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Abstract

In the context of a pilot project, the Lugaggia Innovation Community (LIC), we address

the problem of non-intrusive load monitoring for the purpose of demand side

management on low voltage grids in presence of distributed power generation

(photovoltaic). From the power readings of smart meters, we estimate the photovoltaic

production and detect the activation of major loads (heatpumps and domestic water

heaters). Experiments, conducted with real data and in silico, show that exploiting

meter readings only, we can estimate PV production with MAPE ranging from 4.6%

(best case) to 41.9% (worst case). Even with non negligible photovoltaic production

estimation errors, the proposed method is capable of detecting the activation of

heatpumps and domestic water heaters.
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Introduction

Distributed power generation is spreading considerably in many countries thanks to dif-

ferent political and economic actions. In Switzerland, the “Energy Strategy 2050”1 is

supporting the installation of new renewable sources which, at domestic level, are mainly

represented by photovoltaic installations. While this growth is beneficial for reducing the

CO2 emissions, it poses a series of issues from the viewpoint of grid operators as they

are contractually bound to provide a certain power quality. One of the possible mitiga-

tion actions to overcome these issues is represented by active Demand Side Management

(DSM), that is a set of actions to directly control a site’s energy consumption while

respecting end user needs. In the context of a pilot project, the Lugaggia Innovation Com-

munity (LIC) funded by the Swiss Federal Office of Energy SFOE project SI/501840-01,

we study the application of active DSM on a set of electrical loads spread in a residen-

tial area with the presence of renewable sources as well as energy storage systems. The

municipality of Capriasca (Ticino, Switzerland), where the LIC community is located,

1https://www.bfe.admin.ch/bfe/en/home/policy.html
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Table 1 Characteristics of the installations in the LIC area

Load type Number of installations Total Power

Photovoltaic 5 73 kWp

Controllable Heat pumps 12 39 kW

Controllable Electric heaters/boilers 13 63 kW

Other controllable loads 6 18 kW

recently installed a PV plant on the roof of the local kindergarten and other PV installa-

tions are already present in the area. The controllable loads and photovoltaic installations

are summarized in Table 1. Aerial pictures of the PV installations are shown in Fig. 1a

and b.

The focus of this paper is to detail the methodology we use for Non-Intrusive Load

Monitoring (NILM). In particular we address the issue of estimating the photovoltaic

production in absence of a direct monitoring infrastructure and in absence of accurate

meteorological data.

State of the art

Energy disaggregation or non intrusive load monitoring has been studied since the 90s

when Hart (Hart 1992) proposed his approach based on the detection of edge changes in

the power signal, their clustering, and the subsequent optimal allocation to the possible

appliances in order to get the best fit for the aggregate signal. This approach has influ-

enced many authors which followed and some of its elements are still in use in the most

effective algorithms. Extensive reviews of such algorithms are provided, for instance, by

Zoha et al. (2012) and by Zeifman and Roth (2011).

NILM algorithms can be classified as proposed by Schirmer et al. (2020) who dis-

tinguish between algorithms using source separation, and those who does not. Source

separation, or blind signal separation, is a known filtering problem where an aggregate

signal composed by a mixture of a set of other signals is processed in order to obtain the

individual contributions. This is exactly the problem that NILM attempts to solve and

source separation has been solved in the past using a variety of approaches, from principal

component analysis to singular value decomposition, to non-negative matrix factorisa-

tion. All these methods are characterised by the fact that they are unsupervised and they

Fig. 1 Photovoltaic installations, source: https://map.geo.admin.ch

https://map.geo.admin.ch
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try to optimise an objective function that represents the distance of the aggregate signal

from the sum of the independent contributions.

The problem of source-separation algorithms is that their computational load is quite

intense and that, in order to improve their performance, they also need to knowwith a cer-

tain detail the number and type of appliances into which the signal is to be decomposed,

thus trading in the advantage of being unsupervised.

Algorithms that does not use the source separation approach are typically supervised

algorithms that require substantial amounts of training data to take advantage of machine

learning algorithms such as Support Vector Machines, Decision Trees and Deep Neural

Networks such as the one by (Kong et al. 2019) .

The approach presented in this paper is based on a source separation method and it is

described in the next section. It builds on previous work (Cominola et al. 2017; Piga et al.

2016; Rottondi et al. 2019) and it is also inspired by recent research from Bu et al. (Bu et al.

2020). The choice of this approach was favoured not only by our previous experience with

it, but also by the consideration that we knew beforehand which devices we wanted to dis-

aggregate: in our case, heat pumps and domestic water heaters, considering all the other

devices as a residual noise after having removed the contribution of PV power generation

to the aggregated signal.

Methodology

Over a given discretized time frame T, a given power profile is characterized by an aggre-

gated effect of several loads. In particular we are given the power profile as series of P-Q

(active and reactive) points pt and qt , ∀t ∈ T . We are given a set of controllable electri-

cal loads L each characterized by a nominal power pl and a nominal reactive power ql,

∀l ∈ L. We are also given an invariant representative dataset of non-controllable profiles S

that are used to represent the contribution of the uncontrollable component of the power

profile, each characterized by a given P-Q power point at time t defined by ps,t and qs,t .

The NILM problem consists in determining at which moment in time load l was absorb-

ing power and which combination of power profile s is the most appropriate to represent

non-controllable loads.

Mixed integer quadratic problem (MIQP) formulation

Let xl,t ∈ {0, 1} be the controllable load variables (i.e. xl,t takes value 1 if load l

is estimated to absorb power at time t), ys ∈[ 0, 1] be the non-controllable profile

selection variables (note ys is a continuous variable and can therefore represent the

selection of any convenient fraction of the representative non-controllable load pro-

file s). Let wpt and wqt be auxiliary variables used to represent the estimation error at

time t.

z =min
∑

t∈T

(wp2t + wq2t ) (1)

wpt =

∣

∣

∣
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∑

s∈S

ys = 1 (4)

xl,t ∈ {0, 1} ∀l ∈ L, t ∈ T (5)

ys ∈[ 0, 1] ∀s ∈ S (6)

Objective (1) is a convenient formulation to minimize the RMS error between the given

power profile pt and qt and the aggregation of controllable and non controllable loads.

Constraints (2) and (3) compute the absolute error as the difference between the meter

reading pt and qt and the estimated contribution of loads l ∈ L and the reference power

profiles s ∈ S at time t. Constraints (4) ensure that a convex combination of reference

power profiles is selected.

Each controllable load l is connected to an actuation device and sometimes themetering

infrastructure is able to provide, together with the regular powermeteringmeasurements,

the status of the actuation device as an additional data series. Let ul,t ∈ {0, 1}, ∀l ∈ L, t ∈ T

be the representation of the state of the actuation device: 1, if the load l is connected to

the grid, i.e. it can absorb power, at time t, 0 otherwise. We can conveniently exploit this

knowledge in the MIQP formulation by setting upper bounds to variables xl,t as follows:

xl,t ≤ ul,t ∀l ∈ L, t ∈ T (7)

The MIQP formulation can be further improved by the analysis of the type of electrical

loads to be monitored. Indeed, some of the controllable electrical loads l are used to heat

materials characterized by a considerable inertia (e.g. water, air, concrete and furnitures).

We can incorporate this knowledge in MIQP. First, we have to capture the state change

(first derivative) by adding continuous auxiliary variables 0 ≤ fl,t ≤ 1, l ∈ L, t ∈ T \ t0 that

are linked with expected activation variables xl,t , then we limit the total number of state

changes as follows:

fl,t ≥ xl,t − xl,t−1 ∀l ∈ L, t ∈ T \ t0 (8)
∑

t∈T\t0

fl,t ≤ θl ∀l ∈ L (9)

with the set of constraints (8) and (9) we ensure that the expected number of activations

of the electrical load l is limited by a constant θl.

Photovoltaic non intrusive monitoring

In presence of PV installations, their power production can be absorbed by local electri-

cal loads in what is commonly referred as self-consumption. In such cases, the metering

infrastructure records the net power consumption only. While PV installations may have

a dedicated monitoring infrastructure and the load power profile can be easily computed,

more and more installations are not monitored as the PV production is no more subsi-

dized in many countries. This is the case of the PV installation in the LIC area. Figure 2

illustrates the case where some loads activate during the period when PV is producing

power.

When the PV installations are not monitored, the methodologies for NILM must be

enriched in order to account for PV production. One possibility is to enlarge the set

of uncontrollable load profiles S with power profiles accounting for PV production, i.e.
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Fig. 2 Meter power profile in presence of a non-monitored PV installation

power profiles with negative values corresponding to the estimated PV production. This

approach has been adopted in (Sossan et al. 2018; Nespoli and Medici 2017).

Another approach is to exploit global horizontal irradiance (GHI) data coming from

weather services and estimate the PV power production based on each installation’s nom-

inal data (nominal ac and dc power). In order to do so, software libraries are normally

used. One popular software library is PvLib, a community supported tool that provides

a set of functions and classes for simulating the performance of photovoltaic energy sys-

tems (Holmgren et al. 2018). This latter approach is usually more accurate than the first

one in case weather and nominal data are accurate. In our case, accurate weather data

is not available. Therefore we reconstruct an approximation of the global irradiance data

exploiting the metering data of all installations that are close to one another. The ratio-

nale behind this approach is that not all major loads are absorbing power simultaneously

and the effect of PV installations is directly visible in the metering data.

Let H be the set of metering infrastructures reading neighbourhood households

equipped with PV installations, pt,h identifies the power reading at time t ∈ T of house-

hold h ∈ H . Let GCt be the global irradiance in clear sky conditions at time t ∈ T ,

computed using PvLib. Let p̂t,h be an upper bound on the power production of the

PV installation of household h computed with PvLib using the known nominal data of

the installation and the global irradiance with clear sky conditions and rt,h be the ratio

between the upper bound and the negative portion of the power reading limited by an

upper bound r̂ (equal to 1.1 in our tests to allow for some additional freedom) and r̂t be

the maximum of such ratios for t ∈ T :

rt,h = min{r̂, min{0, pt,h}/p̂t,h} ∀t ∈ T , h ∈ H (10)

rt = max
h∈H

{rt,h} ∀t ∈ T (11)

Using rt we approximate the global irradiance Ĩt as a fraction of the clear sky global

irradiance GCt and estimate the PV installation power production p̃t,h of household h

with PvLib.

Ĩt = GCt · rt ∀t ∈ T (12)

Numerical experiments

The present section is organized in two subsections. We first present the computational

results related to the estimation of the global horizontal irradiance. Then, we present the

computational results related to the NILM methodology applied to synthetic data.
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Fig. 3 GHI measured on the Kindergarten’s rooftop, inW/m2

Estimation of global irradiance

Five photovoltaic installations are present in the LIC area. The peak powers of the

installations are 30.0, 14.0, 10.0, 10.0 and 9.0 kW for a total of 73 kWp.

The rooftop of the Kindergarten, see Fig. 1b, is also equipped with a pyranometer for

measuring solar irradiance gathering data with one minute resolution. We use this data

for validation purposes only. Figure 3 shows the global irradiance for a period of two

months.

We gather real data from the LIC area for the period comprised from 04.04.2020 to

03.06.2020.We collect one data point perminute. For space reasons we summarize results

as weekly averages (daily results are available contacting the authors). Table 2 reports

the test weeks and the average daily measured GHI in the first two columns. Then the

remaining columns report on the Weekly Average Root Mean Square Error (RMSE) and

the Weekly Average Mean Absolute Percentage Error (MAPE) of the estimated GHI with

respect to themeasured GHI. In our tests, we use time discretization of the setT of 5min-

utes leading to |T | = 288 time steps. Columns marked with> 0 and> AVG report values

when the time steps are filtered by considering those with measured GHI larger than 0

and larger than the daily average, respectively. Indeed, several time steps are character-

ized with a measured GHI = 0 (during night time) and the GHI is easily estimated. This

is confirmed by results in Table 2 observing that the values in the column RMSE(>0) are

always larger than those in column RMSE. Instead, by definition, MAPE is computed on

time steps where the measured GHI is strictly positive. When observing time steps where

Table 2Weekly average RMSE and MAPE comparing estimated GHI and measured GHI, from

04.04.2020 to 03.06.2020

Week Daily Avg GHI RMSE RMSE (>0) RMSE (>AVG) MAPE (%) MAPE (>AVG, %)

Week_1 241.8 61.5 87.7 86.8 15.4 13.6

Week_2 245.8 42.7 59.4 62.2 11.0 9.6

Week_3 191.1 33.1 45.5 46.5 11.4 15.2

Week_4 159.0 39.2 55.4 59.7 12.2 12.1

Week_5 273.4 37.8 48.9 50.9 8.2 6.7

Week_6 178.8 44.7 61.5 68.4 12.1 17.1

Week_7 248.3 39.2 52.1 56.6 10.5 9.3

Week_8 288.3 44.1 59.6 62.5 12.7 9.2

Week_9 257.6 50.3 67.2 74.8 12.8 11.0
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Fig. 4 Measured and estimated GHI

the measured GHI is larger than the daily average, that is on time steps which should cor-

respond to large PV power production, we do not observe a clear trade off in the quality

of the estimation. Considering daily results, we report that MAPE(>AVG) varies from

4.6% to 41.9%. The plot of these two cases are shown in pictures Fig. 4a and b. In Fig. 4a

we can appreciate the correct estimation of a sudden drop of the GHI around 9AM. We

see that the worst cases occur when the daily avg GHI is very low (cloudy days) and the

PV production is indeed less relevant. If we limit the investigation to sunny or scattered

days (e.g., with GHI >100W/m2) we observe that the worst MAPE is 21.2% (see Fig. 5).

While the estimation quality may seem particularly bad on some days, the outcome of

PV production estimation is sufficient for the purposes of non intrusive load monitoring.

Non intrusive loadmonitoring

For non intrusive load monitoring, we tested the MIQP formulation approach with the

help of a comprehensive low voltage simulation framework called OPTISIM and devel-

oped within SUPSI. The simulation framework assembles several state-of-the-art IT

components and integrates a power flow solver (Rosato et al. 2018), in order to carry

Fig. 5 Measured and estimated GHI on 29.05.2020, MAPE = 21.2%
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out the electrical calculations. For the simulation of the grid-interfaced agents driven by

the control algorithms, OPTISIM simulates physical models of several classes of com-

ponents, namely: Building thermal dynamics, Heat distribution systems, Heating logic,

Heat pumps, Water tanks and boilers, PV plants, Batteries, EV chargers. Profiles of pas-

sive, uncontrolled loads and domestic hot water consumption were generated using an

artificial load profile generator2. We remark that the uncontrolled load profiles used in

OPTISIM are not used as a basis for set S.

The experimental scenario is modeled to simulate the LIC area. While the area is

composed of 18 households, 13 of them are equipped with 12 Domestic Hot water

(DHW) heaters and 12 Heatpumps (HP). PV installations are similar to those present in

the LIC area. The OPTISIM simulator provides both the aggregated power reading as

well as the separated power profiles that we use for validation. A time resolution of 1

min is used for simulation. Recorded meteo data (GHI, Temperature and Wind speed)

over one calendar year in 2018 are used by OPTISIM to simulate heat needs and PV

production.

The MIQP formulation is solved with Gurobi 9.0 on a standard desktop machine. We

used two settings for the time-step discretization. The first setting uses a time resolu-

tion of one minute, that is |T | = 1440, therefore compatible with the time resolution of

OPTISIM. In this case, the model is solved to optimality with an average computational

time of 20s seconds. The second setting uses a time resolution of 5 min by averag-

ing the power reading provided by OPTISIM. In this case |T | = 288 and the average

computational time drops to 2s to reach optimality.

In Table 3 we compare the quality of NILM for the two time resolution over 20 con-

secutive days in January. The table reports the considered loads (the number in the load’s

id refers to the relative household), the total energy consumption over the period and

the fraction of time the load was absorbing power during the period. Then we report the

RMSE error and the RMSE error restricted to samples where the load was actually absorb-

ing power. Then we report in column ERROR the percentage error, that is the fraction of

times the status of the load was wrongly estimated.

In January power consumption is relatively high, in particular heat pumps contribute to

the energy consumption by a large amount and they are up and running for up to 29% of

the time.

We observe that head pumps are correctly monitored with very small errors. This is

mostly due to the fact that heat pumps exhibit a clear footprint in reactive power, which is

not the case for resistive loads. When aggregating to 5 min resolution, estimation errors

start to rise up to 21% for one of the DHW loads. Even with lower resolution heat pumps

are monitored with minor errors, up to 6.8%. We observe that for 1 min resolution, the

RMSE is larger than RMSE> 0. That is, NILM correctly estimates activation periods and

sometimes produces false positives. This behaviour is less critical for DSM applications

as false positives constitute an overestimation of the power needs. Instead, for 5 min res-

olution, the RMSE is smaller than RMSE> 0. That means that sometimes load activation

is underestimated and that is more critical for DSM applications. This effect is due to

aggregation when, for example, loads are active for a short amount of time (about 5 min)

and the activation occur across half of the time interval.

2https://www.loadprofilegenerator.de

https://www.loadprofilegenerator.de
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Table 3 Non intrusive load monitoring - comparing 1 and 5 minutes resolution

Load Total
Energy
(kWh)

Time on (%) 1 min resolution 5 min resolution

RMSE RMSE > 0 ERROR (%) RMSE RMSE > 0 ERROR (%)

dhw_01 157.80 4.98 0.11 0.00 1.15 0.19 0.60 3.60

dhw_03 161.25 10.18 0.10 0.00 1.07 0.22 0.44 5.00

dhw_04 302.92 11.47 0.21 0.11 4.37 0.32 0.52 10.50

dhw_05 173.50 10.95 0.19 0.08 3.57 0.33 0.34 10.76

dhw_06 107.80 3.40 0.00 0.00 0.00 0.16 0.66 0.12

dhw_07 460.60 14.54 0.18 0.02 3.36 0.28 0.46 7.90

dhw_08 221.57 20.98 0.33 0.18 10.68 0.46 0.30 21.29

dhw_09 128.17 2.43 0.00 0.00 0.00 0.14 0.65 0.00

dhw_10 112.80 2.67 0.00 0.00 0.00 0.15 0.68 0.00

dhw_11 194.93 18.46 0.30 0.00 8.94 0.33 0.37 11.50

dhw_12 188.33 8.92 0.13 0.00 1.65 0.21 0.52 4.60

dhw_13 201.90 6.37 0.13 0.00 1.63 0.24 0.55 5.90

hp_01 288.13 11.78 0.00 0.00 0.00 0.29 0.69 2.65

hp_02 361.51 7.74 0.00 0.00 0.00 0.28 0.79 4.90

hp_03 537.02 28.90 0.00 0.00 0.00 0.26 0.36 6.80

hp_04 631.28 15.26 0.00 0.00 0.00 0.37 0.80 6.41

hp_05 216.81 7.67 0.00 0.00 0.00 0.28 0.78 2.40

hp_06 361.31 18.13 0.03 0.07 0.09 0.35 0.71 4.27

hp_07 429.93 13.09 0.00 0.00 0.00 0.39 0.87 5.54

hp_08 371.06 12.36 0.01 0.02 0.01 0.38 0.88 5.35

hp_09 885.42 28.99 0.00 0.00 0.00 0.29 0.43 4.79

hp_10 295.00 11.88 0.00 0.00 0.00 0.20 0.47 1.80

hp_12 112.19 5.73 0.00 0.00 0.00 0.22 0.69 1.30

hp_13 419.05 15.85 0.00 0.00 0.00 0.30 0.67 3.02

In Table 4 we compare the quality of NILM for 20 days in two different periods of the

year with time resolution set to 1 minute. For the sake of compactness, in this table we

report the ERROR column only.

We observe that energy consumption decreases significantly as the weather gets

warmer. Heat pumps are still monitored with very high accuracy, while somemajor errors

are seen on DHW.

In Table 5 we compare the quality of NILM for 20 days in the same period of that

reported in Table 3 comparing the effect of limiting the estimated activation of DHW

loads, i.e. the introduction of constraints (8) and (9). In our tests we set θl = 12 that is, we

expect the activation of DHW load to occur up to every two hours in average.

We observe that quality of the estimation increases significantly for almost all DHW

loads except load dhw_11. Anyway, setting the correct value of θl is not trivial and further

research should be devoted to that aspect.

For the sake of illustration, Fig. 6 shows the application of NILM on house-

hold 06 on 03.01.2018. We observe the presence of a PV installation which is cor-

rectly estimated by the method described in subsection Photovoltaic non intrusive

monitoring and the correct detection of the activation of both the DHW and the

heat pump.
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Table 4 Non intrusive load monitoring - spring and summer periods

Spring Summer

Load Total Energy (kWh) Time on (%) ERROR (%) Total Energy (kWh) Time on (%) ERROR (%)

dhw_01 161.30 5.09 1.48 158.30 5.00 1.29

dhw_03 166.70 10.52 0.98 170.50 10.76 1.16

dhw_04 318.50 12.06 4.39 296.25 11.22 4.71

dhw_05 302.50 19.10 7.62 294.55 18.59 7.18

dhw_06 99.00 3.12 0.00 102.70 3.24 0.00

dhw_07 442.20 13.96 2.99 434.80 13.72 2.88

dhw_08 221.07 20.93 12.01 230.33 21.81 7.79

dhw_09 127.83 2.42 0.00 122.00 2.31 0.00

dhw_10 89.60 2.12 0.05 111.07 2.63 0.00

dhw_11 192.87 18.26 9.41 187.87 17.79 6.32

dhw_12 184.67 8.74 1.58 182.00 8.62 1.46

dhw_13 269.60 8.51 1.87 258.80 8.17 1.90

hp_01 128.10 5.12 0.00 25.04 1.52 0.01

hp_02 136.44 2.85 0.00 53.07 1.68 0.00

hp_03 287.39 15.03 0.00 88.79 7.19 0.01

hp_04 320.18 7.56 0.00 32.91 1.17 0.05

hp_05 80.68 2.79 0.00 42.85 2.23 0.00

hp_06 186.05 9.11 0.00 17.80 1.33 0.04

hp_07 226.23 6.75 0.00 26.44 1.17 0.00

hp_08 190.33 6.17 0.00 7.79 0.38 0.00

hp_09 470.32 15.01 0.00 200.47 9.96 0.00

hp_10 76.29 3.00 0.00 82.90 5.02 0.00

hp_12 32.02 1.59 0.00 29.86 2.25 0.00

hp_13 182.99 6.76 0.00 77.37 4.40 0.01

Conclusions

We address the problem of non-intrusive load monitoring in presence of distributed

power generation (photovoltaic). The proposed approach, based on mathematical pro-

gramming, showed to be effective for source separation with a low frequency data

sampling. We proved that the estimation of the global irradiance exploiting a set of

non-monitored photovoltaic installations in the same area is sufficient to discount the

Table 5 Non intrusive load monitoring - Limiting the number of estimated activations

Load ERROR (%) ERROR (%) REDUCTION (%)

dhw_01 1.15 0.60 47.83

dhw_03 1.07 1.07 0.00

dhw_04 4.37 0.79 81.92

dhw_05 3.57 3.40 4.76

dhw_06 0.00 0.01 -

dhw_07 3.36 1.27 62.20

dhw_08 10.68 8.78 17.79

dhw_09 0.00 0.00 -

dhw_10 0.00 0.00 -

dhw_11 8.94 9.01 -0.78

dhw_12 1.65 1.17 29.09

dhw_13 1.63 1.06 34.97
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Fig. 6 NILM on HP_06 and DHW_06, on 03.01.2018

contribution of PV power generation to the aggregated signal and therefore obtain

accurate source separation.
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