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Non-hyperelliptic Fibrations of Small Genus and
Certain Irregular Canonical Surfaces

KAZUHIRO KONNO

Introduction

Let S be a minimal surface of general type defined over C. We call S a
canonical surface if the rational map associated with |K| is birational onto its
image. Assume that S is a canonical surface with a non-linear pencil, and let
f 8 — B be the corresponding fibration. Since S is canonical, any general
fibre of f is a non-hyperelliptic curve. A natural question is then: what is the
genus of a general fibre? This leads us to studying the slope of non-hyperelliptic
fibrations. For a hyperelliptic fibration of genus g, 4 — 4/g is the best possible
lower bound of the slope by [P] and [H1]. Later, Xiao [X] showed that the slope
is not less than 4 — 4/g even when non-hyperelliptic. But, for non-hyperelliptic
fibrations, it may not be the best bound. In fact, we showed in [K2] that the
slope is not less than 3 when g =3 (see also [H2] and [R2]), and Xiao himself
conjectured that the slope is strictly greater than 4 — 4/g for non-hyperelliptic
fibrations ([X, Conjecture 1]).

At present, we have two methods for studying the slope. The first is
Xiao’s method [X] of relative projections and the second is counting relative
hyperquadrics which is still at an experimental stage (see [R2] and [K2]).
Combining these two, we show that the slope is not less than 24/7 for g = 4
and give a bound 40/11 for g = 5 (Theorems 4.1 and 5.1). We also answer
affirmatively to Xiao’s conjecture referred above (Proposition 2.6).

As an application, we show in Section 6 that, for an irregular canonical
surface S (with a non-linear pencil), the canonical image cannot be cut out by
quadrics when K2 < (10/3)x(0s). For irregular surfaces, Reid’s conjecture [R1,
p- 541] may be shown along the same line if we can sufficiently develop the
second method.

This paper was written during a research visit to Pisa in 1992. The author
would like to thank, among others, Professor Catanese for his hospitality. After
writing the manuscript, the author received a preprint [C] in which our Theorem
4.1 is shown independently.

Pervenuto alla Redazione il 3 Marzo 1993.
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1. - Relative hyperquadrics

Let B be a non-singular projective curve of genus b, and let £ be a
locally free sheaf on B. We put u(€) = deg(€)/1k(€). According to [HN], &
has a uniquely determined filtration by its sub-bundles ¢;

0=&6céEiCc---cé=¢€

which satisfies

(i) /&1 is semi-stable for 1 <7 < ¥,
() &/ &) > (/&) for 1 <i<L— 1.

As usual, we call such a filtration the Harder-Narashimhan filtration of £.
Put y; = N(&'/&‘—l) and r; =rk(¢;). Then

-1

deg(€) = E Ti(li — Pis1) + Tepbe.

i=1

Let 7 : P(&) — B be the projective bundle associated with £. We denote
by T¢ and F' a tautological divisor such that «,0(T¢) = £ and a fibre of ,
respectively. Note that for any R-divisor D on P (), there are real numbers z, y
satisfying D = zT¢ + yF, where the symbol = means numerical equivalence.
The following can be found in [N].

LEMMA 1.1. An R-divisor which is numerically equivalent to Tg — zF is
pseudo-effective if and only if x < py. It is nef if and only if © < p,.

Assume that £ > 2, For 1 <i</{£—1 let
pi Wi =P (£)

denote the blowing-up along B; = P(£/&;). Then W; has a projective space
bundle structure m; : W; — P (). We put E,; = p; Y(B;). Then 7} Tg, is linearly
equivalent to p;Te — E,. Furthermore, E; is isomorphic to the fibre product
P (&) xB B;. Let py : E; — P (&) be the projection map onto the first factor.
Then p; = m;|g,. Similarly, if p, : E; — B; denotes the projection to the second
factor, then p; = p;|g,. In particular, [-E,][g, is given by piTe, — p3T¢/s,-

The following is essentially the same as [N, Claim (4.8)].

LEMMA 1.2. Assume that an R-divisor Q = piTe, +p;Tee, — zF on E; is
pseudo-effective. Then = < py + pe + deg(€e—1/&).

PROOF. Since Tg/g, — peF is nef on B;, Hy = T¢je, — (pe — y)F is am-
ple for any positive rational number y. Let m be a sufficiently large pos-
itive integer such that mH, is a very ample Z-divisor, and choose s — 1
general members H; € [mH,| so that C =N;H; is an irreducible non-singular
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curve, where s = rk(£/¢;). Let 7 : C — B denote the natural map. Then
P(¢) xp C ~ P (r*&;). Since the restriction of @Q to this space is numerically
equivalent to

Treg, — m(r" ENFe + {(Tg ), + (w1 — ©)F) - C}Fy,

where F¢ denotes a fibre of P (7*&;) — C, and since it must be pseudo-effective,
it follows from Lemma 1.1 that (Tgpe + (w1 — ©)F) - C > 0, that is,
(Te /e, + (w1 — :::)F)H;‘1 > 0. Letting y | 0, we get

z < deg(€£/&) — spp+ pr + pe = deg(Eo—1/ €D + p1 + pe. O

An effective divisor Q on P (&) is called a relative hyperquadric if it is
numerically equivalent to 2Ty — zF for some z € Z. It is said to be of rank r,
rk(Q) = r, if it induces a hyperquadric of rank r on a generic fibre of P (£).

LEMMA 1.3. Assume that £ > 2 and consider a relative hyperquadric
Q=2Ts — zF on P(&). If Q is not singular along By_1, then x < p1 + .

PROOF. We may assume that z > 2u,. Then, by Lemma 1.1, Q vanishes
on By_1, since Q|p,, = 2T¢¢, , — zF. However, since @ is not singular along
By_y, it cannot vanish twice along B, ;. Let Q be the proper transform of Q
by pe_1. Then

Q= pp1RTe — zF) = Be1 = pp 1 Te +m5_1T¢,, — <F.

Hence Qlg,, = piTe,., + p5T¢ /e, — =F. Since it must be effective, we get
z < pi + pe by Lemma 1.2. O

LEMMA 1.4. Let Q = 2T¢ — zF be a relative hyperquadric on P(€). If
T > p1+ i, then tk(Q) < r;_; and Q is singular along B;_,.

PROOF. Since z > p + pe, it follows from Lemma 1.3 that @ is singular
along B,_). Let Q be the proper transform of Q by p,_,. Then

Q=p,_Q2Te —zF)— 2B, =7; 2T, , — zF).

Hence there exists a relative hyperquadric Q.1 = 2T, , — =zF on P (&-1) sat-
isfying rk(Q) = tk(Q¢-1) < r¢-;. Now, the assertion can be shown by induction.
O

LEMMA 1.5. Let Q = 2T — =F be a relative hyperquadric on P (). If
tk(Q) > 3, then the following hold.

(1) Ifr1 >3, then z < 2u,.

2) If r1=2, then = < p1 + .

3) Ifri=1and r, > 3, then x < 2u;.
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4) Ifri=1and ry =2, then z <min{2us, py + p3}.

PROOF. (1) follows from Lemma 1.1 applied to a Q-divisor Q/2. We only
have to show that z < 2u, in (3) and (4), since the other assertions follow
from Lemma 1.4. Assume that =, = 1. Then B is a relative hyperplane on
P (£). Since rk(Q) > 3, we see that @ cannot vanish identically on B,. Note
that 0 C & /& C --- C £/& is the Harder-Narashimhan filtration of &£ /&,. Since
Q|B, = 2T¢se, — xF, we get x < 2u, by Lemma 1.1. 0

LEMMA 1.6. Let Q = 2T¢ — x=F be a relative hyperquadric on P (). If
tk(Q) > 4, then the following hold.

(1) If ry >4, then x < 2pu,.

2) Ifri=3, then x < py + po.

B) Ifri=2and r, > 4, then © < py + pp.

@) Ifri=2and r, =3, then z < uy + 3.

S) Ifri=1and ry >4, then x < 2u,.

6) If i=1and ry =3, then < min{2us, p1 + p3}.

(7N Ifri=1, ;=2 and r; > 4, then = < uy + us.

8) Ifri=1, =2 and r3 =3, then z < min{us + p3, f1 + pa}.

PROOF. We show that z < u; + s in (7) and (8). Assume by contradiction
that = > up + 3. Since ry = 1, B is a relative hyperplane on P (£). We have
Q|, = 2T¢)e, — zF. Since x > uy + p3, it follows from Lemma 1.4 that Q|
is singular along B, which is a relative hyperplane of B,. This implies that,
on F ~ P!, Q is defined by X|L(Xi,...,X,)+cX? = 0 with a system of
homogeneous coordinates (Xj,...,X,) on F satisfying Bi|p = (X;), where L is
a linear form and ¢ is a constant. In particular, @ cannot be of rank > 4. Hence
z < po + ps.

The other assertions can be shown similarly as in Lemma 1.5. O

REMARK 1.7. Put v»; = p; when r,; < 7 < r; (1 < 4 < £). Then
vi > -2 v, r=1k(£), and deg(£) =Y v;. With this notation, the conditions
in Lemma 1.5 (resp. Lemma 1.6) can be written as z < min{2v,, v; +v3} (resp.
z < min{yz +uv3, v+ 1/4}).

2. - Some inequalities

Let f: 8 — B be a surjective holomorphic map of a non-singular projec-
tive surface S onto a non-singular projective curve B with connected fibres.
We always assume that f is relatively minimal, that is, no fibre of f contains
a (—1)-curve. If a general fibre of f is a (non-)hyperelliptic curve of genus g > 2,
we call f a (non-)hyperelliptic fibration of genus g. Let Kg/p be the relative
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canonical bundle. It is nef by Arakelov’s theorem [B].

LEMMA 2.1. Let f : S — B be a relatively minimal fibration of genus
g > 2, and put b = g(B). Then f.wg/p is a locally free sheaf of rank g and
degree A(f) := x(0g) — (g — 1)(b — 1). Furthermore, the following hold.

(1) A(f) > 0 unless f is locally trivial.
(2) Every locally free quotient of f.wg/p has nonnegative degree.

PROOF. rk(f.wg/p) equals the genus of a fibre. The assertion about the
degree follows from the Riemann-Roch theorem (on S and B) and the Leray
spectral sequence, since we have R! fiwg/p = f.Os by the relative duality
theorem. (1) and (2) can be found in [B] and [F], respectively. O

When f is not locally trivial, we put A(f) = Kg/B/A( f) and call it the
slope of f.

NOTATION 2.2. Let f: S — B be a relatively minimal fibration of genus
g>2.Put €= fiwgpandlet0C & C---C & =¢E be its Harder-Narashimhan
filtration. The natural sheaf homomorphism f*¢ — wg/p induces a rational
map h: S — P(£). The image V = h(S) is called the relative canonical im-
age. To be more precise, let A be a sufficiently ample divisor on B, and put
L(A)=Kgp+ f*A. Let ¢ : S — S be a composition of blowing-ups such that
the variable part |M(A)| of |¢*L(#A)| is free from base points. We assume that
o is the shortest among those with such a property. Let Z be the fixed part
of |¢*L(A)| and let E be an exceptional divisor with K = o*K + [E], where
K is the canonical bundle of S. Since A is sufficiently ample, we can assume
that Z has no horizontal components. In particular, we see that M(A) induces a

canonical divisor on a general fibre D of the induced fibration f: S5 — B. The
holomorphic map associated with M(A) factors thorugh P (£) and we have a
holomorphic map % : § — P () over h which satisfies M(A) = A*(Ts + 7> A).
Then V = A(S). When f is non-hyperelliptic, V is birational to S and any
general fibre of V' — B can be identified with a canonical curve of genus g.

Put M = A*T¢. Since M — ;D is nef by Lemma 1.1 and since u; > 0 by
Lemma 2.1, (2), we see that M is nef.

We have (at least) two methods for studying the slope of non-hyperelliptic
fibrations, which we recall below.

(I) Relative projections ([X])

Here we recall Xiao’s method. For each 1 < ¢ < ¢, the natural sheaf
homomorphism f*¢; C f*fiws/p — wg/p induces a rational map h; : S — P (&)
over B. We let ¢, : S; — S be a composition of blowing-ups which elim-
inates the indeterminacy of h;. We choose a non-singular model S* which
dominates all the S;’s, and we denote by p: S* — S the natural map. Let M;
be the pull-back to S* of Ty,. Let D* be a general fibre of the induced fibration
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S* —» B and put N; = M; — u;D*, Z; = p"Kg/p — M;. Then Z, is effective
and, by Lemma 1.1, N; is a nef Q-divisor. Note that, modulo exceptional
curves, Z; corresponds to Z. In particular, we see that Z,D* = 0. Note also
that Z; — Z, corresponds to the inverse image of the center B; of a relative
projection P (£) — P (&).

Put d; = N;D*(1 < ¢ < £). Note that dp = 2g — 2. For 1 < < £ -1,
d; is the degree of an r; — 1 dimensional linear system |M;||p- and hence
Clifford’s theorem shows that d; > 2r; — 1 unless (dj,r;) = (0,1) when f is
non-hyperelliptic. We recall two inequalities which follow from [X, Lemma 2].

-1

@2.1) K5 > (di+dis) (i — pan) +4(g — Dy,
=1

22 K3/p 2 (di+2g — 2)(u1 — pe) + Mg — Dpse.

(@) Counting relative hyperquadrics

Let f : S — B be a non-hyperelliptic fibration. We can assume that
A is taken so that the holomorphic map associated with |T¢ + 7*A| gives a
quadratically normal embedding of P (£). Then we have

2.3) RPQMA) > h°QTs + 2n* A) — BTy (2Te + 27* A))

where Iy denotes the ideal sheaf of V if P(£). Since the restriction map
HOM(A)) — H%Kp) is surjective, we can lift all the quadric relations
in S2HY%Kp) to SZHO(M(A)). Since HOM(A)) ~ HTe + n*A), it follows
that HO(Iy 2T + n*A)) — H°(Ip(2)) is surjective, where Ip is the ideal
sheaf of D' = WD) in F ~ P¢!. Since f is non-hyperelliptic, we have
R(Ip(2)) = (g — 2)(g — 3)/2. Put

z; = max{deg §|rk{ H*(Iy (2T¢ — =*6)) — H°(Ip:(2))} > i},

where § ranges over Pic(B). Then z; > 2, > --- > xi, where k = (g—2)(g—3)/2.
We can find a set of divisors {6} with degé; = z;(1 < ¢ < k) and relative
hyperquadrics Q; linearly equivalent to 2Ty «*§; such that they induce a basis
for H°(Ip(2)). Furthermore, we can assume that H°(Iyy (2T¢ +27* A)) is generated
by them in the sense that

H°(Iy (2T + 27" 4)) = @D H 24 +6:)Q;.

Since 4 is sufficiently ample, 24 + §; cannot be a special divisor. Hence

WOy 2T +2x° )= ) zi+ (g — 2)(g — 3)2a+1 - b)/2,
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where a = deg A. We have

ROQTe +27* A) = (g + DA(S) + g(g + DQ2a + 1b)/2
by the Riemann-Roch theorem. Therefore, we can re-write (2.3) as

(2.4) R°@MA) > (g+ DAS) +3(g - DQ2a+1-b)— Y =

2

LEMMA 2.3. hNE +Z — M(f)) < M(E + Z)/2, where A =24 — Kp.

PROOF. Since E + Z has no horizontal components with respect to f
we can find an effective divisor A; on B satisfying f*4; > E+Z. We
assume that deg A; is minimal among those divisors with such a property,

and put L; = f*4,. Since A is sufficiently ample, there exists an irreducible
non-singular member L, € |M(ﬁ — A|. Put Ly = (L — E — Z) + L,. Since
L; > L,, we can assume that |L;| induces a birational map of S onto the
image. Then, by Ramanujam’s theorem, we get h'(—L3) = h%(Or,) — 1. Consider
the cohomology long exact sequences for

0— 0, = Opu,(E+2Z)— Opiz(E+Z) — 0,
0> O (E+Z—Ly) = Opsp,(E+2Z)— O, (E+Z)— 0.
From these, we get
h°(0L,) < K011, (E + 2)) < KO (E + Z — Lo)) + h*(Op,(E + 2)).

Since, on fibres, [E + Z] is trivial and L, looks like a canonical divisor, we
have that

RYOL(E + Z — L»)) = h%(Or,(~L»)) = 0.

Hence we get
RY(—L3) < hNOL(E+2Z)) — 1 < LyE +2Z)/2= M(E + 2)/2

by Clifford’s theorem. a

Since xQ2M(4)) = M2 +A(f) +3(g — D(2a + 1 — b) — M(E + Z) by the
Riemann-Roch theorem, and since we have R*(2M(A)) = h2{(E + Z — M(A)), it
follows from (2.4) and Lemma 2.3 that

(9-2)(g-3)/2
(2.5) M*2 M)~ D mi+; ME+D)

i=1
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Since Kg/B =M?+(0*Kg/p + M)Z, we have in particular

(g-2)(g-3)/2

(2.6) Kyp2gAH— ) =

1=1

REMARK 2.4. There is another version due to Reid [R2]. It is easy to see
that f*(w?/zB) is a locally free sheaf of rank 3g — 3 and degree K3 /5 +AU).
If f is non-hyperelliptic, then the sheaf homomorphism S%( fewg/p) — f*(w?/zB)
is generically surjective by Max Noether’s theorem. Hence we have an exact
sequence of sheaves on B:

(27) 0o R — Sz(f*WS/B) — f*(w?/zB) — T — O’

where T is a torsion sheaf and R is a locally free sheaf of rank (g —2)(g —3)/2.
Since deg S*(fuws/) = (g + DA(S), it follows from (2.7) that

(2.8) K33 = gA(f) — deg R +length T > gA(f) — deg R.

We close the section giving an application of method (II).

LEMMA 2.5. Let f : S — B be a non-hyperelliptic fibration of genus g.
Suppose that f.wg/p is semi-stable. Then

6
(2.9) Kip > <5 — 5) A(f).

PROOF. We give here two proofs using (2.6) and (2.8), respectively.

(1) Since Q; = 2T, — z;F is effective, it follows from Lemma 1.1 that
z; < 2A(f)/g since f.wgp is semi-stable. Hence we get (2.9) from (2.6).

(2) Since f.wg/p is semi-stable, so is Sz(f*wS/B) (see, e.g., [G]). Hence
we have u(R) < u(S*(faws/p)), that is, gdeg R < (g —2)(g — 3)A(f). Substituting
this in (2.8) we get (2.9). O

PROPOSITION 2.6. Let f : S — B be a non-hyperelliptic fibration of genus
g, and assume that it is not locally trivial. Then M(f) > 4 — 4/g. Hence the
conjecture of Xiao [X, Conjecture 1] is true.

PROOF. Xiao [X, Theorem 2] showed that A(f) > 4 —4/g when f.wg/p is
not semi-stable, by using (2.1) and (2.2). Hence we can assume that f,wg/p is
semi-stable. But then, we have a stronger inequality (2.9). O

LEMMA 2.7. Let f : S — B be a non-hyperelliptic fibration of genus g > 4.
Assume that the Harder-Narashimhan filtration of fiwgp is 0 C € C fuwg/p
and k(&) = 1. Then (2.9) holds without equality.

PROOF. Since all the Q,’s have rank > 3, we have z; < 2u, < 2A(f)/g by

Lemma 1.5. Hence (2.6) implies (2.9). O
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3. - The case g =3

In this section, we consider non-hyperelliptic fibrations of genus 3 in order
to supplement [K2] and give a geometric interpretation of length T in (2.8).
Some results here overlap with [H3].

Let f: S — B be a non-hyperelliptic fibration of genus 3 and let the
notation be as in 2.2. The relative canonical image V is a divisor on P (&)
linearly equivalent to 4T — n* A, for some divisor Ay on B. Put a =deg A and
ao = deg Ay. Since h is a birational holomorphic map onto the image and since
M(#) = k*(Ts + n* A), we have

M(AY = (Te + " A)*(4Te — 7" Ao) = 4A(f) + 8a — aq.
Hence
(3.1 M? —3A(f) = A(f) — ao.
Since K§/B =M?+(0*Kg/p+M)Z, (3.1) is equivalent to
(3.2) K35 — 3M) = A(f) — ao+ (0" Kgyp + M) Z.
In view of (2.8), the right hand side of (3.2) is nothing but length T (since
. 0%;et C be a general member of |[M(A)|. Then

29(C) — 2= M(AK + M(4))

= 8A(f) + 12a — 2ag + 8(b — 1) + M(E + Z).
On the other hand, the arithmetic genus of C' = h(C) is given by
2p(C") = 2= (T + 7" A)(4Te — 7* A0)2Te + n*(det £ + wp + A — Ag))
= 12A(f) + 8(b — 1) + 12a — 6ay.

Hence
3.3) pa(C") — g(C) = 2A(f) — 2a0 — M(E + Z)/2 > 0.
Note further that the conductor of C — C’ is given by
(3.4) hrwe — we = f*(det€ — Ao)lc — (B + 2)lc.

The following is a refinement of [K2, Theorem 1.2].

LEMMA 3.1. Let the notation be as above. For a non-hyperelliptic fibration
f: 8 — B of genus 3, Ké/B > M? > 3A(f) holds. If M? = 3A(f), then

Kg/B =3A(f).
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PROOF. It follows from (3.3) that A(f) > ay. Hence we have M? > 3A(f)
by (3.1). Assume that M? = 3A(f), that is, ag = A(f). Then, by (3.3), we have
M(E +2)=0. Since 0 < (¢*Kg/p)Z = MZ + Z* = Z*, Hodge’s index theorem
shows that Z = 0. Hence (3.2) implies that Ké /B = 3A(). O

The above equalities are sometimes useful in determining the singularity
of V.

THEOREM 3.2. When Ké /B = 3A(f), V has at most rational double points,
and it is linearly equivalent to 4Ty — n*detf. When Kg/B > 3A(f), V is
non-normal. In particular, if Kg./B =3A(f)+1, V has at most rational double
points except for a double conic curve described in [K1, §9].

PROOF. Assume first that Ké/B = 3A(f). Then ag = A(f), and |L(A)| has
no base locus as we saw in the proof of Lemma 3.1. We have p,(C") = g(C)
by (3.3). It follows that V has at most isolated singular points. We have

x(Ov) = x(Ope)) — x(=V)
=1—b+x(Ts+n*(deté + Kp — Ap))
= A(f) +2b — 2 = x(0s).

Hence V has at most rational singular points. Since V' is a hypersurface of a
non-singular 3-fold P (&), it has at most rational double points. In particular,
we have wg/p = h*wy/p. Since wy,p is induced from Ty + x*(det€ — Ap) and
Kg/p = h*Te, we see that f*(det€ — Ap) is linearly equivalent to zero. That is,
Ag=detf.

It follows from (2.5), (3.1) and (3.3) that p,(C') — g(C) > M? — 3A(f).
Hence, by Lemma 3.1, we have p,(C') — g(C) > 0 when Ké/B > 3A(f). Since
C' is obtained by cutting V by a general member of |T¢ +n* 4|, it follows that
V has more than isolated singular points.

Assume that K2, = 3A(f)+1. By Lemma 3.1, we must have M? = Kg/B.
It follows that A(f) = ap+ 1 and that |L(4)| has no base locus. By (3.3) and
(3.4), we have p,(C") — g(C) =2 and h*we — we = f*(det £ — Ap)|c. Hence '
has two double points contained in a unique fiber. Since V' has no horizontal
singular locus, we see that V' has a double curve along a conic traced out by
the singular points of C'. The rest follows from an argument in [K1, §9]. O

REMARK 3.3. Horikawa [H2] announced that he classified degenerate fibres
in genus 3 pencils. Though a part of it can be found in [H3], the whole body
has not appeared yet.
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4. - The case g=4
In this section we show the following theorem with several lemmas.
THEOREM 4.1. f : S — B be a non-hyperelliptic fibration of genus 4. Then
24
4.1) K> = A,
If a general fibre of f has two distinct g;’s, then
2 7
4.2) Kgp 2 3 A(S).

For the proof of Theorem 4.1, we freely use the notation of the previous
sections. In particular, we set € = fiwg/p andlet 0C & C -~ C & = £ be the
Harder-Narashimhan filtration. By §2, (II), there exists a relative hyperquadric
Q = 2T¢ — zF through the relative canonical image V and
(4.3) K§/p > 4A(f) — z.

Since rk(Q) = 4 if and only if a general fibre of f has two distinct g;’s, the
second part of Theorem 4.1 is nothing but the following:
LEMMA 4.2. If k(Q) =4, then (4.2) holds.

PROOF. In view of (4.3), we only have to check that z < A(f)/2. But

this is straightforward applying Lemma 1.6. Let vq,...,v4 be as in Remark

1.7. Then it follows from Lemma 1.6 that z < min{v, + 3,1 + v4}. Hence
4

2z <) vi = A(). O
7=

LEMMA 4.3. If z < py + e, then (4.1) holds.

PROOF. By (22), we have Ké/B > (d +6)([,Ll - [,l,e) + 12/1;[ > 6(;141 + Lg).
Hence (4.1) holds if u; +ue > (4/NA(f). Assume that p; +pe < (4/7)A(f). Then
T < pi+pe < (4/DA(S) and we get (4.1) from (4.3). O

Recall that a canonical curve of genus 4 cannot meet the vertex of the
quadric through it, if the quadric is of rank 3.

LEMMA 4.4. If £ > p1 + e, then ro.1 =3 and dy_1 = 6.

PROOF. If z > u; + ue then, by Lemma 1.3, Q is singular along B,_;.
Since rk(Q) > 3 and r, = 4, we must have r,_; =3 by Lemma 1.4.

We have dy_ = 6 — Z,_D*. Since rk(Q) =3 and since B, ; is the (rel-
ative) vertex of Q, we see that any general fibre of V — B cannot meet
B,_,. Since Z;_1 — Z; corresponds to B;,_; NV as we remarked in §2, (I), we
have (Z;_ — Z,)D* = 0. It follows that d,_; = 6, since we always have Z,D* = 0.

0O
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We complete the proof of Theorem 4.1 with the following:
LEMMA 4.5. Even if £ > p1 + pe, (4.1) holds.

PROOF. We can assume that r,_; =3 and dy,_; =6 by Lemma 4.4.

Assume that £ = 2. Since r; =3, we get £ < 2u; by Lemma 1.5. On the
other hand, since d; = 6, it follows from (2.1) that K2 5 > 12(u1 — po) + 12p, =
12p1. Hence, if p1 > Q2/DAf), we get (4.1). It uy < (2/DA(S), then
z < (4/DA(S) and (4.1) follows from (4.3).

Assume that £ = 3. Since 7y < 2 and r, = 3, we have z < uj + u» by
Lemma 1.5. Since d; = 6, it follows from (2.1) that

Ké/B > (dy +6)(1 — p2) + 12(p2 — p3) + 123 > 6(p1 + p2).
Hence we can show (4.1) as we did in Lemma 4.3.
Assume that £ =4. By Lemma 1.5, we have z < min{2u,, u; + u3}. Since

d; = 6, it follows from (2.1) that

K3/p > 3(m — p2) + 9 — p3) + 12(p3 — pa) + 12000 = 31 + 2p12 + p3).

Hence Ké/B > 6 min{2u,, w1 + p3} and we can show (4.1) as we did in
Lemma 4.3. O

5. - The case g=5

In this section we show the following theorem with several lemmas.

THEOREM 5.1. Let f : S — B be a non-hyperelliptic fibration of genus 5.
When a general fibre of f is non-trigonal we have:

(5.1 K3p > M* > 4A(f).
When a general fibre is trigonal we have:
40
5.2 20> A
(5:2) K52 17 A
By (II), there are three relative hyperquadrics Q; = 2T¢ — z,F, 1 <1 <3,
through V satisfying z; > z, > z3 and
3
(5.3) Kyp>5Mf) -z, =)
i=1
LEMMA 5.2. Let f: S — B be a non-hyperelliptic, non-trigonal fibration
of genus 5. Then K3 p > M? > 4A(f). If M?* = 4A(f) then Ké/B = 4A(f).
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PROOF. Since a general fibre of f is non-trigonal, the relative canonical
3
image V is an irreducible component of [ Q;. Hence, comparing degrees, we
i=1
get M(A)? < (Te +n* A)M1;(2Ts — z;F), that is, M? < 8A(f) — 4z. Eliminating z
from (2.5) using this, we get

M? 24A(f)+—§—M(E+Z)

from which the assertion follows immediately. O

In the rest of the section, we assume that f : S — B is a trigonal fibration
of genus 5. Recall that, for a suitable choice of homogeneous coordinates
(Xo,...,X4) on P*, any quadric through a trigonal canonical curve of genus 5
can be written as cl(X%—X0X2)+cz(XU‘\'.X|X3)+C3(X2X3—X1X4). Hence there
is only one quadric of rank 3, and the vertices of any two independent members
cannot meet. Without loosing generality, we can assume that tk(@Q:) > 3,
tk(Q3) > rk(@Q2) > 4.

LEMMA 5.3. If r; =2 then z3 < 2u;41.

PROOF. Assume contrarily that z3 > 2p;. Then all the @Q;’s vanish
identically on B; which is a P2-bundle on B. This contradicts the fact that
NQ; induces a Hirzebruch surface on a general fibre of P (£) — B. O

LEMMA 5.4. Assume that there are rational numbers y, and vy, satisfying
z < yi, K?}/B >y, and 8y, < 3yo. Then (5.2) holds. In particular, (5.2) holds
when z < 3(p1 + o).

PROOF. It follows from (5.3) that K?}/B > SA(f) — y1. Hence (5.2) holds
when y; < (15/11DA(f). Assume that y; > (15/1DA(f). Since 3y, > 8y;, we
have Ké/B >y > (8/3)y1. Hence (5.2) holds. In particular, since we have
K3/ = 81+ pe) by (2.2), we get (5.2) if z < 3(u1 + po). O

We can assume that x > 3(u; + ug). Then x; > gy + pp.

LEMMA 5.5. Assume that z > p + pe. Then x; < py + pe for 1=2,3 and
re1>3 Ifrg =3 thendy 1=6. If re_ =4 then dy_ > 7.

PROOF. Since x; > p +pe, Q1 is singular along B,_; by Lemma 1.3. Since
rk(Q@1) > 3, we have r,_; > 3. Furthermore, @, and Q3 cannot be singular along
By, as we remarked just before Lemma 5.3. Hence z,, z3 < p + ¢ by Lemma
1.3 again. If r,_y =3, then k(@) = 3. Since a trigonal curve of genus 5 meets
the vertex of rank 3 quadric through it at two points, we get dp1 =8 — 2 =6.
If r,_1 =4 then dy—1 > 7 by Clifford’s theorem. O

LEMMA 5.6. Assume that £=2 and x; > u +ps. Then Ké/B > (15/HAF).
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PROOF. Since we have 5, < 2u; by lemma 1.5 and z; < p;+u, fori=2,3
by Lemma 5.5, we get = < 4u; +2u,.

Assume that r; = 3. We have Ké/B > 5A(f) — 2QQuy + u2) by (5.3). On
the other hand, it follows from (2.2) that K} /5 > 141+ 2p2, since d; = 6 by
Lemma 5.5. Since A(f) = 3u;1 +2u;, these inequalities imply K§ /B = (15/HAS).

Assume that r; = 4. Since A(f) = 4p; + pp, we have z < A(f) + uy <
A(f) +A(f)/5. Hence we get Kg/B > (19/5)A(f) from (5.3). O

We assume that £ > 3 in the sequel.

LEMMA 5.7. Assume that £ > 3, x > 3(u1 + ue) and ry_1 = 3. Then (5.2)
holds.

PROOF. We have ¢ = 3 or 4. Note that rk(Q;) = 3 and rk(Q;) > 4 for
i=23.

We have z; < pu; + pue_; by Lemma 1.5, z; < p; +pe by Lemma 5.5 and
23 < 2up_; by Lemmas 1.6 and 5.3. Hence = < 2u; + 31 + pte- On the other
hand, applying [X, Lemma 2] for the sequence {ui, pe-1, e}, We get

K2/p > 61 — o)+ 14(ue_1 — pe) + 1640 = 61 + 8pig 1 + 24,
since d; > 0, ds—; =6 and d; = 8. We have pu; > ue. It follows that
8(2u1 + 3pwp—1 + pre) < 3(6p1 +8pp1 + 2p).

Applying Lemma 5.4, we see that (5.2) holds without equality. a

LEMMA 5.8. Assume that £ >3, = > 3(u1 +pe) and re 1 =4 If ro-2 < 2,
then (5.2) holds.

PROOF. We have ¢ =3 or 4. Since r,_» < 2, it follows from Lemma 1.4
that z; < p; + ue—;. We have z < pg + y by Lemma 5.5. Furthermore, we can
assume that z3 < 2u,_; by Lemmas 1.6 and 5.3. Hence z < 2u; + 3uo—1 + pe.
On the other hand, applying [X, Lemma 2] for the sequence {ui, pe—1, e}, We
get

K§/B > T(u1 — pe-1) + 15Que—1 — pe) + 16p¢ = Ty + 8pag—1 + phe,

since d; >0, dy_; > 7 and d, = 8. It follows from u; > u, that
8(2py +3pe1 + pe) < 3(Tpy + 8pig—1 + pg).

Hence, as in the the previous lemma, we see that (5.2) holds without equality.
O

LEMMA 5.9. Assume that £ > 3, x> 3(uy+pe) and ro_1 =4 If rp_2 =3
and x, > ) + pe_1, then (5.2) holds.
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PROOF. Since z; > pi + pe1, Be o is the relative vertex of @; and it
follows that dy;_, = 6.

Assume that £ = 3. Since d; = 6, we have Ké/s > 14p; +2u3 by (2.2).
By Lemmas 1.5 and 5.5, we have z; < 2y, and z,, z3 < u; + us. Hence
z < 4uy +2u;3. We can show that Kg/B > (15/HA(f) using (5.3).

Assume that £ =4 or 5. We have z; < p; +pe—2 and z, < p; + g by
Lemmas 1.5 and 5.5, respectively. Furthermore, we have z3 < 2u,_, by Lemmas
1.6 and 5.3. Hence z < 2u; +3ue_2+pe. On the other hand, applying [X, Lemma
2] for the sequence {u1, we—2, pie}, We get

K3/p = 6(u1 — pre—2) + 14(pe_g — pe) + 16410 = 6411 + 8pue—2 + 2p10,

since dy > 0, d;_, = 6 and d; = 8. Hence we see that (5.2) holds without equality
as in the proof of Lemma 5.7. O

We finish the proof of Theorem 5.1 with the following:

LEMMA 5.10. Assume that £ >3, > 3(uy+pe) and ro_y =4 If rp0=3
and z; < py + pe_1, then (5.2) holds.

PROOF. Assume that £ = 3. Since z < (p1 + po) +2(pq + p3) = 3p1 + o + 23
and A(f) = 3p1 + 2 + p3, it follows from (5.3) that Ké/B > (19/5)A(f), which is
stronger than (5.2).

Assume that £ =4 and r; = 1. Then z; < 2u; and =z, 23 < u1 +pa by
Lemmas 1.5 and 5.5. Since z; > u1+u4, We have in particular pi+ps < 2u,. We
have x < 2(u; + p2 + pa). Applying [X, Lemma 2] for the sequence {u1, ti2, pa}
we get

Ké,B > 5(p1 — p2) + 13(u2 — pa) + 164 = Spy + 8 + 34,

since d; > 0, d, > 5 and d4 = 8. Since 6(u; — pa) + 2uz — 1 — pa) > 0, we have
3(5m1 + 8z +3pa) > 16(u1 + o + pa) and therefore (5.2) holds without equality.

Assume that £=4 and r; =2. We get ) < p; +p3 and x5, 23 < py + s by
Lemma 5.5. Hence = < 3u +pu3 +2u4. Applying [X, Lemma 2] for the sequence

{11, p3, pa}, we get
Kg/p > 10(u1 — p3) + 153 — pa) + 16pa > 8py + s + pia,

since d; > 3, d3 > 7 and d4 = 8. Since us > p4, we have 3(8u1 + Tus + ug) >
8(3u1 + p3 +2u4) and, therefore, (5.2) holds without equality.

Assume that £ = 5. We have z; < min{2u;, p1 + pa}, 22 < min{u, +
ps, g+ ps} and z3 < min{2u3, p1 + ps} by Lemmas 1.5, 1.6, 5.3 and 5.5. If
pz + sz < pp + ps, then we get © < 2up + (p + ps) + 2u3 < 3(uy + ps) which
contradicts the assumption of the lemma. Hence u, + s > p) + us. Then we
have z < (u1 + pa) + (1 + ps) +2p3 = 2u1 + 2u3 + pg + ps. Note that we have
1z < 15A(F) =153 p; when 7(up + p3) < 15up + 4(ug + ps). In particular, (5.2)
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will follow from (5.3) if 2uy > uy + us. So, we may assume that 2uy < uq + 3.
Then, since 3 — ps > pipe and gy — po > g — pa, we get

(s — ps) > (w1 — po) + (@2 — p3) + 3 — fis = 1 — fis > f1 — Ha.

We apply [X, Lemma 2] for the sequence {1, y3, pa, pis} to get

K3/p > 51 — p3) + 12(u3 — pa) + 15(psg — ps) + 16ps = Spy + Tpa + 3paa + pis,
since d >0, d3 > 5, dy > 7 and ds = 8. Note that we have

3(Spy + Tps + 3pa + ps)
= 8(p1 + pa) + 8(p1 + pas) + 163 + 5(us — ps) — (@1 — pa)
> 8z +2(u3 — ps).

Hence (5.2) can be shown using Lemma 5.4. O
Inequality (5.1) gives us a hope that the following holds.

CONJECTURE. K2

5B 2 4A(f) holds for a Petri general fibration.

6. - Application

Let S be a canonical surface and X its canonical image. The intersection
of all hyperquadrics through X is called the quadric hull of X and denoted by
Q(X). The dimension of the irreducible component of Q(X) containing X is
called the quadric dimension of S. A conjecture of Miles Reid [R1] states that
every canonical surface with K? < 4p, — 12 has quadric dimension 3.

THEOREM 6.1. Let S be an irregular canonical surface and assume that the
image of the Albanese map of S is a curve. Then K? > 3x(0s)+10(qg— 1). When
K? < (10/3)x(0s) + (122/7)(g — 1), the Albanese pencil is a non-hyperelliptic
fibration of genus 3. When K* < min{(10/3)x(0s)+(122/7)(g— 1), 4p, —12+4},
the quadric dimension of S is 3 and the irreducible component of Q(X)
containing the canonical image X is birationally a threefold scroll over a
curve.

PROOF. The first inequality was remarked in [K2]. By the assumption,
the Albanese map induces a non-hyperelliptic fibration f : § — B, where B
is the Albanese image and hence g(B) = q. If f has genus g, then it follows
from Proposition 2.6 that Ké/B > (4~ 4/9)A(f), that is, K2 > (4 —4/g)(x(Os)+
(g+1)(g—1)). We have g < 5 when K? < (10/3)x(0s)+(122/7)(g — 1). The cases
g=4 and g =5 can be excluded by Theorems 4.1 and 5.1, respectively. Hence
we have g = 3. As for the last assertion, we remark that the restriction map
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H%K) — H%Kp) is surjective and, therefore, X is contained in a threefold
scroll over a curve (possibly a cone). Then [K4, Theorem 8.3] applies. O

LEMMA 6.2. Let S be a minimal surface of general type with a non-linear
pencil. If K* < 4x(0g) then the base of the pencil is a curve of genus ¢(S). If
S is a canonical surface with a non-linear pencil, then

(6.1) K? > min{4x(0s), 3x(0s) + 10(g — 1)}

PROOF. Let f : § — B be the fibration associated with the non-linear
pencil. If ¢ > b = g(B), then it follows from [X, Theorem 1] that K§ /B> 4A(S)
which implies that K? > 4x(0s) since b > 0. Hence we have b = ¢ when
K? < 4x(0g).

Assume that S is a canonical surface. Then f is non-hyperelliptic. Hence
we have K§/B > 3A(f) by Corollary 2.6 and Lemma 3.1. When K? < 4x(Os),
this implies that K2 > 3x(0s) + 10(g — 1), since b=gq and g > 3. O

THEOREM 6.3. Let S be a canonical surface with a non-linear pencil. If
K? < min{(10/3)x(0s), 4p, — 12+ q} then S has quadric dimension 3.

PROOF. Let f : S — B be the fibration associated with the non-linear
pencil. By Lemma 6.2, we have g(B) = ¢. Since K? < (10/3)x(0s), one can
show that f is a non-hyperelliptic fibration of genus 3 as in Theorem 6.1. The
rest follows from [K4, Theorem 8.3]. O

COROLLARY 6.4. Let S be a canonical surface with q = 1 and K?* <
(10/3)x(0s). Then the Albanese map gives a non-hyperelliptic fibration of genus
3. If K? < min{(10/3)x, 4x — 11} then S has quadric dimension 3.

This and Theorem 3.2 give a picture of canonical surfaces with ¢ =1 and
K? = 3x or 3x+1, which is quite similar to the regular case (see [AK] and [K1]):
they have a pencil of non-hyperelliptic curves of genus 3. Another “similar”
result is the following theorem which will be shown in the next section (see
[K3] for the regular case).

THEOREM 6.5. The moduli space of even canonical surfaces with K* =
3x(0s)+1 and q =1 is non-reduced.

REMARK 6.6. Ashikaga [A] constructed a series of canonical surfaces with
a non-hyperelliptic fibration of genus 3. See also [K2].

7. - Proof of Theorem 6.5

In this section we show Theorem 6.5. Though the proof is essentially the
same as in [K3], there is one point which is unclear: a vector bundle on an
elliptic curve is not necessarily decomposable.
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Let S be a canonical surface with K2 = 3x(0s) +1, ¢(S) = 1 and let
/1S — B = Alb(S) be the Albanese map. By Corollary 6.4, any general fibre
D of f is a non-hyperelliptic curve of genus 3. Assume further that S is an
even surface, that is, there is a line bundle L with K = 2L. Since L? is even
and K? = 4L?, there exists a non-negative integer n satisfying

(7.1 x=8n+5, L*=6n+4.
By the Riemann-Roch theorem, we have
(7.2) 2h%(L) — h'(L)= ~L*/2+x =5n+3.

Since D is of genus 3 we have LD = 2. Since D is non-hyperelliptic, we
have h%L|p) = 1 by Clifford’s theorem. It follows that the rational map @
associated with |L| factors through f : S — B. Hence there is a divisor £
on B such that L = [f*L + Z], where Z, is the fixed part of |L|. We have
RO(L) > hO(L) > (5n +3)/2 by (7.2). Hence deg £ > (5n +3)/2. Since LD =2,
we have L% =2deg L + LZ;, that is,

(7.3) LZ;,=6n+4—2degl.

Put £ = fuwg/p = fuws and let & C --- C & =€ be the Harder-Narashim-
han filtration of £ as usual. Let = : P(£) — B be the associated projective
bundle. As we have seen in Section 3, we have a holomorphic map h: S — P (£)
satisfying K = h*Ty, and V = h(S) is linearly equivalent to 47y — #* Ao,
degAp=x—1.

LEMMA 7.1. The vector bundle f.wg splits as a direct sum of line bundles.
More precisely, there are three line bundles L£;(0 < 1 < 2) on B satisfying
faws=Lo® L1 ® Ly and deg Lo <n+1,degl) >2n+1, deg Ly, > 5n+3.

PROOF. Since K = 2L = [2f*L +2Z1], we see that |[K — 2f*L| contains
an effective divisor. Since HY(K) ~ H(T;), it follows that Ho(T; — 2x* L) #0.
Then, by Lemma 1.1, we get

Sn+3 if n is odd,

>2deg L >
o= & _{5n+4 if n 1s even.

Since deg £ = x = 8n+5 and since deg £ > deg &) = r1u1, we must have r; = 1.
Recall that V' is numerically equivalent to

4T; — (x — DF = 4(T¢ — 2n + DF).

Since V' cannot vanish identically on P (£/£)), it follows from Lemma 1.1 that
wi(€/€E1) > 2n+ 1. We have

deg(E/E) =8n+5—degéi =8n+5— p;.
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Hence deg(£/€) < 3n+2 if n is odd, and deg€ /& < 3n+1 if n is even.
Since w(€/€) < wi(€/€1), we see in particular that £/& is not semi-stable.
Let 0 C # C £/€& be the Harder-Narashimhan filtration of £/&, and put
H=(E/E)/A. Then deg 7 > 2n+1 and we have deg% < n+1 if n is odd,
and deg% < n if n is even. Hence deg# —deg% > 0 and HY(F — %) = 0.
This implies that £/€, = 7 & %.

Since & and # are of positive degree, we have h'(£) = h1(€£/€1) = hi(R)
from the cohomology long exact sequence for

0-&6—-E—-E/6—0.

On the other hand, since £ = f.wg, we have h'(£) = 0. Hence h!'(%) = 0 and
we have deg % > 0. Then

degéy —deg# > degéy —degé /€ > 2n+1.

It follows that H'((£/&))* ® &) = 0. This implies that £ = & & (£/€1). Now,
put Lo=%, L1=F and L, = €& O

LEMMA 7.2. Let the notation be as in Lemma 7.1. Then n is odd,
degLo=n+1, deg L1 =2n+1 and deg Ly = Sn+3. Furthermore, V is linearly
equivalent to 4T¢ — 4x* L.

PROOF. We can find sections X; of [Ty —=* £;] such that (Xj, X1, X,) forms
a system of homogeneous coordinates on fibres of x. Assume that V' is linearly
equivalent to 4T — 7* Ay as in Section 3, and recall that deg Ao = x — 1 = 8n+4.
Then the equation of V' can be written as '

> it xixd <o,

where ¢;; is a section of L;; = (4 — i — j)Lo+eLy+ 7Ly — Ap. If degLy < O,
then V' has a multiple curve along X; = X; = 0. Hence deg Lo > 0, that is,
3deg Lo +deg L, > 8n +4. Since deg Lo +degL; +degLr = 8n +5, we get
2deg Lo > deg L1 — 1. Since deg Lo < n+1 and deg £, > 2n+1, we have either

(i) degLyp=n, degLi=2n+1, deg L, =5n+4, or
(ii) deg Lo=n+1,degLi=2n+1, deg Ly =5n+3.

We show that (i) is impossible. Assume by contradiction that (i) is the
case. Note that V contains an elliptic curve B’ defined by X; = X; = 0. We
have degLg; = 0. If ¢o; = 0, then V would have a multiple curve along B,
which is impossible. Hence Ly must be trivial and ¢ is a non-zero constant.
But then V is non-singular in a neighbourhood of B’. This is impossible, since
V is singular along a fibre which meets B'.
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Hence we have (ii). In particular, it follows from the proof of Lemma 7.1
that n is odd. We know that V' is defined by an equation of the form

7.4 ba0 X7 + Xo(d01 X3 + -+ + ¢ X3) = 0.

Since deg Ly =0 and ¢4 cannot be zero, Ly is a trivial bundle, which means

that Ao is linearly equivalent to 4.L;. O
Put n =2k — 1.

LEMMA 7.3. £, =2L, LZ; =2k, DZ;, =2 and Z} = -8k +2.

PROOF. In the proof of Lemma 7.1, we have
deg Lo =p; >2deg L =5n+3.

Since degl, = 5n+3 = 10k — 2, we get degl = 5k — 1. Recall that
H%T¢ — 2n*£)#0. Since any element of H®(T; — 2n*L) can be written as
»X, with ¢ € H(L, — 2L), and since L, — 2L is of degree 0, we see that
Lr=2L.

Since deg £ = 5k — 1, it follows from (7.3) that LZ; = n + 1 = 2k. Since
LD =2, we have DZ; = 2. We have 2k = LZ; = (deg L)DZ;, + Z2. Hence
Z: = -8k +2. O

Note that we have K = h*((Xp) + n*L3) = h*(X3) + 2f*L. Hence (X3)
corresponds 2Z;. We can show the following as in [K3, Lemma 2.3] using
7.4).

LEMMA 7.4. Z1, =2Gy+G,, where Gy is a non-singular elliptic curve and
G is a (=2)-curve.

Since every even canonical surface with K> =3x +1 and ¢ = 1 has a
(—=2)-curve G;, we have Theorem 6.5 by a result of Burns-Wahl [BW] (see
[K3, Proof of Theorem 1.5]).

EXAMPLE. Let M be a line bundle of degree 2 on an elliptic curve
B which induces the double covering B — P!. Choose a point P € B
with 2P € |M|. Put Lo = kM, Li = @k — DM +[P], £; = (5k — DM and
E=L0® L ® Ly Let £ € HY([P]) define P, and choose sufficiently general
members @y € HO2T; — 27*L,) and @, € HO3Ten* 4L — Lo + 2[P])). We
consider a surface defined in the total space of [2T; — x*(2L1 + [P]] — P(£)
by

Ew — Dy = w? — Xo®; = 0.

where w is a fibre coordinate. It is easy to see that it has only one rational

double point of type A; and the minimal resolution is an even canonical surface
with K2=3x+1, ¢g=1 and x = 16k — 3 (see [K3]).
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