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Abstract

Recent modeling of real world phenomena give rise to Caputo type frac-
tional order differential equations with non-instantaneous impulses. The
main goal of the survey is to highlight some basic points in introducing
non-instantaneous impulses in Caputo fractional differential equations. In
the literature there are two approaches in interpretation of the solutions.
Both approaches are compared and their advantages and disadvantages are
illustrated with examples. Also some existence results are derived.
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1. Introduction

Fractional calculus is the theory of integrals and derivatives of arbitrary
non-integer order, which unifies and generalizes the concepts of ordinary
differentiation and integration. For more details on geometric and physical
interpretations of fractional derivatives and for a general historical perspec-
tive, we refer the reader to the monographs [18, 31, 33], to the survey papers
[37, 38], and the cited references therein.

Impulsive differential equations arise from real world problems to de-
scribe the dynamics of processes in which sudden, discontinuous jumps
occur. Such processes are natural in biology, physics, engineering, etc.
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In the literature there are two popular types of impulses:

- instantaneous impulses - the duration of these changes is relatively
short compared to the overall duration of the whole process. For
ordinary differential equations with impulses we refer the reader to
the monographs [26], [34] and the cited references therein. There
are also many recent contributions on fractional order differential
equations with instantaneous impulses (see, for example, [4], [5],
[9], [16], [17], [20], [24], [32], [40], [43]);

- non-instantaneous impulses - an impulsive action, starting abruptly
at a fixed point and its action continues on a finite time interval.
This kind of impulse is observed in lasers, and in the intravenous
introduction of drugs in the bloodstream. Hernandez and O’Regan
([22]) introduced this new class of abstract differential equations
where the impulses are not instantaneous, and they investigated
the existence of mild and classical solutions. For recent works, we
refer the reader to [6], [7], [8], [10], [12], [19], [23], [27], [29], [30],
[35], [44].

The main goal of the survey is to present basic points in introducing
non-instantaneous impulses in Caputo type fractional differential equations.
In the literature there are two approaches in the interpretation of solutions.
Both approaches are compared and their advantages/disadvantages are il-
lustrated with examples. The existence of non-instantaneous impulsive
fractional differential equations and the corresponding sufficient conditions
are discussed using both approaches.

2. Preliminary notes on fractional derivatives and equations

Fractional calculus generalizes the derivatives and integrals of a function
of a non-integer order [18, 31, 33].

In many applications in science and engineering, the fractional order q
is often less than 1, so we restrict q ∈ (0, 1) everywhere in the paper.

1. The Riemann–Liouville (RL) fractional derivative of order q ∈ (0, 1)
of m(t) is given by ([18], [31], [33])

t0D
q
tm(t) =

1

Γ (1− q)

d

dt

t
∫

t0

(t− s)−q m(s)ds, t ≥ t0,

where Γ(.) denotes the Gamma function.
2. The Caputo fractional derivative of order q ∈ (0, 1) is defined by

([18], [31])

c
t0
Dqm(t) =

1

Γ (1− q)

t
∫

t0

(t− s)−q m′(s)ds, t ≥ t0. (2.1)
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The Caputo and the Riemann-Liouville formulations coincide when the
initial conditions are zero. Note, that the RL derivative is meaningful
under weaker smoothness requirements, but the derivative in the Caputo
sense allows an easier interpretation of conventional initial conditions.

3. Ordinary differential equations versus Caputo fractional

differential equations

We compare some properties of the ordinary differential equations (ODE)
and Caputo-type fractional differential equations (FrDE).

I. Ordinary differential equations. Consider the ODE

x′(t) = f(t, x) for t ≥ τ, (3.1)

with the initial condition

x(τ) = x̃0, (3.2)

where x̃0 ∈ R
n.

Denote the solution of the IVP for ODE (3.1), (3.2) by x(t; τ, x̃0).
Now consider the same ODE (3.1) with different initial time τ1 > τ , i.e.

consider (3.1) with the following initial condition

x(τ1) = ũ0, (3.3)

where ũ0 ∈ R
n.

Remark 3.1. For the IVP for ODE (3.1), (3.3) note that the right
side part f(t, x) has to be defined only for t ≥ τ1.

We can look at IVP for ODE (3.1), (3.3) in two different ways:

(A1 for ODE ). From the general solution x(t; τ, c) of (3.1) with initial
condition x(τ) = c (c is an arbitrary constant) we choose the one
x(t; τ, c1) with x(τ1; τ, c1) = ũ0. We call it a solution of the IVP
(3.1), (3.3) for t ≥ τ1 and denote it by x(t; τ1, ũ0). Then using
x(t1; τ, c1) = c1 +

∫ τ1
τ

f(s, x(s; τ, c1))ds we obtain that the solution
x(t) = x(t; τ1, ũ0) of (3.1), (3.3) will satisfy

x(t) = c1 +

∫ t

τ

f(s, x(s; τ, c1))ds

= ũ0 −

∫ τ1

τ

f(s, x(s; τ, c1))ds +

∫ t

τ

f(s, x(s; τ, c1))ds, t ≥ τ1.

(3.4)

(A2 for ODE ). Consider (3.1), (3.3) as a new IVP and its solution, defined
for t ≥ τ1, and we call this a solution of the IVP (3.1), (3.3). Then
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the solution will satisfy the following integral equation

x(t) = ũ0 +

∫ t

τ1

f(s, x(s))ds, t ≥ τ1. (3.5)

Remark 3.2. In the general case for ODE’s both points of view

do not differ since
∫ t

τ
f(s, x(s))ds =

∫ τ1
τ

f(s, x(s))ds +
∫ t

τ1
f(s, x(s))ds, i.e.

x(t; τ, x̃0) ≡ x(t; τ1, ũ0) for t ≥ τ1 with x(τ1; τ, x̃0) = ũ0.

II. Caputo-type fractional differential equations. Consider the fractional
differential equation (FrDE) with Caputo fractional derivatives

c
τD

qx(t) = f(t, x) for t ≥ τ (3.6)

with initial condition

x(τ) = x̃0, (3.7)

where x̃0 ∈ R
n.

Denote the solution of the IVP for FrDE (3.6), (3.7) by x(t; τ, x̃0).
The solution x(t) = x(t; τ, x̃0) of IVP for FrDE (3.6), (3.7) satisfies the

fractional Volterra integral equation

x(t) = x̃0 +
1

Γ(q)

∫ t

τ

(t− s)q−1f(s, x(s))ds, t ≥ τ. (3.8)

Now change the initial time to τ1 > τ and consider FrDE (3.6) with the
initial condition (3.3). Then as in the ordinary case (see (A1 for ODE) and
(A2 for ODE)), there are two approaches to define the solution of the new
IVP for the Caputo-type FrDE:

(A1 for FrDE ). From the set of all solutions x(t; τ, c) of FrDE (3.6) with
initial condition x(τ) = c, (c is an arbitrary constant), we choose
the one x(t; τ, c1) with x(τ1; τ, c1) = ũ0. We call it a solution of the
IVP (3.6), (3.3) for t ≥ τ1 and denote it by x(t; τ1, ũ0). Therefore,
x(t; τ1, ũ0) ≡ x(t; τ, c1) for t ≥ τ1. Then using Eq. (3.8) with t = τ1,
x̃0 = c1, the solution x(t) = x(t; τ1, ũ0) of IVP for FrDE (3.6), (3.3)
will satisfy the following integral equation

x(t) = c1 +
1

Γ(q)

∫ t

τ

(t− s)q−1f(s, x(s; τ, c1))ds

= ũ0 −
1

Γ(q)

∫ τ1

τ

(τ1 − s)q−1f(s, x(s; τ, c1))ds

+
1

Γ(q)

∫ t

τ

(t− s)q−1f(s, x(s; τ, c1))ds, t ≥ τ1.

(3.9)
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(compare Eq. (3.4) in the ordinary case q = 1 with Eq. (3.9) in the
fractional case).

K. Diethelm pointed out that the problem consisting of Eqs. (3.6) and
(3.3) is more closely related to a boundary value problem than to an initial
value problem. This is a contrast to the situation observed for first-order
differential equations (see Section 6 in [18]).

Remark 3.3. Using (A1 for FrDE ) we keep one of the basic properties
of ODEs, namely, x(t; τ1, x(τ1; τ, c)) = x(t; τ, c) for t ≥ τ1.

(A2 for FrDE ). Set up a new initial value problem for t ≥ τ1 whose solution
will satisfy the following fractional integral equation

x(t) = ũ0 +
1

Γ(q)

∫ t

τ1

(t− s)q−1f(s, x(s))ds, t ≥ τ1. (3.10)

(Compare Eq. (3.5) in the ordinary case q = 1 with Eq. (3.10) in
the fractional case).

The fractional integral equation (3.10) is equivalent to the following
Caputo fractional differential equation

c
τ1
Dqx(t) = f(t, x) for t ≥ τ1 (3.11)

with initial condition (3.3).

Remark 3.4. In the general case both points of view (A1 for FrDE )
and (A2 for FrDE ) differ, since
∫ t

τ

(t−s)q−1f(s, x(s))ds �=

∫ τ1

τ

(τ1−s)
q−1f(s, x(s))ds+

∫ t

τ1

(t−s)q−1f(s, x(s))ds,

(compare with Remark 3.2).

Remark 3.5. Using (A2 for FrDE ) we lose one of the basic properties
of ODE’s, namely, x(t; τ1, x(τ1; τ, c)) �=x(t; τ, c) for t>τ1.

Remark 3.6. In (A2 for FrDE ) the right side part f(t, x) of the IVP
(3.6), (3.3) has to be defined only for t ≥ τ1.

Example 1. Consider FrDE(3.6) with n = 1, τ = 0, τ1 = 1, ũ0 = 0.

Case 1. Let

f(t, x) ≡ h(t) =

{

0 t ∈ [0, 1],
1− t t ≥ 1.
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Case 1.1. (Approach (A1 for FrDE )). According to formula (3.9) we get

x(t) = 0 +
1

Γ(q)

∫ t

0
(t− s)q−1h(s)ds −

1

Γ(q)

∫ 1

0
(1− s)q−1h(s)ds

=
1

Γ(q)

∫ t

1
(t− s)q−1(1− s)ds, t ≥ 1.

(3.12)

Case 1.2. (Approach (A2 for FrDE )). According to (3.10) we get

x(t) = 0 +
1

Γ(q)

∫ t

1
(t− s)q−1(1− s)ds, t ≥ 1. (3.13)

In this particular case both solutions coincide.

Case 2. Let f(t, x) = 1− t, t ≥ 0.
Case 2.1. (Approach (A1 for FrDE )). According to formula (3.9) we get

x(t)=−
1

Γ(q)

∫ 1

0
(1−s)q−1(1−s)ds+

1

Γ(q)

∫ t

0
(t−s)q−1(1−s)ds, t ≥ 1. (3.14)

Case 2.2. (Approach (A2 for FrDE )). According to (3.10) the solution
is given by (3.13).

In this particular case Eq. (3.14) differs from Eq. (3.13).

Therefore, the definition of the function f(t, x) to the left of the
initial point has no influence in (A2 for FrDE ) (similar to the ODE
situation) but it has a huge influence in (A1 for FrDE ).

�

Remark 3.7. Note that (A1 for FrDE ) is similar in some sense to
a boundary value problem, whereas (A2 for FrDE ) is close to the idea of
initial value problems defined and studied in the classical books [18], [31]
(the initial time coincides with the lower limit of the Caputo fractional
derivative).

Example 2. Consider FrDE (3.6) with n = 1, q = 0.8, f(t, x) ≡ 1,
τ = 0 and τ1 > 0.

The solution of IVP for FrDE (3.6), (3.7) is x(t; 0, x̃0) = x̃0+1.25 t0.8

Γ(0.8) .

Using (A1 for FrDE ) we get the solution of IVP for FrDE (3.6), (3.3),

namely, x(t; τ1, ũ0) = ũ0 + 1.25
t0.8−τ0.8

1

Γ(0.8) .

Using (A2 for FrDE ) the solution of IVP for FrDE (3.6), (3.3) (or the

equivalent (3.11), (3.3)) is x(t; τ1, ũ0) = ũ0 + 1.25 (t−τ1)0.8

Γ(0.8) .

In this particular case both solutions differ.
�

Now consider a case when f(t, x) depends implicitly on x.
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Example 3. Consider the FrDE (3.6) with n = 1, f(t, x) = x, τ =
0, τ1 > 0.

The solution of IVP for FrDE (3.6), (3.7) is x(t; 0, x̃0) = x̃0Eq(t
q).

Using (A1 for FrDE ) and the general solution of IVP for FrDE (3.6),
(3.7) we get x(τ1; 0, c) = cEq(τ

q
1 ) = ũ0, or c =

ũ0

Eq(τ
q
1
)
. Then from (3.9) we

get the solution of IVP for FrDE (3.6), (3.3) x(t; τ1, ũ0) = ũ0
Eq(tq)
Eq(τ

q
1
)
.

Using (A2 for FrDE ) the solution of IVP for FrDE (3.6), (3.3) (or the
equivalent (3.11), (3.3)) is x(t; τ1, ũ0) = ũ0Eq((t− τ1)

q).
Solutions obtained by both approaches differ but in the ordinary case,

(q = 1) the Mittag-Leffler function E1(t) = et and both solutions coincide.
�

Remark 3.8. Both approaches described above usually differ and give
different solutions in the general case.

4. Non-instantaneous impulses in Caputo

fractional differential equations

Now we set up the IVP for Caputo fractional differential equations with
non-instantaneous impulses.

In this paper we will assume two increasing sequences of points {ti}
∞
i=1

and {si}
∞
i=0 are given such that 0 < s0 < ti < si < ti+1 , i = 1, 2, . . . , and

t0 ∈ R+. Without loss of generality we assume 0 ≤ t0 < s0.

Consider the initial value problem (IVP) for the nonlinear noninstan-

taneous impulsive fractional differential differential equation (NIFrDE)

c
t0
Dqx(t) = f(t, x) for t ∈ (tk, sk], k = 0, 1, . . . ,

x(t) = φk(t, x(t), x(sk−1 − 0)) for t ∈ (sk−1, tk], k = 1, 2, . . . ,

x(t0) = x0,

(4.1)

where x0 ∈ R
n, f : ∪∞

k=0[tk, sk]×R
n → R

n, φk : [sk−1, tk]×R
n×R

n → R
n,

(k = 1, 2, 3, . . . ).

Definition 1. For NIFrDE (4.1) the intervals (sk−1, tk], k = 1, 2, . . . ,
are called intervals of non-instantaneous impulses, and φk(t, x, y), k =
1, 2, . . . , are called non-instantaneous impulsive functions.

Remark 4.1. If tk = sk−1, k = 1, 2, . . . then the IVP for NIFrDE
(4.1) reduces to an IVP for impulsive fractional differential equations.
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We give a brief description of the solution of IVP for NIFrDE (4.1).
Based on the description of the solution of FrDE given in Section 3 we set up
two approaches to the solutions of non-instantaneous fractional impulsive
differential equations.

The definition of the solution x(t; t0, x0) for t > t0 depends on your
point of view:

(A1 for NIFrDE ). Let f(t, x) be defined for t ≥ t0, x ∈ R
n. Following

approach (A1 for FrDE ) and Eq. (3.9) with τ = t0, τ1 = tk, k =
1, 2, . . . and ũ0 = x(tk − 0; t0, x0) = φk(tk, x(tk − 0; t0, x0), x(sk−1 −
0; t0, x0)) given in Section 3, we get the solution of the IVP for
NIFrDE (4.1) by the equalities (integral and algebraic)

x(t; t0, x0) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x0 +
1

Γ(q)

∫ t

t0
(t− s)q−1f(s, x(s; t0, x0))ds, t ∈ (t0, s0]

φk(t, x(t; t0, x0), x(sk−1 − 0; t0, x0)),

t ∈ (sk−1, tk], k = 1, 2, 3, . . . ,

φk(tk, x(tk; t0, x0), x(sk−1 − 0; t0, x0))

− 1
Γ(q)

∫ tk
t0
(tk − s)q−1f(s, x(s; t0, x0))ds

+ 1
Γ(q)

∫ t

t0
(t− s)q−1f(s, x(s; t0, x0))ds,

t ∈ (tk, sk], k = 1, 2, . . . .
(4.2)

Remark 4.2. In the special case φk(t, x(t), x(sk−1 − 0)) =
gk(t, x(t)) the reduced formula of (4.2) is given in Section 9, [39],
and Eq. (8), [44].

Remark 4.3. The approach (A1 for NIFrDE ) is applied in
[19], [41] for studying periodic solutions, and in [20], [39], [44] for
studying existence.

(A2 for NIFrDE ). Let f(t, x) be defined only for t ∈ ∪∞
k=0[tk, sk] and x ∈

R
n, i.e. it is defined only on the intervals without non-instantaneous

impulses. Then using the approach (A2 for FrDE ) and Eq. (3.10)
with τ = t0, τ1 = tk, k = 1, 2, . . . and ũ0 = x(tk − 0; t0, x0) =
φk(tk, x(tk − 0; t0, x0), x(sk−1 − 0; t0, x0)) given in Section 3 we get
the solution of the IVP for NIFrDE (4.1) by the equalities (integral
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and algebraic)

x(t; t0, x0) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x0 +
1

Γ(q)

∫ t

t0
(t− s)q−1f(s, x(s; t0, x0))ds,

for t ∈ [t0, s0],

φk(t, x(t; t0, x0), x(sk−1 − 0; t0, x0))

for t ∈ (sk−1, tk], k = 1, 2, . . . ,

φk(tk, x(tk; t0, x0), x(sk−1 − 0; t0, x0))

+ 1
Γ(q)

∫ t

tk
(t− s)q−1f(s, x(s; t0, x0))ds

for t ∈ [tk, sk], k = 1, 2, . . . .

(4.3)

Following the approach (A2 for FrDE ) the solution of the IVP
for NIFrDE (4.1) is given by

x(t; t0, x0) =

⎧

⎪

⎨

⎪

⎩

Xk(t) for t ∈ (tk, sk], k = 0, 1, 2, . . . ,

φk(t, x(t; t0, x0),Xk−1(sk−1 − 0)),

for t ∈ (sk−1, tk], k = 1, 2, . . . ,

(4.4)

where
- the function X0(t) is the solution of IVP for FrDE (3.6), (3.7)
with τ = t0 and x̃0 = x0;

- the function Xk(t) is the solution of IVP for FrDE (3.6), (3.7)
with τ = tk, and x̃0 = φk(tk, x(tk; t0, x0),Xk−1(sk−1 − 0)),
k = 1, 2, . . . .

Remark 4.4. The approach (A2 for NIFrDE ) is applied in [1] for
partial fractional differential equations, in [2], [3] for partial fractional in-
clusions, in [11] for stability, in [14] for abstract fractional differential equa-
tions, in [15], [25] for fractional integro-differential equations, in [21] for
fractional functional differential equations of order α ∈ (1, 2), in [27] for
boundary value problems, and in [45] for existence.

Now we discuss the statement of the problem (4.1) and the type of
impulsive functions. In some papers (see, for example, [25], [39], [43], [44])
the special case φk(t, x(t), x(sk−1 − 0)) = gk(t, x(t)) is studied.

Example 4. Consider the IVP for NIFrDE (4.1) with n = 1, t0 = 0,
q = 0.8, fk(t, x) = 1 for t ∈ [tk, sk], k = 0, 1, 2, . . . .

We will discuss several cases w.r.t. the type of impulsive function
φk(t, x, y).

Case 1. Let φk(t, x, y) = gk(t) for t ∈ [sk−1, tk] (k = 1, 2, 3, . . . ).
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(A1 for NIFrDE ). According to Eq. (4.2) and Lemma 2.7, [44] the
solution is

x(t; 0, x0) =

⎧

⎪

⎨

⎪

⎩

x0 + 1.25 t0.8

Γ(0.8) , t ∈ (0, s0],

gk(t), t ∈ (sk−1, tk], k = 1, 2, 3, . . . ,

gk(tk) + 1.25
t0.8−t0.8

k

Γ(0.8) , t ∈ (tk, sk], k = 1, 2, . . . .

The solution depends on the initial value x0 only on the in-
terval (0, s0]. Therefore, the solutions x(t; 0, x0) and x(t; 0, x̃0)
with different initial values x0 �= x̃0 will differ only on the first
interval (0, s0] and x(t; 0, x0) ≡ x(t; 0, x̃0) for all t > s0.

(A2 for NIFrDE ). According to Eq. (4.3) the solution is given by

x(t; 0, x0) =

⎧

⎪

⎨

⎪

⎩

x0 + 1.25 t0.8

Γ(0.8) , t ∈ (0, s0],

gk(t), t ∈ (sk−1, tk], k = 1, 2, 3, . . . ,

gk(tk) + 1.25 (t−tk)
0.8

Γ(0.8) , t ∈ (tk, sk], k = 1, 2, . . . .

Applying (A2 for NIFrDE ) similarly to (A1 for NIFrDE ) we
obtain that the solutions x(t; 0, x0) and x(t; 0, x̃0) with x0 �= x̃0
coincide for all t > s0.

Case 2. Let φk(t, x, y) = gk(t, y) for t ∈ [sk−1, tk], (k = 1, 2, 3, . . . ), i.e. the
impulsive conditions are x(t) = gk(t, x(sk−1−0)), t ∈ (sk−1, tk] and
the impulsive functions depend on the value of the solution before
the jump.

Then applying (A1 for NIFrDE ) the solution is

x(t; 0, x0) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x0 + 1.25 t0.8

Γ(0.8) t ∈ (0, s0]

g1(t, x0 + 1.25
s0.8
0

Γ(0.8)) t ∈ (s0, t1]

g1(t1, x0 + 1.25
s0.8
0

Γ(0.8)) + 1.25
t0.8−t0.8

1

Γ(0.8) t ∈ (t1, s1]

g2

(

t, g1
(

t1, x0 + 1.25
s0.8
0

Γ(0.8)) + 1.25
s0.8
1

−t0.8
1

Γ(0.8)

)

)

t ∈ (s1, t2]

. . . . . . . . .

Now the solution depends on the initial value x0 for all t ≥ 0. The
same happens with the application of (A2 for NIFrDE).

Case 3. Let φk(t, x, y) = akx + bk for t ∈ [sk−1, tk], (k = 1, 2, 3, . . . ) where
ak, bk are constants.

If ak = 1, bk = 0 then any function x(t) will satisfy the impul-
sive condition x(t) = x(t) for t ∈ [sk−1, tk], (k = 1, 2, 3, . . . ) and
obviously the IVP for NIFrDE (4.1) will have an infinite number of
solutions.
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If ak = 1, bk �= 0 then no function x(t) will satisfy the impulsive
condition x(t) = x(t) + b for t ∈ [sk−1, tk], (k = 1, 2, 3, . . . ) and
obviously the IVP for NIFrDE (4.1) will have no solution.

If ak �= 1, bk = 0 then the only function x(t) that satisfies the
impulsive condition x(t) = ax(t) for t ∈ [sk−1, tk], (k = 1, 2, 3, . . . )
is the zero function, and therefore any solution of IVP for NIFrDE
(4.1) will be zero on (sk−1, tk], (k = 1, 2, 3, . . . )

If ak �= 1, bk �= 0 then there will be a unique function x(t) that
satisfies the impulsive condition x(t) = ax(t) + b for t ∈ [sk−1, tk],
(k = 1, 2, 3, . . . ) and we can talk about uniqueness of the solution
IVP for NIFrDE (4.1).

Case 4. Let φk(t, x, y) = arctan(x) + cos(x) + y for t ∈ [sk−1, tk] (k =
1, 2, 3, . . . ). Then the algebraic equation x = arctan(x)+cos(x)+y
could have more than one solution (for example if y = 1, then there
are 5 constant solutions), i.e. we do not have uniqueness.

�

Remark 4.5. In the general case the impulsive functions in (4.1)
have to depend on the value of the solution before the impulse, i.e. the
impulsive condition has to be given by the function φk(t, x(t), x(sk−1 − 0))
for t ∈ (sk−1, tk], k = 1, 2, . . . .

Remark 4.6. To discuss the existence and uniqueness of the solution
of NIFrDE (4.1) we need the equation corresponding to the impulsive con-
dition x = φk(t, x, y), k = 1, 2, . . . to have a unique solution xk(t, y) for all
k = 1, 2, . . . .

Example 5. Consider the IVP for NIFrDE (4.1) with n = 1, t0 = 0
and f(t, x) = Ax, t ≥ 0, i.e. consider

c
t0
Dqx(t) = Ax for t ∈ (tk, sk], k = 0, 1, 2, . . . ,

[6pt]x(t) = φk(t, x(t), x(sk−1 − 0)) for t ∈ (sk−1, tk], k = 1, 2, . . . ,

x(0) = x0,

(4.5)

where x0 ∈ R and A is a constant.
(A1 for NIFrDE ). According to Eq. (4.2) the solution x(t; 0, x0) of

(4.5) is given by
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x(t; 0, x0) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x0Eq(At
q) for t ∈ [0, s0],

φk(t, x(t), x(sk−1 − 0))
for t ∈ (sk−1, tk], k = 1, 2, . . . ,

φk(tk, x(tk), x(sk−1 − 0))

−A 1
Γ(q)

∫ tk
0 (tk − s)q−1x(s)ds

+A 1
Γ(q)

∫ t

0 (t− s)q−1x(s)ds

for t ∈ (tk, sk], k = 1, 2, . . . .

(4.6)

(A2 for NIFrDE ). Applying formulas (4.4) and (4.3), we obtain the
solution x(t; 0, x0) of (4.5):

x(t; 0, x0) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x0Eq(At
q) for t ∈ [0, s0],

φk(t, x(t), x(sk−1 − 0))
for t ∈ (sk−1, tk], k = 1, 2, . . . ,

φk(tk, x(tk), x(sk−1 − 0))Eq(A(t− tk)
q)

×
(

∏k−1
i=0 Eq(A(si − ti)

q)
)

for t ∈ [tk, sk], k = 1, 2, . . . .

(4.7)

Comparing (4.6) and (4.7) we can see the approach (A2 for NIFrDE)
gives the solution in a closed form.

Case 1. Let φk(t, x, y) = akx for t ∈ [sk−1, tk] (k = 1, 2, 3, . . . ), where
ak �= 1 are constants. Since the solution of the equation x = akx is the zero
solution, then the non-instantaneous impulsive condition of (4.5) is reduced
to x(t) = 0 for t ∈ (sk−1, tk], k = 1, 2, . . . .

According to (A1 for NIFrDE ) and Eq. (4.6) the solution of (4.5) is

x(t; 0, x0) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

x0Eq(At
q) for t ∈ [0, s0],

0 for t ∈ (sk−1, tk], k = 1, 2, . . . ,

−A 1
Γ(q)

∫ tk
0 (tk − s)q−1x(s)ds

+A 1
Γ(q)

∫ t

0 (t− s)q−1x(s)ds

for t ∈ (tk, sk], k = 1, 2, . . . .

(4.8)

According to (A2 for NIFrDE ) and Eq. (4.7) the solution of (4.5) is

x(t; 0, x0) =

{

x0Eq(At
q) for t ∈ [0, s0],

0 for t > s0.
(4.9)

Consider the ordinary case (q = 1) of (4.5), i.e. the non-instantaneous
impulsive differential equation x′ = Ax for t ∈ (tk, sk], k = 0, 1, 2, . . .
and x(t) = 0 for t ∈ (sk−1tk], k = 1, 2, . . . . Then the solution of the
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corresponding IVP for non-instantaneous impulsive differential equation is

x(t; 0, x0) =

{

x0e
At for t ∈ [0, s0],

0 for t > s0.
(4.10)

Eq. (4.9) is similar to Eq. (4.10), which shows the approach (A2 for
NIFrDE) seems to be a natural generalization of the ordinary case.

Case 2. Let φk(t, x, y) = aky, ak = const, k = 1, 2, 3, . . . .
Applying (A1 for NIFrDE ) and Eq. (4.6), we obtain the solution of

(4.5)

x(t; 0, x0) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x0Eq(At
q) for t ∈ [0, s0],

akx(sk−1 − 0) for t ∈ (sk−1, tk], k = 1, 2, . . . ,
akx(sk−1 − 0)

−A 1
Γ(q)

∫ tk
t0
(tk − s)q−1x(s)ds

+A 1
Γ(q)

∫ t

t0
(t− s)q−1x(s)ds

for t ∈ (tk, sk], k = 1, 2, . . . .

(4.11)

Applying (A2 for NIFrDE ) and Eq.(4.7), we get

x(t; 0, x0) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x0Eq(At
q) for t ∈ [0, s0],

x0
∏k−1

i=0

(

ai+1Eq(A(si − ti)
q)
)

for t ∈ (sk−1, tk], k = 1, 2, . . . ,

x0Eq(A(t− tk)
q)
∏k−1

i=0

(

ai+1Eq(A(si − ti)
q)
)

for t ∈ [tk, sk], k = 1, 2, . . . .

(4.12)

The approach (A2 for NIFrDE ) gives the explicit form for the solution.

Case 3. Let A = 0 and φk(t, x, y) = ak(t)y, ak : [tk, sk] → R, k =
1, 2, . . . .

Applying (A1 for NIFrDE ) and Eq. (4.11) we obtain

x(t; 0, x0) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x0 for t ∈ [0, s0],

x0ak(t)
∏k−1

i=1 ai(ti)
for t ∈ (sk−1, tk], k = 1, 2, . . . ,

x0
∏k

i=1 ak(ti) for t ∈ (tk, sk], k = 1, 2, . . . .

(4.13)

Applying (A1 for NIFrDE ) and Eq. (4.11) we obtain (4.13), and there-
fore the formulas for the solutions, obtained by both approaches, coincide.

�

Example 6. Consider the IVP for the scalar NIFrDE (4.1) with f(t, x)
= 1

t−0.5(tk+sk−1)
for t ≥ t0. The function f is not defined on the whole

interval [sk−1, tk], k = 1, 2, . . . .
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Applying (A1 for NIFrDE ) the integral
∫ t

t0
(t − s)q−1f(t, s)ds is not

convergent for all t > s0, so the formula (4.2) is not applicable and this
approach does not give a solution.

The application of (A2 for NIFrDE ) and formula (4.3) causes no prob-

lem since we use the integral
∫ t

tk
(t − s)q−1 1

s−0.5(tk+sk−1)
ds for t ∈ (tk, sk]

which is convergent.
�

Remark 4.7. The approach (A1 for NIFrDE ) and the application of
formula (4.2) for the solution of NIFrDE (4.1) require the function f(t, x)
to be defined on the whole interval [t0,∞) although this function is not
used on

⋃∞
k=1(sk−1, tk]. In [41] the conditions on the function f (such as

the Lipschitz condition) are set up only on the intervals with no impulses
[tk, sk], k = 1, 2, . . . and this causes conflicts in the proofs (see Theorem
3.1-3.4 in [41]).

The approach (A2 for NIFrDE ) requires the function f(t, x) to be de-
fined only on the interval [tk, sk], k = 1, 2, . . . on which this function is
applied.

5. Instantaneous impulses in Caputo fractional

differential equations

Consider the special case when sk−1 = tk, k = 1, 2, . . . . Then any
interval of non-instantaneous impulses is reduced to a point and any im-
pulsive function φk is reduced to φk(tk, x(tk), x(tk − 0)) for k = 1, 2, 3, . . . .
Assume the equation x = φk(tk, x, y), k = 1, 2, . . . has a unique solution
w.r.t. x : x = Bk(y) (see Remark 14). Then the impulsive condition could
be presented as x(tk + 0) = Bk(x(tk − 0)) for k = 1, 2, 3, . . . . Then prob-
lem (4.1) will be reduced to an IVP of Caputo-type impulsive fractional
differential equation (IFrDE)

c
t0
Dqx(t) = f(t, x) for t �= tk, k = 1, . . . ,

x(tk + 0) = x(tk − 0) + Ik(x(tk − 0)) for k = 1, 2, . . . ,

x(t0) = x0,

(5.1)

where x0 ∈ R
n, f : [t0,∞)×R

n → R
n, Ik : Rn → R

n, (k = 1, 2, 3, . . . ) is
defined by Ik(y) = Bk(y)− y, k = 1, 2, . . . ..

Then both approaches (A1 for NIFrDE ) and (A2 for NIFrDE ) given
in Section 4 reduce to IFrDE (5.1):

(A1 for IFrDE ). Eq. (4.2) is reduced and the formula for the solution of
(5.1) is given by
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x(t; t0, x0) = x(tk − 0; t0, x0) + Ik(x(tk − 0; t0, x0))

−
1

Γ(q)

∫ tk

t0

(tk − s)q−1f(s, x(s; t0, x0))ds

+
1

Γ(q)

∫ t

t0

(t− s)q−1f(s, x(s; t0, x0))ds,

t ∈ (tk, tk+1], k = 0, 1, 2, . . . ,

(5.2)

where I0(x) ≡ 0 and x(t0 − 0; t0, x0) = x0.

Use induction and obtain that

x(t; t0, x0) = x0 +
1

Γ(q)

∫ t

t0

(t− s)q−1f(s, x(s; t0, x0))ds

+

k
∑

j=1

Ij(x(tj − 0; t0, x0)),

t ∈ (tk, tk+1], k = 0, 1, 2, . . . .

(5.3)

In the special case t0 = 0, Ik(x) = x + yk, yk = const and
f(t, x) = h(t) an implicit formula for the solution is (see Lemma
3.2, [20]):

x(t; 0, x0) = x0 +

k
∑

i=1

yi +
1

Γ(q)

∫ t

0
(t− s)q−1h(s)ds

for t ∈ (tk, tk+1], k = 1, 2, . . . .

(A2 for IFrDE ). Eq. (4.3) is reduced and the formula for the solution of
(5.1) is given by

x(t; t0, x0) = x(tk − 0; t0, x0) + Ik(x(tk − 0; t0, x0))

+
1

Γ(q)

∫ t

tk

(t− s)q−1f(s, x(s; t0, x0))ds,

t ∈ (tk, tk+1], k = 0, 1, 2, . . . .

(5.4)

where I0(x) ≡ 0 and x(t0 − 0; t0, x0) = x0.
Use induction in (5.4) and obtain
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x(t; t0, x0) = x0 +
1

Γ(q)

k
∑

j=1

∫ tj

tj−1

(tj − s)q−1f(s, x(s; t0, x0))ds

+
1

Γ(q)

∫ t

tk

(t− s)q−1fk(s, x(s; t0, x0))ds

+

k
∑

j=1

Ij(x(tj − 0; t0, x0)),

t ∈ (tk, tk+1], k = 0, 1, 2, . . . .

(5.5)

Remark 5.1. Note that if the impulsive function is of the type
gk(t, x(t)) as in some published papers, the non-instantaneous impulsive
condition in (4.1) reduces to x(tk + 0) = gk(tk, x(tk + 0)), k = 1, 2, . . .
which does not give the amount of the jump at the impulsive point tk for
the unknown function.

Example 7. Consider the fractional comparison principle for FrDE
(3.6) (see, for example, [28], [36]):

If x, y ∈ C(R+) and C
0 D

qx(t) ≤ C
0 D

qy(t), then x(0) ≤ y(0) implies

x(t) ≤ y(t), t ≥ 0.

Now we will discuss the application of the comparison principle to the
IFrDE (5.1).

Applying the approach (A1 for IFrDE ) the solution of (5.1) will be
(see, for example, p. 5, [36]) x(t; t0, x0) = uk(t; tk, x

+
k ) for t ∈ (tk, tk+1],

k = 1, 2, . . . , where uk(t; tk, x
+
k ) is the solution of the FrDE without im-

pulses (3.6) with initial condition (3.3) with τ = t0, τ1 = tk, (̃u0) = x+k =
x(tk; t0, x0)+Ik(x(tk; t0, x0)). Therefore, the application of the above given
fractional comparison principle on the interval [tk, tk+1] is not allowed since
C
t0
Dqx(t) �= C

tk
Dqx(t) (this was used in [36]).

Applying (A2 for NIFrDE ), the solution of (5.1) will be x(t; t0, x0) =
uk(t; tk, x

+
k ) for t ∈ (tk, tk+1], k = 1, 2, . . . , where uk(t; tk, x

+
k ) is the solu-

tion of the FrDE without impulses (3.6) with initial condition (3.3) with
τ = tk, τ1 = tk, ũ0 = x+k = x(tk; t0, x0) + Ik(x(tk; t0, x0)). Therefore, the
application of the above given fractional comparison principle on the inter-
val [tk, tk+1] is allowed since the lower limit of the fractional derivative and
the initial time of the problem coincide.

�
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6. Existence results

In this section we consider IVP for NFrDE (4.1) when n = 1, i.e. the
scalar case on the finite interval J = [t0, T ], T < ∞ with sm = T. We study
existence for IVP for NIFrDE (4.1) using both approaches.

Introduce the following classes of functions

PC([t0, T ]) = {u : [t0, T ] → R : u ∈ C([t0, T ]/{sk}
m
k=0,R) :

u(sk) = u(sk − 0) = lim
t↑sk

u(t) < ∞, u(sk + 0) = lim
t↓sk

u(t) < ∞,

k = 1, 2, . . . ,m},

NPC1([t0, T ]) = {u : [t0, T ] → R : u ∈ C([t0, T ]/{sk}
m
k=0,R),

u ∈ C1(∪m
k=0[tk, sk],R) :

u(sk) = u(sk − 0) = lim
t↑sk

u(t) < ∞, u′(sk) = lim
t↑sk

u′(t) < ∞,

u(sk + 0) = lim
t↓sk

u(t) < ∞, k = 1, 2, . . . ,m}.

(A1 for NIFrDE ). In [44] the NIFrDE (4.1) is studied when f(t, x) is contin-
uously defined on the whole interval J and the impulsive functions
do not depend on the value of the solution before the impulse, i.e.
φk(t, x, y) = gk(t, x), k = 1, 2, . . . (see Examples 4, 5 and our com-
ment in Remark 13).

Let Ψ > 0, ϕ ∈ PC(J,R) and consider the fractional noninstan-
taneous differential inequalities

|ct0D
qy(t)− f(t, y)| ≤ ϕ(t) for t ∈ (tk, sk], k = 0, 1, . . . ,m

|y(t)− φk(t, y(t))| ≤ Ψ for t ∈ (sk−1, tk], k = 1, 2, . . . ,m.
(6.1)

Theorem 6.1. (by A1 for NIFrDE, Theorem 4.2, [44]) Let the fol-
lowing conditions be satisfied:

1. The function f ∈ C(J ×R,R) and there exists a positive constant
Lf such that |f(t, x)− f(t, y)| ≤ Lf |x− y| for each t ∈ J, x, y ∈ R.

2. The functions φk(t, x) ∈ C([sk−1, tk] × R,R) and there exist con-
stants Lk such that |φk(t, x1) − φk(t, x2)| ≤ Lk|x1 − x2| for each
t ∈ [sk−1, tk], x1, x2 ∈ R.

3. The function y(t) satisfies the fractional non-instantaneous differ-
ential inequalities (6.1) with Ψ > 0 is a constant, ϕ ∈ C(J,R)
is a nondecreasing function in

⋃m
i=0[ti, si] such that there exists a

constant Cϕ with

(

∫ t

t0

(ϕ(s))
1

pds
)p

≤ Cϕϕ(t) for t ∈ J.
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Then there exists a unique solution x̃(t) of the IVP for NIFrDE (4.1)
with x0 = y(t0) such that it satisfies the integral-algebraic equations (4.2)
and

|y(t)− x̃(t)| ≤

2Cϕ

Γ(q)

(

1−p
q−p

)1−p

T q−p + 1

1−M
(ϕ(t) + Ψ) (6.2)

for all t ∈ J provided that 0 < p < q < 1, where the constant M =
max{M1,M2} < 1, with

M1 = max{Lk +
LfCϕ

Γ(q)

(1− p

q − p

)1−p

(sq−p
k + tq−p

k ),

k = 0, 1, 2 . . . ,m} < 1

(6.3)

and

M2 = max{Lk +
Lf

Γ(q + 1)
(tqk + sqk)|, k = 1, 2 . . . ,m} < 1. (6.4)

Remark 6.1. The function ϕ in condition 3 of Theorem 6.1 and the
fractional non-instantaneous differential inequalities (6.1) is used only on
the intervals [tk, sk], k = 0, 1, 2, . . . ,m. However because of the application
of (A1 for NIFrDE ) this function has to be defined on the whole interval
J = [t0, T ].

Remark 6.2. Note that the condition M1,M2 < 1 concerning con-
stants M1,M2 given in (6.3) and (6.4) requires conditions on the impulsive
points tk, sk and on the Lipschitz constants. Also this condition does not
allow the result to be generalized to the infinite interval [t0,∞).

Remark 6.3. Note that in [44] the definition of Ulam–Hyers–Rassias
stability w.r.t. (ϕ,Ψ) of NIFrDE (4.1) is given. However since the stability
property is usually only meaningful for an infinite interval and Theorem 6.1
is true on a finite interval we will skip comments on this type of stability.

(A2 for NIFrDE ). In our study we will use the result for FrDE (3.6).

Lemma 6.1. (Theorem 3.1, [42]) Let the following conditions be sat-
isfied:

1. The function f ∈ C(I,R), I = [τ, T ] and there exists a positive
constant L such that |f(t, x)− f(t, y)| ≤ L|x− y|, t ∈ I, x, y ∈ R.

2. The function y ∈ C1(I,R) satisfies the fractional differential equa-
tion

|cτD
qy(t)− f(t, y(t)| ≤ ̟(t), t ∈ I,
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where the function ̟ ∈ C(I,R) is such that

1

Γ(q)

∫ t

τ

(t− s)q−1̟(s)ds ≤ K̟(t), t ∈ I,

with 0 < KL < 1.

Then there exists a unique function x(t) ∈ C(I,R) such that

x(t) = y(τ) +
1

Γ(q)

∫ t

τ

(t− s)q−1f(s, x(s)ds, t ∈ I (6.5)

and

|y(t)− x(t)| ≤
K

1−KL
̟(t), t ∈ I. (6.6)

Now we give sufficient conditions for existence of the NIFrDE (4.1) by
an application of the approach (A2 for NIFrDE ) for the solution.

Let Ψk > 0, ϕk ∈ C([tk, sk],R), k = 0, 1, . . . ,m and consider the
fractional non-instantaneous differential inequalities

|ctkD
qy(t)− f(t, y)| ≤ ϕk(t)

for t ∈ (tk, sk], k = 0, 1, . . . ,m

|y(t)− φk(t, y(t), y(sk−1 − 0))| ≤ Ψk

for t ∈ (sk−1, tk], k = 1, 2, . . . ,m.

(6.7)

Remark 6.4. Note if y(t) is a solution of the fractional non-instantaneous
differential inequalities (6.7) then this solution satisfies the integral-algebraic
inequalities

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

|y(t)− y(tk) +
1

Γ(q)

∫ t

tk
(t− s)q−1f(s, y(s))ds|

≤ 1
Γ(q)

∫ t

tk
(t− s)q−1ϕk(s)ds,

t ∈ (tk, sk], k = 0, 1, 2, . . . ,m,
|y(t)− φk(t, y(t), y(sk−1 − 0))| ≤ Ψk,

t ∈ (sk−1, tk], k = 1, 2, . . . ,m.

Theorem 6.2. (by A2 for NIFrDE ) Let the following conditions be
satisfied:

1. The function f ∈ C(∪m
k=0[tk, sk]×R,R) and there exist positive con-

stants Lk = Lk(f), k = 0, 1, 2, . . . ,m, such that |f(t, x)− f(t, y)| ≤
Lk|x− y| for each t ∈ [tk, sk], x, y ∈ R, k = 0, 1, . . . ,m.

2. The functions φk(t, x, y) ∈ C([sk−1, tk]×R×R,R), k = 1, 2, . . . ,m
are such that for any t ∈ [sk−1, tk] and y ∈ R there exists a unique
solution x = γk(t, y) of the algebraic equation x = φk(t, x, y) w.r.t.
x, and there exist constants lk = lk(φk) ∈ (0, 1), k = 1, 2, . . . ,m
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such that |φk(t, x1, y1)− φk(t, x2, y2)| ≤ lk(|x1 − x2|+ |y1 − y2|) for
each t ∈ [sk−1, tk], x1, x2, y1, y2 ∈ R, k = 1, . . . ,m.

3. The functions ϕk ∈ C([tk, sk],R), k = 0, 1, . . . are nondecreasing
functions and there exist constants Ck = Ck(ϕk) > 0, LkCk <
1, k = 0, 1, . . . ,m such that

1

Γ(q)

∫ t

tk

(t− s)q−1ϕk(s)ds ≤ Ckϕk(t), t ∈ [tk, sk]. (6.8)

Then for each solution y(t) ∈ NPC1([t0, T ],R) of the fractional differ-
ential inequality (6.7) there exists a solution x(t) such that x ∈ NPC1([t0, T ],
R) of the IVP for NIFrDE (4.1) with x0 = y(t0) and it satisfies the integral-
algebraic equations (4.3) and

|y(t)− x(t)| ≤
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

C0

1−C0L0
ϕ0(t) = F0(s), t ∈ (t0, s0],

Ck

1−CkLk
ϕk(t) +

1
1−lk

1
1−CkLk

(

Ψk + lkFk−1(sk−1)
)

= Fk(s),

t ∈ (tk, sk], 1, 2, . . . ,m
1

1−lk

(

Ψk + lkFk−1(sk−1)
)

, t ∈ (sk−1, tk], k = 1, 2, . . . ,m.

(6.9)

P r o o f. We will use induction.
Let t ∈ [t0, s0]. According to Lemma 6.1 with τ = t0, T = s0, L = L0,

K = C0 and ̟(t) = ϕ0(t) there exists a solution x0(t) ∈ C([t0, s0],R)
satisfying the integral equality

x0(t) = x0 +
1

Γ(q)

∫ t

t0

(t− s)q−1f(s, x0(s))ds (6.10)

and the inequality

|y(t)− x0(t)| ≤
C0

1− C0L0
ϕ0(t) = F0(t), t ∈ [t0, s0]. (6.11)

Let t ∈ (s0, t1]. Denote the solution of the algebraic equation x =
φ0(t, x, x0(s0 − 0)) by x̃0(t) and

|y(t)− x̃0(t)|

≤ |y(t)− φ1(t, y(t), y(s0 − 0))|

+ |φ1(t, y(t), y(s0 − 0))− φ1(t, x̃0(t), x0(s0 − 0))|

≤ Ψ1 + l1(|y(t)− x̃0(t)|+ |y(s0 − 0)− x0(s0 − 0)|)

≤ Ψ1 + l1|y(t)− x̃0(t)|+ l1F0(s0)

(6.12)

or

|y(t)− x̃0(t)| ≤
1

1− l1

(

Ψ1 + l1F0(s0)
)

, t ∈ (s0, t1]. (6.13)
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Let t ∈ (t1, s1]. Define the function

ỹ(t) = y(t)− y(t1) + φ1(t1, x̃0(t1), x0(s0)).

Then

|ct1D
qỹ(t)− f1(t, ỹ(t)|

≤ |ct1D
qy(t)− f1(t, y(t)|+ |f1(t, ỹ(t)− f1(t, y(t)|

≤ ϕ1(t) + L1|ỹ(t)− y(t)|.

(6.14)

From Remark 6.4, condition 2 and inequalities (6.11), (6.13) we obtain

|ỹ(t)− y(t)| ≤ |y(t1)− φ1(t1, y(t1), y(s0 − 0))|

+ |φ1(t1, y(t1), y(s0 − 0))− φ1(t1, x̃0(t1), x0(s0))|

≤ Ψ1 + l1|y(t1)− x̃0(t1)|+ l1|y(s0 − 0)− x0(s0)|

≤ Ψ1 +
l1

1− l1
Ψ1 +

l1l1
(1− l1)

F0(s0) + l1F0(s0)

=
1

1− l1
Ψ1 +

l1
1− l1

F0(s0).

(6.15)

From (6.14), (6.15) we get

|ct1D
qỹ(t)− f1(t, ỹ(t)| ≤ ϕ1(t) +

L1

1− l1
Ψ1 +

L1l1
1− l1

F0(s0). (6.16)

According to Lemma 6.1 with τ = t1, T = s1, L = L1, K = C1, y(t) = ỹ(t)

and ̟(t) = ϕ1(t) +
L1

1−l1
Ψ1 + L1l1

1−l1
F0(s0) there exists a solution x1(t) ∈

C([t1, s1],R) satisfying the integral equation

x1(t) = φ1(t1, x̃0(t1), x0(s0))

+
1

Γ(q)

∫ t

t1

(t− s)q−1f1(s, x1(s))ds, t ∈ (t1, s1]
(6.17)

and

|ỹ(t)− x1(t)| ≤

C1

1− C1L1

(

ϕ1(t) +
L1

1− l1
Ψ1 +

L1l1
1− l1

F0(s0)
)

t ∈ (t1, s1].
(6.18)

Using inequalities (6.15) and (6.18), we get

|y(t)− x1(t)| ≤ |ỹ(t)− x1(t)|+ |ỹ(t)− y(t)|

≤
C1

1−C1L1

(

ϕ1(t) +
L1

1− l1
Ψ1 +

L1l1
1− l1

F0(s0)
)

+
1

1− l1
Ψ1 +

l1
1− l1

F0(s0)

≤
C1

1−C1L1
ϕ1(t) +

1

1− l1

1

1− C1L1
Ψ1 +

l1
1− l1

1

1− C1L1
F0(s0),

(6.19)



616 R. Agarwal, S. Hristova, D. O’Regan

i.e.

|y(t)− x1(t)|

≤
C1

1− C1L1
ϕ1(t) +

1

1− l1

1

1− C1L1

(

Ψ1 + l1F0(s0)
)

= F1(s), t ∈ (t1, s1].

(6.20)

Following this inductive process we construct the function

x(t) =

{

xk(t), t ∈ (tk, sk], k = 0, 1, 2, . . . ,m
x̃k−1(t), t ∈ (sk−1, tk], k = 1, 2, . . . ,m

(6.21)

which is a solution of IVP for the NIFrDE (4.1) with x0 = y(t0) and satisfies
(6.9).

�

Remark 6.5. Note in (6.9) for the solution in Theorem 6.2 the points
tk, sk are not included (compare with (6.2 ) in Theorem 6.1). This allows
the result of Theorem 6.2 to be generalized to the infinite interval [t0,∞) for
appropriate values of the constants Lk, lk, Ck (for example, lk :

∏∞
i=1(1 −

li) < K1 < ∞,
∏∞

i=1
li

1−li
< K2 < ∞, Ck :

∏∞
i=0(1−CiLi) < K3 < ∞ and

∏∞
i=0

Ci

1−CiLi
< K4 < ∞).

Example 8. Let 0 = t0 < s0 = 1 < t1 = 2 < s1 = 4 < t2 = 5 < s2 =
7 < t3 = 9 < s3 = 10. Consider the IVP for NIFrDE (4.1) with n = 1 and
q = 0.1, i.e.

c
0D

0.1x(t) = 0.2x tan(t) for t ∈ ∪3
k=0(tk, sk],

x(t) =
1

k + 1

(

x(t) + x(sk−1 − 0)
)

for t ∈ (sk−1, tk], k = 1, 2, 3,

x(0) = 1.

(6.22)

The function f(t, x) = 0.2x tan(t) is not defined and continuous on
the whole interval [0, 10]. Therefore the conditions of Theorem 1 are not
satisfied for (6.22) and approach (A1 for NIFrDE ) and Theorem 6.1 does
not guarantee the existence.

The function f ∈ C(∪3
k=0[tk, sk] × R,R) and there exist positive con-

stants L0 = 0.312, L1 = 0.44, L2 = 0.68, L3 = 0.13, i.e. condition 1 of
Theorem 6.2 is satisfied. Let φk(t, x, y) = 1

k+1(x + y), k = 1, 2, 3. Then

condition 2 of Theorem 6.2 is satisfied with lk = 1
k+1 , k = 1, 2, 3.

Consider the function y(t) ≡ 1, t ∈ [0, 10] which satisfies the inequalities
(6.7) with ϕk(t) ≡ Lk, t ∈ (tk, sk], k = 0, 1, 2, 3 and Ψk = |k−1

k+1 |, k = 1, 2, 3.

Then, Lk

Γ(q)

∫ t

tk
(t − s)q−1ds = (t−tk)

q

qΓ(q) Lk ≤ Ckϕk(t), t ∈ [tk, sk] with Ck =
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(sk−tk)
q

qΓ(q) , k = 0, 1, 2, 3, i.e. C0 = 1.052, C1 = 1.13, C2 = 1.13, C3 = 1.13.

Condition 3 of Theorem 6.2 is satisfied.
According to Theorem 6.2 there exists a solution x(t) of the IVP for

NIFrDE (6.22) for which the inequality (6.9) holds. In this case the solution
is defined by approach (A2 for NIFrDE ).

�

7. Conclusions

Initial value problems for Caputo fractional differential equations with
noninstantaneous impulses are discussed. We emphasize some basic points:

- the impulsive functions have to depend on not only the unknown
function of the current argument but also on the value of the un-
known function before the impulse, i.e. φk(t, x(t), x(sk−1 − 0)) (see
Example 4 and Remark 4.5);

- the application of approach A1 requires the definition of the right
side part of the Caputo fractional differential equation to be defined
on the whole interval of consideration including the intervals of
impulses. This is not the same as in approach A2 (see Example 6
and Remark 4.7);

- approach A1 does not allow the application of the step by step
method w.r.t. to the intervals of impulses to be used directly. This
is not the same as in approach A2 (see Example 7);

- approach A1 can not be applied to Caputo fractional differential
equations with switching right sides parts, i.e. when f is defined in
different ways on each interval without impulses. This is not the
same as in approach A2 (see Example 1);

- in the application of approach A2 the basic property for ODE
x(t; τ1, x(τ1; τ, c)) = x(t; τ, c), t ≥ τ1 is lost. This is not the same
as in approach A1 (see Remark 3.4);

- impulsive fractional differential equations are a special case of frac-
tional differential equations with noninstantaneous impulses (see
Section 5);

- both approaches are used to study the existence of noninstanta-
neous impulsive fractional differential equations and the advan-
tages/disadvantages in the corresponding conditions are discussed
(see Section 6).
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