
Non-Interactive Secure Computation

Based on Cut-and-Choose

Arash Afshar1, Payman Mohassel1, Benny Pinkas2,�, and Ben Riva2,3,��

1 University of Calgary, Canada
2 Bar-Ilan University, Israel
3 Tel Aviv University, Israel

Abstract. In recent years, secure two-party computation (2PC) has
been demonstrated to be feasible in practice. However, all efficient
general-computation 2PC protocols require multiple rounds of interac-
tion between the two players. This property restricts 2PC to be only
relevant to scenarios where both players can be simultaneously online,
and where communication latency is not an issue.

This work considers the model of 2PC with a single round of inter-
action, called Non-Interactive Secure Computation (NISC). In addition
to the non-interaction property, we also consider a flavor of NISC that
allows reusing the first message for many different 2PC invocations, pos-
sibly with different players acting as the player who sends the second
message, similar to a public-key encryption where a single public-key
can be used to encrypt many different messages.

We present a NISC protocol that is based on the cut-and-choose
paradigm of Lindell and Pinkas (Eurocrypt 2007). This protocol achieves
concrete efficiency similar to that of best multi-round 2PC protocols
based on the cut-and-choose paradigm. The protocol requires only t gar-
bled circuits for achieving cheating probability of 2−t, similar to the
recent result of Lindell (Crypto 2013), but only needs a single round of
interaction.

To validate the efficiency of our protocol, we provide a prototype im-
plementation of it and show experiments that confirm its competitiveness
with that of the best multi-round 2PC protocols. This is the first proto-
type implementation of an efficient NISC protocol.

In addition to our NISC protocol, we introduce a new encoding tech-
nique that significantly reduces communication in the NISC setting. We
further show how our NISC protocol can be improved in the multi-round
setting, resulting in a highly efficient constant-round 2PC that is also
suitable for pipelined implementation.

1 Introduction

Secure two-party computation (2PC) is a very powerful tool that allows two
participants to compute any function of their private inputs without revealing
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any information about the inputs except for the value of the function. Further-
more, if the execution of the 2PC protocol is completed, it is guaranteed that its
output is the correct output. In this work, unless said otherwise, we only discuss
2PC protocols that are secure even against malicious (aka active) participants,
who might arbitrarily deviate from the protocol that they should be executing.
The investigation of secure two-party protocols began with the seminal work
of Yao [Yao86] that showed the feasibility of this concept. In recent years it
was shown that the theoretical framework of secure two-party computation can
be efficiently implemented and can be run in reasonable time, even under the
strongest security guarantees (see, e.g. [PSSW09, SS11, NNOB12, KSS12]).

Non-Interactive Secure Computation (NISC). A major drawback of many
2PC protocols is that they require several rounds of interaction (e.g., [LP07,
LP11] with a constant number of rounds, or [NNOB12] with a number of rounds
that depends on the function). This paper focuses on efficient constructions of
protocols for non-interactive secure computation (NISC) that run in a single
round of interaction.

We consider three flavors of NISC. In the first, which we refer to by One-
Sender NISC (OS-NISC), there are only two parties, a receiver and a sender. The
receiver sends the first message, the sender replies with the second message, and
then the receiver outputs the result of the computation. This is essentially a 2PC
protocol with the additional restriction of having only one round of interaction.
(Following [IKO+11], throughout this work we refer to the party that sends the
first message and receives the final output as the receiver or as P1, and refer to
the party that sends the second message as the sender or P2.)

The second flavor of NISC, which we call Multi-Sender NISC (MS-NISC), is
an extension of OS-NISC where the first message can be used for running secure
computation with many different senders. I.e., the receiver broadcasts its first
(single) message; each party that wants to participate in a secure computation
with the receiver sends a message back to the receiver; then, after receiving
second messages from several (possibly different) senders, the receiver outputs
the results of its computation with all thee senders (or uses these output values
in other protocols). We stress that each sender does not trust other senders, nor
the receiver, and wishes to maintain privacy of its input even if everyone else
colludes.

A limitation of MS-NISC is that the receiver has to aggregate and output
all the secure computation results together. The last flavor of NISC, which we
call Adaptive MS-NISC, does not have this limitation. Adaptive MS-NISC is
essentially like MS-NISC, except that the receiver outputs each of the secure
computation results as soon as it gets it (thus, allowing the adversary, who
might control some senders, to pick its next inputs based on those results).

In this work we focus on the first two flavors, and only briefly discuss the
third flavor where relevant.

Why NISC? Let us begin with a motivating example. Suppose that there is
a known algorithm that receives the DNA data of two individuals and decides
whether they are related. People would like to use this algorithm to find family



Non-Interactive Secure Computation Based on Cut-and-Choose 389

relatives, but on the other hand they are not willing to publish their DNA data
(which can, e.g., predict their chances of being affected by different diseases). A
possible solution is to use a secure computation that implements the algorithm
and is run between any pair of people who suspect that they might be related. A
multi-round protocol for secure computation requires the participants to coor-
dinate a time where they can both participate in the protocol, and run a secure
computation application that exchanges multiple rounds of communication with
the application run by the other party. A solution using NISC is much simpler
and eliminates the synchronization problem: each interested person can publish,
say on his Facebook wall, his first message in the protocol, secretly encoding
his DNA data. Those who are interested in finding out whether they are related
to that person can send back the second message of the protocol. This message
can be sent using Facebook or similar services, or even by email. Then, once in
a while, the first person can run the computation with all those who answered
him, and find out with whom he is related.

In the previous example, NISC was preferable since a multi-round protocol
would have required the parties to synchronize the times in which they partic-
ipate in the protocol (or incur long delays until the other party is online and
sends the next message of the protocol). In general, requiring multiple rounds
of interaction is also very limiting in scenarios in which each round of commu-
nication is very expensive and/or is slow. E.g., if the communication is done
using physical means, for example encoded as a QR code on a brochure sent by
snail-mail, or if the other party is a satellite that passes for only a short period
above the receiver.

Previous NISC Protocols. A NISC protocol (for all three flavors) for general
computation can be constructed from Yao’s garbled circuit, non-interactive zero-
knowledge proofs (NIZK), and fully-secure one-round oblivious transfer (OT):
P1, who is the evaluator of the circuit, sends the first message of the OT protocol.
P2, who is the circuit constructor, returns a garbled circuit, the second message
of the OT protocol, and a NIZK proof that its message is correct. (See, for
example, [CCKM00, HK07] for such protocols.) Unfortunately, the NIZK proof
in this case requires a non black-box use of cryptographic primitives (namely, it
must prove the correctness of each encryption in each gate of the circuit).

Efficient NISC protocols that do not require such non black-box constructions
are presented in [IKO+11] based on the MPC-in-the-head technique of [IPS08].
The complexity of theOS-NISC protocol of [IKO+11] is |C|·poly(log(|C|), log(t))+
depth(C) · poly(log(|C|), t) invocations of a Pseudo-Random Generator (PRG),
where C is a boolean circuit that computes the function of interest, and t is a sta-
tistical security parameter. (Another protocol presented in that work uses only
O(|C|) PRG invocations, but is based on a relaxed security notion.) [IKO+11] also
shows an adaptive MS-NISC protocol for a bounded number of corrupted senders.
The complexity of that protocol isO((t+Q)|C|) PRG invocations, whereQ is the
bound on the number of corrupted senders.

Although the protocols in [IKO+11] are very efficient asymptotically, their
practicality is unclear and left as an open question in [IKO+11]. For instance,
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the protocols combine several techniques that are very efficient asymptotically,
such as scalable MPC and using expanders in a non black-box way, each of which
contributes large constant factors to the concrete complexity.

Cut and Choose Based 2PC. A very efficient approach for constructing 2PC
with security against malicious parties is based on the cut-and-choose paradigm.
(We refer here to protocols that use cut-and-choose for checking garbled circuits,
as in [LP07], and not to protocols that use cut-and-choose in a different way, such
as the protocols in [IKO+11].) [MF06, LP07, LP11, SS11, MR13, Lin13, SS13]
give constructions that use this paradigm and require O(t|C|) PRG invocations,
and some additional overhead that does not depend on |C|. Indeed, for a fixed
circuit, this asymptotic overhead is larger than that of [IKO+11], which requires
only a poly-logarithmic number of PRG calls per gate of the circuit. However,
the concrete constants in the cut-and-choose based protocols are rather small
(whereas for [IKO+11] the constants seem fairly large, e.g., the poly(log(|C|))
factor) making the cut and choose approach of high practical interest as shown
in several implementations (e.g., [PSSW09, SS11, KSS12]). However, all cur-
rent cut-and-choose based 2PC constructions require more than one round of
interaction.

1.1 Our Contributions

In this paper, we take a major step beyond feasibility results for NISC. Our
main contribution is a new OS-NISC/MS-NISC protocol that we believe to be
conceptually simpler than previous NISC protocols, and extremely practical. The
complexity of this protocol is similar or better than those of the best multi-round
2PC protocols based on cut-and-choose. We also describe an implementation and
evaluation of our NISC protocol, that demonstrate its practicality.

We now discuss our contributions in more detail.

Revisiting the NISC Setting. In Section 3 we formalize the informal descrip-
tion of the MS-NISC model by using the ideal/real-model paradigm, defining an
ideal functionality that receives an input from the receiver and inputs from many
other senders, and returns to the receiver the outputs of the different evaluations.

Intuitively, one would expect that any OS-NISC protocol can also be a MS-
NISC protocol with soundness that decreases at most polynomially in the num-
ber of senders. In the full version of this paper we show that this intuition is
false by describing an attack on the technique of [LP07] for protecting against
selective-OT attacks, which results in an exponential (in the number of senders)
decrease in the soundness of the protocol.1

Our Protocols. As discussed earlier, the cut-and-choose technique requires
several rounds of interaction since the player who generates the garbled circuits
must first send them, and only then see the “cut” and send the circuit openings.

1 We note that in the OS-NISC protocol of [IKO+11], a variant of the [LP07] technique
is used for protecting against the selective-OT attack. As far as we can tell, our
“attack” can be applied to that construction as well, if used for MS-NISC.
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We introduce techniques that allow us to squash this interaction to a single round
in the common random string model (CRS). Until recently, all cut-and-choose
based 2PC protocols (e.g., [LP07, LP11, SS11] required at least ∼ 3t garbled cir-
cuits for achieving soundness of 2−t (ignoring computational soundness). These
techniques are sufficient to turn such protocols into NISCs that also use roughly
3t garbled circuits.

Reducing the Number of Circuits. Lindell [Lin13] recently introduced a
cut-and-choose based 2PC that requires only t garbled circuits for the same
soundness, reducing the number of garbled circuits by (at least) a factor of
three. However, this protocol is inherently interactive since it executes two 2PC
protocols, one after the other, where the second 2PC is used to recover from
potential cheating, with no obvious way of making the protocol non-interactive.
We show a new approach that allows working non-interactively with only t gar-
bled circuits (for soundness 2−t). We believe that our approach has significance
also in the multi-round setting with several advantages over the techniques of
[Lin13] such as (1) suitability for pipelining; and (2) an (arguably) conceptually
simpler description.

Section 1.2 provides a high-level description of the protocol. This protocol is
secure under the DDH assumption in the CRS model. We believe that this pro-
tocol is easier to understand than previous NISC protocols, and because of that,
more approachable for people from outside the crypto community. Hopefully,
NISC could gain interest as a model for practical protocols and applications.

We remark that we achieve only the OS-NISC/MS-NISC security notions.
The same first message can be used for many executions of secure computation
with many different senders. The only restriction to achieve adaptive MS-NISC
is that once the receiver’s outputs are revealed to the other parties, the receiver
must refresh its first message, which requires computing only t OT queries.

In the full version of this paper we describe how the efficiency of the protocol
can be improved if one permits more than one round of interaction. The resulting
2PC protocol requires only t garbled circuits (for statistical security of 2−t),
O(tn1) symmetric-key operations, and O(tn2 + t2) exponentiations, where ni is
Pi’s input length (and ignoring a small number of seed-OTs).

Reducing Communication. In addition to the main protocol, we show how
to reduce communication significantly using a new non-interactive adaptation
of the method of Goyal et al. [GMS08] to the NISC environment (Section 5).
This method, based on the usage of erasure codes (specifically, of polynomials),
reduces the communication size to be only slightly higher than the communica-
tion required for sending the garbled circuits that are evaluated (as opposed to
sending also the garbled circuits that are checked). For example, for soundness
2−40, this protocol requires using 44 garbled circuits, and communicating only
19 garbled circuits.

Implementation and Experiments.We describe a prototype implementation
of our main protocol, implemented in C for a Linux environment. It is the first
working implementation (that we are aware of) of a NISC protocol, and it allows
using our protocol in all the scenarios described above. Additionally, this is also
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the first working implementation (that we are aware of) of a 2PC protocol that
uses only t garbled circuits for security of 2−t.

We evaluate the prototype with a circuit that computes an AES encryption
and a circuit that computes SHA256. The resulting performance is significantly
better than that of previous cut-and-choose based protocols. For example, a
maliciously secure computation of AES circuit requires about 7 seconds , where
the time needed for generating the first message is very small (e.g., much less
than a second).

1.2 High Level Description of the Protocol

Step One: Squashing Cut-and-Choose 2PC to One Round. The starting
point for the protocol is the most straightforward approach based on the cut-and-
choose method with 3t garbled circuits. (The constant 3 is chosen for simplifying
the description. The exact constants are analysed in [LP11, SS11].) The receiver’s
first message in this case is an OT query of its input using a two-message OT
protocol (e.g., [PVW08]). Namely, if the receiver has n1 input bits it sends the
corresponding n1 OT queries. The sender garbles 3t circuits gc1, . . . , gc3t and
sends back a message that includes: (1) The 3t garbled circuits; (2) The OT
answers for the receiver’s query, using the input-wire labels that were used for
garbling the receiver’s inputs; (3) The input-wire labels that correspond to the
sender’s own input. The receiver is now able to retrieve the labels of its input-
wires and evaluate the 3t garbled circuits by itself. It then takes the majority
result to be its output. This protocol is obviously insufficient. There are three
issues that need to be verified: (1) Were the garbled circuits garbled correctly?
(2) Did the sender use the right input-wire labels in the OT? (i.e., consistent
with the garbled circuits) (3) Was the sender’s input consistent in all 3t circuits?
The goal of our work is to present non-interactive and efficient solutions for these
issues.

The standard solution for the first issue, of verifying the garbled circuits,
is the cut-and-choose method [LP07] where the sender proves that a random
subset of c · 3t circuits (where c is fixed and publicly known, e.g. c = 1/2, or
c = 3/5 to optimize the success probability) were garbled correctly by revealing
the randomness that was used to garble them. Normally, the cut-and-choose
method requires more than one round of interaction. We solve this problem by
using OT in the following way (similar to the technique used in [KSS12, KMR12]
for the different purpose of reducing latency). The protocol includes additional 3t
OTs, denoted as the circuit-OTs. In each of these OTs the receiver can choose
to either check or evaluate the corresponding circuit: The receiver chooses a
random subset of circuits of size c · 3t that it wants to check, and for each of
these circuit it sends an OT query for the 1-bit. For the rest of the circuits
it sends an OT query for the 0-bit. The sender picks 3t keys seed1, . . . , seed3t
for a pseudo-random function (PRF) and uses key seedi to generate all the
randomness needed for garbling gci. The sender also picks additional 3t keys
k1, . . . , k3t, and encrypts, under the key ki, the labels of the sender’s input-wires
for circuit gci. Now, the sender answers the circuit-OT queries using the 3t pairs
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(ki, seedi) as inputs. Observe that if the receiver wants to check gci it learns the
PRF key seedi that allows to reconstruct that circuit (using the same circuit
construction algorithm used by the sender), but it is not able to decrypt the
sender’s input-wires labels. If the receiver wishes to evaluate circuit gci it learns
the key ki that enables to decrypt the input-wires labels of that circuit, but not
the seed seedi. In that case the receiver is able to evaluate the circuit but not
to check it. Of course, the sender does not know which circuits are chosen to be
checked, due to the security of the OT protocol.

As for the second issue, how to check that the sender uses consistent labels in
the OTs for the receiver’s input wires, we modify a technique of [KS06, SS11] to
work in the NISC setting. Instead of using a regular OT protocol, we work with
an OT in which the second OT message commits the sender to specific inputs.
(I.e., given the second OT message, the sender cannot later claim that it used
different inputs than the ones it actually used.) In practice, the highly efficient
OT of [PVW08] is sufficient for our purpose. Since we have only one round of
interaction, we require that all the randomness used for the second message of
the OT queries for circuit gci, is also derived from the PRF key seedi. In case the
receiver does not ask to check gci, this OT is as secure as a regular OT by the
security of the PRF. If the receiver chose to check gci, it learns seedi, and since it
knows both the input labels of the circuit and the randomness that should have
been used in the OT it is able to recompute the second OT message by itself
and compare it with the message sent by the receiver. If there is a difference,
the receiver aborts, since this means that the sender tried to cheat in the OT
for gci.

For the third issue, i.e. the consistency of the sender’s inputs, we modify a
technique of [MF06] for the NISC setting. We use a commitment scheme that
allows proving, very efficiently, that two commitments are commitments to the
same value. (Pedersen’s commitment [Ped92] or an ElGamal based commitment
suffice.) Instead of using random labels for the sender’s input-wires, the sender
uses commitments to zero as labels for the 0-bit inputs and commitments to one
as labels for 1-bit inputs. In an interactive setting the sender decommits all input-
wire labels of the checked circuits and proves that it used correct commitments.

In order to execute the protocol in a single round of interaction, we require
that the randomness used for the commitments for the input wires of circuit
gci is also generated using the seed seedi. This allows the receiver to regenerate
the commitments by itself in case it chose to check gci. In addition, the sender
sends what we call input commitments, which are a set of commitments of its
actual input bits that is not part of any garbled circuit. The protocol includes
commitment equality proofs which prove that each input value in an evaluated
circuit is equal to the value committed in the corresponding input commitment.
(These proofs are secure since the input commitments are never decommitted,
as opposed to the other commitments which are opened in checked circuits).
The sender encrypts the commitment equality proofs using ki in order to hide
them from the receiver in the checked circuits. (Otherwise, the receiver could
determine the sender’s input.)
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Note that so far our protocol requires 3t garbled circuits and relies on the
cut-and-choose guarantee that the majority of the evaluated garbled circuits are
correct.

Before we discuss how to reduce the number of garbled circuits, we note that
although our protocol is not vulnerable to selective-OT attacks, namely attacks
where the sender sets incorrect inputs in the OTs used by the receiver to learn
its input labels, we still require the receiver to refresh its first message in case
its outputs are revealed to the sender (or are used in other protocols, which can
potentially leak them). Technically, this happens since a corrupted sender can
use an invalid seed for garbled circuit gc1, and valid circuits otherwise. This
sender could then learn the receiver’s first input bit in the circuit-OTs, based on
whether the receiver aborted its execution with this sender. In the adaptive MS-
NISC setting, this attack could be repeated by several corrupted senders, letting
the adversary learn secret information about other bits of the cut-and-choose
challenge. As a result, soundness is gone, since the adversary could set the input
of the last sender based on the bits of the cut-and-choose challenge. In order to
mitigate this attack, we require the receiver to refresh its first message once its
outputs are revealed. Note, however, that some information about the receiver’s
choices in the circuit-OTs is indeed revealed even if the receiver does refresh its
first message. However, these bits are revealed only after the execution of the
protocol, thus do not undermine security. (In fact, in most cut-and-choose 2PC
protocols the challenge is always public. E.g., [LP11, SS11].)

Step Two: Reducing the Number of Garbled Circuits. Assume for sim-
plicity that the circuit the players use has only one output wire, and that the
sender has only one input bit. We use the protocol from the previous section,
but with only t garbled circuits, and let P1 pick a random subset of them for
verification (instead of a constant fraction c, as described above). Obviously, if
all evaluated circuits output the same bit, then this bit is the correct output
with probability 1− 2−t (since in order to cheat, the sender must guess all the
checked circuits and all the evaluated ones). However, if some of the evaluated
circuits output different bits, then the receiver knows that the sender is trying to
cheat and needs to determine the right output. Following [Lin13], we would like
to provide the receiver in this case with a “trapdoor” that allows it to recover
the sender’s input in case the sender behaves maliciously (but, of course, not in
case it behaves honestly). Then, the receiver can simply use the sender’s input
in order to compute the function by itself, and output the correct result.

As described earlier, the sender’s input-wire labels are commitments to their
actual values. Let EGCommit(h; b, r) = (gr, hrgb) be an ElGamal based com-
mitment for a bit b, given a group G in which DDH is hard, and a generator g.
This is a perfectly-binding commitment, even if the party that commits knows
logg(h). However, knowing logg(h) allows “decrypting” gb, which otherwise is
hidden because of the DDH assumption.

In the protocol, the sender picks w, sends h = gw to the receiver, and sets the
labels of its input wire in gci to be EGCommit(h; 0, ri,0) and EGCommit(h; 1, ri,1).
Next, the sender picks at random w0, w1 such that w = w0 + w1, and sends
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h0 = gw0 and h1 = gw1 . (P1 verifies that h = h0 · h1.) For gci, the sender sends
output recovery commitments h0g

li,0 and h1g
li,1 , where li,0, li,1 are chosen at

random.2 Then, it sets the output wire labels of this circuit to be li,0 and li,1,
corresponding to 0 and 1, respectively.

As part of the cut-and-choose stage, if the receiver chooses to check gci, then it
learns seedi and can recover the output wire labels and verify both the input-wire
labels and the output recovery commitments. However, if the receiver chooses to
evaluate gci, then the sender also sends it the values w0+li,0 and w1+li,1. (These
values are sent encrypted under ki, so the receiver only gets them in case it chose
to evaluate gci.) The receiver verifies that these values are consistent with the
output recovery commitments by computing g to the power of these two values
(if this verification fails then the receiver aborts). In addition, the receiver checks
that the li,b it received from the evaluation of gci is a valid decommitment of
h0g

li,b . If this check pass, the receiver marks gci as a semi-trusted circuit. (Note
that the probability of marking no circuit as semi-trusted is 2−t, as it requires
the sender to guess the set of evaluated circuits.)

After the receiver evaluates all the circuits chosen for evaluation, it is left
with either a single output from all semi-trusted circuits, or with two outputs
from at least two semi-trusted circuits. In the first case, since with probability
2−t there is at least one good evaluated garbled circuit, that single output is
the correct one. In case there are two different outputs, the receiver initiates
the cheating recovery process : Say that gci’s output is 0 and gci′ ’s output is 1
(and both are semi-trusted). From evaluating gci, the receiver learns li,0, and
from the sender’s message, it learns w0 + li,0. Thus, it can recover w0. Similarly,
from gci′ it recovers w1. Having w = w0 +w1 allows the receiver to decrypt the
input-commitments, and recover the sender’s input as needed. Note that in case
the sender is honest, the receiver would get the same output from all evaluated
circuits, and thus would learn only one of w0 and w1.

When there are more than one output wire, different w0, w1 are chosen for
each output wire, thus the receiver learns one value from each pair. See Section 4
for a detailed description of the protocol.

2 Preliminaries: Notations and Primitives

LetHash(·) be a collision resistant hash function,REHash(·) be a collision-resistant
hash function that is a suitable randomness extractor (e.g., see [DGH+04]),
Commit(·) be a commitment scheme, and let Enc(k,m) be the symmetric encryp-
tion of message m under key k.

Garbled Circuits. Our protocol is based on the garbled circuit protocol of
Yao [Yao86] and can work with any garbling scheme (see [LP09, BHR12] and
the full version of this paper more details). We only require that the labels of
the output-wires reveal the actual outputs of the circuit (but still consist of

2 Clearly, since P2 knows w0, w1, h0g
li,0 does not bind P2 to h0. Rather, it binds P2

to w0 + li,0.
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random strings). We use the notation label(gc, j, b) to denote the label of wire j
corresponding to bit value b in the garbled circuit

Commitments with Efficient Proof-of-Equality and Trapdoor. We use a
commitment scheme that allows one to efficiently prove that two commitments
are for the same bit, without revealing any information about the committed
bit. Also, we require the commitment scheme to have a “trapdoor” that allows
extracting the committed value.

A commitment that satisfies our requirement can be based on ElGamal.
Given finite group G and a generator g, the committer picks a random el-
ement h ∈ G, and sends EGCommit(h,m, r) = (gr, hrgm). This commitment
is computationally-hiding (under the DDH assumption) and perfectly-binding.
Given EGCommit(h,m, r) and EGCommit(h,m, r′), the commiter can prove equal-
ity by giving r − r′. Last, given the “trapdoor” logg(h), one can decrypt the
commitment, EGCommit(h,m, r), and recover m.

Batch Committing-OT. Batch committing-OT protocol is an OT protocol
where the sender has two tuples of inputs [K0

1 ,K
0
2 , . . . ,K

0
t ], [K

1
1 ,K

1
2 , . . . ,K

1
t ].

The receiver has a bit b and wishes to learn the tuple [Kb
1,K

b
2, . . . ,K

b
t ].

We use a variant of the batch committing-OT protocol of [SS11] (which is
based on the highly efficient one-round, UC-secure OT of [PVW08]). The pro-
tocol is secure under the DDH assumption. Let G be a group of prime order p in
which the DDH assumption is assumed to hold, and let (g0, g1, h0, h1) be a com-
mon reference string (CRS) where g0, g1, h0, h1 are random elements in G. The
receiver picks r ∈ Zp at random and sends g = (gb)

r, h = (hb)
r to the sender.

For i = 1 . . . t and b′ ∈ {0, 1}, the sender picks at random ri,b′ , si,b′ ∈ Zp and

sends Xi,b′ = g
ri,b′
b′ h

si,b′
b′ and Yi,b′ = gri,b′hsi,b′Kb′

i . For i = 1 . . . t, the receiver
retrieves Kb

i = Yi,b/X
r
i,b.

After executing the above protocol, if the receiver asks the sender to reveal
both its inputs K0

i ,K
1
i for some i, the sender returns the values K0

i ,K
1
i , ri,0, si,0,

ri,1, si,1 and the receiver verifies that the values Xi,0, Yi,0, Xi,1, Yi,1 that it re-
ceived were properly constructed using these values.

For simplicity and generality, in our NISC protocols we denote by COT1(b)
the first message that is sent (from the receiver to the sender) in an invoca-
tion of the committing-OT protocol for the receiver’s input bit b, and similarly
denote the second message (that is sent from the sender to the receiver) by
COT2([K

0
1 ,K

0
2 , . . . ,K

0
t ] , [K

1
1 ,K

1
2 , . . . ,K

1
t ], COT1(b)).

In the full version of this paper we give further details about the security
of this protocol, and discuss the CRS in case there are many invocations of
MS-NISC with different senders.

3 The NISC Model

The OS-NISC notion is essentially like 2PC with one round of interaction, thus
the security definition is exactly as for multi-round 2PC (e.g., [Gol04]), with the
additional restriction on the number of rounds in the real execution.
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For defining MS-NISC, we use the ideal/real paradigm (in the standalone
setting), and use the ideal functionality from Figure 1. See the full version of
this paper for a formal definition. Throughout this work we assume that senders
cannot see or tamper with other senders’ messages to avoid malleability con-
cerns. In the full version of this paper we discuss how to correctly encrypt those
messages if this is not the case. (Note that in many applications there is only
one sender and then malleability is not an issue. E.g., if the sender is a satellite
that sends messages periodically. In this case there is only one sender that sends
many messages, and no malleability issues occur.)

Assume that f(⊥, ·) = f(·,⊥) = ⊥.

– Initialize a list L of pairs of strings.
– Upon receiving a message (input, x) from P1, store x and continue as

following:
• Upon receiving a message (input, y) from Pi, insert the pair (Pi, y)

to L. If P1 is corrupted, send (Pi, f(x, y)) to the adversary. Else,
send (messageReceived, Pi) to P1.

• Upon receiving a message (getOutputs) from P1, send
(
{
(Pi, f(x, y))

}
(Pi,y)∈L

) to P1, and halt.

Fig. 1. MS-NISC functionality F

4 An OS-NISC/MS-NISC Protocol

The protocol is in the CRS (common reference string) model, which is a necessary
requirement for the one-round OT protocol that we use [PVW08]. (Unlike other
results that are presented in the OT-hybrid model, we use this specific OT
protocol which is currently the most efficient fully-secure, simulation-proven OT.
We preferred to use a concrete instantiation of OT in order to be able to use
a committing variant of OT, in which the OT sender is committed to its OT
inputs after it sends its OT message. Still, our techniques can be used with any
committing-OT protocol that is proved secure using simulation and that can
be executed concurrently without sacrificing security.) Since the nature of NISC
is mostly for indirect communication (e.g, using a Facebook wall), we favor a
solution that has a minimal communication overhead.

For high level description of the protocol, we refer the reader to Section 1.2.
The detailed protocol is described in Figures 2-4. Its concrete efficiency analysis
and proof of the following theorem are in the full version of this paper.

Theorem 1. Assume that the Decisional Diffie-Hellman problem is hard in the
group G and that PRF, REHash, Commit and Enc are secure. Then, the protocol of
Figures 2-4 is a multi-sender non-interactive secure computation for any function
f : {0, 1}n1 ×{0, 1}n2 → {0, 1}m computable in polynomial time. The complexity
of the protocol is O(t(n1+n2+m)) expensive operations and O(t(n1+n2+m+
|C|)) inexpensive operations.
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The protocol is described for a single sender. When there are more senders (or one
with several inputs), each sender executes the steps that are described below for P2.

Preliminaries: As defined in Section 2, we denote by COT1() the first message sent
in an invocation of the committing-OT protocol, and denote the second message
of that protocol as COT2(). Also, denote by EGCommit(h; b, r) the ElGamal
commitment (which supports an efficient proof-of-equality) to bit b. Let G be a
group of size p with generator g.

Inputs: P1 has input x and P2 has input y. Let f : {0, 1}n1 ×{0, 1}n2 → {0, 1}m be
the function of interest and let C(x, y) be a circuit that computes f . The input
wires of P1 and P2 are denoted by the sets INc(1) and INc(2), respectively. The
output wires are denoted by the set OUTc.

P1’s message:

– Picks a random t-bit string where ti denotes the i-th bit of this string. We
define T such that i ∈ T if and only if ti = 1.

– For all circuits i ∈ [t] publishes COT1(ti). Denote these as the circuit-OT
queries.

– For all inputs j ∈ INc(1) publishes COT1(xj), where xj is P1’s input bit for
the j-th input wire. Denote these as the input-OT queries.

Fig. 2. The OS-NISC/MS-NISC Protocol: Preliminaries and P1’s message

5 Reducing the Communication Overhead

Goyal et al. [GMS08] suggest a method that significantly reduces the commu-
nication overhead of 2PC protocols based on cut-and-choose. In their protocol,
as in ours, P2 picks a different seed for each garbled circuit and uses a pseudo-
random function, keyed with that seed, to generate all the randomness needed
for garbling that circuit. P2 does not send the circuits to P1 but only “commits”
to them by sending the hash of each circuit. Then, when P2 is asked to open
a subset of the circuits, it sends to P1 the seeds used for constructing these
circuits, as well as the actual garbled tables of the evaluated circuits. P1 uses
the seeds to reconstruct the checked circuits and verify that they agree with
the desired functionality and with the hashes that were sent in the initial step
(the hashes are computed with a collision resistant hash function Hash(·) and
therefore prevent a circuit from being changed after its hash is received).

Trying to apply this modification in the NISC setting encounters a major
obstacle: In order for P2 to send only the gates of the evaluated circuits, it must
learn, based on P1’s first message, which circuits are evaluated. Since P2 learns
this information before it sends any message to P1, it is able to set its evaluated
and checked circuits in a way that fools P1’s checks.

When Communication Is through a Third-Party Service. A simple so-
lution can be based on the observation that in many applications of NISC the
communication channel is actually implemented through a third-party service,
e.g., a Facebook wall. In those cases, P2 could upload all circuits to the service,
along with their hash values. Then, P1 downloads only the circuits for evaluation
and the hashes of all circuits. Assuming that the service hides from P2 which
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– Picks w ∈R Zp and sends h = gw. Here, w would be the “trapdoor” to P2’s
inputs.

– Sends EGCommit(h; yj , rj), for all j ∈ INc(2), where yj is its input bit for input-
wire j, and rj is chosen randomly. We call these the input-commitments.

– Sends hj,0 = gwj,0 and hj,1 = gwj,1 , where wj,0 ∈R Zp and wj,1 = w − wj,0, for
all output wires j ∈ OUTc. We call these the output-commitments.
For all i ∈ [t],

Generate garbled circuit:
• Picks a random value seedi.
• Computes ui,j,b = EGCommit(h; b, ri,j,b) for all j ∈ INc(2) and b ∈ {0, 1},

where ri,j,b = PRFseedi(“EGCommitment” ◦ j ◦ b).
• Sends the garbled circuit gci, which is generated using a pseudo-random

function PRFseedi in the following way:
∗ For all j ∈ INc(2) and b ∈ {0, 1}, let label(gci, j, b) = REHash(ui,j,b).

Namely, the label for bit b of the jth wire is associated with the value
of EGCommit(h; b, ·) computed with randomness that is the output
of a PRF keyed by seedi. Note that given ui,j,b, P1 can compute
REHash(ui,j,b) by itself and get the corresponding label.

∗ The garbled circuit is constructed in a standard way, where all other
labels in the circuit are generated by a PRF keyed by seedi. (E.g.,
the 0-label of wire j is PRFseedi(“label” ◦ j ◦ 0).)

• Sends the set of commitments
{
[Commit(ui,j,πi,j ),Commit(ui,j,1−πi,j )] |

πi,j ∈R {0, 1}}
j∈INc(2)

. The randomness of the commitments is derived

from a PRF keyed by seedi as well. Denote by dui,j,b the decommitment
of ui,j,b.

Preparing and sending the cheating recovery box:
Sends the cheating recovery box, for all output wires j ∈ OUTc, which
includes:
• Two output recovery commitments hj,0g

Ki,j,0 , hj,1g
Ki,j,1 , where

Ki,j,0,Ki,j,1 ∈R Zp.
• Two encryptions Enc(label(gci, j, 0),Ki,j,0),Enc(label(gci, j, 1),Ki,j,1).

(Note that given label(gci, j, b), one can recompute hj,0g
Ki,j,b .)

Preparing and sending proofs of consistency:
• Let inputsi be the set

{
ui,j,yj , dui,j,yj

}
j∈INc(2)

, and let inputsEqualityi be

the set
{
rj − ri,j,yj

}
j∈INc(2)

(namely, P2’s input labels and their proof

of equality with the input-commitments).
• Let outputDecomi be the set

{
([wj,0 + Ki,j,0], [wj,1 + Ki,j,1])

}
j∈OUTc

(namely, the discrete logarithms of hj,0g
Ki,j,0 and hj,0g

Ki,j,1).
• Picks a random key ki and sends the encryption Enc(ki, inputsi ◦

inputsEqualityi ◦ outputDecomi).
Sending the garbled values of P1’s inputs:

Let inp-qj be the input-OT query for input-wire j of P1. P2 sends the OT an-
swer, which includes the garbled values of either the 0 or 1 labels for the cor-
responding input wire. Namely, it sends the value COT2([label(gc1, j, 0), . . . ,
label(gct, j, 0)], [label(gc1, j, 1), . . . , label(gct, j, 1)], inp-qj). Moreover, we re-
quire that all the randomness used in the OT for the answers of the i-th
circuit is generated from PRFseedi . (E.g., set ri,1 of the j-th wire of the i-th
circuit to be PRFseedi(“OT” ◦ 1 ◦ “r” ◦ i ◦ j).)

Circuits cut-and-choose:
Let circ-qi be the circuit-OT query for circuit i, P2 sends
COT2([ki], [seedi], circ-qi). Namely P1 receives seedi if it asked to open this
circuit, and ki if it is about to evaluate the circuit.

Fig. 3. The OS-NISC/MS-NISC Protocol: P2’s response
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After receiving responses from all senders, P1 processes all of them together and
outputs a vector of outputs. For each response it does the following:

– Decrypts all OT answers.
– Verifies that hj,0 · hj,1 = h for all j ∈ OUTc.
– For all opened circuits i ∈ T , checks that seedi indeed correctly generates gci

(with its commitments), and the answers of the input-OT queries. (Otherwise,
it aborts processing this response.) It also checks the cheating recovery boxes
and aborts if there is a problem.

– For all circuits i ∈ [t] \ T , decrypts inputsi, inputsEqualityi, outputDecomi.
• Checks that inputsi and inputsEqualityi are consistent with the input-

commitments. (I.e., checks that ui,j,yj · (g
ri−ri,j,yj , h

ri−ri,j,yj ) =
EGCommit(h; yj , rj)). Also, verifies the decommitments dui,j,yj . (Otherwise,
it aborts.)

• Checks that outputDecomi are correct discrete-logs of the elements of the
set

{
hj,bg

Ki,j,b
}
j∈OUTc,b∈{0,1}. (Otherwise, it aborts.)

• Evaluates circuit gci. Say that it learns the labels {li,j}j∈OUTc . P1

tries to use these labels to decrypt the corresponding encryptions
Enc(label(gci, j, b),Ki,j,b) from the cheating recovery box. Then, it checks if
the result is a correct “decommitment” of the output recovery commitment
hj,bg

Ki,j,b (where the b values are the actual output bits it received from
gci). If all these steps pass correctly for all output wires, we say that circuit
gci is semi-trusted.

– If the outputs of all semi-trusted circuits are the same, P1 outputs that output.
Otherwise,
• Let gci, gci′ be two semi-trusted circuits that have different output in the

jth output wire, and let li,j and li′,j be their output labels. From one of li,j
and li′,j , P1 learns wj,0 and from the other value it learns wj,1 (since it learns
Ki,j,b,Ki′,j,1−b from the cheating recovery boxes, and wj,b +Ki,j,b, wj,1−b +
Ki′,j,1−b from outputDecomi, outputDecomi′).

• P1 computes w = wj,0 + wj,1 and decrypts P2’s input-commitments. Let y
be the decrypted value of P2’s input.

• P1 outputs f(x, y).

Fig. 4. The OS-NISC/MS-NISC Protocol: P1’s computation

circuits were actually downloaded by P1, the result is secure, and the communi-
cation of P1 and of the service (but not of P2) depends only on the number of
evaluated circuits.

A More General Solution. We describe a solution that does not depend on
any third party. The solution requires that the number of evaluated circuits is
known to P2 (e.g., for soundness 2

−40 the players can use 44 circuits and evaluate
19 of them. Communication would roughly be the size of 19 garbled circuits.)

The protocol is based on the usage of erasure codes, and in particular of
polynomials. Say that P2 garbles t circuits and that P1 evaluates ct of them
for some known constant c < 1. Also, let b be some convenient block length
and denote the number of blocks in the description of a garbled circuit by l.
P2 garbles the t circuits, and then computes l polynomials p1(·), p2(·), . . . , pl(·)
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such that pj(i) equals to the j-th block of garbled circuit gci. The degree of
each polynomial is t− 1. Then, for each polynomial pi, P2 sends to P1 ct values,
〈pi(t+1), pi(t+2), . . . , pi(t+ct)〉. It also sends to P1 hashes of all garbled circuits.
P1 then picks the (1−c)t circuits that it wishes to check, and receives from P2 the
PRF seeds that were used for generating them. Using these seeds, P1 reconstructs
the checked garbled circuits, checks that they agree with the hash values and
validates their structure. Afterwards, P1 uses polynomial interpolation to recover
the polynomials p1(·), p2(·), . . . , pl(·). Using these polynomials it retrieves the
garbled circuits that it chose to evaluate, verifies that they agree with the hash
values that P1 has sent, and continues with the protocol.

The main advantage of this technique is that it enables to reduce communica-
tion even without knowing P1’s challenge. The overall communication overhead
of this method is as the size of the ct evaluated circuits, which matches the
communication overhead of [GMS08], but allows us to use this technique in the
NISC setting. The proof of security of the resulting protocol is almost identical
to the proof of Theorem 1 (except that the hash is also checked by the simulator)
and therefore omitted.

6 Evaluation

Prototype Implementation. Our prototype consists of several modules which
communicate through files (for making the protocol suitable for asynchronous
communication mechanisms like e-mail). It does not use the communication re-
duction techniques of Section 5. The prototype makes use of several libraries,
namely RELIC-Toolkit [AG], JustGarble [BHKR13], and OpenSSL [OPE]. Relic-
toolkit is chosen for its fast and efficient implementation of elliptic curve opera-
tions and is used to implement our OT and ElGamal based commitments. We use
the binary curve B-251, which (roughly) provides 124-bit security. (Computing a
single elliptic curve multiplication, which corresponds to a single exponentiation
in our protocol, costs about 120,103 CPU cycles for a fixed base and 217,378
cycles for a general base.) JustGarble is chosen for its fast implementation of
garbling and evaluating circuits. ([BHKR13] advocates using fixed-key AES as
a cryptographic permutation, and its implementation takes advantage of the
AES-NI instruction set.) We modified JustGarble to read the circuit format of
[TS], and read/write garbled circuits from/to a file (and not only the circuit
structure). Lastly, we use the AES implementation from OpenSSL, to realize a
PRF.

The Setup. To evaluate our prototype we used two circuits, one for AES with
non-expanded key (with 8,492 non-XOR gates and 25,124 XOR gates) and one
for SHA256 (with 194,083 non-XOR gates and 42,029 XOR gates). The circuits
were taken from [TS] (and slightly modified). In both circuits, each party has a
128 bit input value. The output of the AES circuit is 128 bit long, while SHA256
has a 256 bit output.

The experiments were run on a virtual Linux machine with a 64bit, i7-4650U
CPU @ 1.70GHz and 5.4GB of RAM. (For a more accurate comparison, our code
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utilizes only a single core of the CPU. The average CPU frequency during the
experiments was about 2.3GHz.) We measured clock cycles of each module of
the system using the RDTSC instruction, and used the clock_gettime() system
function to calculate the running time. Each experiment was run 10 times and
the average run time was calculated in both cycles and seconds.

Performance. The experiments were done with statistical security parameter
t = 40 and label length of 128 bits. Garbling was performed with the Free-XOR
[KS08] and Garbled Row Reduction [PSSW09] techniques. (We also tested the
protocol without those techniques. The results were slower by at most 10%.)

See Figure 5 for the running times of the main parts of our prototype. (Recall
that when interacting with more than one sender, the receiver P1 has to generate
the first message only once. Then, for each sender, its running time will be similar
to the time it takes it to process the sender’s response in the single sender scenario
that we examined.) The values represented in Figure 5 contain all operations,
including I/O handling.

Observe that as the circuit size grows, the I/O portion becomes significant.
For example, for the AES circuit, where every garbled circuit was stored in a
3 MB file, the total I/O time for the protocol is 0.53 seconds, whereas for the
SHA256 circuit, where each circuit is stored in a 31 MB file, the total I/O time
is 4.89 seconds. (For AES the I/O time was about 8% of the total time, whereas
for SHA256 it was around 38% of the total time. This is expected since both
functions have inputs of the same size, while the SHA256 circuit is much bigger.)
The costs of garbling and evaluation of a garbled circuit are quite small (e.g.,
garbling takes less than 100 million cycles for the SHA256 circuit). The more
significant overhead comes from I/O operations and the exponentiations done in
the protocol.

In addition, we ran the experiment for AES with t=80 and got, as expected,
that the costs are roughly twice those of the experiment with t=40. (Specifically,
with t=80, it takes P1 78 million cycles to compute its message, 16,518 million
cycles for P2 to compute its response, and 12,870 million cycles for P1 to compute
the output).

Module or part name #Cycles Time #Cycles Time

AES circuit SHA256 circuit

Init 42 0.02 44 0.02
P1’s message 71 0.03 73 0.03
P2’s response 8216 3.55 17651 7.59
P1’s computation 6452 2.79 11771 5.10
Cheating recovery 0.7 < 0.01 0.7 < 0.01

Total time - 6.39 - 12.74
I/O time - 0.53 - 4.89

Fig. 5. Running times for the prototype with statistical security parameter t = 40 and
label length = 128. Time is in seconds and cycles are measured in millions of cycles.
Running times include file operations.
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Due to lack of space, a comparison with previous multi-round 2PC implemen-
tations appears in the full version of this paper. We note here that although
there is no standard benchmark for comparing 2PC implementations, it is clear
that our NISC implementation is competitive with the best known interactive
implementations.
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