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Non-hyperelliptic Fibrations of Small Genus and
Certain Irregular Canonical Surfaces

KAZUHIRO KONNO

Introduction

Let S be a minimal surface of general type defined over C. We call S a
canonical surface if the rational map associated with K ~ is birational onto its

image. Assume that ,S is a canonical surface with a non-linear pencil, and let
f : S --+ B be the corresponding fibration. Since S is canonical, any general
fibre of f is a non-hyperelliptic curve. A natural question is then: what is the
genus of a general fibre? This leads us to studying the slope of non-hyperelliptic
fibrations. For a hyperelliptic fibration of genus g, 4 - 4/g is the best possible
lower bound of the slope by [P] and [H 1 ] . Later, Xiao [X] showed that the slope
is not less than 4 - 4/g even when non-hyperelliptic. But, for non-hyperelliptic
fibrations, it may not be the best bound. In fact, we showed in [K2] that the
slope is not less than 3 when g = 3 (see also [H2] and [R2]), and Xiao himself
conjectured that the slope is strictly greater than 4 - 4/g for non-hyperelliptic
fibrations ([X, Conjecture 1]).

At present, we have two methods for studying the slope. The first is
Xiao’s method [X] of relative projections and the second is counting relative
hyperquadrics which is still at an experimental stage (see [R2] and [K2]).
Combining these two, we show that the slope is not less than 24/7 for g = 4
and give a bound 40/11 for g = 5 (Theorems 4.1 and 5.1 ). We also answer
affirmatively to Xiao’s conjecture referred above (Proposition 2.6).

As an application, we show in Section 6 that, for an irregular canonical
surface S (with a non-linear pencil), the canonical image cannot be cut out by
quadrics when K2  (10/3)x(0s). For irregular surfaces, Reid’s conjecture [Rl,
p. 541] may be shown along the same line if we can sufficiently develop the
second method.

This paper was written during a research visit to Pisa in 1992. The author
would like to thank, among others, Professor Catanese for his hospitality. After
writing the manuscript, the author received a preprint [C] in which our Theorem
4.1 is shown independently.

Pervenuto alla Redazione il 3 Marzo 1993.
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1. - Relative hyperquadrics

Let B be a non-singular projective curve of genus b, and let 6 be a

locally free sheaf on B. We put = According to [HN], ~
has a uniquely determined filtration by its sub-bundles Ei

which satisfies

As usual, we call such a filtration the Harder-Narashimhan filtration of E.
Put pi and ri = rk(ei). Then

Let x : P (e) B be the projective bundle associated with £ . We denote
by 7~ and F a tautological divisor such that x* 0(Tg) = £ and a fibre of ~,
respectively. Note that for any R -divisor D on P (~ ), there are real numbers x, y
satisfying D - zTg + yF, where the symbol - means numerical equivalence.

The following can be found in [N].

LEMMA 1.1. An R -divisor which is numerically equivalent to Tr - xF is
and only if x  It is nef if and only if x  

Assume that £ &#x3E; 2. For 1  i  ~ - 1 let

denote the blowing-up along Bi = Then Wi has a projective space
bundle structure 7ri : Wi -~ P (~Z). We put lEi = Then is linearly
equivalent to piTt - Ex. Furthermore, IEi is isomorphic to the fibre product

X B Bi . Let pi : be the projection map onto the first factor.
Then PI = 7rihBi’ Similarly, if p2 : Bi denotes the projection to the second
factor, then p2 =pihB.. In particular, is given by 

The following is essentially the same as [N, Claim (4.8)].

LEMMA 1.2. Assume that an R -divisor Q - piT£i + p2T~~~1 - xF on IE2 is

pseudo-effective. Then x  j.l1 1 + + 

PROOF. Since j.lfF is nef on Hy = T£/£i - y)F is am-

ple for any positive rational number y. Let m be a sufficiently large pos-
itive integer such that mHy is a very ample Z -divisor, and choose s - I

general members Hj e so that C = is an irreducible non-singular
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curve, where s = Let T : : C -~ B denote the natural map. Then

X B C ~ P (T* E2). Since the restriction of Q to this space is numerically
equivalent to

where FC denotes a fibre of P ~ C, and since it must be pseudo-effective,
it follows from Lemma 1.1 that + (,ul - x)F) ~ C &#x3E; 0, that is,

(T£/£i + (j.l1 - &#x3E; 0. Letting y 10, we get

An effective divisor Q on P (£) is called a relative hyperquadric if it is
numerically equivalent to 2T~ - xF for some x e Z . It is said to be of rank r,

rk(Q) = r, if it induces a hyperquadric of rank r on a generic fibre of P (f).

LEMMA 1.3. Assume that R &#x3E; 2 and consider a relative hyperquadric
Q - 2T~ - xF on If Q is not singular along then x  + j.li.

PROOF. We may assume that x &#x3E; 2j.li. Then, by Lemma 1.1, Q vanishes
on since QIBl-l - 2T~ ~ ~~_ 1 - xF. However, since Q is not singular along

it cannot vanish twice along Let Q be the proper transform of Q
by Then

Hence = piT’l-l + p*T,,I,,,_, - xF. Since it must be effective, we get
x  j.l1 + by Lemma 1.2. D

LEMMA 1.4. Let Q =- 2T, - xF be a relative hyperquadric on P (E). If
x &#x3E; j.l1 + tzi, then rk(Q)  ri_1 I and Q is singular along Bi-1’

PROOF. Since x &#x3E; j.l1 + it follows from Lemma 1.3 that Q is singular
along Bi-1. Let Q be the proper transform of Q by Then

Hence there exists a relative hyperquadric Ql-1 1 _ 2Tel-1 - xF on P (~.~_ 1 ) sat-

isfying rk(Q) = rk(Ql-1)  Now, the assertion can be shown by induction.
0

LEMMA 1.5. Let Q =- 2T6 - xF be a relative hyperquadric on P ( ~ ). If
rk(Q) &#x3E; 3, then the following hold.

then

then

and then
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and

PROOF. (1) follows from Lemma 1.1 applied to a Q-divisor Q/2. We only
have to show that x  2P2 in (3) and (4), since the other assertions follow
from Lemma 1.4. Assume that ri = I. Then B1 is a relative hyperplane on

Since rk(Q) &#x3E; 3, we see that Q cannot vanish identically on B1. Note
that 0 c C ~ ~ ~ is the Harder-Narashimhan filtration Since

QIBI - 2T~~~, - xF, we get x  2JI2 by Lemma 1.1. D

LEMMA 1.6. Let Q - 2Tg - xF be a relative hyperquadric on It» (e). If
rk(Q) &#x3E; 4, then the following hold.

then

then

and then

and then

and then

and then

and then

and then

PROOF. We show ~u2 + ~u3 in (7) and (8). Assume by contradiction
that X &#x3E; j.l2 + P3- Since TI = 1, BI is a relative hyperplane on P (E). We have

2Tê/ê¡ - xF. Since X &#x3E; j.l2 + A3, it follows from Lemma 1.4 that Q~B,
is singular along B2 which is a relative hyperplane of Bl. This implies that,
on F ~ pr-1, Q is defined by Xl L(Xl, ... , Xr) + cX2 = 0 with a system of
homogeneous coordinates (Xl, ... , Xr) on F satisfying B11F = (Xl ), where L is
a linear form and c is a constant. In particular, Q cannot be of rank &#x3E; 4. Hence
x  + j.l3.

The other assertions can be shown similarly as in Lemma 1.5. D

REMARK 1.7. when Ti-1 1  j  ri (I  i  t). Then

VI &#x3E; ... &#x3E; vr, r = rk(£), and vj. With this notation, the conditions
in Lemma 1.5 (resp. Lemma 1.6) can be written as x  minf 2v2, (resp.
x  minIV2 + v3, VI + V41)-

2. - Some inequalities

Let f : S - B be a surjective holomorphic map of a non-singular projec-
tive surface ~’ onto a non-singular projective curve B with connected fibres.
We always assume that f is relatively minimal, that is, no fibre of f contains
a (- I)-curve. If a general fibre of f is a (non-)hyperelliptic curve of genus g &#x3E; 2,
we call f a (non-)hyperelliptic fibration of genus g. Let Ks/B be the relative
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canonical bundle. It is nef by Arakelov’s theorem [B].

LEMMA 2.1. Let f : S - B be a relatively minimal fibration of genus
g &#x3E; 2, and put b = g(B). Then f*WS/B is a locally free sheaf of rank g and
degree l1(f) := x( 0s) - (g - 1)(b - 1). Furthermore, the following hold.

( 1 ) 0( f ) &#x3E; 0 unless f is locally trivial.

(2) Every locally free quotient of has nonnegative degree.

PROOF. rk(f*ws/B) equals the genus of a fibre. The assertion about the

degree follows from the Riemann-Roch theorem (on S and B) and the Leray
spectral sequence, since we have by the relative duality
theorem. (1) and (2) can be found in [B] ] and [F], respectively. D

When f is not locally trivial, we put A(/) = K2 and call it the

slope of f. 
and it the

NOTATION 2.2. Let f : S - B be a relatively minimal fibration of genus
g &#x3E; 2. Put e = and let 0 c e1 C ~ ~ - c Et _ ~ be its Harder-Narashimhan
filtration. The natural sheaf homomorphism f * E -* WSIB induces a rational

map h : S --+ The image V = h(S) is called the relative canonical im-

age. To be more precise, let .~ be a sufficiently ample divisor on B, and put
L(A) = Ks/ B + Let a : S --~ S be a composition of blowing-ups such that
the variable part )M(A)) of is free from base points. We assume that
~ is the shortest among those with such a property. Let Z be the fixed part
of lu* L(A)I and let E be an exceptional divisor with I~ _ ~ * K + [E], where
.K is the canonical bundle of ,S. Since ,~ is sufficiently ample, we can assume
that Z has no horizontal components. In particular, we see that M(A) induces a
canonical divisor on a general fibre D of the induced fibration f : 9 - B. The
holomorphic map associated with M(A) factors thorugh JP (e) and we have a
holomorphic map h : 6* 2013~ JP (e) over h which satisfies M(A) = + 7r* A).
Then V = h(S). When f is non-hyperelliptic, V is birational to S and any
general fibre of V ~ B can be identified with a canonical curve of genus g.

Put M = h*T,. Since M - is nef by Lemma 1.1 and since &#x3E; 0 by
Lemma 2.1, (2), we see that M is nef.

We have (at least) two methods for studying the slope of non-hyperelliptic
fibrations, which we recall below.

(I) Relative projections ([X])

Here we recall Xiao’s method. For each I  i  .~, the natural sheaf

homomorphism c induces a rational map hi : S - JP (ei)
over B. We let Si -; S be a composition of blowing-ups which elim-
inates the indeterminacy of hi. We choose a non-singular model S* which
dominates all the Si’s, and we denote by p : S* - ~’ the natural map. Let Mi
be the pull-back to ,S* of Let D* be a general fibre of the induced fibration
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,S * --~ B and put Ni = Mi - Zi = Mi. Then Zi is effective

and, by Lemma 1.1, Ni is a nef Q-divisor. Note that, modulo exceptional
curves, Zl corresponds to Z. In particular, we see that ZlD* = 0. Note also
that corresponds to the inverse image of the center Bi of a relative
projection P (e) - P (ei).

Note that dt=2g-2. For I  i  .~ - 1,
di is the degree of an ri - I dimensional linear system and hence
Clifford’s theorem shows that di &#x3E; 2rx - 1 unless = (0,1) when f is

non-hyperelliptic. We recall two inequalities which follow from [X, Lemma 2].

(II) Counting relative hyperquadrics

Let f : S - B be a non-hyperelliptic fibration. We can assume that

,~ is taken so that the holomorphic map associated with IT, + ~r* .~4 ~ I gives a

quadratically normal embedding of I~ (~ ). Then we have

where Iv denotes the ideal sheaf of V if Since the restriction map
HO(KD) is surjective, we can lift all the quadric relations

in Since HO(Te + 7r* A), it follows
that HO(Iv(2Te + ~r*.~)) -&#x3E; HO(ID,(2)) is surjective, where ID, is the ideal
sheaf of D’ = h(D) in F ~ Since f is non-hyperelliptic, we have
/~(2)) = (g - 2)(g - 3)/2. Put

where 6 ranges over Pic(B). Then x, &#x3E; ~2 ~ "’ ~ Xk, where k = (g - 2)(g - 3)/2.
We can find a set of divisors 16i I with  i  k) and relative
hyperquadrics Qi linearly equivalent to such that they induce a basis
for HO(ID, (2)). Furthermore, we can assume that is generated
by them in the sense that

Since ,~ is sufficiently ample, 2.~ + b2 cannot be a special divisor. Hence
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where a = deg A. We have

by the Riemann-Roch theorem. Therefore, we can re-write (2.3) as

LEMMA 2.3. h1(E + Z - M(A)):5 M(E + Z)/2, where A = 2.~ - KB.

PROOF. Since E + Z has no horizontal components with respect to f,
we can find an effective divisor Ai 1 on B satisfying 1 &#x3E; E + Z. We
assume that deg Ai 1 is minimal among those divisors with such a property,
and put L1 - Since is sufficiently ample, there exists an irreducible
non-singular member L2 E IM(Ã - A1)1. Put L3 = (L1 - E - Z) + L2. Since
L3 &#x3E; L2, we can assume that induces a birational map of S onto the
image. Then, by Ramanujam’s theorem, we get h 1 ( - L3 ) = Consider
the cohomology long exact sequences for

From these, we get

Since, on fibres, [E + Z] is trivial and L2 looks like a canonical divisor, we
have that

Hence we get

by Clifford’s theorem. D

Since X(2M(A)) = M2 +A(f)+3(g - 1)(2a + 1 - b) - M(E + Z) by the
Riemann-Roch theorem, and since we have = h2-i (E + Z - m(A)), it
follows from (2.4) and Lemma 2.3 that
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Since Ks2 IB = M2 + (u* KS/B + M)Z, we have in particular

REMARK 2.4. There is another version due to Reid [R2]. It is easy to see

that a locally free sheaf of rank 3g - 3 and degree K2 + 0( f ).
If f is non-hyperelliptic, then the sheaf homomorphism 
is generically surjective by Max Noether’s theorem. Hence we have an exact
sequence of sheaves on B:

where T is a torsion sheaf and R is a locally free sheaf of rank (g - 2)(g - 3)/2.
Since (g + I)A( f), it follows from (2.7) that

We close the section giving an application of method (II).

LEMMA 2.5. Let f : ,S ~ B be a non-hyperelliptic fibration of genus g.

Suppose that is semi-stable. Then

PROOF. We give here two proofs using (2.6) and (2.8), respectively.
( 1 ) Since Qi - 2TE - xi F is effective, it follows from Lemma 1.1 that

xi  211(f)/ g since FWSIB is semi-stable. Hence we get (2.9) from (2.6).
(2) Since f*wSlB is semi-stable, so is (see, e.g., [G]). Hence

we have  that is, g deg R  (g - 2)(g - 3)A(f). Substituting
this in (2.8) we get (2.9). El

PROPOSITION 2.6. Let f : S - B be a non- hype relliptic fibration of genus
g, and assume that it is not locally trivial. Then A(f) &#x3E; 4 - 4/g. Hence the
conjecture of Xiao [X, Conjecture 1] is true.

PROOF. Xiao [X, Theorem 2] showed that A(f) &#x3E; 4 - 4/g when is

not semi-stable, by using (2.1) and (2.2). Hence we can assume that f*WS/B is
semi-stable. But then, we have a stronger inequality (2.9). El

LEMMA 2.7. Let f : ,S ~ B be a non-hyperelliptic fibration of genus g &#x3E; 4.

Assume that the Harder-Narashimhan filtration of is 0 C e1 C 
and = 1. Then (2.9) holds without equality.

PROOF. Since all the Qi’s have rank &#x3E; 3, we have xi   211(f)/ g by
Lemma 1.5. Hence (2.6) implies (2.9). D
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3. - The case g = 3

In this section, we consider non-hyperelliptic fibrations of genus 3 in order
to supplement [K2] and give a geometric interpretation of length T in (2.8).
Some results here overlap with [H3].

Let f : S - B be a non-hyperelliptic fibration of genus 3 and let the
notation be as in 2.2. The relative canonical image V is a divisor on P (e)
linearly equivalent to 4Tg - for some divisor ,~o on B. Put a = deg A and
ao = deg Ao. Since h is a birational holomorphic map onto the image and since

= + ~r*.~), we have

Hence

Since = M2 + + M)Z, (3.1 ) is equivalent to

In view of (2.8), the right hand side of (3.2) is nothing but length T (since
R = 0).

Let C be a general member of Then

On the other hand, the arithmetic genus of C’ = h(C) is given by

Hence

Note further that the conductor of 0 ~ C’ is given by

The following is a refinement of [K2, Theorem 1.2].

LEMMA 3.1. Let the notation be as above. For a non-hyperelliptic fibration
f : S ~ B of genus 3, KS21B &#x3E; M2 &#x3E; 30( f ) holds. If M2 = 30( f ), then

SIB = 30(f ).
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PROOF. It follows from (3.3) that 0( f ) &#x3E; ao. Hence we have M2 &#x3E; 311(f)
by (3.1 ). Assume that M2 = 311(f), that is, ao = 0( f ). Then, by (3.3), we have
M(E + Z) = 0. Since 0 ~ = MZ + Z2 = Z2, Hodge’s index theorem
shows that Z = 0. Hence (3.2) implies that = 311(f). D

The above equalities are sometimes useful in determining the singularity
of V.

THEOREM 3.2. When = 311(f), V has at most rational double points,
and it is linearly equivalent to When 311(f), V is
non-normal. In particular if 30( f ) + 1, Y has at most rational double
points except for a double conic curve described in [Kl, § 9].

PROOF. Assume first that = 311(f). Then ao = 0( f ), and has

no base locus as we saw in the proof of Lemma 3.1. We have pa(C’) = g(C)
by (3.3). It follows that V has at most isolated singular points. We have

Hence V has at most rational singular points. Since V is a hypersurface of a
non-singular 3-fold P (E), it has at most rational double points. In particular,
we have ws/B = H*WVIB- Since WVIB is induced from TE + 7r*(det e - Ao) and

KSIB = h*Te, we see that f*(det e - is linearly equivalent to zero. That is,
Ao = dete.

It follows from (2.5), (3.1) and (3.3) that p~(C’) - g(C) &#x3E; M2 - 3A(/).
Hence, by Lemma 3.1, we have pa(C’) - g(C) &#x3E; 0 when KS21B &#x3E; 3A(f). Since
C’ is obtained by cutting V by a general member of I TE it follows that

V has more than isolated singular points.
Assume that = 30( f ) + 1. By Lemma 3. l, we must have 

It follows that A( f) = ao + I and that has no base locus. By (3.3) and
(3.4), we have g(C) = 2 and wc = /’(detf - Hence C’
has two double points contained in a unique fiber. Since V has no horizontal
singular locus, we see that V has a double curve along a conic traced out by
the singular points of C’. The rest follows from an argument in [Kl, § 9]. D

REMARK 3.3. Horikawa [H2] announced that he classified degenerate fibres
in genus 3 pencils. Though a part of it can be found in [H3], the whole body
has not appeared yet.
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4. - The case g = 4

In this section we show the following theorem with several lemmas.

THEOREM 4.1. f : S - B be a non-hyperelliptic fibration of genus 4. Then

If a general fibre of f has two distinct then

For the proof of Theorem 4.1, we freely use the notation of the previous
sections. In particular, we set £ = f*WS/B and let 0 C e1 C ... c Et = be the
Harder-Narashimhan filtration. By § 2, (II), there exists a relative hyperquadric
Q - 2Tg - xF through the relative canonical image V and

Since rk(Q) = 4 if and only if a general fibre of f has two distinct gl’s, the
second part of Theorem 4.1 is nothing but the following:

LEMMA 4.2. If rk(Q) = 4, then (4.2) holds.

PROOF. In view of (4.3), we only have to check that x  A(f)/2. But
this is straightforward applying Lemma 1.6. Let ~i,...,~4 be as in Remark
1.7. Then it follows from Lemma 1.6 that x  + v4 ~ . Hence

4

2x  vj = (f ). D
j=1

LEMMA 4.3. If x  then (4.1 ) holds.

PROOF. By (2.2), we have &#x3E; (d1 + 6)(til - + 12pt &#x3E; 6(~1 + 
Hence (4.1) holds if ILI &#x3E; (4/7)A(f ). Assume that j.l1  (4/7)A(f ). Then
x  j.l1  (4/7)A(f ) and we get (4.1) from (4.3). D

Recall that a canonical curve of genus 4 cannot meet the vertex of the

quadric through it, if the quadric is of rank 3.

LEMMA 4.4. If x &#x3E; j.l1 + then 1 = 3 and 1 = 6.

PROOF. If x &#x3E; j.l1 then, by Lemma 1.3, Q is singular along Bt-1.
Since rk(Q) &#x3E; 3 and Ti = 4, we must have rt-I = 3 by Lemma 1.4.

We have 1 = 6 - Zi-1D*. Since rk(Q) = 3 and since Bi-1 1 is the (rel-
ative) vertex of Q, we see that any general fibre of V - B cannot meet

Bi-1. Since Zt corresponds to n V as we remarked in § 2, (I), we
have (Zi-1 - = 0. It follows that di-1 1 = 6, since we always have = 0.

D
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We complete the proof of Theorem 4.1 with the following:

LEMMA 4.5. Even if x &#x3E; 1 + (4.1 ) holds.

PROOF. We can assume that = 3 and = 6 by Lemma 4.4.
Assume that £ = 2. Since ri = 3, we get x  2til by Lemma 1.5. On the

other hand, since dl = 6, it follows from (2.1) that K 2 &#x3E; 12(tt, - + 12j.l2 =

12&#x3E;1. Hence, if &#x3E;1 &#x3E; (2/7)A(f), we get (4.I). Ij &#x3E;1 I  (2/7)A(f), then12tL,. Hence, if (2/7)A(/), we get (4.1). If l _ (2/7)A(/), then

x  (4/7)A(f) and (4.1) follows from (4.3).
Assume that = 3. Since r1  2 and r2 = 3, we have X  + j.l2 by

Lemma 1.5. Since d2 = 6, it follows from (2.1) that

Hence we can show (4.1 ) as we did in Lemma 4.3.
Assume that t = 4. By Lemma 1.5, we have x  ILI + IL3 1. Since

d3 = 6, it follows from (2.1 ) that

Hence K 2 &#x3E; 6 j.l1 1 + and we can show (4.1 ) as we did in

Lemma 4.3. 0

5. - The case g = 5

In this section we show the following theorem with several lemmas.

THEOREM 5.1. Let f : S -~ B be a non- hype relliptic fibration of genus 5.
When a general fibre of f is non-trigonal we have:

When a general fibre is trigonal we have:

By (II), there are three relative hyperquadrics Qi - 2Tg - xi F, 1  i  3,
through V satisfying XI &#x3E; x2 &#x3E; X3 and

LEMMA 5.2. Let f : S ~ B be a non-hyperelliptic, non-trigonal fibration
of genus 5. Then &#x3E; M2 &#x3E; 4A(f). If M2 = 4A(f ) then 4A(f ).
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PROOF. Since a general fibre of f is non-trigonal, the relative canonical
3

image V is an irreducible component Hence, comparing degrees, we
i=l

get M(A)2  (TE + ~r* .~ )2IIi (2T~ - xi F), that is, M2  8A(f ) - 4x. Eliminating x
from (2.5) using this, we get

from which the assertion follows immediately. D

In the rest of the section, we assume that f : 5’ 2013~ B is a trigonal fibration
of genus 5. Recall that, for a suitable choice of homogeneous coordinates

(Xo,..., X4) on JP4, any quadric through a trigonal canonical curve of genus 5
can be written as Hence there
is only one quadric of rank 3, and the vertices of any two independent members
cannot meet. Without loosing generality, we can assume that rk(Q 1 ) &#x3E; 3,
rk(Q3) &#x3E; rk(Q2) &#x3E; 4.

LEMMA 5.3. If r2 = 2 then z3  

PROOF. Assume contrarily that z3 &#x3E; 2~-+i. Then all the Qj’s vanish

identically on Bi which is a JP2-bundle on B. This contradicts the fact that

noj induces a Hirzebruch surface on a general fibre of P (f) 2013~ B. D

LEMMA 5.4. Assume that there are rational numbers Y1 and y2 satisfying
x  Y1, &#x3E; y2 and 8Y1  3y2. Then (5.2) holds. In particular, (5.2) holds
when x  3(j.l1 + 

PROOF. It follows from (5.3) that &#x3E; 5A(/) - Y1. Hence (5.2) holds
when Y1  (15/11)A(/). Assume that Y1 &#x3E; (15/11)A(/). Since 3y2 &#x3E; 8Y1, we
have y2 2 (8/3)yl. Hence (5.2) holds. In particular, since we have

&#x3E; 8(~1 + by (2.2), we get (5.2) if x  3(~i + D

We can assume that x &#x3E; 3(/~i + Then zi &#x3E; j.l1 + j.ll.

LEMMA 5.5. Assume that zi &#x3E; j.l1 + j.ll. Then + j.ll for i = 2, 3 and
r,~_ 1 &#x3E; 3. If rl-1 = 3 then dl_1 1 = 6. If rl-1 = 4 then dl-1 2 7.

PROOF. Since Qi is singular along Bl-1 by Lemma 1.3. Since
rk(Q 1 ) &#x3E; 3, we have 1 &#x3E; 3. Furthermore, Q2 and Q3 cannot be singular along
Bl-1 as we remarked just before Lemma 5.3. Hence ~2? x3  by Lemma
1.3 again. If rl-1 = 3, then rk(Q 1 ) = 3. Since a trigonal curve of genus 5 meets
the vertex of rank 3 quadric through it at two points, we get = 8 - 2 = 6.

If rg-1 = 4 then 1 &#x3E; 7 by Clifford’s theorem. D

LEMMA 5.6. Assume that .~ = 2 and +~2. Then &#x3E; (15/4)A(/).
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PROOF. Since we have x, -  2j.l1 1 by lemma 1.5 and xi for i = 2, 3
by Lemma 5.5, we get x  4p I + 2112 -

Assume that ri = 3. We have &#x3E; 5A(f) - 2(2tz, + by (5.3). On
the other hand, it follows from (2.2) that &#x3E; 14/-il + 2/~2, since d 1 = 6 by
Lemma 5.5. Since = 3~1 + 2,u2, these inequalities imply &#x3E; ( 15/4)0( f ).

Assume that r 1 = 4. Since A(f) = 41L, + A2, we have x  + j.l2 

A(/)+A(/)/5. Hence we get K2 &#x3E; (19/5)0( f ) from (5.3). D

We assume that f &#x3E; 3 in the sequel.

LEMMA 5.7. Assume that .~ &#x3E; 3, x &#x3E; + and Tf-1 = 3. Then (5.2)
holds.

PROOF. We have f = 3 or 4. Note that rk(Q 1 ) = 3 and rk(Qi ) &#x3E; 4 for

i = 2, 3.
We have x 1  1 by Lemma 1.5, x2  j.l1 by Lemma 5.5 and

x3  2j.lf-1 by Lemmas 1.6 and 5.3. Hence x  21.Ll + + On the other

hand, applying [X, Lemma 2] for the sequence we get

since d1 1 &#x3E; 0, dg-1 = 6 and dl = 8. We have j.l1 1 &#x3E; tzt. It follows that

Applying Lemma 5.4, we see that (5.2) holds without equality. D

LEMMA 5.8. Assume &#x3E; 3, x &#x3E; and = 4. If r.~_2  2,
then (5.2) holds.

PROOF. We have f = 3 or 4. Since r~_2  2, it follows from Lemma 1.4

that 1 + ~ce_ 1. We have x2  J-l1 by Lemma 5.5. Furthermore, we can
assume that X3  1 by Lemmas 1.6 and 5.3. Hence x  + + 

On the other hand, applying [X, Lemma 2] for the sequence I we

get

since d1 &#x3E; 0, dl-1 &#x3E; 7 and di = 8. It follows from 1L, &#x3E; that

Hence, as in the the previous lemma, we see that (5.2) holds without equality.
0

LEMMA 5.9. Assume &#x3E; 3, x &#x3E; 3(J-l1 + and rf-1 = 4. If rf-2 = 3
and +J-lf-1, then (5.2) holds.
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PROOF. Since x l &#x3E; is the relative vertex of Qi 1 and it

follows that df- 2 = 6.
Assume that 4 = 3. Since 6, we have 14[il + 2J-l3 by (2.2).

By Lemmas 1.5 and 5.5, we have 21L, and X2, x3  J-l1 + Hence

x  4J-l1 + 2143. We can show that K2 &#x3E; (15/4)A(f) using (5.3).
Assume that f = 4 or 5. We have + tit-2 and x2  by

Lemmas 1.5 and 5.5, respectively. Furthermore, we have x3  by Lemmas
1.6 and 5.3. Hence x  On the other hand, applying [X, Lemma
2] for the sequence we get

since d 1 &#x3E; 0, = 6 and dt = 8. Hence we see that (5.2) holds without equality
as in the proof of Lemma 5.7. D

We finish the proof of Theorem 5.1 with the following:

LEMMA 5.10. Assume that .~ &#x3E; 3, x &#x3E; + and 1 = 4. I, f’ = 3

and x 1  1 + ~ce_ 1, then (5.2) holds.

PROOF. Assume that = 3. Since X  (J-l1 + IL2) + 2(J-l1 + /-t3) = 3J-l1 + J-l2 + 21L3
and 0( f ) = 3&#x3E;1 + , + ,3, it follows from (5.3) that &#x3E; (19/5)A(f), which is
stronger than (5.2).

Assume that = 4 and rl - 1. Then xl  21L2 and X2, x3  + by
Lemmas 1.5 and 5.5. Since x we have in particular  21L2- We
have x  2(~u +~2+~4). Applying [X, Lemma 2] for the sequence 
we get

since dl &#x3E; 0, d2 &#x3E; 5 and d4 = 8. Since 6(~u2 - tZ4) + (2~2 - III - JZ4) &#x3E; 0, we have

+ 8P2 + 3P4) &#x3E; 16(J-l1 + tZ2 + ~4 ) and therefore (5.2) holds without equality.
Assume that f = 4 and ri = 2. We get x 1  J-l1 + tZ3 and X2, x3  J-l1 1 + ~4 by

Lemma 5.5. Hence x  3&#x3E;1 1 + + 2tt4. Applying [X, Lemma 21 for the sequence
I A 1, A3, A4 1, we get

since d1 &#x3E; 3, d3 &#x3E; 7 and d4 = 8. Since J-l3 &#x3E; /~4. we have 3(8til + 71L3 + tZ4) &#x3E;

8(3&#x3E;1 + J-l3 + 2114) and, therefore, (5.2) holds without equality.
Assume that t = 5. We have xl  J-l1 + c4}, X2 :5 minf/-12 +

J-l3, J-l1 and x3  J.l1 1 + by Lemmas 1.5, 1.6, 5.3 and 5.5. If

tt2 +  + then we get x  2tt2 + (J-l1 + tt5) + 2tt3  + tt5) which
contradicts the assumption of the lemma. Hence ~2 + ~c3 Then we

have X  + ~4) + + ~5 ) + 2J-l3 = + + ~4 + tt5. Note that we have

ll:r  15A(f ) = 15 when 7(l + 3)  15tZ2 + 4(u4 + 5). In particular, (5.2)
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will follow from (5.3) if 2J.l2 2 J.l1 I + /t3 - So, we may assume that 2J.l2  Al + 

Then, since 113 - A5 &#x3E; and 112 &#x3E; 112 - /.t3, we get

We apply [X, Lemma 2] for the to get

since d &#x3E; 0, d3 &#x3E; 5, d4 &#x3E; 7 and ds = 8. Note that we have

Hence (5.2) can be shown using Lemma 5.4. D

Inequality (5.1) gives us a hope that the following holds.

CONJECTURE. K 2 &#x3E; 4A(f) holds for a Petri general fibration.

6. - Application

Let S be a canonical surface and X its canonical image. The intersection
of all hyperquadrics through X is called the quadric hull of X and denoted by
Q(X). The dimension of the irreducible component of Q(X) containing X is
called the quadric dimension of S. A conjecture of Miles Reid [Rl] states that
every canonical surface with K2  4pg - 12 has quadric dimension 3.

THEOREM 6.1. Let S be an irregular canonical surface and assume that the
image of the Albanese map of S is a curve. Then K2 &#x3E; 3x( Os ) + IO(q - 1). When
K2  ( 10/3)x( OS ) + ( 122/7)(q - I), the Albanese pencil is a non-hyperelliptic
fibration of genus 3. When K2 
the quadric dimension of S is 3 and the irreducible component of Q(X)
containing the canonical image X is birationally a threefold scroll over a

curve.

PROOF. The first inequality was remarked in [K2]. By the assumption,
the Albanese map induces a non-hyperelliptic fibration f : S - B, where B
is the Albanese image and hence g(B) = q. If f has genus g, then it follows

from Proposition 2.6 that K 2 &#x3E; (4 - that is, K2 &#x3E; (4 - 4/g)(x(Os)+
(g + 1 )(q -1 )). We have g  5 when K2  (10/3)~(0~)+(122/7)(g- 1). The cases
g = 4 and g = 5 can be excluded by Theorems 4.1 and 5.1, respectively. Hence
we have g = 3. As for the last assertion, we remark that the restriction map
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HO(KD) is surjective and, therefore, X is contained in a threefold
scroll over a curve (possibly a cone). Then [K4, Theorem 8.3] applies. D

LEMMA 6.2. Let S be a minimal surface of general type with a non-linear
pencil. If K2  then the base of the pencil is a curve of genus q(S). If
S is a canonical surface with a non-linear pencil, then

PROOF. Let f : S --+ B be the fibration associated with the non-linear

pencil. If q &#x3E; b = g(B), then it follows from [X, Theorem 1] that KS21B &#x3E; 4A(f)
which implies that K2 &#x3E; since b &#x3E; 0. Hence we have b = q when
K2  

Assume that S is a canonical surface. Then f is non-hyperelliptic. Hence
we have &#x3E; 3A(f) by Corollary 2.6 and Lemma 3.1. When K2  4X(OS),
this implies that K2 &#x3E; + 10(q - 1), since b = q and g &#x3E; 3. D

THEOREM 6.3. Let S be a canonical surface with a non-linear pencil. If
K2  4pg - 12 + ql then S has quadric dimension 3.

PROOF. Let f : S - B be the fibration associated with the non-linear

pencil. By Lemma 6.2, we have g(B) = q. Since K2  one can

show that f is a non-hyperelliptic fibration of genus 3 as in Theorem 6.1. The
rest follows from [K4, Theorem 8.3]. D

COROLLARY 6.4. Let S be a canonical surface with q = I and K 2 

( 10/3)x( Os ). Then the Albanese map gives a non-hyperelliptic fibration of genus
3. If’ K2  4X - 11 ~ then S has quadric dimension 3.

This and Theorem 3.2 give a picture of canonical surfaces with q = I and
K2 = 3X or 3x+1, which is quite similar to the regular case (see [AK] and [Kl]):
they have a pencil of non-hyperelliptic curves of genus 3. Another "similar"
result is the following theorem which will be shown in the next section (see
[K3] for the regular case).

THEOREM 6.5. The moduli space of even canonical surfaces with K2 =
+ 1 and non-reduced.

REMARK 6.6. Ashikaga [A] constructed a series of canonical surfaces with
a non-hyperelliptic fibration of genus 3. See also [K2].

7. - Proof of Theorem 6.5

In this section we show Theorem 6.5. Though the proof is essentially the
same as in [K3], there is one point which is unclear: a vector bundle on an
elliptic curve is not necessarily decomposable.
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Let S be a canonical surface with K2 = 3X(Os) + 1, q(S) = I and let

f : S - B = Alb(S) be the Albanese map. By Corollary 6.4, any general fibre
D of f is a non-hyperelliptic curve of genus 3. Assume further that S is an
even surface, that is, there is a line bundle L with K = 2L. Since L2 is even
and K2 = 4L2, there exists a non-negative integer n satisfying

By the Riemann-Roch theorem, we have

Since D is of genus 3 we have LD = 2. Since D is non-hyperelliptic, we
have I by Clifford’s theorem. It follows that the rational map (DL
associated with ILl factors through f : B. Hence there is a divisor £
on B such that L = [f* £ + ZL ], where ZL is the fixed part of ILl. We have

&#x3E; h°(L) &#x3E; (5n + 3)/2 by (7.2). Hence deg ,G &#x3E; (5n + 3)/2. Since LD = 2,
we have L2 = 2 deg + LZL, that is,

Put £ = = f*ws and let e1 c "’ c Et = E be the Harder-Narashim-
han filtration of E as usual. Let 7r : - B be the associated projective
bundle. As we have seen in Section 3, we have a holomorphic (e)
satisfying K - h*T" and V = h(S) is linearly equivalent to 4Tg - 1r* Ao,
de4g

LEMMA 7.1. The vector bundle f*ws splits as a direct sum of line bundles.
More precisely, there are three line bundles i  2) on B satisfying
f*ws = Lo 0153 .e1 0153 ,G2 and deg + 1, deg £1 &#x3E; 2n + 1, deg ,G2 &#x3E; 5n + 3.

PROOF. Since K = 2L = [2/*~ + 2ZL ], we see that K - 2 f * ,~ ~ I contains

an effective divisor. Since HO(TE), it follows that HO(T, - 27r* L) ~ 0.
Then, by Lemma 1.1, we get

Since deg 6 = x = 8n + 5 and since deg E &#x3E; deg El = we must have ri = 1.

Recall that V is numerically equivalent to

Since V cannot vanish identically on P (E / EI), it follows from Lemma 1.1 that

~i(?/?i)&#x3E;2~+l. We have
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Hence deg(C /£1)  3n + 2 if n is odd, and degc / e1  3n + 1 if n is even.
Since ~u( ~ / ~~ ) ~ ~ 1 ( ~ / ~1 ), we see in particular is not semi-stable.
Let 0 C ~1 be the Harder-Narashimhan filtration and put
2 = Then deg Y, 2 2n + 1 and we have n + 1 if n is odd,
and deg %  n if n is even. Hence deg.7i - deg Y2 &#x3E; 0 and 2 ) = 0.
This implies = Ji 0153 ]2.

Since 61 and ~1 are of positive degree, we have = = 

from the cohomology long exact sequence for

On the other hand, since f = f * ws , we have = 0. Hence hl(72) = 0 and
we have deg f2 &#x3E; 0. Then

It follows that H 1 (( / l )* ® 1 ) = o. This implies that e = e1 gi (£ / £1)’ Now,
put £0 = Y2, .e1 1 = fi and £2 = e1. F-1

LEMMA 7.2. Let the notation be as in Lemma 7.1. Then n is odd,
deg £0 = n + 1, deg Ll 1 = 2n + 1 and deg L2 = 5n + 3. Furthermore, V is linearly
equivalent to 4Tc - 4~r* ,~ 1.

PROOF. We can find sections Xi of [T~ - ~r* Lil such that (Xo, Xl, X2) forms
a system of homogeneous coordinates on fibres of ~. Assume that V is linearly
equivalent to 4T, - 7r* ,~o as in Section 3, and recall that deg .~o = X - 1 = 8n + 4.
Then the equation of V can be written as .

where Oij is a section of Lij = (4 - + 1 + j ,G 2 - If deg Lo 1  0,
then V has a multiple curve along Xi = X2 = 0. Hence deg L01 &#x3E; 0, that is,
3 deg £o &#x3E; 8n + 4. Since deglo + deg £ 8n + 5, we get
2 deg ,o &#x3E; deg 1. Since deg ,Go  n + I and have either

We show that (i) is impossible. Assume by contradiction that (i) is the
case. Note that V contains an elliptic curve B’ defined by Xi = X2 = 0. We
have deg Lol - 0. If 0, then V would have a multiple curve along B’,
which is impossible. Hence L01 must be trivial and ool is a non-zero constant.
But then V is non-singular in a neighbourhood of B’. This is impossible, since
V is singular along a fibre which meets B’.
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Hence we have (ii). In particular, it follows from the proof of Lemma 7.1
that n is odd. We know that V is defined by an equation of the form

Since deg L4o = 0 and 040 cannot be zero, L40 is a trivial bundle, which means
that is linearly equivalent to 4£1. D

PROOF. In the proof of Lemma 7.1, we have

Since deg£2 = 5n + 3 = 10k - 2, we get deg L = Sk - 1. Recall that

HO(Te - 2~r* ,G) ~ 0. Since any element of HO(TE - 27r* £) can be written as

OX2 with 0 E 2£), and since L2 - 2.e is of degree 0, we see that
L2 = 2L.

Since deg £ = 5k - 1, it follows from (7.3) that LZL = n + 1 = 2k. Since
LD = 2, we have DZL = 2. We have 2k = LZL = (deg £)DZL + ZL. Hence
~=-8A;+2. D

Note that we have K = h* ((X2) + ~* ,~2) - h* (X2) + 2 f * ,~. Hence (X2)
corresponds 2ZL. We can show the following as in [K3, Lemma 2.3] using
(7.4).

LEMMA 7.4. ZL = 2G° + G 1, where Go is a non-singular elliptic curve and
G1 is a (-2)-curve.

Since every even canonical surface with K2 = 3X + 1 and g = 1 has a
(-2)-curve G1, we have Theorem 6.5 by a result of Burns-Wahl [BW] (see
[K3, Proof of Theorem 1.5]).

EXAMPLE. Let .M be a line bundle of degree 2 on an elliptic curve

B which induces the double covering B --+ P~. Choose a point P E B
with 2P E Put Lo = L, = (2k - I)M + [P], ,G2 - (5k - 1).Ivl and

E - fo gi Li EÐ .G2. Let E Ho([P]) define P, and choose sufficiently general
members E and E ,~2 + 2[P])). We
consider a surface defined in the total space of [2Te - 1 + [P])] -~ P (e)
by

where w is a fibre coordinate. It is easy to see that it has only one rational
double point of type A1 and the minimal resolution is an even canonical surface
with ~ = 3~ + 1, q = I and x = 161~ - 3 (see [K3]).
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