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Abstract. In this paper we analyse the integrability of a dynamical system describing the rotational
motion of a rigid satellite under the influence of gravitational and magnetic fields. In our investiga-
tions we apply an extension of the Ziglin theory developed by Morales-Ruiz and Ramis. We prove
that for a symmetric satellite the system does not admit an additional real meromorphic first integral
except for one case when the value of the induced magnetic moment along the symmetry axis is
related to the principal moments of inertia in a special way.
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1. Introduction

Let us consider a rigid body B with mass m and centre of mass O1 moving in the
gravitational field of a point O with mass M, see Figure 1. We assume that the
orbit is circular and that it lies in the (x, y)-plane in the inertial reference frame
defined by the orthonormal versors {eee1, eee2, eee3} with the origin at O. The principal
axes reference frame of the body with the origin at O1 is given by the orthonormal
versors {aaa1,aaa2,aaa3}. We describe the rotational motion of the body with respect
to the orbital reference frame {sss, ttt ,nnn} with the origin at O1. Its axes lie along the
radius vector of the centre of mass of the body, the tangent to the orbit in the orbital
plane, and the normal to the orbital plane, respectively.

We accept the following convention, see [1]. For a vector q we denote by Q =
[Q1,Q2,Q3]T the associate coordinates in the body frame, that is, Qi = aaai · qqq,
for i = 1, 2, 3. For two vectors q and p we denote their scalar and vector products
by qqq · ppp and qqq × ppp, expressed in terms of their coordinates in the body frame by
〈Q,P〉, and [Q,P], respectively. Thus we have

〈Q,P〉 :=
3∑

i=1

QiPi = QTP = qqq ·ppp,
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Figure 1. A rigid satellite in an orbit around a gravitational centre.

and

[Q,P] :=

 Q2P3 −Q3P2

Q3P1 −Q1P3

Q1P2 −Q2P1


 =


 (qqq ×ppp) · aaa1

(qqq ×ppp) · aaa2

(qqq ×ppp) · aaa3


 .

The equations of the rotational motion of the body can be written in the following
form

d

dt
M = [M,���] + P,

d

dt
N = [N,���],

d

dt
S = [S,���− ωON], (1)

where M, ��� := I−1M, I := diag(A,B,C) are the angular momentum, the angular
velocity and the inertia tensor of the body, respectively; ωO denotes the orbital
angular velocity of the centre of mass of the body and P is the torque acting on the
body. The explicit form of P depends on a particular model. The gravity-gradient
torque is usually approximated by the following formula

PG := 3ω2
K[S, IS],

where

ω2
K = GM

r3
,

and r is the radius of the orbit, see [5, 6, 12]. Let us note that in the case of a
circular Keplerian orbit ωO = ωK. Examples of models with ωO �= ωK can be
found in [19, 21].

In this paper we consider the case when, in addition to the gravitational torque,
also the magnetic torque plays a significant role. Namely, we assume that the
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gravity centre (the Earth) is the source of a magnetic field which can be well
approximated by a magnetic dipole whose axis coincides with eee3. Modelling of
the magnetic torque PM is generally difficult because it depends not only on the
presence of constant magnets located in the satellite, but also on magnetic and
conductive properties of the material used for its construction, as well as on the
presence of electronic equipment, for details see [7]. In this paper we assume that
the magnetic moment of the satellite is induced by the magnetic field of the central
body, and, moreover, that the body is magnetically symmetric along an axis l fixed
in the body. Then we have

PM := ξ 〈L,N〉[L,N],

where ξ is a parameter depending on the strength of the central magnetic dipole
and magnetic properties of the body.

Thus, we consider the following system

d

dt
M = [M,���] + 3ω2

K[S, IS] + ξ 〈L,N〉[L,N],

d

dt
N = [N,���],

d

dt
S = [S,���− ωON]. (2)

It possesses the Jacobi type first integral

H = 1
2〈M, I−1M〉 − ωO〈M,N〉 + 3

2ω
2
K〈S, IS〉 − 1

2ξ 〈L,N〉2, (3)

and three geometric first integrals

H2 = 〈S,S〉, H3 = 〈N,N〉, H4 = 〈N,S〉. (4)

The above equations can be rewritten in the Hamiltonian form

d

dt
Mi = {Mi,H }, d

dt
Ni = {Ni,H }, d

dt
Si = {Si, H }, i = 1, 2, 3

(5)

where the Poisson bracket, {·, ·} is defined by

{Mi,Mj } = −
3∑

k=1

εijkMk, {Mi,Nj } = −
3∑

k=1

εijkNk,

{Mi, Sj } = −
3∑

k=1

εijkSk, {Ni,Nj } = {Si, Sj } = {Ni, Sj } = 0, (6)

where εijk is the Levi-Civita symbol. This Poisson bracket is degenerated and the
three geometric integrals (4) are its Casimirs. Their common levels are symplectic
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manifolds [23]. From the geometric interpretation of the vectors N and S it follows
that, for further study, we can select the following six dimensional symplectic leaf

M6 = {(M,N,S) ∈ R
9|〈S,S〉 = 1, 〈N,N〉 = 1, 〈N,S〉 = 0}, (7)

which is diffeomorphic to R
3 × SO(3,R).

Remark 1. The configuration space of a rigid body whose centre of mass moves
in a prescribed orbit is SO(3,R) – all possible orientations of the body with respect
to the orbital frame. Thus the classical phase space of the system is T ∗SO(3,R) �
R

3 × SO(3,R).

Remark 2. We can look at system (2) as a Hamiltonian system defined on a
nine-dimensional Poisson manifold which is s∗ – the dual to nine-dimensional Lie
algebra s = (R3 × R

3) � so(3,R) (here � denotes the semi-direct product of
Lie algebras). Then the Poisson bracket defined by (6) is the standard Berezin–
Kostant–Kirillov–Souriou bracket, and M6 is a co-adjoint orbit, see [23]. Here we
refer the reader to paper [3] where the case of a rigid satellite without the influence
of magnetic torques is considered.

System (2) depends on the parameters p := (A,B,C,ωO, ωK, L1, L2, L3, ξ ).
They belong to a set

P := {p ∈ R
5
+ × R

4 | 〈L,L〉 = 1, A < B + C, B < C + A, C < A+ B, },
whose interior is an eight-dimensional subset of R

5+ ×R
4 (R+ denotes the positive

real axis).
It is natural to ask for which p ∈ P system (2) or its restriction to M6 admits

one or two additional first integrals. The high dimensionality of the system and a
big number of parameters make this problem very difficult. Let us enumerate some
known facts.

1. For ξ = 0 (the magnetic torque vanishes) the only known completely integrable
case is a spherically symmetric case A = B = C. This case is trivial because
for a spherically symmetric body the gravitational torque vanishes. There is
no proof that system (2) is non-integrable when ξ = 0 and the body is not
spherically symmetric.

2. For ξ = 0 and an axially symmetric body, for example, A = B, system (2)
admits one additional first integral, namely H5 = M3. There is no proof that
this is the only situation when system (2) possesses one additional first integral.

3. For A = B = C only the magnetic torque acts on the body. System (2) is
completely integrable and the additional first integrals are H5 = 〈M,N〉 and
H6 = 〈M,L〉. In this case the first two equations form a closed subsystem
which coincides with a special case of the Kirchhoff equations for a rigid body
in ideal fluid in the integrable case of Clebsh, see [18].

Some limiting cases of system (2) when ωO = 0, or ωK = 0 are worth mentioning
because they are related to very well-known systems.
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Let us consider the case ωO = 0. Now, system (2) describes the rotational mo-
tion of a rigid body with the mass centre fixed in the external gravity and magnetic
fields. For ξ = 0 the first and the third equation in (2) form a closed subsystem
which coincides with the equations of motion of the completely integrable Brun
problem [11], see also [9]. When ωK = 0, a subsystem of (2) consisting of the first
two equations, is again a special case of the Kirchhoff equations, see [18].

The aim of this paper is to study the integrability of system (2) when the body is
axially symmetric. For this purpose we apply the Morales–Ramis theory [25, 26]
which is an extension of the Ziglin theory [37, 38]. Both theories are based on a
study of variational equations around a particular non-equilibrium solution of the
complexified system. We can associate with the variational equations the mono-
dromy and the differential Galois groups. When the system is integrable, then these
groups are of a special form and this fact gives a necessary condition for integrabil-
ity. To make the paper self-contained, we present basic theoretical facts concerning
the Ziglin and Morales–Ramis theory in the next section. More technical material
needed in our investigation is presented in Appendix A. We present both theories
trying to avoid formal language, and we give several examples, which, as we hope,
helps to understand basic notions of both theories and to popularise them in the
celestial mechanics community. It is worth mentioning that one of the most difficult
problems of celestial mechanics – the question about the non-integrability of the
three-body problem – has been recently solved with the help of these theories, see
[10, 31–33]. We remark here that Poincaré [27] investigated the question of inte-
grability of the three-body problem however he assumed that the first integrals are
holomorphic functions of the perturbation parameter (mass of one body). Thus, his
non-integrability theorems do not assert anything for fixed value of this parameter.

In Section 3 we derive the variational equations along a family of particular
solutions. Our first non-integrability theorem is formulated and proved in Section 4.
We show in this section that the complexified system considered does not possess
an additional complex meromorphic first integral which is functionally indepen-
dent from the Hamiltonian. The question whether the system does not possess an
additional real meromorphic first integral is much more difficult. We investigate
it in the last section combining the differential Galois approach with the Ziglin
argumentation [39].

2. Theory

In this section we describe informally basic facts concerning the Ziglin and Morales-
Ramis theories. For detailed exposition we refer the reader to [2, 4, 25].

Let us consider a complex dynamical system

d

dt
x = v(x), t ∈ C, x ∈ Mn, (8)
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where Mn is a complex n-dimensional analytic manifold (we can think that Mn

is just C
n). If ϕ(t) is a non-equilibrium solution of (8), then the maximal analytic

continuation of ϕ(t) defines a Riemann surface & with t as a local coordinate.
Here it is important to distinguish between the abstract Riemann surface & and its
image i(&) in Mn. It is crucial when the global geometric language is used. The
importance of this distinction is discussed in [24].

EXAMPLE 1. If ϕ(t) is given by rational functions of t then & is the Riemann
sphere CP

1 with some points removed (poles of ϕ(t)).

EXAMPLE 2. If ϕ(t) is given by elliptic functions with fundamental periods T1

and T2 then & is a torus T with some points removed (poles of ϕ(t)). Moreover,
T = C/L, where L = {z ∈ C|z = iT1 + jT2, (i, j) ∈ Z

2}.
Together with system (8) we also consider the variational equations

d

dt
ξ = A(t)ξ, A(t) = ∂v

∂x
(ϕ(t)), ξ ∈ C

n. (9)

Let us note that one solution of the above system is known. In fact, if we put
η = v(ϕ(t)), then

d

dt
η = ∂v

∂x
(ϕ(t))

d

dt
ϕ(t) = ∂v

∂x
(ϕ(t))v(ϕ(t)) = A(t)η. (10)

EXAMPLE 3. Let us assume that system (8) admits the following invariant set

+ = {(x1, . . . , xn) ∈ C
n|x1 = · · · = xn−1 = 0},

that is, the right-hand sides v(x) = (v1(x), . . . , vn(x)) of (8) are such that
vi(x) = 0 for i = 1, . . . , n − 1 when xi = 0 for i = 1, . . . , n − 1. Then a
particular solution ϕ(t) lies on the n-th coordinate axis. Obviously, we have

∂vi

∂xn
(ϕ(t)) = 0, i = 1, . . . , n− 1.

Thus, the matrix A(t) has the following block form

A(t) =
[
B(t) 0
b(t) a(t)

]
, (11)

where

B(t) =
[
∂vi

∂xj

]
, b(t) =

[
∂vn

∂xj

]
, a(t) = ∂vn

∂xn
. i, j = 1, . . . , n− 1.

Thus, the first n − 1 variational equations form a closed sub-system of equations
which are called the normal variational equations (NVEs).
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The above example shows that the order of (9) can be reduced by 1, at least
locally. However, these local reductions can be performed consistently over the
whole &, so we can talk about the NVEs associated with &. For a global definition
of the NVEs see [4, 37]. Here, just for simplicity, we assume that the coordinates
x are chosen as in Example 3. Thus, the NVEs have the form

d

dt
ξ̃ = B(t)ξ̃ , ξ̃ = (ξ1, . . . , ξn−1) ∈ C

n−1, (12)

where B(t) is the (n− 1)× (n− 1) upper diagonal sub-matrix of matrix A(t), see
(11).

Remark 3. If system (8) is Hamiltonian then n is even (n = 2m) and we have
one first integral, namely the Hamiltonian of the system. Then we can reduce the
order of the variational equations by 2. Let for our particular solution the value of
the Hamiltonian be E. Then we can restrict (8) to the level H(x) = E, and we
obtain a system of 2m−1 autonomous equations with the same particular solution.
Then we perform the above-mentioned reduction of the corresponding variational
equations (of order 2m− 1), and we obtain the NVEs of order 2(m− 1) which are
Hamiltonian ones. The last statement follows from the Whittaker theorem about
isoenergetic reduction of order of a Hamiltonian system.

Remark 4. A typical situation with a Hamiltonian system is the following. For
the investigated system with Hamiltonian function H(x), x = (q1, p1, . . . , qm, pm)

∈ C
2m there exists an invariant canonical plane +, for example,

+ = {(q1, p1, . . . , qm, pm) ∈ C
2m|q1 = p1 = · · · = qm−1 = pm−1 = 0}.

This implies that

∂H

∂qi
(x) = ∂H

∂pi

(x) = 0, x ∈ +, i = 1, . . . , m− 1.

Thus, the Hessian of H calculated for x ∈ + has the following block form

H ′′(x) =
[
h(x) 0

0 hm(x)

]
,

where h(x) is a symmetric 2(m− 1)× 2(m− 1) matrix, and hm(x) is a symmetric
2 × 2 matrix. For a particular solution ϕ(t) ∈ + the variational equations have the
form

ξ̇ = JmH
′′(ϕ(t))ξ, ξ ∈ C

2m,

where Jm is the symplectic unit (of dimension 2m×2m), and the normal variational
equations are the following

˙̃
ξ = Jm−1h(ϕ(t))ξ̃ , ξ̃ ∈ C

2(m−1).
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EXAMPLE 4. Let us consider the Hamiltonian system given by the following
Hamiltonian function

H = 1
2(p

2
1 + p2

2)+ 1
4 (q

2
1 + q4

2 )+ 1
2e(q

2
1q

2
2 ), (13)

where e is a parameter and (q1, p1, q2, p2) ∈ C
4. The Hamilton’s equations for this

system admit the following particular solution ϕ(t) = (0, 0, q2(t), p2(t)), where
q2(t) = cn(t, k), p2(t) = −sn(t, k) dn(t, k), k = √

2/2, and sn, cn, dn denote the
Jacobi elliptic functions. As this particular solution lies in the (q2, p2) plane, the
NVEs correspond to variations in q1 and p1, so they have the following form

ξ̇ = η, η̇ = −eq2(t)
2ξ. (14)

Note that the above system is a Hamiltonian one. It is generated by the time-
dependent Hamiltonian function h = (η2 + eq2(t)

2ξ 2)/2.

In the Ziglin and Morales–Ramis theories the concepts of the monodromy group
and the differential Galois group play fundamental role. In the successive sub-
sections we introduce these concepts and give formulations of basic lemmas and
theorems which we used in this paper.

2.1. MONODROMY GROUP

Let 0(t) be the matrix of fundamental solutions of (9) defined in a neighbourhood
of t0 ∈ C, that is, columns of 0(t) are n linear independent solutions of (9), and
let γ be a closed path (with the base point at t0) on the complex time plane. An
analytic continuation of 0(t) along γ gives rise to a new matrix of fundamental
solutions 0̂(t) in a neighbourhood of t0 which does not necessarily coincide with
0(t). However, the solutions of a linear system form an n-dimensional linear space,
so we have 0̂(t) = 0(t)Mγ , for a certain non-singular matrix Mγ ∈ GL(n,C)

which is called the monodromy matrix.

EXAMPLE 5. The system

d

dt

[
ξ1

ξ2

]
= 1

t2

[
0 t2

−1 t

][
ξ1

ξ2

]
,

has two linearly independent solutions

ξ (1) = (t, 1)T and ξ (2) = (t ln t, 1 + ln t)T.

After continuation along a loop γ encircling t = 0 once, the solution ξ (1) is
unchanged. However, the second solution changes into

(t (2π i + ln t), 1 + 2π i + ln t)T,

and thus we have

0(t) =
[
t t ln t

1 1 + ln t

]
−→
γ

0(t)Mγ =
[
t t ln t

1 1 + ln t

][
1 2π i
0 1

]
.
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EXAMPLE 6. Let us consider the following system

d

dt
ξ = 1

t
Cξ,

where C is a constant matrix. Let γ be a loop encircling once t = 0 counterclock-
wise. Then the monodromy matrix is given by

Mγ = exp[2π iC].

The monodromy matrix Mγ does not depend on a particular choice of γ . If the path
σ can be obtained by a continuous deformation of the path γ , then Mσ = Mγ . We
denote by [γ ] the set of all paths which can be obtained by continuous deformations
of γ , and it is called the homotopy class of path γ . Thus, the monodromy matrix
Mγ depends on the homotopy class of path γ . If we have two paths σ and γ by their
product τ = σ · γ we understand the path τ obtained in the following way: first
we go along γ , then along σ . One can show that this defines properly a product of
homotopy classes, that is, [τ ] = [σ ] · [γ ] := [σ · γ ]. We can also define the inverse
γ −1 of the path γ : we go along γ in the opposite direction. Again we have a correct
definition [γ ]−1 := [γ −1]. In this way the homotopy classes form a group which
is called the first homotopy group of a Riemann surface (walking on the complex
time plane t , in fact we make loops on & because t parametrises the surface &). We
denote it by π1(&, t0).

Remark 5. If we change the base point t0 of the paths, then, instead of the
matrices Mγ , we obtain CMγC

−1, where C is a certain non-singular matrix (the
same for all paths). It means that the homotopy groups at all points t0 are iso-
morphic.

All the monodromy matrices form a group M with respect to matrix multi-
plication which is a subgroup of GL(n,C). From the definition of monodromy we
have Mσ ·γ = MγMσ , so M[σ ·γ ] = M[γ ]M[σ ]. In the same way M[γ ]−1 = M−1

[γ ] . In
other words, the monodromy matrices form an anti-representation of π1(&, t0) in
GL(n,C).

Remark 6. If system (8) is Hamiltonian, then the variational system (9) is also a
Hamiltonian one, and the monodromy group is a subgroup of the symplectic group
Sp(2m,C), where 2m = n. If we consider the NVEs for a Hamiltonian system
as it was described in Remark 3, then the monodromy group of these equations is
contained in Sp(2(m− 1),C).

2.2. BASIC LEMMA OF THE ZIGLIN THEORY

Let us assume that F(x) is a holomorphic first integral of (8). The Taylor expansion
of F(ϕ(t)+ ξ) has the form

F(ϕ(t)+ ξ) = F(ϕ(t))+ Fm(t, ξ)+ · · · , (15)
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where Fm(t, ξ) is a homogeneous polynomial (with respect to the coordinates of
ξ ) of degree m > 0. It is easy to show that Fm(t, ξ) is a first integral of the
variational Equations (9). We called Fm(t, ξ) the leading term of the first integral.
When the first integral F(x) is a meromorphic function, then it can be represented
as a ratio P(x)/Q(x) of two holomorphic functions P(x) and Q(x). If Pm(t, ξ)

is the leading term of P(x) and Qk(t, ξ) is the leading term of Q(x), then by the
leading term of F(x) we understand Pm(t, ξ)/Qk(t, ξ), and it is a first integral of
Equations (9) which is rational with respect to ξ .

An analytic continuation of solutions of (8) along a closed path γ transforms
initial conditions for these solutions to other points in the following way. At t0 we
start from ξ0. For small t we move along γ and ξ0 goes to ξ(t) = 0(t)ξ0. After
continuation, we return to a neighbourhood of t0, but now our point is moved to
0̂(t)ξ0, and thus at the end of the path at t0 we obtain the point

0̂(t0)ξ0 = 0(t0)Mγ ξ0 = Mγξ0,

as 0(t0) is the identity. Thus we have the following map

(t0, ξ0)−→
γ

(t0,Mγ ξ0).

It is important to notice here that t0, as well as ξ0, are arbitrary.
Let Fm(t, ξ) be a first integral of (9) and let F 0

m = Fm(t0, ξ0). A first integral
does not change its value when we make an analytic continuation. Thus taking the
loop γ we have

F 0
m = Fm(t0, ξ0) = Fm(t0,Mγ ξ0).

As t0, ξ0 and γ are arbitrary we have

Fm(t, ξ) = Fm(t,Mγ ξ) (16)

for all Mγ ∈ M. In other words, Fm(t, ξ) is invariant with respect to the natural
action of the monodromy group. A non-constant function satisfying the above
condition is called a first integral (or an invariant) of the monodromy group (poly-
nomial (rational) if Fm is a polynomial (rational) function of the coordinates of
ξ ). We can repeat all the above considerations for the normal variational equations.
The condition (16) is restrictive. When the monodromy group of the NVEs is ‘big’,
then it can happen that there is no non-constant polynomial (rational) invariant, and
this fact implies that system (8) does not have a holomorphic (meromorphic) first
integral.

The following lemma formulated by Ziglin gives the necessary condition for
integrability, see Proposition on p. 183 in [37] and Proposition on p. 4 in [39].

LEMMA 1. If system (8) possesses a meromorphic first integral defined in a neigh-
bourhood U ⊂ Mn, such that the fundamental group of & is generated by loops
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lying in U , then the monodromy group M of the normal variational equations has
a rational first integral.

Remark 7. The reason why in the above lemma the necessary condition for
integrability cannot be formulated (or, rather, it is more difficult to formulate) in
terms of the monodromy group of the full variational equations is the following.
The monodromy group of (9) always possesses one polynomial invariant. Let us
explain why. As it was mentioned, for Equations (9) we know one particular solu-
tion η = v(ϕ(t)), see (10). If 0(t) is the fundamental matrix of (9), then we can
find a vector c ∈ C

n such that η = η(t) = 0(t)c. Let us assume for simplicity that
the solution ϕ(t) is single-valued. Thus the continuation of η(t) along an arbitrary
path γ does not change it, and we have that η(t) = 0̂(t)c = 0(t)Mγ c = 0(t)c.
It follows that Mγ c = c, that is, the vector c is an eigenvector of all monodromy
matrices and it corresponds to an eigenvalue 1. Thus, in appropriate coordinates
x = (x1, . . . , xn), the monodromy matrices M can be put simultaneously into the
following form

M =
[

1 0
m M̃

]
,

where m, M̃ are (n− 1)× 1 and (n− 1)× (n− 1) matrices, respectively. But now
the linear polynomial f (x) = x1 is an invariant of the monodromy group.

2.3. DIFFERENTIAL GALOIS GROUP

Let us assume that the entries of the matrix A(t) of the linear system (9) are rational
functions of t . We know that solutions of linear equations with rational coefficients
are not necessarily rational, however, we can ask whether a given linear equation or
a system of linear equations is solvable in terms of ‘known’ functions. This ques-
tion was investigated at the end of the 19th and at the beginning of the 20th century
by Picard, Vessiot and others. Later on, thank to works of Kolchin, the Picard–
Vessiot theory was considerably developed to what is now called the differential
Galois theory. For a general introduction to this theory see [8, 16, 22, 28].

Through this subsection our leading example is a linear second-order differen-
tial equation with rational coefficients

w′′ + pw′ + qw = 0, p, q ∈ C(t), ′ ≡ d

dt
. (17)

In what follows we keep algebraic notation, for example, by C[t] we denote the ring
of polynomials of one variable t , C(t) is the field of rational functions, etc. Here
we consider the field C(t) as a differential field, that is, a field with distinguished
differentiation. Note that in our case all elements a ∈ C(t) such that a′ = 0 are just
constant, that is, we have a′ = 0 ⇔ a ∈ C. Thus such elements form a field – the
field of constants.
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Remark 8. In the most general case we meet in applications, the coefficients of
(9) are meromorphic functions defined on a Riemann surface &, which is usually
denoted by M(&). Meromorphic functions on & form a field. It is a differential
field if equipped with ordinary differentiation.

The field C(t) can be extended to a larger differential field K such that it will
contain all solutions of Equation (17). The smallest differential field K containing
n linearly independent solutions of (9) is called the Picard–Vessiot extension of
C(t) (additionally we need the field of constants of K to be C).

Remark 9. The Picard–Vessiot extension for Equation (17) can be constructed
in the following way. We take two linearly independent solutions ξ and η of (17)
(we know that such solutions exist). Then, as K we take all rational functions of
five variables (t, ξ, ξ ′, η, η′), that is, K = C(t, ξ, ξ ′, η, η′).

Remark 10. In the case considered (a system of complex linear equations with
rational coefficients) the existence of the Picard–Vessiot extension follows from
the Cauchy existence theorem. In abstract settings, that is, when we consider a
differential equation with coefficients in an abstract differential field, the existence
of the Picard–Vessiot extension is a non-trivial fact, see, for example [22].

Now, it is necessary to define what we understand by ‘known’ functions. In-
formally, these are rational and algebraic functions, their integrals and exponential
of their integrals. More precisely, we say that a solution η of (17) is:

1. algebraic over C(t) if η satisfies a polynomial equation with coefficients in
C(t),

2. primitive over C(t) if η′ ∈ C(t), that is, if η = ∫
a, for certain a ∈ C(t),

3. exponential over C(t) if η′/η ∈ C(t), that is, if η = exp
∫
a, for certain a ∈

C(t).

We say that a differential field L is a Liouvillian extension of C(t) if it can be
obtained by successive extensions

C(t) = K0 ⊂ K1 ⊂ · · · ⊂ Km = L,

such that Ki = Ki−1(ηi) with ηi either algebraic, primitive or exponential over
Ki−1. Our vague notion ‘known’ functions means Liouvillian functions. We say
that (9) is solvable if for it the Picard–Vessiot extension is a Liouvillian extension.

Remark 11. All elementary functions, like et , log t , trigonometric functions, are
Liouvillian, but special functions like Bessel or Airy functions are not Liouvillian.

EXAMPLE 7. The equation

4tw′′ + 2w′ − w = 0,
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has two linearly independent solutions w1 = exp[
√
t] and w2 = exp[−√

t]. Both
of them are Liouvillian.

How can we check if solutions of a given equation are Liouvillian? For this pur-
pose we need to check properties of the differential Galois group of the equation.
This group can be defined as follows. For the Picard–Vessiot extension K ⊃ C(t)

we consider all automorphisms of K (i.e. invertible transformations of K pre-
serving field operations) which commute with differentiation. An automorphism
g : K → K commutes with differentiation if g(a′) = (g(a))′ for all a ∈ K. We
denote by A the set of all such automorphisms. Let us note that automorphisms
A form a group. The differential Galois group G of extension K ⊃ C(t), is,
by definition, a subgroup of A such that it contains all automorphisms g which
do not change elements of C(t), that is, for g ∈ G we have g(a) = a for all
a ∈ C(t).

Remark 12. It seems that the definition of the differential Galois group is ab-
stract and that it is difficult to work with it. However, from this definition we
can deduce that it can be considered as a subgroup of invertible matrices. Let
G be the differential Galois group of Equation (17) and let g ∈ G. Then we
have

0 = g(0) = g(w′′ + pw′ + qw) = g(w′′)+ g(p)g(w′)+ g(q)g(w),

but g commutes with differentiation so g(w′′) = (g(w))′′, g(w′) = (g(w))′, and,
moreover, g(p) = p, g(q) = q because p, q ∈ C(t). Thus we have

(g(w))′′ + p(g(w))′ + qg(w) = 0.

In other words, if w is a solution of Equation (17) then g(w) is also its solution.
Thus, if ξ and η are linearly independent solutions of (17), then

g(ξ) = g11ξ + g21η, g(η) = g12ξ + g22η,

and

g

([
ξ η

ξ ′ η′

])
=

[
ξ η

ξ ′ η′

][
g11 g12

g21 g22

]
.

Hence, we can associate with an element g of the differential Galois group G an
invertible matrix [gij ], and thus we can consider G a subgroup of GL(2,C). If
instead of the solutions ξ and η we take other two linearly independent solutions,
then all matrices [gij ] are changed by the same similarity transformation.

The construction presented in the above remark can be easily generalised to a
linear differential equation of an arbitrary order and to a system of linear equations.
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Thus we can treat the differential Galois group as a subgroup of GL(n,C). Let us
list basic facts about the differential Galois group

1. If g(a) = a for all g ∈ G, then a ∈ C(t).
2. Group G is an algebraic subgroup of GL(n,C). Thus it has a unique connected

component G0 which contains the identity, and which is a normal subgroup of
finite index.

3. Every solution of the differential equation is Liouvillian if and only if G0

conjugates to a subgroup of the triangular group. This is the Lie–Kolchin
theorem.

For proofs and details we refer the reader to the cited references.

2.4. BASIC THEOREM OF THE MORALES–RAMIS THEORY

For a given linear system of linear differential equations we can determine the
monodromy group M and the differential Galois group G. From the description
given above it follows that both these groups are related. In fact, we have M ⊂ G.
In other words, the differential Galois group G is ‘bigger’ then the monodromy
group M.

EXAMPLE 8. For the Airy equation ẍ = tx the monodromy group is trivial, that
is, it contains only one element – the identity matrix, while its differential Galois
group is SL(2,C). For a proof see, for example, [16].

Remark 13. It should be mentioned that the determination of the monodromy
group is a difficult task, and this groups is known only for a very limited number
of equations. What concerns the determination of the differential Galois group we
are in much better situation. There exist algorithms (the Kovacic algorithm [17])
which allow to determine this group for an arbitrary second-order linear differential
equation with rational coefficients (see Appendix A for additional references).

The fact that M ⊂ G suggests the use of G instead of M to formulate a
necessary condition for non-integrability. If system (8) possesses a meromorphic
first integral, then (9) has a first integral and this fact imposes a restriction on its
differential Galois group G, as it imposes restrictions on its monodromy group M.
In fact, we have a lemma which is analogous to Lemma 1.

LEMMA 2. If system (8) possesses a meromorphic first integral defined in a neigh-
bourhood U ⊂ M of &, then the differential Galois group G of the NVEs has a
rational first integral.

The above lemma is a variant of Lemma III.1.13 from [2], see also Lemma 4.6
in [25]. For proof and details see Chapter III of [2].
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The differential Galois theory gives a powerful tool to the study of integrabil-
ity of Hamiltonian systems. The Morales–Ramis theory is formulated in the most
exhaustive form in book [25] and papers [26]. It gives a necessary condition of in-
tegrability of a Hamiltonian system for which we know a non-equilibrium solution.
The main theorem is the following.

THEOREM 1. Assume that the Hamiltonian system is integrable in the Liouville
sense in a neighbourhood of a particular solution. Then the identity component of
the differential Galois group of the NVEs is Abelian.

3. Particular Solutions and Variational Equations

From now on we consider (2) as a complex system, that is, we assume that (M,N,

S) ∈ C
9 and t ∈ C. Without loss of generality, choosing appropriately the units of

time and length, we can put ωK = ωO = 1 and A = 1. According to our knowledge,
for an arbitrary L, Equations (2) do not admit a particular solution. However, if we
assume that L coincides with one of the principal axes, for example, L = [0, 0, 1]T,
then one can find particular solutions. In fact, in this case the following manifold

N = {(M,N,S) ∈ C
9|M2 = M3 = N2 = N3 = S1 = 0, N1 = 1}, (18)

is invariant with respect to the flow generated by system (2). Solutions lying on N
describe the planar rotations of the satellite when its third axis is permanently in
the orbital plane and its first axis is perpendicular to the orbital plane. Moreover,
we can easily find an analytic form of the solutions of (2) describing this motion.
In fact, system (2) restricted to N has the form

Ṁ1 = 3(C − B)S2S3, Ṡ2 = (�1 − 1)S3, Ṡ3 = −(�1 − 1)S2, (19)

and it possesses two first integrals

H|N = 1
2M

2
1 −M1 + 3

2(BS2
2 + CS2

3), H2|N = S2
2 + S2

3 . (20)

We can introduce on the level H2|N = 1 a local coordinate φ such that

S2 = − cosφ and S3 = sinφ.

Then system (19) reads

Ṁ1 = −3(C − B) sinφ cosφ, φ̇ = M1 − 1. (21)

Thus, we have

ϕ̈ = −3(C − B) sin ϕ, ϕ = 2φ. (22)

Solving the above equation we obtain an one parameter family >(t, k) of the
solutions of (2) expressed in terms of the Jacobi elliptic functions. Let us define

ω = √
3|C − B|. (23)
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Then the explicit form of the solutions is given by

M1(t, k) = 1 + ωk cn(ωt, k), (24)

and for C > B

S2(t, k) = − dn(ωt, k), S3(t, k) = k sn(ωt, k), (25)

for C < B we have

S2(t, k) = k sn(ωt, k), S3(t, k) = dn(ωt, k), (26)

where

k =
√

ω2 + E

2ω2
∈ (0, 1), (27)

and E is the value of the energy integral for Equation (22), that is,

E = 1
2 ϕ̇

2 − ω2 cos ϕ.

Let us note that for the above solutions we have

H(>(t, k)) = 1
2ω

2k2 + 1
2(3B − 1) := h(k). (28)

From the above formulae it follows that the particular solutions given above are
single-valued, meromorphic, and double periodic with periods

T (k) = 4

ω
K(k), T ′(k) = 4

ω
iK ′(k),

where K(k) is the complete elliptic integral of the first kind with modulus k,
K ′(k) := K(k′), and k′ := √

1 − k2. In each period cell they have four simple
poles at:

τ1(k) = 1
2T (k)+ 1

4T
′(k), τ2(k) = τ1(k)+ 1

2T
′(k),

τ3(k) = τ2(k)+ 1
2T (k), τ4(k) = τ3(k)− 1

2T
′(k), mod(T (k), T ′(k)).

(29)

Thus, the Riemann surfaces &k associated with the particular solutions >(t, k)

are tori with four points: sl(k) = >(τl(k), k), l = 1, 2, 3, 4 removed. In C
3 with

coordinates (M1, S2, S3) these Riemann surfaces are intersections of two quadrics

1
2M

2
1 −M1 + 3

2

(
BS2

2 + CS2
3

) = h(k), S2
2 + S2

3 = 1. (30)

For 0 < k < 1 the four points sl(k) correspond to four points of intersection of the
above quadrics at infinity.

As our aim is to investigate the case when the satellite is symmetric, we assume
that A = B = 1. For a symmetric satellite, we have one more first integral, namely



RIGID SATELLITE IN GRAVITATIONAL AND MAGNETIC FIELDS 333

H5 = M3. This first integral is connected with the existence of an one parameter
symmetry of the system. Equations (2) are invariant (for the prescribed choice of
L and the symmetry axis) with respect to an action of group SO(2,R). Simply,
the principal axes perpendicular to the symmetry axis of the body can be chosen
arbitrarily. Thanks to that, we can reduce the number of degrees of freedom by
one. Thus, the reduced system is Hamiltonian with two degrees of freedom and it
depends parametrically on the value of the chosen level of H5.

Further calculations can be performed in the (M,N,S) coordinates in the same
way as it was done in [3]. Here we perform them in canonical coordinates on M6.
This approach allows to deduce the normal variational equations in an elementary
way. Appropriate canonical variables on M6 can be chosen in the following way.
We parametrise the orientation of the principal axes of the body with respect to
the orbital reference frame by the Euler angles (q1, q2, q3) of the type 3-1-3, and
we take them as generalised coordinates. Then generalised momenta conjugated to
(q1, q2, q3) are given by

p = KM, K =

 sin q3 sin q2 cos q3 sin q2 cos q2

cos q3 − sin q3 0
0 0 1


 . (31)

Moreover, we have

N =

 sin q3 sin q2

cos q3 sin q2

cos q2


 , S =


 − sin q3 cos q2 sin q1 + cos q3 cos q1

− cos q3 cos q2 sin q1 − sin q3 cos q1

sin q2 sin q1


 .

(32)

In the introduced canonical coordinates the Hamiltonian (3) reads

H = 1

2

(
p3 cos q2 − p1

sin q2

)2

+ 1

2
p2

2 +
1

2C
p2

3 − p1 +

+ 3

2
(C − 1) sin2 q1 sin2 q2 − 1

2
ξ cos2 q2. (33)

As we can see, q3 is a cyclic coordinate and p3 = M3 is a first integral. Thus,
considering p3 as an additional parameter, H defines a Hamiltonian system with
two degrees of freedom with x = (q1, q2, p1, p2) as canonical coordinates. As our
particular solutions lie on the level M3 = 0, we investigate this system for p3 = 0,
that is, we consider the Hamiltonian system given by the following Hamiltonian

H = 1

2

p2
1

sin2 q2
+ 1

2
p2

2 − p1 + 3

2
(C − 1) sin2 q1 sin2 q2 − 1

2
ξ cos2 q2. (34)

Now, the invariant manifold N corresponds to the canonical plane q2 = π/2,
p2 = 0, on which canonical equations generated by H have the form

q̇1 = p1 − 1, ṗ1 = −3(C − 1) sin q1 cos q1. (35)
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Comparing them with Equations (21) we see that p1 = M1 and q1 = φ (note
that this fact follows from the definition of N , formulae (31), (32) and the fact
that on N we have q3 = π/2). Thus, the explicit form of the particular solutions
x = x(t, k) = (q1(t, k), π/2, p1(t, k), 0) is given by

p1(t, k) = 1 + ωk cn(ωt, k), (36)

and for C > 1

cos q1(t, k) = dn(ωt, k), sin q1(t, k) = k sn(ωt, k), (37)

and for C < 1

cos q1(t, k) = −k sn(ωt, k), sin q1(t, k) = dn(ωt, k). (38)

We note here that for a symmetric satellite we have

ω = √
3|C − 1| ∈ (0,

√
3).

The variational equations along the particular solution x(t, k) have the following
form

Q̇1 = P1, Ṗ1 = 3(1 − C) cos(2q1(t, k))Q1, (39)

Q̇2 = P2, Ṗ2 = [ξ − p1(t, k)
2 + 3(C − 1) sin2 q1(t, k)]Q2. (40)

As the particular solutions lie in the plane {q2 = π/2, p2 = 0}, the NVEs corres-
pond to the subsystem (40) which can be written as a second-order linear equation
of the form

Q̈+ a(t, k)Q = 0, Q ≡ Q2, (41)

where

a(t, k) =
{
(1 + kω cn(ωt, k))2 + ω2 dn2(ωt, k)− ξ for C < 1,
(1 + kω cn(ωt, k))2 − ω2k2 sn2(ωt, k)− ξ for C > 1.

(42)

Remark 14. Let us notice that for Equation (41) the differential Galois group is
a subgroup of SL(2,C). It is always the case when a second-order linear differential
equation does not contain a term proportional to the first derivative.

Remark 15. Here we underline that the obtained NVE (41) is the reduced nor-
mal variational equation for (2) when A = B = 1 and L = (0, 0, 1) derived for
solution (24)–(26) . We just performed a symplectic reduction as in [3], but for this
purpose we use local canonical coordinates.



RIGID SATELLITE IN GRAVITATIONAL AND MAGNETIC FIELDS 335

Equation (41) is defined on &k. In order to use the differential Galois the-
ory efficiently, it is crucial to transform the investigated equation into an equa-
tion with rational coefficients. In our case we can do this making the following
transformation

t −→ z := k cn(ωt, k). (43)

Then the NVE has the form

Q′′ + p(z)Q′ + q(z)Q = 0, ′ ≡ d

dz
, (44)

where

p(z) = z(−1 + 2(k2 − z2))

(k2 − z2)(z2 + k′2)
,

q(z) =




−ξ + (1 + ωz)2 + ω2(z2 + k′2)
ω2(k2 − z2)(z2 + k′2)

for C < 1,

−ξ + (1 + ωz)2 + ω2(k2 + z2)

ω2(k2 − z2)(z2 + k′2)
for C > 1.

(45)

Equation (44) is Fuchsian (see Appendix A) and it has five regular singular points
over CP

1, namely z1,2 = ±k, z3,4 = ±ik′ and z5 = ∞.

Remark 16. Our transformation (43) is a double covering

CP
1 −→ C −→ &k.

The differential Galois groups of Equation (41) and Equation (44) are different,
however these groups have the same identity components, see [25].

Changing the dependent variable

Q = W exp

[
− 1

2

∫ z

z0

p(s) ds

]
, (46)

we transform (44) to the reduced form

W ′′ = r(z)W, r(z) = −q(z)+ 1
2p

′(z)+ 1
4p(z)

2. (47)

The rational coefficient r(z) has the following simple fraction expansion

r(z) =
4∑

k=1

[
ai

(z − zi)
2
+ bi

z− zi

]
(48)

with coefficients

a1 = a2 = a3 = a4 = − 3
16 ,
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and for C < 1

b1 = 3ω2(3 + 4k2)+ 8(1 − ξ + 2kω)

16kω2
, b2 = −b1 + 2

ω
, (49)

b3 = i
ω2(12k′2 + 1)+ 8(ξ − 1 + 2ik′ω)

16k′ω2
, b4 = b∗3, (50)

where ∗ denotes the complex conjugation. For C > 1 the coefficients bi are the
following

b1 = ω2(12k2 + 1)+ 8(1 − ξ + 2kω)

16kω2
, b2 = −b1 + 2

ω
, (51)

b3 = i
3ω2(3 + 4k2)+ 8(ξ − 1 + 2ik′ω)

16k′ω2
, b4 = b∗3. (52)

The Laurent expansion of r(z) at infinity in both cases has the same form

r(z) = 2

z2
+O

(
1

z3

)
. (53)

Remark 17. Transformation (46) changes the differential Galois group. For
Equation (47) G is a subgroup of SL(2,C) but for Equation (44) G is not a subgroup
of SL(2,C). Generally, when the coefficients p(z) and q(z) in (44) are arbitrary
rational functions, transformation (46) changes also the identity component of G,
for example, G0 of Equation (44) can be non-Abelian but for the transformed
Equation (47) G can be Abelian. However, if G0 of Equation (44) is solvable then
G0 of Equation (47) has the same property. In our case transformation (46) has the
following form

W = [(k2 − z2)(k′2 + z2)]1/4Q

and thus it does not change the identity component of the differential Galois group
of Equation (44). This is not accidental. In the time parametrisation the NVE has
the form (41) and its differential Galois group is contained in SL(2,C). Then we
make transformation (43) which is a finite covering, and thus it does not change
the identity component of the differential Galois group, see Proposition 4.7 in [4].
Then, by Lemma 4.24 from [4] transformation (46) has the form W = RQ, where
Rn is a rational function for an integer n.

4. Complex Non-integrability

First, we investigate the local monodromy of Equation (47) at infinity. In many
cases it simplifies proofs considerably.
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LEMMA 3. Let us assume that C �= 1 and 2ξ �= 3(1 − C). Then the local
monodromy of equation (47) at infinity is

M∞ =
[

1 2π i
0 1

]
.

Proof. We prove the lemma for C < 1. For C > 1 the proof is similar. First we
change the dependent variable z = 1/ζ . This change moves z = ∞ to ζ = 0 and
transforms (47) to the form

W ′′ + 2

ζ
W ′ − 1

ζ 4
r

(
1

ζ

)
W = 0. (54)

Moreover, we have

1

ζ 4
r

(
1

ζ

)
= 2

ζ 2
+O(ζ−1), (55)

and thus the indicial equation (see [36, Chapter X]) reads

ρ(ρ − 1)+ 2ρ − 2 = 0. (56)

Hence, exponents at ζ = 0 are ρ− = −2 and ρ+ = 1. Their difference m =
ρ+ − ρ− = 3 is an integer, and thus, in a neighbourhood of ζ = 0 one solution of
(54) has the form

W1(ζ ) = ζ ρ+f (ζ ), f (ζ ) = 1 +
∞∑
k=1

fkζ
k, (57)

where the series defining f (ζ ) is convergent in the considered region [36]. The
second solution, independent of W1(ζ ), is defined by the integral

W2(ζ ) = W1(ζ )

∫ ζ s−2 ds

W1(s)2
= W1(ζ )

∫ ζ

s−m−1 ds

f (s)2
. (58)

Let us denote

1

f (ζ )2
= 1 +

∞∑
k=1

gkζ
k.

Then, from (58) it follows that the solution W2(ζ ) can be written in the form

W2(ζ ) = gmW1(ζ ) ln ζ + ζ ρ−V (ζ ), (59)

where V (ζ ) is holomorphic in a neighbourhood of ζ = 0. The form of local mono-
dromy depends on whether a logarithmic term is present or not in the solution. To
check if it is present in our case, we have to calculate if g3 �= 0. It can be easily
shown that

g3 = −2(2f 3
1 − 3f1f2 + f3).
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The coefficients fi, i = 1, 2, 3 of the expansion (57) can be computed directly (see,
e.g. [36]) and they are the following

f1 = 1

2ω
, f2 = ω2(4k2 − 1)+ 2(2 − ξ)

20ω2
, (60)

f3 = ω2(108k2 − 47)+ 2(9 − 7ξ)

360ω3
. (61)

One can check that

g3 = (ω2 − 2ξ)

9ω3
.

Thus, if ω2 �= 2ξ the logarithmic term in the solution W2(ζ ) is present. Note that
for C < 1 the condition ω2 �= 2ξ is equivalent to 2ξ �= 3(1 − C). Now, let us
consider a small loop γ encircling the singular point ζ = 0 counterclockwise. The
continuation of the matrix of the fundamental solutions along this loop (under the
assumption that ω2 �= 2ξ ) gives rise to the triangular monodromy matrix[

W1(ζ ) W2(ζ )

W ′
1(ζ ) W ′

2(ζ )

]
−→
γ

[
W1(ζ ) W2(ζ )

W ′
1(ζ ) W ′

2(ζ )

][
1 2π i
0 1

]
. (62)

This ends the proof. �
In the next lemma we show that for almost all values of the parameters Equa-

tion (47) is not reducible, that is, for it case 1 in Lemma A.1 does not occur.

LEMMA 4. For C �= 1 and k ∈ (0, 1) Equation (47) is not reducible except for
the case when

ξ = 3

2
(1 − C) and ω2 = 2

2k2 − 1
. (63)

Proof. To prove our Lemma we apply directly the first case of the Kovacic
algorithm (see Appendix A). First we consider the case C < 1. All finite poles of
r(z) and infinity are of the second order. Using the coefficients ai, i = 1, . . . , 4
given by (52) and the expansion (53) we obtain

F1 = F2 = F3 = F4 = 1
2 , F∞ = 3, (64)

and thus

E1 = E2 = E3 = E4 = {
1
4 ,

3
4

}
, E∞ = {−1, 2}. (65)

We proceed to the second step. From the Cartesian product E = E∞ ×+4
i=1Ei we

select these elements e = (e∞, e1, e2, e3, e4) ∈ E for which

d(e) = 1 −
(
e∞ +

4∑
i=1

ei

)
∈ N0, (66)
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where N0 denotes the set of non-negative integers. In our case there exist seven
elements of E satisfying this condition

e(1) = {−1, 1
4 ,

1
4 ,

1
4 ,

1
4

}
, d(e(1)) = 1,

e(2) = {−1, 1
4 ,

1
4 ,

3
4 ,

3
4

}
, d(e(2)) = 0,

e(3) = {−1, 3
4 ,

3
4 ,

1
4 ,

1
4

}
, d(e(3)) = 0,

e(4) = {−1, 1
4 ,

3
4 ,

3
4 ,

1
4

}
, d(e(4)) = 0,

e(5) = {−1, 3
4 ,

1
4 ,

1
4 ,

3
4

}
, d(e(5)) = 0,

e(6) = {−1, 1
4 ,

3
4 ,

1
4 ,

3
4

}
, d(e(6)) = 0,

e(7) = {−1, 3
4 ,

1
4 ,

3
4 ,

1
4

}
, d(e(7)) = 0.

Now we pass to the third step of the Kovacic algorithm. For each element e ∈ E

such that d(e) ∈ N0, we construct a rational function

w = w(e) =
4∑

i=1

ei

z − zi
. (67)

Then we check if there exists a monic polynomial P ∈ C[z] of degree d(e)

satisfying the equation

P ′′ + 2wP ′ + (w′ + w2 − r)P = 0. (68)

If we find such polynomial, then Equation (47) has an exponential solution W =
P exp

∫
w.

For e(1) we have d(e(1)) = 1, thus we take P = z + g and, substituting P to
Equation (68), we obtain the following algebraic system

g[ω2(k2 − 1)+ ξ − 1] = 0, −2gω − k2ω2 + ξ − 1 = 0,

ω(gω + 1) = 0. (69)

We note that ω �= 0, and thus this system has one solution

g = − 1

ω
, ξ = 1

2k2 − 1
, ω2 = 2

2k2 − 1
.

For e(i) i = 2, . . . , 7 we have to find a monic polynomial of degree zero satisfying
(68), so we put P = 1.

For e(2) Equation (68) yields

ω2 + 1 − ξ = 0, ω = 0, (70)

but ω �= 0, so there is no solution of the above equations.
We have the same situation for e(3) when (68) gives

ξ − 1 = 0, ω = 0. (71)
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For e(m) with m = 4, . . . , 7 we obtain two equations of the form

ω2(2k(k ∓ ik′)− 3)+ 4(ξ − 1) = 0, ω(ω(k ∓ ik′)± 2) = 0, (72)

where the choice of signs depends on m. The second equation cannot be satisfied
by a real ω �= 0 and k ∈ (0, 1). This finishes the proof for C < 1. The proof for
C > 1 is similar. �

Combining the above two lemmas we have.

LEMMA 5. If C �= 1 and 2ξ �= 3(1 − C), then for k ∈ (0, 1) the differential
Galois group G of (47) is SL(2,C).

Proof. In fact, under the given assumptions G cannot be a triangular subgroup
of SL(2,C) by Lemma 4. Under the same assumptions, by Lemma 3, we know that
G0 contains a non-diagonalisable triangular matrix M∞. Thus case 2 in Lemma A.1
cannot occur as in this case G0 is diagonal. By the same reason case 3 in Lemma
A.1 cannot occur as for a finite group G the identity component G0 consists of the
identity. Thus, we have G = G0 = SL(2,C). �

As SL(2,C) is not Abelian, we have, as a direct consequence of the above
lemma, the following.

LEMMA 6. If C �= 1 and 2ξ �= 3(1 − C), then for k ∈ (0, 1) the complexified
Hamiltonian system given by (34) does not admit an additional complex mero-
morphic first integral functionally independent together with H in a neighbourhood
of phase curve &k.

However, as we mentioned the Hamiltonian system given by (34) is a subsystem
of (2), thus as a corollary we have the following theorem.

THEOREM 2. If C �= 1, A = B = 1,L = (0, 0, 1) and 2ξ �= 3(1 − C), then
for k ∈ (0, 1) the complexified system (2) considered on M6 does not admit an
additional complex meromorphic first integral functionally independent together
with H and H5 in a neighbourhood of the phase curve &k .

In the above theorem the case 2ξ = 3(1 − C) is excluded. One can suspect
that for these values of the parameters our system is integrable. Indeed, the lemma
below shows that our suspicions are well justified because a necessary condition
for the integrability is satisfied.

LEMMA 7. If 2ξ = 3(1 − C) then for all k ∈ (0, 1) the identity component of the
differential Galois group of (47) is Abelian.

Proof. We consider the case C < 1. The proof for the case C > 1 is similar.
By Lemma 4 we know that for 2ξ = 3(1 − C) Equation (47) is reducible

only when ω2 = 2/2k2 − 1. As all exponents are rational and Equation (47)
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is Fuchsian, in this case G is a proper subgroup of the triangular group so G0 is
Abelian.

For ω2 �= 2/(2k2−1) we show that case 2 of Lemma A.1 occurs. To this end we
apply the Kovacic algorithm for this case. Now sets E1, E2, E3, E4 and E∞ have
the following forms

E1 = E2 = E3 = E4 = {1, 2, 3}, E∞ = {−4, 2, 8}. (73)

We have to find at least one monic polynomial P ∈ C[z] of degree

d(e) = 2 − 1

2

(
e∞ +

4∑
i=1

ei

)
, (74)

satisfying the differential equation

P ′′′ + 3wP ′′ + (3w2 + 3w′ − 4r)P ′ +
+ (w′′ + 3ww′ + w3 − 4rw − 2r ′)P = 0, (75)

where

w = w(e) = 1

2

4∑
i=1

ei

z − zi
. (76)

We choose e = (−4, 1, 1, 1, 1). Then d(e) = 2, and we look for a polynomial of
the second degree

P(z) = z2 + g1z+ g2, (77)

satisfying (75). Substituting (77) and (76) into (75) we obtain the following system
determining g1 and g2

[(2k2 − 3)ω2 + 4(ξ − 1)]g1 − 4ωg2 = 0,

3ωg1 + 2ω2g2 + 2(k2 + 1 − ξ) = 0, ω(ωg1 + 2) = 0. (78)

If ξ = ω2/2 then the above system has the following solution

g1 = − 2

ω
, g2 = (1 − 2k2)ω2 + 4

2ω2
. (79)

�

5. Real Non-integrability

On N system (2) has four equilibria

s± = (1, 0, 0, 0, 0, 1, 0,∓1, 0), u± = (1, 0, 0, 0, 0, 1, 0, 0,±1).
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Figure 2. Phase portrait of planar oscillations in the (φ,M1) plane. The left panel corresponds to the
case when C > 1, and the right panel corresponds to the case when C < 1.

These equilibria correspond to a fixed position of the satellite in the orbital frame.
For s± the symmetry axis is parallel to the radius vector of the centre of mass
of the satellite, and for u± the symmetry axis lies in the orbital frame and it is
perpendicular to the radius vector.

Let us restrict system (2) to the invariant manifold + = N ∩M6. Then, for the
restricted system the equilibrium points u± are hyperbolic if C > 1; if C < 1, then
s± are hyperbolic. See Figure 2.

We restrict further discussion to the case C > 1. For real t and 0 < k < 1 the
solution >(t, k) defined by (24)–(26) corresponds to closed phase curves around
the stable point s+. Closed real phase curves around s− are given parametrically by
>(t + T ′(k)/2), t ∈ R. Let &1 be the phase curve corresponding to the solution
given by (24)–(26) with k = 1, that is, >(t, 1). Then &1 contains four components
which are real phase curves corresponding to real solutions heteroclinic to u±.
Their union is Re&1, and by � we denote the closure of Re&1.

LEMMA 8. Let us assume that C �= 1. Then for an arbitrary complex neighbour-
hood U ⊂ + of � there exists ε > 0, such that for 0 < |k−1| < ε the fundamental
group π1(&k) of phase curve &k is generated by loops lying in U.

Proof. The periods T (k) and T ′(k) of the solution >(t, k) are primitive and at
the same time they are the minimal real and imaginary periods, respectively. We
choose the parallelogram of the fundamental periods as in Figure 3. As a base point
x0(k) ∈ &k we choose x0(k) = >k(t0(k)), where t0(k) = T (k)/4. Let us notice
that from (24)–(26) it follows that for C > 1 we have

M1(t0(k), k) = 1, S2(t0(k), k) = −k′, S3(t0(k), k) = k. (80)

Now, we consider four loops

λ(k), λ′(k), γ (k), γ ′(k) : [0, 1] → &k.
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Figure 3. Parallelogram of periods with chosen paths. The points marked by ti (k), with i = 0, 1, 2, 3
are crossing points of the loops α, α′, β and β′.

The loops λ(k) and λ′(k) correspond to the real and imaginary periods, respectively
(i.e. they correspond to the loops α and α′ in the parallelogram of the periods, see
Figure 3).

The loops γ (k) and γ ′(k) corresponds to the ‘shifted’ real and imaginary peri-
ods, that is, the loops β and β ′ in the parallelogram of the periods. �

Remark 18. Above we use informal language. The correspondence between
loops on &(k) and paths on the complex time plane can be viewed as follows. The
map

C � t → >(t, k) ∈ &(k),

is a covering map. For a loop σ (k) on &(k) we obtain a path σ̂ (k) on C which is
a lifting of σ (k) with respect to >(·, k), that is, σ̂ (k) is defined as such curve for
which

σ (k) = >(·, k) ◦ σ̂ (k).

These four loops cross at four common points xl(k) = >(tl(k), k), l = 0, 1, 2, 3,
where t1(k) = t0(k)+T (k)/2, t2(k) = t0(k)+T ′(k)/2 and t3(k) = t0(k)+T (k)/2+
T ′(k)/2. Moreover, we have

M1(t1(k)) = 1, S2(t1(k), k) = −k′, S3(t1(k), k) = −k,

M1(t2(k)) = 1, S2(t2(k), k) = +k′, S3(t2(k), k) = +k,

M1(t3(k)) = 1, S2(t3(k), k) = +k′, S3(t3(k), k) = −k. (81)
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Thus, as k tends to 1, the points xl(k) tend to u± and the loops λ(k) and γ (k)

approach �. We show that the loops λ′(k) and γ ′(k) tend to u±. In fact, for t =
t0(k)+ iτ, τ ∈ R (i.e. along the loop α′) from formulae (24)–(26) we deduce that
S2(t, k) and S3(t, k) are real while M1(t, k) − 1 is purely imaginary. If we put
M1 − 1 = iM̃1 in (30) we obtain

− 1
2M̃

2
1 − 1

2 + 3
2 (S

2
2 + CS2

3) = 1
2ω

2k2 + 1, S2
2 + S2

3 = 1,

and thus

−M̃2
1 + ω2(1 − S2

2) = ω2k2.

It follows that for k = 1

M̃2
1 + ω2S2

2 = 0,

but M̃1 and S2 are real, so we have M1 − 1 = 0 and S2 = 0, that is, the loop λ′(k)
tends to u+ as k tends to 1. Similarly we show that λ′(k) tends to u− as k tends
to 1. Four points xl(k), l = 0, 1, 2, 3 divide four loops λ(k), λ′(k), γ (k) and γ ′(k)
into eight semi-loops λl(k), λ

′
l(k), γl(k) and γ ′

l (k) which correspond to eight semi-
loops αl, α

′
l , βl and β ′

l , l = 1, 2 in the parallelogram of the periods. Of course we
have λ(k) = λ1(k) · λ2(k), α = α1 · α2, etc. We show that the fundamental group
π(&(k), x0(k)) is generated by closed loops which are appropriate compositions
of these eight semiloops. The fundamental group π(&(k), x0(k)) is generated by
homotopic classes of six loops with the base point at x0(k): λ(k), λ′(k), and four
loops σl(k) encircling the singular points sl(k), l = 1, 2, 3, 4. They satisfy the
following condition:

σ1(k) · σ2(k) · σ3(k) · σ4(k) = λ(k) · λ′(k) · λ(k)−1 · λ′(k)−1.

We show that the loop σl(k) has the same homotopic class as an appropriate com-
position of the semi-loops λl(k), λ

′
l(k), γl(k) and γ ′

l (k). For example:

[σ4(k)] = [λ(k) · λ′
1(k) · γ2(k)

−1 · γ ′
1(k)

−1 · λ1(k)
−1].

Let δ4 be the loop encircling τ4(k) and let σ4(k) correspond to δ4. Then, we easily
deduce that δ4 has the same homotopic class as α ·α′

1 ·β−1
2 ·β ′−1

1 ·α−1
1 , see Figure 4.

Thus, we show that all generators of the fundamental group π(&(k), x0(k))

approach � as k tends to 1. �
Now, we are ready to prove our main result.

THEOREM 3. If C �= 1, A = B = 1,L = (0, 0, 1), and 2ξ �= 3(1 − C), then
system (2) considered on M6 does not admit an additional real meromorphic first
integral functionally independent together with H and H5 in a neighbourhood of
the phase curve &1.
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Figure 4. Loop δ4 is homotopic with loop α · α′1 · β−1
2 · β′−1

1 · α−1
1 , where α = α1 · α2.

Proof. Let us assume that such meromorphic first integral exists in a real neigh-
bourhood of the phase curve &1. Then we can extend it to a complex meromorphic
first integral in a complex neighbourhood Ũ of &1. Then, by Lemma 8 we find
&k with k close to 1 such that its fundamental group is generated by loops which
lie entirely in Ũ . From the Ziglin Lemma 1 it follows that the monodromy group
of the NVE (41) possesses an invariant. But the NVE (41) is a Fuchsian equation
and thus if its monodromy group possesses an invariant, then its differential Galois
group also possesses an invariant, see Theorem 3.17 in [4]. However, by Lemma 5
we show that the identity component of the differential Galois group of (47), and
thus the identity component of the differential Galois group of (41), is SL(2,C).
It follows that it does not possess an invariant, see Example 2.11(b) from [4]. A
contradiction finishes the proof. �

6. Comments and Remarks

Although, as it is commonly believed, most systems are not integrable and inte-
grable systems are extremely rare, the example considered in this paper shows that
to prove the non-integrability one has to use rather involved techniques. Never-
theless, a proof of non-integrability of a system gives, in some sense, a negative
result – the true aim is to find a non-trivial integrable system. From this point of
view, the reader can wonder why we did not investigate carefully the case of the
parameter values 2ξ = 3(1−C) for which the necessary conditions for integrability
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are satisfied. As a matter of fact, for some time we believed that for these parameter
values the system is integrable. With the help of the computer algebra we tried to
find a polynomial or rational first integral of the system but we failed. For fixed
values of C we numerically generated the Poincaré cross-sections of the system
which evidently showed that the system is not integrable. Thus, now our conjecture
is that the system also is non-integrable for the case 2ξ = 3(1 − C). An analytic
proof of this fact needs a separate investigation.

For ξ = 0 Theorem 3 tells us that the problem of a symmetric rigid satellite
in a circular orbit is not integrable for all values of C ∈ (0, 2) except C = 1.
This problem was also investigated in [3, 20, 21] where a proof of the same fact is
given. However, in all these references as a particular solution a heteroclinic orbit
was chosen and instead of transformation (43) another one was used. This leads to
a more complicated form of the NVE.
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Appendix A.

Let us consider a linear second-order differential equation with rational coefficients

w′′ + p(z)w′ + q(z)w = 0, p(z), q(z) ∈ C(z). (A.1)

A point z = c ∈ C is a singular point of this equation if it is a pole of p(z) or
q(z). A singular point is a regular singular point if at this point p̃(z) = (z−c)p(z)

and q̃(z) = (z− c)2q(z) are holomorphic. An exponent of Equation (A.1) at point
z = z0 is a solution of the indicial equation

ρ(ρ − 1)+ p0ρ + q0 = 0, p0 = p̃(c), q0 = q̃(c).

After changing the dependent variable z → 1/z Equation (A.1) reads

w′′ + P(z)w′ +Q(z)w = 0,

P (z) = 1

z3
p

(
1

z

)
+ 2

z
, Q(z) = 1

z4
q

(
1

z

)
. (A.2)
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We say that the point z = ∞ is a singular point for Equation (A.2) if z = 0
is a singular point of Equation (A.2). Equation (A.2) is called Fuchsian if all its
singular points (including infinity) are regular, see [15, 36].

If one (non-zero) solution w1 of Equation (A.1) is Liouvillian, then all its solu-
tions are Liouvillian. In fact, the second solution w2, linearly independent from w1,
is given by

w2 = w1

∫
1

w2
1

exp

[
−

∫
p

]
.

Putting

w = y exp

[
−1

2

∫
p

]
(A.3)

into Equation (A.1) we obtain its reduced form

y′′ = r(z)y, r(z) = −q(z)+ 1
2p

′(z)+ 1
4p(z)

2. (A.4)

This change of variable does not affect the Liouvillian nature of the solutions. For
Equation (A.4) its differential Galois group G is an algebraic subgroup of SL(2,C).
The following lemma describes all possible types of G and relates these types to
forms of solution of (A.4), see [17, 25].

LEMMA A.1. Let G be the differential Galois group of Equation (A.4). Then one
of four cases can occur.

1. G is conjugated with a subgroup of the triangular group

T =
{[

a b

0 a−1

]∣∣∣∣a ∈ C
∗, b ∈ C

}
,

in this case Equation (A.4) has an exponential solution,
2. G is conjugated with a subgroup of

D† =
{[

c 0
0 c−1

]∣∣∣∣c ∈ C
∗
}
∪

{[
0 c

c−1 0

]∣∣∣∣c ∈ C
∗
}
,

in this case Equation (A.4) has a solution of the form y = exp
∫
ω, where ω is

algebraic over C(z) of degree 2,
3. G is primitive and finite; in this case all solutions of Equation (A.4) are alge-

braic,
4. G = SL(2,C) and Equation (A.4) has no Liouvillian solution.

When the first case occurs we say that Equation (A.4) is reducible.
The Kovacic algorithm [17] allows to decide if an equation of the form (A.4)

possesses a Liouvillian solution. Applying it we also obtain information about the
differential Galois group of this equation. Recently, beside the original formulation
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of this algorithm1 we have its several versions, improvements and extensions to
higher order equations [10, 13, 14, 29, 30, 34, 35].

Here we present a part of the Kovacic algorithm which allows to decide whether
(A.4) possesses a solution of the form y = exp

∫
ω, where ω is algebraic over C(z)

of degree 1 or 2, or, in other words it gives an answer whether for Equation (A.4)
case 1 or 2 in Lemma A.1 can occur. We used this part of the algorithm in Lemmas
4 and 7. As our NVE is Fuchsian, we present the algorithm adopted for a Fuchsian
equation because it is simpler than for a general case.

We write r(z) ∈ C(z) in the form

r(z) = s(z)

t (z)
, s(z), t (z) ∈ C[z],

where s(z) and t (z) are relatively prime polynomials and t (z) is monic. The roots
of t (z) are poles of r(z). We denote O′ := {c ∈ C|t (c) = 0} and O := O′ ∪ {∞}.
The order ord(c) of c ∈ O′ is equal to the multiplicity of c as a root of t (z), the
order of infinity is defined by

ord(∞) := max(0, 4 + deg s − deg t).

As we assumed, Equation (A.4) is Fuchsian, so we have ord(c)� 2 of c ∈ O. For
each c ∈ O′ we have the following expansion

r(z) = ac

(z− c)2
+O

(
1

z − c

)
,

and we define Fc = √
1 + 4ac. For infinity we have

r(z) = a∞
z2

+O

(
1

z3

)
,

and we define F∞ = √
1 + 4a∞.

Now we describe the Kovacic algorithm for the two cases mentioned.

CASE I
Step I. For each c ∈ O′ such that ord c = 1 we define Ec = {1}; if ord c = 2

Ec := {
1
2 (1 +Fc),

1
2 (1 −Fc)

}
.

If ord(∞) < 2 we put E∞ = {0, 1}; if ord(∞) = 2 we define
E∞ := {

1
2 (1 +F∞), 1

2 (1 −F∞)
}
.

Step II. For each element e in the Cartesian product

E := E∞ ×
∏
c∈O′

Ec,

1On the web page http://members.bellatlantic.net/jkovacic/lectures.html the reader will find
lecture notes of J.J. Kovacic which contain an extended description of the algorithms with many
remarks and comments concerning recent works on the subject.
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we compute

d(e) := 1 −
∑
c∈O

ec.

We select those elements e ∈ E for which d(e) is a non-negative integer.
If there are no such elements Equation (A.4) does not have an exponential
solution and the algorithm stops here.
Step III. For each element e ∈ E such that d(e) = n ∈ N0 we define

ω(z) =
∑
c∈O′

ec

z− c
,

and we search for a monic polynomial P = P(z) of degree n satisfying the
following equation

P ′′ + 2ω(z)P ′ + (ω′(z)+ ω(z)2 − r(z))P = 0.
If such polynomial exists, then Equation (A.4) possesses an exponential solu-
tion of the form y = P exp

∫
ω, if not, Equation (A.4) does not have an

exponential solution.
CASE II

Step I. For c ∈ O′ such that ord c = 1 we define Ec = {4}; if ord c = 2
Ec := {2, 2(1 +Fc), 2(1 −Fc)} ∩ Z.

If ord(∞) < 2 we put E∞ = {0, 2, 4}; if ord(∞) = 2 we define
E∞ := {2, 2(1 +F∞), 2(1 −F∞)} ∩ Z.

Step II. If the Cartesian product

E := E∞ ×
∏
c∈O′

Ec,

is empty then case 2 cannot occur and algorithm stops here. If it is not, then
for e ∈ E we compute

d(e) := 2 − 1

2

∑
c∈O

ec.

We select those elements e ∈ E for which d(e) is a non-negative integer. If
there are no such elements case 2 cannot occur and algorithm stops here.
Step III. For each element e ∈ E such that d(e) = n ∈ N0 we define

θ = θ(z) = 1

2

∑
c∈O′

ec

z − c
,

and we search for a monic polynomial P = P(z) of degree n satisfying the
following equation

P ′′′ + 3θP ′′ + (3θ2 + 3θ ′ − 4r)P ′ +
+ (θ ′′ + 3θθ ′ + θ3 − 4rθ − 2r ′)P = 0.

If such a polynomial exists then Equation (A.4) possesses a solution of the
form y = exp

∫
ω, where

ω2 − ψω + 1

2
ψ ′ + 1

2
ψ2 − r = 0, ψ = θ + P ′

P
.

If we do not find such polynomial, then case 2 in Lemma A.1 cannot occur.
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et EDP Sciences.
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