geq 7$ and $d_{5}=8$. Note that we have

$$
\begin{aligned}
& 3\left(5 \mu_{1}+7 \mu_{3}+3 \mu_{4}+\mu_{5}\right) \\
= & 8\left(\mu_{1}+\mu_{4}\right)+8\left(\mu_{1}+\mu_{5}\right)+16 \mu_{3}+5\left(\mu_{3}-\mu_{5}\right)-\left(\mu_{1}-\mu_{4}\right) \\
> & 8 x+2\left(\mu_{3}-\mu_{5}\right) .
\end{aligned}
$$

Hence (5.2) can be shown using Lemma 5.4.
Inequality (5.1) gives us a hope that the following holds.
Conjecture. $K_{S / B}^{2} \geq 4 \Delta(f)$ holds for a Petri general fibration.

6. - Application

Let S be a canonical surface and X its canonical image. The intersection of all hyperquadrics through X is called the quadric hull of X and denoted by $Q(X)$. The dimension of the irreducible component of $Q(X)$ containing X is called the quadric dimension of S. A conjecture of Miles Reid [R1] states that every canonical surface with $K^{2}<4 p_{g}-12$ has quadric dimension 3.

Theorem 6.1. Let S be an irregular canonical surface and assume that the image of the Albanese map of S is a curve. Then $K^{2} \geq 3 \chi\left(\mathcal{O}_{S}\right)+10(q-1)$. When $K^{2} \leq(10 / 3) \chi\left(\mathcal{O}_{S}\right)+(122 / 7)(q-1)$, the Albanese pencil is a non-hyperelliptic fibration of genus 3 . When $K^{2} \leq \min \left\{(10 / 3) \chi\left(O_{S}\right)+(122 / 7)(q-1), 4 p_{g}-12+q\right\}$, the quadric dimension of S is 3 and the irreducible component of $Q(X)$ containing the canonical image X is birationally a threefold scroll over a curve.

Proof. The first inequality was remarked in [K2]. By the assumption, the Albanese map induces a non-hyperelliptic fibration $f: S \rightarrow B$, where B is the Albanese image and hence $g(B)=q$. If f has genus g, then it follows from Proposition 2.6 that $K_{S / B}^{2}>(4-4 / g) \Delta(f)$, that is, $K^{2}>(4-4 / g)\left(\chi\left(O_{S}\right)+\right.$ $(g+1)(q-1))$. We have $g \leq 5$ when $K^{2} \leq(10 / 3) \chi\left(O_{S}\right)+(122 / 7)(q-1)$. The cases $g=4$ and $g=5$ can be excluded by Theorems 4.1 and 5.1, respectively. Hence we have $g=3$. As for the last assertion, we remark that the restriction map
$H^{0}(K) \rightarrow H^{0}\left(K_{D}\right)$ is surjective and, therefore, X is contained in a threefold scroll over a curve (possibly a cone). Then [K4, Theorem 8.3] applies.

Lemma 6.2. Let S be a minimal surface of general type with a non-linear pencil. If $K^{2}<4 \chi\left(O_{S}\right)$ then the base of the pencil is a curve of genus $q(S)$. If S is a canonical surface with a non-linear pencil, then

$$
\begin{equation*}
K^{2} \geq \min \left\{4 \chi\left(O_{S}\right), 3 \chi\left(O_{S}\right)+10(q-1)\right\} \tag{6.1}
\end{equation*}
$$

Proof. Let $f: S \rightarrow B$ be the fibration associated with the non-linear pencil. If $q>b=g(B)$, then it follows from [X, Theorem 1] that $K_{S / B}^{2} \geq 4 \Delta(f)$ which implies that $K^{2} \geq 4 \chi\left(\mathcal{O}_{S}\right)$ since $b>0$. Hence we have $b=q$ when $K^{2}<4 \chi\left(0_{S}\right)$.

Assume that S is a canonical surface. Then f is non-hyperelliptic. Hence we have $K_{S / B}^{2} \geq 3 \Delta(f)$ by Corollary 2.6 and Lemma 3.1. When $K^{2}<4 \chi\left(O_{S}\right)$, this implies that $K^{2} \geq 3 \chi\left(O_{S}\right)+10(q-1)$, since $b=q$ and $g \geq 3$.

Theorem 6.3. Let S be a canonical surface with a non-linear pencil. If $K^{2} \leq \min \left\{(10 / 3) \chi\left(O_{S}\right), 4 p_{g}-12+q\right\}$ then S has quadric dimension 3.

Proof. Let $f: S \rightarrow B$ be the fibration associated with the non-linear pencil. By Lemma 6.2, we have $g(B)=q$. Since $K^{2} \leq(10 / 3) \chi\left(O_{S}\right)$, one can show that f is a non-hyperelliptic fibration of genus 3 as in Theorem 6.1. The rest follows from [K4, Theorem 8.3].

Corollary 6.4. Let S be a canonical surface with $q=1$ and $K^{2} \leq$ $(10 / 3) \chi\left(\mathrm{O}_{S}\right)$. Then the Albanese map gives a non-hyperelliptic fibration of genus 3. If $K^{2} \leq \min \{(10 / 3) \chi, 4 \chi-11\}$ then S has quadric dimension 3 .

This and Theorem 3.2 give a picture of canonical surfaces with $q=1$ and $K^{2}=3 \chi$ or $3 \chi+1$, which is quite similar to the regular case (see [AK] and [K1]): they have a pencil of non-hyperelliptic curves of genus 3. Another "similar" result is the following theorem which will be shown in the next section (see [K3] for the regular case).

THEOREM 6.5. The moduli space of even canonical surfaces with $K^{2}=$ $3 \chi\left(O_{S}\right)+1$ and $q=1$ is non-reduced.

REMARK 6.6. Ashikaga [A] constructed a series of canonical surfaces with a non-hyperelliptic fibration of genus 3 . See also [K2].

7. - Proof of Theorem 6.5

In this section we show Theorem 6.5. Though the proof is essentially the same as in [K3], there is one point which is unclear: a vector bundle on an elliptic curve is not necessarily decomposable.

Let S be a canonical surface with $K^{2}=3 \chi\left(\mathcal{O}_{S}\right)+1, q(S)=1$ and let $f: S \rightarrow B=\operatorname{Alb}(S)$ be the Albanese map. By Corollary 6.4, any general fibre D of f is a non-hyperelliptic curve of genus 3. Assume further that S is an even surface, that is, there is a line bundle L with $K=2 L$. Since L^{2} is even and $K^{2}=4 L^{2}$, there exists a non-negative integer n satisfying

$$
\begin{equation*}
\chi=8 n+5, \quad L^{2}=6 n+4 \tag{7.1}
\end{equation*}
$$

By the Riemann-Roch theorem, we have

$$
\begin{equation*}
2 h^{0}(L)-h^{1}(L)=-L^{2} / 2+\chi=5 n+3 \tag{7.2}
\end{equation*}
$$

Since D is of genus 3 we have $L D=2$. Since D is non-hyperelliptic, we have $h^{0}\left(\left.L\right|_{D}\right)=1$ by Clifford's theorem. It follows that the rational map Φ_{L} associated with $|L|$ factors through $f: S \rightarrow B$. Hence there is a divisor \mathcal{L} on B such that $L=\left[f^{*} \mathcal{L}+Z_{L}\right]$, where Z_{L} is the fixed part of $|L|$. We have $h^{0}(\mathcal{L}) \geq h^{0}(L) \geq(5 n+3) / 2$ by (7.2). Hence $\operatorname{deg} \mathcal{L} \geq(5 n+3) / 2$. Since $L D=2$, we have $L^{2}=2 \operatorname{deg} \mathcal{L}+L Z_{L}$, that is,

$$
\begin{equation*}
L Z_{L}=6 n+4-2 \operatorname{deg} \mathcal{L} \tag{7.3}
\end{equation*}
$$

Put $\mathcal{E}=f_{*} \omega_{S / B}=f_{*} \omega_{S}$ and let $\mathcal{E}_{1} \subset \cdots \subset \mathcal{E}_{\ell}=\mathcal{E}$ be the Harder-Narashimhan filtration of \mathcal{E} as usual. Let $\pi: \mathbb{P}(\mathcal{E}) \rightarrow B$ be the associated projective bundle. As we have seen in Section 3, we have a holomorphic map $h: S \rightarrow \mathbb{P}(\mathcal{E})$ satisfying $K=h^{*} T_{\mathcal{E}}$, and $V=h(S)$ is linearly equivalent to $4 T_{\mathcal{E}}-\pi^{*} \mathcal{A}_{0}$, $\operatorname{deg} \mathcal{A}_{0}=\chi-1$.

LEMMA 7.1. The vector bundle $f_{*} \omega_{S}$ splits as a direct sum of line bundles. More precisely, there are three line bundles $\mathcal{L}_{i}(0 \leq i \leq 2)$ on B satisfying $f_{*} \omega_{S}=\mathcal{L}_{0} \oplus \mathcal{L}_{1} \oplus \mathcal{L}_{2}$ and $\operatorname{deg} \mathcal{L}_{0} \leq n+1, \operatorname{deg} \mathcal{L}_{1} \geq 2 n+1, \operatorname{deg} \mathcal{L}_{2} \geq 5 n+3$.

Proof. Since $K=2 L=\left[2 f^{*} \mathcal{L}+2 Z_{L}\right]$, we see that $\left|K-2 f^{*} \mathcal{L}\right|$ contains an effective divisor. Since $H^{0}(K) \simeq H^{0}\left(T_{\mathcal{E}}\right)$, it follows that $H^{0}\left(T_{\mathcal{E}}-2 \pi^{*} \mathcal{L}\right) \neq 0$. Then, by Lemma 1.1, we get

$$
\mu_{1} \geq 2 \operatorname{deg} \mathcal{L} \geq \begin{cases}5 n+3 & \text { if } n \text { is odd } \\ 5 n+4 & \text { if } n \text { is even }\end{cases}
$$

Since $\operatorname{deg} \mathcal{E}=\chi=8 n+5$ and since $\operatorname{deg} \mathcal{E} \geq \operatorname{deg} \mathcal{E}_{1}=r_{1} \mu_{1}$, we must have $r_{1}=1$. Recall that V is numerically equivalent to

$$
4 T_{\mathcal{E}}-(\chi-1) F=4\left(T_{\mathcal{E}}-(2 n+1) F\right)
$$

Since V cannot vanish identically on $\mathbb{P}\left(\mathcal{E} / \mathcal{E}_{1}\right)$, it follows from Lemma 1.1 that $\mu_{1}\left(\mathcal{E} / \mathcal{E}_{1}\right) \geq 2 n+1$. We have

$$
\operatorname{deg}\left(\varepsilon / \varepsilon_{1}\right)=8 n+5-\operatorname{deg} \varepsilon_{1}=8 n+5-\mu_{1}
$$

Hence $\operatorname{deg}\left(\mathcal{E} / \mathcal{E}_{1}\right) \leq 3 n+2$ if n is odd, and $\operatorname{deg} \mathcal{E} / \varepsilon_{1} \leq 3 n+1$ if n is even. Since $\mu\left(\mathcal{E} / \mathcal{E}_{1}\right)<\mu_{1}\left(\mathcal{E} / \mathcal{E}_{1}\right)$, we see in particular that $\mathcal{E} / \varepsilon_{1}$ is not semi-stable. Let $0 \subset \mathcal{F}_{1} \subset \mathcal{E} / \mathcal{E}_{1}$ be the Harder-Narashimhan filtration of $\mathcal{E} / \mathcal{E}_{1}$, and put $\mathcal{F}_{2}=\left(\mathcal{E} / \mathcal{E}_{1}\right) / \mathcal{F}_{1}$. Then $\operatorname{deg} \mathcal{F}_{1} \geq 2 n+1$ and we have $\operatorname{deg} \mathcal{F}_{2} \leq n+1$ if n is odd, and $\operatorname{deg} \mathcal{F}_{2} \leq n$ if n is even. Hence $\operatorname{deg} \mathcal{F}_{1}-\operatorname{deg} \mathcal{F}_{2}>0$ and $H^{1}\left(\mathcal{F}_{1}-\mathcal{F}_{2}\right)=0$. This implies that $\mathcal{E} / \mathcal{E}_{1}=\mathcal{F}_{1} \oplus \mathcal{F}_{2}$.

Since \mathcal{E}_{1} and \mathcal{F}_{1} are of positive degree, we have $h^{1}(\mathcal{E})=h^{1}\left(\mathcal{E} / \mathcal{E}_{1}\right)=h^{1}\left(\mathcal{F}_{2}\right)$ from the cohomology long exact sequence for

$$
0 \rightarrow \mathcal{E}_{1} \rightarrow \mathcal{E} \rightarrow \mathcal{E} / \mathcal{E}_{1} \rightarrow 0
$$

On the other hand, since $\mathcal{E}=f_{*} \omega_{\mathcal{S}}$, we have $h^{1}(\mathcal{E})=0$. Hence $h^{1}\left(\mathcal{F}_{2}\right)=0$ and we have $\operatorname{deg} f_{2} \geq 0$. Then

$$
\operatorname{deg} \mathcal{E}_{1}-\operatorname{deg} \mathcal{F}_{1} \geq \operatorname{deg} \mathcal{E}_{1}-\operatorname{deg} \varepsilon / \mathcal{E}_{1} \geq 2 n+1 .
$$

It follows that $H^{1}\left(\left(\mathcal{E} / \mathcal{E}_{1}\right)^{*} \otimes \mathcal{E}_{1}\right)=0$. This implies that $\mathcal{E}=\mathcal{E}_{1} \oplus\left(\mathcal{E} / \mathcal{E}_{1}\right)$. Now, put $\mathcal{L}_{0}=\mathcal{F}_{2}, \mathcal{L}_{1}=\mathcal{F}_{1}$ and $\mathcal{L}_{2}=\mathcal{E}_{1}$.

Lemma 7.2. Let the notation be as in Lemma 7.1. Then n is odd, $\operatorname{deg} \mathcal{L}_{0}=n+1, \operatorname{deg} \mathcal{L}_{1}=2 n+1$ and $\operatorname{deg} \mathcal{L}_{2}=5 n+3$. Furthermore, V is linearly equivalent to $4 T_{\mathcal{E}}-4 \pi^{*} \mathcal{L}_{1}$.

Proof. We can find sections X_{i} of $\left[T_{\varepsilon}-\pi^{*} \mathcal{L}_{i}\right]$ such that (X_{0}, X_{1}, X_{2}) forms a system of homogeneous coordinates on fibres of π. Assume that V is linearly equivalent to $4 T_{\varepsilon}-\pi^{*} A_{0}$ as in Section 3, and recall that $\operatorname{deg} A_{0}=\chi-1=8 n+4$. Then the equation of V can be written as

$$
\sum \phi_{i j} X_{0}^{4-i-j} X_{1}^{i} X_{2}^{j}=0,
$$

where $\phi_{i j}$ is a section of $L_{i j}=(4-i-j) \mathcal{L}_{0}+i \mathcal{L}_{1}+j \mathcal{L}_{2}-\mathcal{A}_{0}$. If $\operatorname{deg} L_{01}<0$, then V has a multiple curve along $X_{1}=X_{2}=0$. Hence $\operatorname{deg} L_{01} \geq 0$, that is, $3 \operatorname{deg} \mathcal{L}_{0}+\operatorname{deg} \mathcal{L}_{2} \geq 8 n+4$. Since $\operatorname{deg} \mathcal{L}_{0}+\operatorname{deg} \mathcal{L}_{1}+\operatorname{deg} \mathcal{L}_{2}=8 n+5$, we get $2 \operatorname{deg} \mathcal{L}_{0} \geq \operatorname{deg} \mathcal{L}_{1}-1$. Since $\operatorname{deg} \mathcal{L}_{0} \leq n+1$ and $\operatorname{deg} \mathcal{L}_{1} \geq 2 n+1$, we have either
(i) $\operatorname{deg} \mathcal{L}_{0}=n, \operatorname{deg} \mathcal{L}_{1}=2 n+1, \operatorname{deg} \mathcal{L}_{2}=5 n+4$, or
(ii) $\operatorname{deg} \mathcal{L}_{0}=n+1$, $\operatorname{deg} \mathcal{L}_{1}=2 n+1, \operatorname{deg} \mathcal{L}_{2}=5 n+3$.

We show that (i) is impossible. Assume by contradiction that (i) is the case. Note that V contains an elliptic curve B^{\prime} defined by $X_{1}=X_{2}=0$. We have $\operatorname{deg} L_{01}=0$. If $\phi_{01}=0$, then V would have a multiple curve along B^{\prime}, which is impossible. Hence L_{01} must be trivial and ϕ_{01} is a non-zero constant. But then V is non-singular in a neighbourhood of B^{\prime}. This is impossible, since V is singular along a fibre which meets B^{\prime}.

Hence we have (ii). In particular, it follows from the proof of Lemma 7.1 that n is odd. We know that V is defined by an equation of the form

$$
\begin{equation*}
\phi_{40} X_{1}^{4}+X_{2}\left(\phi_{01} X_{0}^{3}+\cdots+\phi_{04} X_{2}^{3}\right)=0 . \tag{7.4}
\end{equation*}
$$

Since $\operatorname{deg} L_{40}=0$ and ϕ_{40} cannot be zero, L_{40} is a trivial bundle, which means that \mathcal{A}_{0} is linearly equivalent to $4 \mathcal{L}_{1}$.

Put $n=2 k-1$.
Lemma 7.3. $\mathcal{L}_{2}=2 \mathcal{L}, L Z_{L}=2 k, D Z_{L}=2$ and $Z_{L}^{2}=-8 k+2$.
Proof. In the proof of Lemma 7.1, we have

$$
\operatorname{deg} \mathcal{L}_{2}=\mu_{1} \geq 2 \operatorname{deg} \mathcal{L}=5 n+3 .
$$

Since $\operatorname{deg} \mathcal{L}_{2}=5 n+3=10 k-2$, we get $\operatorname{deg} \mathcal{L}=5 k-1$. Recall that $H^{0}\left(T_{\mathcal{L}}-2 \pi^{*} \mathcal{L}\right) \neq 0$. Since any element of $H^{0}\left(T_{\mathcal{E}}-2 \pi^{*} \mathcal{L}\right)$ can be written as ψX_{2} with $\psi \in H^{0}\left(\mathcal{L}_{2}-2 \mathcal{L}\right)$, and since $\mathcal{L}_{2}-2 \mathcal{L}$ is of degree 0 , we see that $\mathcal{L}_{2}=2 \mathcal{L}$.

Since $\operatorname{deg} \mathcal{L}=5 k-1$, it follows from (7.3) that $L Z_{L}=n+1=2 k$. Since $L D=2$, we have $D Z_{L}=2$. We have $2 k=L Z_{L}=(\operatorname{deg} \mathcal{L}) D Z_{L}+Z_{L}^{2}$. Hence $Z_{L}^{2}=-8 k+2$.

Note that we have $K=h^{*}\left(\left(X_{2}\right)+\pi^{*} \mathcal{L}_{2}\right)=h^{*}\left(X_{2}\right)+2 f^{*} \mathcal{L}$. Hence $\left(X_{2}\right)$ corresponds $2 Z_{L}$. We can show the following as in [K3, Lemma 2.3] using (7.4).

Lemma 7.4. $Z_{L}=2 G_{0}+G_{1}$, where G_{0} is a non-singular elliptic curve and G_{1} is a (-2)-curve.

Since every even canonical surface with $K^{2}=3 \chi+1$ and $q=1$ has a (-2)-curve G_{1}, we have Theorem 6.5 by a result of Burns-Wahl [BW] (see [K3, Proof of Theorem 1.5]).

Example. Let \mathcal{M} be a line bundle of degree 2 on an elliptic curve B which induces the double covering $B \rightarrow \mathbb{P}^{1}$. Choose a point $P \in B$ with $2 P \in|\mathcal{M}|$. Put $\mathcal{L}_{0}=k \mathcal{M}, \mathcal{L}_{1}=(2 k-1) \mathcal{M}+[P], \mathcal{L}_{2}=(5 k-1) \mathcal{M}$ and $\mathcal{E}=\mathcal{L}_{0} \oplus \mathcal{L}_{1} \oplus \mathcal{L}_{2}$. Let $\xi \in H^{0}([P])$ define P, and choose sufficiently general members $\Phi_{0} \in H^{0}\left(2 T_{\mathcal{\varepsilon}}-2 \pi^{*} \mathcal{L}_{1}\right)$ and $\Phi_{1} \in H^{0}\left(3 T_{\varepsilon} \pi^{*}\left(4 \mathcal{L}_{1}-\mathcal{L}_{2}+2[P]\right)\right)$. We consider a surface defined in the total space of $\left[2 T_{\mathcal{E}}-\pi^{*}\left(2 \mathcal{L}_{1}+[P]\right)\right] \rightarrow \mathbb{P}(\mathcal{E})$ by

$$
\xi w-\Phi_{0}=w^{2}-X_{2} \Phi_{1}=0 .
$$

where w is a fibre coordinate. It is easy to see that it has only one rational double point of type A_{1} and the minimal resolution is an even canonical surface with $K^{2}=3 \chi+1, q=1$ and $\chi=16 k-3$ (see [K3]).

REFERENCES

[A] T. Ashikaga, A remark on the geography of surfaces with birational canonical morphisms. Math. Ann. 290 (1991), 63-76.
[AK] T. Ashikaga - K. Konno, Algebraic surfaces of general type with $c_{1}^{2}=3 p_{g}-7$. Tôhoku Math. J. 42 (1990), 517-536.
[B] A. Beauville, L'inégalité $p_{g} \geq 2 q-4$ pour les surfaces de type général. Bull. Soc. Math. France 110 (1982), 343-346.
[BW] D. BURNS - J. WAHL, Local contributions to global deformations of surfaces. Invent. Math. 26 (1974), 67-88.
[C] Z. CHEN, On the lower bound of the slope of a non-hyperelliptic fibration of genus 4. Preprint.
[G] D. GIESEKER, On a theorem of Bogomolov on Chern classes of stable bundles. Amer. J. Math. 101 (1979), 77-85.
[F] T. Fulita, On Kähler fiber spaces over curves. J. Math. Soc. Japan 30 (1978), 779-794.
[HN] G. Harder - M.S. Narashimhan, On the cohomology groups of moduli spaces of vector bundles on curves. Math. Ann. 212 (1974), 215-248.
[H1] E. Horikawa, Algebraic surfaces of general type with small c_{1}^{2}, V. J. Fac. Sci. Univ. Tokyo 28 (1981), 745-755.
[H2] E. Horikawa, Notes on canonical surfaces. Tôhoku Math. J. 43 (1991), 141-148.
[H3] E. Horikawa, Certain degenerate fibres in pencils of curves of genus three. Preprint.
[K1] K. Konno, Algebraic surfaces of general type with $c_{1}^{2}=3 p_{g}-6$. Math. Ann. 290 (1991), 77-107.
[K2] K. Konno, A note on surfaces with pencils of non-hyperelliptic curves of genus 3. Osaka J. Math. 28 (1991), 737-745.
[K3] K. Konno, On certain even canonical surfaces. Tôhoku Math. J. 44 (1992), 59-68.
[K4] K. Konno, Even canonical surfaces with small K^{2}, I. Nagoya Math. J. 129 (1993), 115-146.
[N] N. NaKayama, Zariski-decomposition problem for pseudo-effective divisors. In: Proceedings of the meeting and the workshop Algebraic Geometry and Hodge Theory, Vol. I, Hokkaido University Math. preprint series (1990).
[P] U. Persson, Chern invariants of surfaces of general type. Compositio Math. 43 (1981), 3-58.
[R1] M. Reid, π_{1} for surfaces with small K^{2}. Lecture Notes in Math. 732, Springer, 1979, 534-544.
[R2] M. Reid, Problems on pencils of small genus. Preprint (1990).
[X] G. XIaO, Fibred algebraic surfaces with low slope. Math. Ann. 276 (1987), 449-466.

> Department of Mathematics College of General Education
> Osaka University
> Machikaneyama
> Toyonaka 560
> Japan

