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Abstract. We propose a model for non-ideal monitoring of the state of a coupled
quantum dot qubit by a quantum tunnelling device. The non-ideality is modelled using
an equivalent measurement circuit. This allows realistically available measurement
results to be related to the state of the quantum system (qubit). We present a quantum
trajectory that describes the stochastic evolution of the qubit state conditioned by
tunnelling events (i.e. current) through the device. We calculate and compare the
noise power spectra of the current in an ideal and a non-ideal measurement. The results
show that when the two qubit dots are strongly coupled the non-ideal measurement
cannot detect the qubit state precisely. The limitation of the ideal model for describing
a realistic system may be estimated from the noise spectra.
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1. Introduction

For a quantum computer to be practical, one of the important questions is how to read-

out the final results of the quantum computation reliably. Measurement of the state

of qubits, the two-state systems, at a single-electron level is essential for a solid-state

quantum computer [1]. Most proposals for the measurement of quantum systems are

idealized [2, 3, 4]. However, in a real laboratory a perfect measurement is hardly possible

due to practical devices and circuitry. We try to model imperfect measurements so that

realistically available results can be related to the state of the quantum system (in this

case, a solid state qubit). Quantum point contacts (QPCs) [5, 6] and single electron

transistors (SETs) [2, 3, 7] are popular quantum tunnelling devices in proposals for

measurement of coupled-dot systems. Here we study continuous monitoring of the state

of a pair of coupled quantum dots by a quantum tunnelling (QT) device. We include
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the case of imperfect (non-ideal) measurement. The pair of dots, occupied by a single

electron tunnelling coherently between them, act as a qubit [8, 9].

Fluctuations in time of a measurement can be a source of information that may be

difficult or impossible to be directly probed by measurement of time-averaged quantities.

Current fluctuations due to the discreteness of the electrical charge play a diagnostic role

similar to that in photon measurements. However, the correlations between electrons

due to the Pauli principle introduce extra features of quantum noise in mesoscopic

systems based on the the system states and reflected in the noise spectrum [10]. In

this study we use the current noise spectrum to obtain information about the quantum

processes within the coupled dots.

The paper is organized as follows. The details of the system are described in

Section 2. The formalism is presented in Section 3, where we present a quantum

trajectory that describes the stochastic evolution of the qubit state when measured

by a QT device. In Section 4 we show and analyze the calculated results and compare

the noise spectra of measured current for the cases of ideal and non-ideal measurement.

We summarize our results in Section 5. We found that noise as an informative signal in

mesoscopic systems indeed provides information about the qubit state and a non-ideal

measurement fails to obtain information about the quantum processes occurring within

the qubit when the two dots are strongly coupled. The limitations of the modelling with

an ideal device, estimated from the noise power spectra, are discussed.

2. Description of the measurement and system

The quantum system to be measured is a pair of spatially separated and coherently

coupled quantum dots occupied by a single electron. Each dot is assumed to have only

one available state. The interaction between the QT device and the nearer dot is via

a Coulomb interaction. The state of the qubit at a particular time is described by the

location of the confined electron at that time. The electron tunnelling rate through the

measurement device is affected by the location of the qubit electron: when the electron

occupies the further dot-2, the rate is denoted by λ0 while an additional rate λ1 (> 0)

occurs when the electron is in the nearer dot-1. Hence the QT device operates as a

measurement device to detect the state of the qubit. The quiescent tunnelling rate λ0 is

usually nonzero due to Johnson-Nyquist noise and other factors such as defects in the

device.

This model is based on that of reference [2] which considered a single electron

transistor (SET) with adiabatically eliminated island dot. When the quiescient rate of

tunnelling through the device is negligible (λ0 ¿ λ1), this model is equivalent to that

of a low transparency quantum point contact [6].

In the case of ideal measurement, the current through the QT device involves only

tunnelling events that reflect the qubit’s state. In this case, the only noise present is

the quantum noise due to the stochastic nature of the tunnelling processes through

the QT device. However, for non-ideal measurement of the qubit state, the measured
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Figure 1. Equivalent circuit for measurement of current through the QT device. The
single tunnel junction in the QT device is modelled as a capacitor C1. A parasitic
capacitance, CP, between the source and drain is included in parallel with the QT
device. Tunnelling events through the device are modelled as a current source.

current includes extra noise components. The extra noise is caused by classical noise

sources from the real measurement components. We use an equivalent circuit to model

the realistic measurement as shown in figure 1. The circuit is structured in three parts:

the QT device, a current amplifier and miscellaneous circuit components. The QT

device tunnel junction is represented by a capacitance, C1, in parallel with a parasitic

capacitance, CP, that exists between the source and drain 2DEGs. The parasitic

capacitance CP is generally larger than the junction capacitance C1 due to its larger

‘area’. In the formalism, we consider the equivalent parallel capacitance C = C1 + CP.

The DC bias voltage consists of an ideal electromotive force, ε, in series with an input

noise voltage source ei, which includes the Johnson-Nyquist noise of the equivalent

resistance Ri. (These circuit components introduce an input noise into the current

through the QT device). The current through the QPC is amplified by a non-ideal

current amplifier. This is modelled as an ammeter that contributes an output noise

eo/Ro into the measured current I(t), where Ro is the resistance associated with the

non-ideal amplifier, which is at temperature To ∼ 4K. Tunnelling events through the

QT device are modelled as a current source. The detailed description of the measured

current at time t, I(t), including effects of the realistic components is expressed in the

second part of the following section.

3. Theoretical modelling and stochastic approach

First we present the formalism in the ideal measurement case. The total Hamiltonian

of the qubit dots can be expressed as

H = ~
2∑

j=1

ωjc
†
jcj + i~

Ω

2
(c†1c2 − c†2c1) , (1)
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where Ω is the coupling frequency between two dots and cj and c†j (j = 1, 2) are the

annihilation and creation operators for the single electron states within the qubit dots.

The first and second terms of the right hand side of equation (1) are the quasi-bound-

state energies and the interaction between the two dots, respectively. The average

dynamics of the qubit are described by the following unconditional quantum master

equation [2]

dρ(t)

dt
= − i[H, ρ(t)] + γD[n1]ρ(t)

≡ Lρ(t), (2)

where γ = 2λ0 +λ1 is the decoherence rate of the qubit [2], λ0 and λ1 are the tunnelling

rates introduced in the previous section, n1 = c†1c1 is the occupation number of dot-1

and L is the Liouvillian super-operator. The operator D[X]Y is defined by

D[X]Y ≡ J [X]Y −A[X]Y

= XY X† − 1

2
(X†XY + Y X†X) . (3)

Note that the convention of ~ = 1 is chosen here. The master equation, being of

the Lindblad form [11] for valid evolution (that is, preserving the Hermiticity, norm and

positivity of ρ), was derived in the appendix of reference [2] for a SET with adiabatically

eliminated island dot. In the limit of λ0 ¿ λ1, the model is equivalent to that of a low

transparency QPC in reference [6]. In both cases, the QT device considered has a single

junction through which electrons must tunnel.

We define the ideal current through the QT device in terms of the discrete

Poissonian process dN(t):

i(t) = q
dN(t)

dt
, (4)

where q = −|q| is the charge on an electron. The classical point process dN(t) is defined

by the conditions:

dN(t)2 = dN(t) , (5)

E

[
dN(t)

dt

]
= λ0Tr [(1− n1)ρc(t)(1− n1)] + (λ0 + λ1)Tr [n1ρc(t)n1]

= λ0 + λ1〈n1〉c(t) . (6)

Notice that the (classical) expectation value has been expressed as a quantum average.

The conditions indicate that dN(t) equals zero or one and that the rate of the tunnelling

events through the QT device is equal to the background rate plus an additional rate

λ1 if and only if the electron is in dot-1.

The quantum trajectory (stochastic master equation) for the case of ideal

measurement is [2]

dρc = dN

[
J

Tr[Jρc]
− 1

]
ρc

+ dt{−λ1A[n1]ρc + λ1Tr[ρcn1]ρc − i[H, ρc]} ,

(7)
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where the super-operator J is defined as Jρc ≡ λ0ρc+λ1J [n1]ρc+2λ0D[n1]ρc, the super-

operators J and A were defined implicitly by equation (3) and the time argument is

omitted for simplicity. The expectation value of dN(t) can therefore be expressed in

terms of J as

E

[
dN(t)

dt

]
= Tr[Jρc(t)] . (8)

The subscript c indicates that the stochastic evolution of the state matrix is conditioned

on tunnelling events through the QT device at earlier times. Averaging the quantum

trajectory over the observed stochastic processes recovers the unconditional master

equation, (2).

Using Kirchhoff’s laws to analyze the equivalent circuit of figure 1, we obtain the

Itô differential equation [12] for the charge on the parasitic capacitor, Q(t), and the

expression for the (non-ideal) measured current.

The Itô differential equation for Q(t) is

dQ(t) = [−αQ(t) + β] dt +
√

DidWi(t) + qdN(t) , (9)

where dWi(t) is the input noise Wiener process [12], α = 1/RiC, β = ε/Ri, Di =

2kBTi/Ri, Ti is the laboratory temperature and kB is Boltzmann’s constant. The positive

sign on the tunnelling increment is due to our definition of the direction of the current

in the circuit.

Our circuit analysis yielded the following expression for the measured current as a

function of time

I(t) = −αQ(t) + β +
√

Di
dWi(t)

dt
+

√
Do

dWo(t)

dt
, (10)

where Do = 2kBTo/Ro, To is the amplifier temperature and dWo(t) is the output noise

Wiener increment due to the amplifier.

It is straight-forward to find the solution of equation (9) as

Q(t) =
β

α
+

√
Die

−αt

∫ t

−∞
eαt1

dWi(t1)

dt1
dt1 + qe−αt

∫ t

−∞
eαt1

dN(t1)

dt1
dt1. (11)

The current is therefore given by substitution of equation (11) into equation (10):

I(t) = − α
√

Die
−αt

∫ t

−∞
eαt1

dWi(t1)

dt1
dt1 − αqe−αt

∫ t

−∞
eαt1

dN(t1)

dt1
dt1

+
√

Di
dWi(t)

dt
+

√
Do

dWo(t)

dt
. (12)

One may argue that the current I(t), rather than the point process dN/dt, is

measured in a real experiment. It is indeed that the realistic conditional state of the

system would be conditioned upon I(t). This can be realized by following the method

introduced for photodetectors in references [13] and [14]. The result is a stochastic

Fokker-Planck equation for ρc(Q), where Tr ρc(Q) is the conditional probability that

the charge on the capacitor is Q, and
∫

dQρc(Q) is the conditional quantum state,

averaged over the unobserved charge Q. The details of this equation and its derivation

will be presented elsewhere.
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In case it is not obvious, we use i(t) to denote an ideal current (consisting only

of tunnelling events through the detector) and I(t) to denote a non-ideal current that

contains extra noises introduced by the realistic measurement circuit.

4. Current noise spectra

For the noise involved in the detection of qubit states by a QT device, two types of noise

are considered in this study: Johnson-Nyquist noise due to thermal motion of electrons

that does not provide quantum information and shot noise due to the discreteness of

the charge of electrons. In the steady state as well as many practical situations, when

electron pulse widths are less than 1/ω, Johnson noise is white noise which has a flat

power spectrum. The current noise spectrum is given by SJohnson = 4kBT/R, where T is

the absolute temperature of the conductor and R is the conductor resistance. This noise

therefore provides only the temperature value and no information about the quantum

states.

In (single) tunnel junction devices the transfer of electrons can be described by

Poisson statistics and the shot noise has its maximum value Sshot = 2qIm ≡ SPoisson,

where Im is the time-averaged mean current through the device. The shot noise can be

suppressed below SPoisson by correlations due to the Pauli exclusion principle and is a

source of information of the quantum system involved in the measurement [10, 15]. Noise

is characterized by its power-density spectrum S(ω), which is the Fourier transform of

the current-current two-time autocorrelation function [16], G(τ):

G(τ) = 〈I(t)I(t + τ)〉ss − 〈I(t)〉ss〈I(t + τ)〉ss , (13)

where I(t) represents the current through the QPC as a function of time and the

subscript ss denotes the steady-state. The noise spectrum is expressible as [17]

S(ω) = 4

∫ ∞

0

G(τ) cos(ωτ)dτ . (14)

We use dimensionless parameters, normalizing S(ω) by the full shot noise level 2qIss

to produce what is known as the Fano factor [18]

F (ω) =
S(ω)

2qIss

, (15)

where the time averaged mean current in this case is the steady-state current Iss.

In the ideal measurement case the noise is purely due to the stochastic nature of

the quantum processes. The current tunnelling through the QT device in this case is

described by equation (4) and the following steady-state autocorrelation function can

be obtained using the definition (13)

G(τ) = qissδ(τ) +
e2λ2

1

8

(
b+eb−τ − b−eb+τ

√
(γ/4)2 − Ω2

)
, (16)

where

b± = −γ/4±
√

(γ/4)2 − Ω2 (17)
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Figure 2. Fano Factor plots for ideal measurement of the current for different values
of the tunnel coupling between qubit dots: (a) Ω = 0.1γ, (b) Ω = 0.6γ, (c) Ω = 3γ.

are two (possibly complex) numbers. The Fourier transform of G(τ) gives the noise

spectrum:

S(ω) = 2qiss +
e2λ2

1Ω
2

2
√

(γ/4)2 − Ω2

[
1

b2
+ + ω2

− 1

b2− + ω2

]
. (18)

We plot the noise spectra (as a Fano Factor plot) for the case of ideal measurement

in figure 2 for three different values of Ω corresponding to the cases of (a) weak, (b)

intermediate and (c) strong coupling between the two dots, respectively. The double

peaked structure indicates coherent tunnelling between the qubit dots. The separation

of the peaks is a measure of the strength of the tunnel coupling — larger separation

corresponds to stronger coherence in tunnelling between the qubit dots [2, 15].

The measured current in the non-ideal circuit is more complicated, as shown in

equation (10). The corresponding two-time correlation function and noise spectrum are

calculated as the following equations:

G(τ) = qIssδ(τ) + Doδ(τ) + Di

(
δ(τ)− α

2
e−ατ

)

+
α2e2λ2

1

8
√

(γ/4)2 − Ω2

{
b+

α2 − b2−
eb−τ − b−

α2 − b2
+

eb+τ

+

(
b+

α2 − b2−
− b−

α2 − b2
+

+
b−

α (α + b+)
− b+

α (α + b−)

)
e−ατ

}

(19)
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Figure 3. Fano Factor plot for non-ideal measurement of the current when the
coupling between the qubit dots is relatively strong: Ω = 3γ. The values of RiC are
given in the plots.

S(ω) = 2qIss + 2Do + 2Di

(
1− α2

α2 + ω2

)

+
e2λ2

1Ω
2

2
√

(γ/4)2 − Ω2

[
1

b2
+ + ω2

− 1

b2− + ω2

](
α2

α2 + ω2

)

(20)

Again for catching and comparing the corresponding quantum features, we visualize

the characteristics by plotting the noise spectra in the non-ideal measurement case for

various parameters. Figures 3, 4 and 5 correspond to strong, intermediate and weak

coupling strength between the qubit dots, respectively. For comparison with the ideal

case, the coupling strength Ω between the qubit dots in figures 3, 4 and 5 are chosen as

the same values for figure 2 (c), (b), and (a), respectively.

The influence of the non-ideal circuit components on the noise spectra is most

significant in the strong coupling case as shown in figure 3 where Ω = 3γ. From the

top to the bottom, the parasitic parameters decrease by two orders. The top plot

corresponds to the parasitic components of Ri = 100 Ohms and C = 10 pF, which are

from the literature [19]. The sharp peaks in the noise spectrum of the ideal measurement

are suppressed into small bumps here due to the imperfect measurement-circuit, and the

original spectral features that provide qubit-state information are almost lost. As the

parasitic capacitance is decreased (the lower two plots) in figure 3, the original features

of the ideal noise spectrum in figure 2 (c) are gradually recovered.

Figure 4 represents the intermediate tunnel coupling strength between the qubit

dots (Ω = 0.6γ). It shows a weaker influence of the non-ideal circuit components on the

features of the noise spectrum. For comparison, the values of the parasitic components
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Figure 4. Fano Factor plot for non-ideal measurement of the current when the
coupling rate between the qubit dots is an intermediate value: Ω = 0.6γ. The values
of RiC are given in the plots.

−5 0 5
0

20

40

60
RC=10−9s

−5 0 5
0

20

40

60
RC=2x10−10s

Fa
no

 F
ac

to
r F

(ω
)

−5 0 5
0

20

40

60
RC=10−11s

ω / γ

Figure 5. Fano Factor plots for non-ideal measurement of the current when the
coupling between the qubit dots is weak: Ω = 0.1γ. The values of RiC are given in
the plots.

are the same as in figure 3. The filter shape (the wings in the spectrum) remains

identical, but the peaks are not suppressed by as much as for the stronger coupling

case. The peaks showing the coupling strength between the qubit dots are easily visible

for all three values of RiC. That is, for intermediate coupling strength between the

qubit dots (Ω & γ/4), information about the qubit state can be obtained by non-ideal

measurement (provided RiC < 10−9s).

The noise spectra for weak coupling between the qubit dots, shown in figure 5,
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are very close to the spectrum in the ideal case in figure 2 (a). So, for weak inter-dot

coupling, the non-ideal circuit components have a negligible influence on the qubit-state

information that is written in the features of the measured current noise spectrum.

We draw the conclusion that the noise spectrum therefore acts as a diagnostic tool

that can be used to estimate whether a measurement device of known parameters can

be modelled as ideal or if the dynamics of the quantum system can be detected by such

a device/circuit.

5. Summary

We have analyzed the measurement of the dynamics of a coupled quantum dot (qubit)

system by a quantum tunnelling (QT) device using the quantum stochastic approach.

This approach describes the evolution of the qubit state conditioned on a particular

realisation of current through the detector in the form of a quantum trajectory

(stochastic master equation). We have presented results for both an ideal and a non-ideal

measurement using a low transparency QPC. The non-ideal measurement was modelled

by an equivalent circuit. We pointed out that the current noise power spectrum can

be used as a diagnostic tool to detect information about the qubit dynamics and the

influence of the parasitic (circuit) components. We found that, in general, the non-ideal

circuit components increased the current noise. The influence of the non-ideal circuit

components on the features of the current noise spectrum that provide information

about the qubit (i.e. the peaks) is greatest for the case of strong coupling between the

qubit dots, when it is difficult to obtain information about the quantum processes within

the qubit in a non-ideal measurement. We concluded that the current noise spectrum

may be used to determine the limits of applicability of the ideal model to a realistic

measurement.
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