Non-Intrusive Monitoring and Service Adaptation for
WS-BPEL

Oliver Moser, Florian Rosenberg and Schahram Dustdar
Distributed Systems Group, Technical University Vienna
Argentinierstr. 8/184-1, 1040 Vienna, Austria

lasthname@infosys.tuwien.ac.at

ABSTRACT

Web service processes currently lack monitoring and dy-
namic (runtime) adaptation mechanisms. In highly dynamic
processes, services frequently need to be exchanged due to
a variety of reasons. In this paper we present VieDAME,
a system which allows monitoring of BPEL processes ac-
cording to Quality of Service (QoS) attributes and replace-
ment of existing partner services based on various (plug-
gable) replacement strategies. The chosen replacement ser-
vices can be syntactically or semantically equivalent to the
BPEL interface. Services can be automatically replaced at
runtime without any downtime of the overall system. We
implemented our solution with an aspect-oriented approach
by intercepting SOAP messages and allow services to be
exchanged during runtime with little performance penalty
costs, as shown in our experiments, thereby making our so-
lution suitable for high-availability BPEL environments.

Categories and Subject Descriptors

D.2 [Software Engineering]: Programming Environments;
D.2.11 [Software Engineering|: Software Architectures—
Domain-specific architectures, Languages

General Terms

Design, Languages, Reliability, Performance

Keywords

BPEL, Quality of Service, Monitoring, Service Selection,
Message Mediation

1. INTRODUCTION

Increasingly, organizations try to automate their business
processes using coarse-grained services that implement spe-
cific parts of their business functionality. Services are self-
describing, platform-agnostic computational elements that
support rapid low-cost composition of distributed applica-
tions [22]. Recently, Web services are one popular technol-
ogy for implementing such services. Composing different
services into a structured process can be done by using an
orchestration language (also called composition language)
such as WS-BPEL, the Web Service Business Process Exe-
cution Language (BPEL for short) [19]. It is an XML-based

Copyright is held by the International World Wide Web Coefere Com-
mittee (IW3C2). Distribution of these papers is limited tassroom use,
and personal use by others.

WWW 2008, April 21-25, 2008, Beijing, China.

ACM 978-1-60558-085-2/08/04.

language that provides the user with variables, conditionals,
loops, asynchronous messages, process correlation and facil-
ities for transaction and exception handling. The language
itself was originally designed by BEA, Microsoft and IBM.
Finally, WS-BPEL 2.0 is now standardized by OASIS.
When leveraging BPEL as a process execution language,
there are some major concerns that have to be considered
when using it in high-availability environments. As a moti-
vating scenario, consider an online store where the back-end
business logic is implemented using a BPEL based solution,
and the front-end for the customers is a Web application
which gathers data and hands it over to the BPEL engine
for processing the order. The order processing requires some
communication with the local back-end services (such as
stock services) or partner services offered by other organiza-
tions (e.g., credit card verification and payment). A failure
or downtime of one of these services in the process can cause
a downtime in the overall process execution. This may re-
sult in a considerable loss of money due to the fact that the
front-end is relying on a fully operational back-end system.
In this work, we address two issues we identified when us-
ing BPEL in enterprise systems where monitoring and high-
availability play a crucial role: Firstly, one major drawback
of BPEL is its inherently static nature. Basically, if a process
definition is deployed into a BPEL environment — the BPEL
engine — it cannot be changed dynamically at runtime. Ev-
ery information is hard-wired after a process is deployed, for
example, references to other services (called partner links)
used in the BPEL process cannot be changed and exchanged
without editing and redeploying the process which implies
a downtime of the overall system. Although it is possible
for the process to bind to partner links at runtime, the pro-
cess definition would contain a tremendous amount of code
that is not related to the business process (see Section 4 for
more details on runtime partner link binding). A dynamic
replacement of partner Web services in the process is, there-
fore, a necessary approach when the service provider quality
in terms of response time (or other QoS) aspects is not good
enough and affects the overall quality of the process.
Secondly, the BPEL standard does not provide any means
for monitoring a running process. Nevertheless, monitoring
of business processes is a very important issue in enterprise
systems as they are a key factor for running a business.
Currently, it is up to the BPEL engine to provide monitoring
interfaces. However, to the best of our knowledge, available
BPEL engines lack this ability. The monitoring of QoS is
a necessary foundation to decide whether a replacement of

a service should be performed and also what kind of QoS-
based selection criteria should be used.

We address these aforementioned issues in our VieDAME
(Vienna Dynamic Adaptation and Monitoring Environment
for WS-BPEL) system'. It is an extension to the ActiveBPEL
engine [1] and allows monitoring of various QoS attributes of
running BPEL processes and to perform a fully dynamic ser-
vice adaptation of existing processes in a non-intrusive way
by providing a number of alternative services for a given
service.

Additionally, we provide a mechanism to handle service
interface mismatches by allowing transformations to be ap-
plied to incoming and outgoing SOAP messages to adapt
them to the currently used interface in the BPEL process.
We show that the performance overhead introduced by our
extension is minimal and the overall system performance is
sufficient for high performance service based applications.
Furthermore, we provide a Web-based administration inter-
face allowing access to monitoring data and the configura-
tion of the adaptation and its possible transformations.

This paper is structured as follows: In Section 2 we dis-
cuss the basic model of our approach as well as the detailed
system architecture and its components. Section 3 describes
the monitoring strategy for BPEL processes and Section 4
presents the service adaptation and the necessary message
transformation if the service interfaces do not match. In
Section 5 we briefly describe the system implementation and
the technologies we used to build the extension. Section 6
presents the case study that we use in our approach and de-
picts an in-depth performance evaluation to show that our
system is well-suited for high-availability environments. Re-
lated work is discussed in Section 7 and Section 8 concludes
this paper and presents some future work.

2. VIEDAME APPROACH

In this section, we firstly discuss the design goals for the
VieDAME system, followed by a system overview that briefly
introduces the architectural approach. An in-depth discus-
sion of the VieDAME system architecture concludes this sec-
tion.

2.1 Conceptual Goals

In general, dynamic process adaptation deals with a mul-
titude of different aspects concerning the adapted parts of
a process and the applied adaptation techniques. The main
idea for VieDAME was to achieve non-intrusive behavior
with regard to dynamic service adaptation, which enables
the runtime exchange of partner links within a BPEL pro-
cess, without any changes to the BPEL process or the in-
volved partner services.

Such a dynamic service adaptation only leverages one pos-
sible fragment of a process model that can be adapted at
runtime. In general, there is no restriction what fragments
of a process need to be adapted and why. Service adaptation
is one of the most obvious requirements that stems from the
fact that BPEL has no efficient possibility of dynamically ex-
changing partner links or adding alternative services to the
process at runtime. Unlike other approaches that modify
the process definition to redirect partner link communica-
tion to a proxy service that is capable of adding additional

!Online demo available at http://www.vitalab.tuwien.
ac.at/prototypes/viedame

features such as logging or partner service selection, we pro-
pose a lightweight adaptation layer to intercept and control
incoming and outgoing (SOAP) message flow (refer to Sec-
tion 2.3 for details). As an example, the work presented in
[8] discusses the implementation of software fault tolerance
for Web services by mapping various fault tolerance patterns
to WS-BPEL, using standard BPEL constructs only. While
being an interesting and standard compliant approach, the
main advantage of our solution is the fact that the process
model itself does not have to be changed, and, therefore,
does not introduce any logic that is not related to the busi-
ness process itself.

Other adaptation techniques coming from the workflow
area allow to change different process fragments at runtime
mainly based on execution monitoring [28]. Certainly, such
process adaptation techniques can be applied also to BPEL,
nevertheless, it would require a tighter coupling between
the BPEL engine and the adaptation layer, which is not the
chosen approach in this paper. Our contribution includes
lightweight techniques to truly adapt services in a process
at runtime. We currently do not adapt the process control
flow itself, which is, for example, necessary when a service
has to be replaced by two other services which fulfill the
same functional requirements but require adaptions in the
control flow to achieve the same behavior.

In Figure 1 we have depicted our conceptual model we
use for the dynamic service adaptation. The core part is
the BPEL process which has a certain control flow and in-
vokes a number of partner services. The partner services are
generally hosted on different machines distributed over the
Web. In VieDAME each service in a BPEL process can be
marked as replaceable to indicate that alternative services
can be configured and invoked instead of the original ser-
vice that is hard-wired in the process. An alternative service
can either be syntactically or semantically equivalent. The
former indicates that the interfaces of the original and the
alternative services match. This is, for example, the case,
when multiple instances of the same service are hosted on
different machines to provide increased reliability. The lat-
ter indicates that the services only have the same function-
ality but expose it using different interfaces which mainly
occurs when services needs to be exchanged that come from
completely different providers on the Web.

Each service and all of its alternative services’ endpoints
are stored in the VieDAME service repository. If a service
should be dynamically replaced with an alternative service
during process execution, the original partner service cap-
tured by the VieDAME adaptation layer has to be marked
replaceable in the VieDAME UI (right side of Figure 1).
Alternative services that can replace the original service de-
fined by the BPEL process may be added at any time by
providing their interface description in the VieDAME UL
Once they are linked to the original service, a replacement
policy can be selected to control which of the available al-
ternatives will be used (see Section 4.1). Additionally, the
VieDAME UT allows the definition of mediation rules that
allow alternative services to be used where the interfaces do
not match the original interface of the partner service.

2.2 System Overview

The VieDAME system is split into the VieDAME core and
the VieDAME engine adapters. The VieDAME core ties to-
gether the monitoring, service selection and message trans-

VieDAME BPEL Process

Service
Repository
h
o A
WS X WSy
x
\ | VieDAME UI
\ [_servicez |
y's Service Z Alternative Services
- Adaptation v Name v
Layer Service Z z
\‘\ Endpoint Address Al
http://host.to/service/Z
/ | \ ~ i I / Z
/ | \ Service Description Show Customize
K v \< Sample Service WSDL Mediation
replaceable Show Show
Operations | |[QoStatistics
‘ Advanced... ‘ ‘ Cancel ‘ Apply
N~
WS z WS z1 WS z2

Figure 1: VieDAME enhanced BPEL environment

formation facilities as well as provides services such as data
store access, scheduling and configuration data, whereas the
engine adapters represent the connector to the BPEL engine.
Thus, to support new BPEL engines, it is (only) necessary to
implement an engine adapter specifically to the desired en-
gine implementation. The VieDAME environment currently
supports ActiveBPEL 3.0 [1], support for Apache ODE [2]
and JBoss jBPM WS-BPEL runtime [27] is planned once
they are reliable enough to be used in production environ-
ments.

The VieDAME engine adapters are implemented using
aspect-oriented programming (AOP). Although extending
existing (object oriented) software systems is traditionally
achieved by applying subclassing to add additional function-
ality, we would fail to reach our goal to keep the base system
(i.e., the BPEL engine) and the VieDAME system as sep-
arate as possible by taking the OOP approach. The main
drawback with subclassing is that the code is dependent on
its base classes. Changes in the base system always imply
changes in the extension, even if the changes in the new re-
lease are unrelated to the extension. Moreover, if the num-
ber of classes to be modified is high, it would be likely that
one would end up with code that is hard to maintain. These
issues, together with the possibility to enable and disable
certain parts of the VieDAME system as needed by using
load time weaving, were the main reasons for the decision
towards AOP.

2.2.1 Aspect-Oriented Programming

The following paragraph gives a very short introduction
to the key concepts in AOP. For a complete introduction to
AOQOP consider [14] and [15].

An aspect in AOP can be seen as a concern that is related
to one or more places in existing code. In AOP, those places
are called joinpoints. To tell the AOP framework where ex-
actly it should add the additional functionality (called ad-
vices in AOP jargon) it requires the definition of pointcuts
— expressions that identify arbitrary events in the runtime
system such as method invocations or field access. Finally,
the AOP framework combines the base system with the

additional code. This step is called code weaving and af-
fects the performance and ease of deployment of the altered
code. Whereas compile-time weaving requires an intermedi-
ate step to generate the modified classes, load-time weaving
adds the advice code during class loading time. As an ad-
ditional benefit, aspects can be deployed and undeployed
during runtime. Another approach is source-level weaving,
which is not popular any more since it requires access to the
base system’s source code. Section 3 explains the Service-
StatisticsCollectorAspect’s advice code and shows sam-
ple pointcut expressions for JBossAOP.

2.3 Architecture

Figure 2 depicts the architectural approach taken as well
as the system dependencies. Firstly, the flow of events in a
standard BPEL environment is described, without any inter-
action with the VieDAME system. Secondly, the additional
steps performed in a full-featured VieDAME environment
are explained. It includes service monitoring, alternative
service selection and message transformation, which are ex-
plained in detail in the subsequent sections. Please note
that only a simple scenario — without process correlation
and other advanced BPEL features — is used for explana-
tion. Nevertheless, the VieDAME system does not impose
any limitations in this regard.

After deployment of a process definition (1), the BPEL
processor (2) is ready to create new process instances. A
new BPEL process instance (2a) is created when one of its
start activities is triggered, e.g., by an incoming message.
Interaction with a partner link is initiated by invoke activ-
ities (2b) that create SOAP calls (3a). These SOAP calls
are executed by a SOAP engine (10) that returns the result
of the invocation of an arbitrary partner service (11) upon
completion of the request. The invoke activity reports the
result to the process instance which in turn proceeds to the
next activity.

When the VieDAME system is enabled, an additional
level of processing is introduced, manifested in the Inter-
ception and Adaptation Layer (5b), hereinafter referred to
as the TAL. Basically, the IAL is created by aspects that are

Y

: ~VieDAME 4 WS-BPEL

N ;e A

——Spring Framework

Process Definition)
configu

wiring

VieDAME Core

Captured Services

ration
Quartz Hibernate Alternative Services
SSs
Transformer Rules

process data acess cheduler ORM
deployment scheduling @
/

O]

Monitoring Data

@

(-BPEL Processor—\ Configuration Data
cn
-§ GC) access alternative services mapping and QoS data @_/
S; access transformer rules
S |
>
Process Creation & £
o .
Management 5 Monitors Transformers Selectors
‘@ ©
process process access apply message provide
instantiation status invocation context transformations alternative service
\(Engine Adapter / Invocation Context Access Layer)J

BPEL Process

a

spect binding [

SOAP

5
0oz (853
o =X 520
S : S ol ~ 9o
activity invocation °o39c M= @
instantiation | egylt 52>9 ”g< SOAP
c
unaltered —_ .
invok \d'd' k Engine
Invoke Activity | _JVote Interception and adviced Invoke, \
@ @ Adaptation Layer J- SOAP)
\ —_——

VieDAME
Components

‘ BPEL Engine

Components

Figure 2: VieDAME Overall System Architecture

bound to specific joinpoints in the BPEL engine’s code by
the definition of pointcuts. The advice code is then woven
into the original method invocations by the AOP framework
(4) at load time. The IAL provides a bidirectional interface
for the engine adapter (5a) to tap the communication be-
tween the invoke activity (2b) and the SOAP engine (10).
The engine adapter in turn provides read-write access to the
invocation context, enabling other VieDAME components —
such as Monitor (8a) or Selector (8c) — to access and mod-
ify invocation parameters and other runtime data.

The first VieDAME component that is called after in-
terception of a partner link invocation by the IAL is the
Monitor component. It examines the invocation context
to find the service name, endpoint address and operation
name in order to load a previously persisted service refer-
ence or to persist a new service reference for future requests.
The Monitor leverages the VieDAME core (6) and the ORM
framework (7b) respectively to persist objects to a data store
(10). Furthermore, the Monitor activates a timer to measure
the time elapsed during the actual SOAP call and stores this
information together with a reference to the involved service
and success/failed flag. A scheduling framework (7a) is used
to bulk-insert invocation events in order to optimize data
store access. The Monitor component is explained in more
detail in Section 3.

If the service reference loaded by (8a) is marked as replace-
able, the next VieDAME component takes control. The
Selector component (8c) determines an alternative part-
ner service by applying some selection algorithm to a list
of configured alternative services (9). If an alternative ser-
vice is found, the invocation context is updated with the

alternative’s endpoint parameters. Section 4.1 explains the
Selector concept in more detail.

Like the Monitor component, Selectors access the data
store by using (6) and (7b). The same applies to the last
VieDAME component that can be called, the Transformer
component. A Transformer (8b) is responsible for compen-
sating the interface mismatch between the original service
and the alternative. The Transformer uses transformation
rules (e.g., XSLT stylesheets) stored in (9) to perform the
required transformations. Consider Section 4.2 for more in-
formation on Transformers.

After all required modifications are applied to the invoca-
tion context, the SOAP call is finally proceeded, probably
invoking an alternative partner service instead of the orig-
inal service. The difference between the unaltered invoke
(3a) and the advised invoke (3b) is called the Invocation
Context Delta, or ICD. A big ICD indicates many differ-
ences between the original service interface and the alterna-
tive service interface, whereas a small ICD indicates a replica
of the original service (i.e., the original partner service and
the alternative partner service only differ in their endpoint
address). A zero ICD indicates that neither a service re-
placement nor message transformation was applied. The
ICD measured value can be used as an indicator for deter-
mining the degree of adaptation the VieDAME system has
performed and whether the environment running VieDAME
uses the adaptation facilities at all.

3. SERVICE MONITORING

As the BPEL standard does not specify any details about
process monitoring a possible work-around to accomplish

this in BPEL is a combination of <throw> and <catch> ac-
tivities that can be utilized to trigger additional activities
(e.g., invoking an alerting service) in case of an error.

We think that there are two severe problems with this
approach: On the one hand, this solution is not very flexi-
ble. If a partner service becomes unavailable or faulty, the
process could call an alerting service which in turn could
inform the operators about the situation. Fixing the prob-
lem, which is only possible if the operators have access to
the broken partner service will result in a service downtime.
Moreover, using a Web service for sending out alerts about
service problems does not seem to be an appropriate solu-
tion as it introduces a new single point of failure. In the
worst case, the alerting service is down and the operators
would not even notice what is going on. On the other hand,
exception handling is only useful if a service fails completely
to respond to a request, either by returning malformed re-
sponses or by being unavailable. If one or more partner
services become slow in terms of responsiveness, the impact
on business processes could turn out even worse, since the
approach discussed above is not applicable in such a case.
Imagine a customer clicking the finalize order button, ex-
pecting a response in a reasonable amount of time. How long
the customer has to wait depends on how fast each of the
involved partner services responds. It is not only a matter
of “succeeded or failed”, but rather fast enough or too slow.
If statistical monitoring data about previous service invoca-
tions is available, calculating the overall execution time of
the BPEL process is possible. The VieDAME system can
provide this information, which can be used to optimize the
business process in terms of partner service invocations. The
Monitor component (8a in Figure 2) is responsible for stor-
ing the partner service invocation events (i.e., SOAP calls
that result from <invoke> activities in the BPEL process),
that in turn are aggregated to calculate performance related
QoS values such as average response time, accuracy or avail-
ability of some particular operation.

QoS Attribute Formula Category
Response Time m Sort; Performance

: BN downtime 13
Availability 1- S Dependability
Accuracy] - #fatledrequests 1yonondability

#totalrequests

Table 1: Monitored QoS Attributes

Table 1 lists the monitored QoS attributes and their un-
derlying formulas. These values serve as input for some
Selector components that are explained in Section 4.1. Fur-
thermore, other issues such as handling peak-time loads can
be addressed by adding additional alternative partner ser-
vices based on long-term observations.

Listing 1 shows the skeleton of the VieDAME Monitor
component, exemplifying the structure of the Selector and
Transformer components and explaining how AOP is used
to examine the invocation context. On Line 2-3, an invoca-
tion context attribute (EndpointReference, in this case) is
accessed and the name of the invoked partner service is ex-
amined (line 4). The call to invocation.invokeNext () on
line 9 hands over control to the next applicable aspect (i.e.,
to the Selector component), effectively returning the result
of the actual method invocation after all other VieDAME

components have succeeded. Line 15 shows the storeInvo-
cation() method call that persists the operation invocation
event.

1 | void handleInvoke(MethodInvocation invocation) {
2 EndpointReference endpointRef

3 = (EndpointReference) invocation.getArgs |[0];
4 String name = endpointRef.getServiceName();

5 ServiceEndpoint endpoint

6 = endpointDao.loadEndpoint(name, url);

7 try {

8 monitor .start ();

9 Object result = invocation.invokeNext();

10 monitor .stop ();

11 return result;

12 } catch (Exception e) {

13 success = false;

14 } finally {

15 storelnvocation(operation, duration,

16 success)

17 }

18 |}

Listing 1: Monitor Component Structure

The QoS statistics (e.g., availability) for a particular op-
eration are calculated by a scheduled job based on the list
of saved operation invocation events. Since the VieDAME
system relies on a relational database for persistence, imme-
diately flushing the invocation events to the database can
cause serious performance issues when dealing with a lot of
concurrent requests. Thus, the VieDAME system leverages
a scheduling framework to implement write-behind seman-
tics in this regard, allowing to efficiently batch insert a con-
figurable number of events at once. Besides the buffer size
used for temporary storage of invocation events, a resize fac-
tor can be defined that the VieDAME system uses to dynam-
ically change the buffer size if the backlog of events waiting
to be flushed exceeds a configurable threshold. These pa-
rameters allow for tuning the VieDAME system to deal with
different workload scenarios as well as optimizing database
access.

We will now explain how the AOP framework is config-
ured where and when the code from Listing 1 is applied.
Listing 2 shows pointcut definitions and advice-to-pointcut
bindings for JBoss AOP that enable the VieDAME system
to intercept partner link communication in order to monitor
partner service behavior.

1 |<?xml version="1.0" encoding="UTF-8"7>

2 | <aop>

3 <aspect class="StatisticsCollectorAspect"/>
4 <bind pointcut=

5 "execution(* invokers.x->invoke (..))">

6 <advice name="interceptInvoke"

7 aspect="StatisticsCollectorAspect" />

8 </bind>

9 |</aop>

Listing 2: Pointcut definition and Aspect binding

The <aspect> tag on line 3 tells the AOP framework
where to look for advice methods, whereas <bind> (line
4) instructs JBoss AOP to call advice method intercept-
Invoke of aspect StatisticsCollectorAspect (lines 6-7)
when method invoke (->) of an arbitrary class (*) found in
the invokers package of the ActiveBPEL engine implemen-
tation is executed with any number of arguments of arbi-
trary type (..), returning an arbitrary object (*). For more
information on JBoss AOP consider [26].

4. DYNAMIC ADAPTATION AND MESSAGE

MEDIATION

As aforementioned in Section 2, the VieDAME system
takes a lightweight approach to dynamically adapt part-
ner service invocations based on the TAL. This allows to
efficiently exchange partner links at runtime. This section
shows first, how runtime partner link binding can be per-
formed with standard BPEL constructs, followed by a wrap-
up of limitations inherent to this approach and finally ex-
plains the two VieDAME components responsible for con-
quering these limitations.

A partner link endpoint reference in BPEL is represented
as a wsa:EndpointReference XML element defined by the
WS-Addressing [30] standard. It is possible to declare a vari-
able of type wsa:EndpointReferenceType and dynamically
assign its value to a particular partner link. Juric et al. [13]
refer to this technique as dynamic partner link assignment.
Although it is possible to use this approach to force the pro-
cess to dynamically bind to partner services at runtime, it
does not allow adding new partner services at runtime, let
alone additional partner services that differ from the original
in their interface description. Furthermore, it is not possi-
ble to change the way how and when a particular service
is picked, i.e., the selection criterion is statically hardwired
into the process definition (where it conceptually does not
belong to).

Taken together, these limitations indicate the need for
a more flexible and viable solution to the problem of dy-
namically adapting the process at runtime. The VieDAME
environment allows to add alternative services while the
process is running and choose Selectors to define the re-
placement algorithm. The replacement algorithm in turn
determines the alternative service by matching some pre-
defined criteria (i.e., QoS attributes such as availability or
response time) against the data gathered by the monitoring
component. Thus, the selectors do not solely rely on prede-
termined data but rather uses up-to-date information about
the quality of the alternative service. Following [17] we dis-
tinguish between deterministic and non-deterministic QoS
attributes. Deterministic QoS attributes, on the one hand,
indicate that their value is known before a service is invoked,
including price or penalty rate. On the other hand, their
non-deterministic counterpart include all attributes that are
uncertain at service invocation time, for example service
availability [29]. Dealing with non-deterministic attributes
is more complex since it requires to perform calculations
based on data gathered during runtime observations (see
Section 3). Thus, we will only take these non-deterministic
attributes into consideration for the evaluation. Neverthe-
less, the VieDAME system also supports service selection
based on deterministic attributes.

The fact that not all alternative services provide the same
interface as the original partner service makes the situation
even more challenging. The VieDAME system addresses
this issue by supporting basic and ertended transformation
components, called Transformers. Both the Selectors and
Transformers are key components that need further expla-
nation.

4.1 Service Selectors

A Selector (8c in figure 2) in the VieDAME system
context is an implementation of some particular selection
algorithm that determines which of the available alterna-

tive services matches one or more selection criteria best.
The VieDAME systems provides a variety of selection al-
gorithms, ranging from simple randomized and round-robin
selectors that can be used for load balancing, to more sophis-
ticated selectors that combine several QoS attributes such
as performance and dependability for the selection criterion.
Moreover, the VieDAME system offers fault-compensating
selectors that retry failed service invocations, either with
the original service or with an appropriate replacement. To
meet further requirements, the VieDAME system can easily
be extended with additional Selector implementations.

Figure 3 gives an overview of the selector hierarchies. Ba-
sically, the load balancing selectors are used for choosing
a service out of a group of services that are deployed on
different nodes to distribute the load and increase the fault-
tolerance in a round-robin or randomized way.

7~ Non Deterministic Selectors ~
~ Dependability ————————————\

Non Accuracy Availability
Deterministic Selector Selector
Selector
. J
/ Performance —
Overall QoS ResponseTime TPS
Selector Selector Selector
\ J/
~ Load Balancing —_—
Fault
Compenating RoundRobin Randomized
Selector Selector Selector
. J
. J/

Figure 3: VieDAME Non Deterministic Selectors

The dependability selector are used for choosing a service
that either has the highest availability or the best accuracy
based on its execution history measured by the monitoring
module. The performance selectors choose a service based
on its average response time or it transactions per second
rate. These different selectors provide a very powerful mech-
anism to select services based on certain QoS criteria that
typically arise in enterprise systems.

4.2 Message Transformers

A Transformer in the VieDAME system is a mediation
component that compensates the interface mismatch be-
tween the original service and an alternative service by ap-
plying transformation rules to incoming and outgoing mes-
sages. Thus, only semantic equivalence is necessary for a
service to qualify itself as a replacement for another ser-
vice. The VieDAME system offers two different types of
Transformers that are described below. Figure 4 illustrates
the dependencies between partner services, Transformers
and transformation rules and the IAL. BasicTransformers
accomplish the interface mismatch compensation by substi-
tutions based on regular expressions. While creating trans-
formation rules by leveraging regular expressions is straight-
forward, this approach is only viable if both interfaces differ
only in tag or attribute names. ExtendedTransformers, on
the other hand, support full XSLT 2.0 [31] transformations
and therefore allow to use alternative services even if their
interface descriptions are rather different from the original
partner service WSDL. Furthermore, it is possible to assign

a list of transformation rules to an alternative service, which
allows the Transformer to apply different rules to different
parts of the incoming and outgoing messages or implement
chained transformations.

In the rare situation that both Basic- and Extended-
Transformers are not applicable (i.e., if the transformation
requirements cannot be met by neither regular expression
nor XSLT), the VieDAME system allows to configure an
external transformation engine such as Apache Synapse [3].
This would also allow to attach other messaging back-ends
such as the Java Messaging Service (JMS) or REST based
services [11].

Original Partner

service name>

<given value="John" />
5| <survalue="Doe" />
fname>

LN

Alternative
Partner Service [€= —

fname>John</fname>
Iname>Doe</Iname>

Invoke Activity <__ 1

access

Transformation message

Rules Transformer
apply
transformer rules

Figure 4: VieDAME Transformers

5. IMPLEMENTATION DETAILS

For evaluating our approach, ActiveBPEL 3.0.1 [1] (2) is
used (The number in braces references the respective com-
ponent in Figure 2). The prototype for the VieDAME sys-
tem was implemented based on the Java 5 platform, con-
figuration, dependency management, and component wiring
are provided by the Spring Framework [12] (7). Object-
Relational mapping is implemented using Hibernate [23] (7a),
which offers sophisticated caching mechanisms the VieDAME
system uses to avoid unnecessary database access. JBoss
Application Server 4.2.1 [24] (shown in the background of
Figure 2) is used for deployment of both the ActiveBPEL
Engine and the VieDAME system, JBoss AOP 2.0 [26] (4)
seamlessly integrates AOP capabilities into the application
server deployment concept. JBoss Seam 2.0 [25], an applica-
tion framework that integrates JSF and EJB 3.0, was used
to implement a Web-based user interface for configuring the
VieDAME system, allowing the user to add alternative ser-
vices by providing the service’s WSDL, choose the desired
Selectors and define/upload Transformer rules. Moreover,
the partner services QoS statistics are displayed using JFree
[21] charts on a per operation basis. We are using Postgres
8.0.13 for the RDBMS component (9).

6. EVALUATION

In this section the VieDAME system performance is com-
pared to the performance achieved with a plain ActiveBPEL
setup (without using any VieDAME components) using a
load-test scenario with a different number of virtual users.
We use a multistage comparison regarding the VieDAME

system features to show the additional overhead each com-
ponent (e.g., a Transformer) adds to the plain ActiveBPEL
system. In the Selector tests, a simple round robin selector
is applied, whereas for the transformer tests, an FExtended
Transformer was used that uses an XSLT transformation
on the incoming and outgoing SOAP message of the service
that needs to be adapted.

6.1 Case Study

The case study we have implemented for evaluation of our
approach describes the business process behind an externally
available PurchaseOrder Web service that is implemented as
a BPEL process. It enables partner companies to perform
one-shot orders, meaning that all activities that are required
for placing an order are performed at once. Figure 5 illus-
trates the process using BPMN (Business Process Modeling
Notation) [20].

(Purchaseorder Process

Order
PurchaseOrder @ Confirmation
Request

Response

OutOfStock
Check Stock Exception Initiate

Status

Delivery

Calculate
Total Price

outofStock
ocounan |charge Credit
P card
s
CardNotValid

ve
@ Exception > no
CardNotvalid

Response
card

Not Chargeable
R
esponse

Check Credit
Card

Card Chargeable ?

Figure 5: PurchaseOrder Process

The process is triggered upon receipt of the Purchase-
Order request from the service requester. Then it will check
if the required order items are in stock. If one or more items
are out of stock or currently not available in the desired
quantity, the requester has to be informed and eventually
given an alternative. If all items are in stock, then a total
price, including additional fees like shipping costs and taxes,
has to be calculated. Furthermore, this activity triggers a
shipping address validation, which is necessary to calculate
the shipping fee. The next step is the validation of the cus-
tomers payment option. To simplify matters, it is assumed
that only major credit cards are accepted for payment. This
requires a check to assure that the credit card data supplied
by the business partner is valid and the card can be charged.
The final steps include the actual charging of the supplied
credit card and the initiation of the delivery process which
also confirms the successful order placement by sending an
email to the customer.

The process is built upon five different Web services, the
service names resemble the activity names in Figure 5. More-
over, the following operations have to be invoked to complete
the PurchaseOrder process: checkStockStatus, calculate-
TotalPrice, isChargeable, chargeOrder and deliverQOrder.
All requests used in this scenario follow the synchronous
request-response message pattern. Besides using internal
back-end services in the process (e.g., for checking the stock),

external services from other organizations are used for credit
card data validation and payment, the CheckCreditCard ser-
vice and the ChargeCreditCard.

For the evaluation, we replace the CheckCreditCard ser-
vice with other alternative credit card services where the
services are only semantically equivalent, thus a transfor-
mation using XSLT has to be applied.

6.2 Setup and Results

The evaluation was carried out using two different physical
machines, connected using a 100 Mbit LAN. One machine
was running ActiveBPEL to execute the process and to host
VieDAME, the other machine was used to host the differ-
ent Web services used in the process. The VieDAME/Ac-
tiveBPEL host was powered by an Intel Core2Duo CPU
clocked at 2.66 Ghz, whereas the Web service host had
an AMDG64 2.0 Ghz CPU installed. Both machines were
equipped with 2 GB of RAM and fast SATA disks, running
Linux 2.6.22.

For running the load tests we use a commercial tool called
Mercury LoadRunner [18] that allows to create real world
load scenarios that can be used to simulate and predict sys-
tem behavior in production environments under heavy load.
The VieDAME system was stressed in three different setups:
Firstly, only the Monitor component was enabled. For the
next test run, the Selector component was additionally en-
abled, and finally, in the third step, the Transformer com-
ponent was turned on too. Each of these four setups (in-
cluding the VieDAME-disabled scenario) had to undergo a
50 minute load test, serving 50, 100 and 200 concurrent vir-
tual users, respectively. A randomized pacing time between
one and two seconds for consecutive requests was used to
create a realistic high-load scenario. Additionally, an initial
ramp up phase was defined to start 5, 10 or 20 users (de-
pending on the number of virtual users) every 15 seconds to
not overload the system in the very beginning.

We measured the average response times for Purchase-
Order requests and the number of PurchaseOrder transac-
tions per second for each of the four aforementioned sce-
narios. The decision to use response times and transactions
per second as evaluation metrics is based on the fact that
they are the two most important factors of performance in
production systems in the domain of process execution en-
vironments.

The results of the load test are illustrated in Figure 6.
The first three upper diagrams show the response times for
50, 100 and 200 virtual users for the BPEL overall process
execution. The three lower diagrams show transactions per
second for the different virtual users.

Stage 50 Users 100 Users 200 Users
VieDAME Disabled 65/30 182/55 1747/56
Monitor only 73/29 298/52 2283/49
+RRobin Selector 91/29 679/43 3725/41

+XSLT Transformer 105/27 694/42 3484/38

Table 2: Response Times (ms) / Transactions per
Second

The results demonstrate that the VieDAME system pro-
vides good performance for all three scenarios, whereas the
50 user test results for the VieDAME enhanced system are
almost identical to the results measured in the VieDAME-

disabled test. Only the results of the Transformer tests
show that the XSLT transformations have an considerable
impact on system performance. The next release of VieDAME
will introduce Transformer caches to address this issue and
speed up the transformation performance.

A summary for both average response times (left value)
and transactions per second (right value) is provided in Ta-
ble 2. Please note that our discussion and illustration of
the system performance only shows the small penalty the
VieDAME system adds to an existing BPEL engine. If we
would consider the case where several alternative services are
configured for a particularly slow original service, the over-
head introduced by the base system is negligible because the
overall process performance increase is much higher than the
penalty of the VieDAME.

7. RELATED WORK

Ezenwoye et al. provide an approach [10] to transparently
adapt BPEL processes to compensate runtime faults and
to improve the process performance with respect to part-
ner services. In their previous work [9], they presented the
RobustBPEL framework that can generate an adapt-ready
version of an existing BPEL process that is capable of moni-
toring the invocation of partner Web services. Upon failure,
a static proxy service is invoked, which tries to find a re-
placement service for the failed one. In this static proxy ap-
proach, information about the replacement services is hard-
coded at proxy generation time. With RobustBPEL2 [10], a
new concept, called dynamic proxies, is introduced allowing
runtime discovery of replacement services. Furthermore, Ro-
bustBPEL2 adds self-optimizing behavior to existing BPEL
processes. While their work is similar to ours with respect
to their aim to improve reliability and performance in the
context of BPEL and Web services, they are using a proxy
based approach to monitor process execution and improve
process performance whereas the VieDAME system lever-
ages a lightweight adaptation and monitoring layer based on
AOP to achieve these goals. RobustBPEL2 uses UDDI to
discover alternative services upon failure, but it does not in-
corporate selection criteria when multiple services are found,
while the VieDAME system chooses the most adequate (in
terms of QoS) service in advance to optimize process per-
formance.

In [5], Baresi et al. present a solution for self-healing
of BPEL processes. Their approach is based on Dynamo,
a supervision framework proposed in [4] together with an
AOP extension to ActiveBPEL, and a monitoring and re-
covery subsystem that leverages JBoss Rules. This asser-
tion based solution provides the user with two domain spe-
cific languages (WSCoL, the Web Service Constraint Lan-
guage and WSReL, the Web Service Recovery Language)
to declaratively define Web service monitoring and recov-
ery rules, respectively. WSCol and WSReL allow to create
complex recovery strategies that are beyond the capabili-
ties of VieDAME. However, their solution does not explic-
itly address the problem of selecting alternative services and
dealing with possible interface mismatches when forwarding
a request to an alternative endpoint during recovery. Our
solution provides a viable way to select alternative services
and to compensate these mismatches by using Selectors
and Transformers. Additionally, their recovery rules can-
not be changed dynamically as they need to be compiled

Transaction Response Times (50 Users)

Transaction Response Times (100 Users)

Transaction Response Times (200 Users)

0.4 T T U 3 T
: : isable :
0.35 monitors ————- N
selectors

0.3 transformers -

T T
disabled
monitors
selectors ----- -1

transformers

T T
disabled
monitors ——--- -

selectors -
transformers

Response Times (seconds)

20:00

Transactions per Second (100 Users)

30:00 40:00 10:00 20:00 30:00 40:00

Transactions per Second (200 Users)

@ o
=] =l
c c
o o
(53 o
Q [
£ 025 &
3]
£ 0.2 £
F =
@ 015 2
c c
2 o1 2
7} 0
[O
T 005 ; : ‘ : &
0 | | | |
10:00 20:00 30:00 40:00 10:00
Transactions per Second (50 Users)
80 T T — 120 T
: isable :
70 = monitors
selectors

60 [

transformers -
50 [

40 [

Transactions
Transactions

30 [~ -
20 e
10 |- Rl S
i

0 i i i o

120 T T T— T
: : disabled

monitors —

selectors

transformers

T T
disabled
monitors ——---
selectors
transformel

Transactions

10:00 20:00 30:00 40:00 10:00

Figure 6: Response Times and Transactions

offline, whereas our system can configure all alternative ser-
vices and selectors during runtime of the system.

AO4BPEL [7] is an aspect-oriented extension to BPEL
that supports the definition of workflow aspects for BPEL
processes. It is a powerful framework to define cross-cutting
concerns like logging, security or transactional processing
for given business processes. Aspects are defined in XML
documents that in turn define one or more pointcuts and
advices. An advice in terms of AO4BPEL is a BPEL ac-
tivity that implements a crosscutting concern or a workflow
change. AO4BPEL also allows for dynamically change the
deployed process by simply activating or deactivating as-
pects. In contrast to Charfi’s work, our approach focuses
on enhancing process performance and flexibility specifically
with regard to partner service interaction. The implemen-
tation of AO4BPEL is based on an aspect-aware engine ap-
proach, thus limiting its application to a particular BPEL
engine (in this case IBM’s BPWS4J), whereas the VieDAME
system takes a non-intrusive approach to intercept interac-
tion between the BPEL engine and its partner links.

While not strictly related to our approach, the work pre-
sented in [6] shows that the idea of interface mismatch com-
pensation can be taken one step further to solve behavioral
mismatch among BPEL processes. Their proposed adap-
tation process, given two communicating BPEL processes
whose interaction may lock, builds (if possible) a BPEL pro-
cess that allows the two processes to successfully interoper-
ate. In [16], Kongdenfha et al. propose an aspect-oriented
framework to provide service adaptation. Their approach
uses aspect-based templates to automate the task of han-
dling interface mismatches. Moreover, their solution is ca-
pable of handling protocol mismatches to compensate differ-
ences between the external specification and the implemen-
tation of arbitrary BPEL processes. However, both [6] and
[16] do not aim for neither partner service monitoring nor
service selection like our solution does.

20:00

30:00 40:00 10:00 20:00 30:00 40:00

per Second during VieDAME Loadtest

8. CONCLUSIONS

In this paper we introduced an aspect-oriented extension
for existing BPEL environments that allows: (i) the moni-
toring of existing BPEL processes according to certain QoS
criteria and (ii) an adaptation strategy to replace existing
partner services based on various selectors that implement
different replacement strategies. The replacement services
can either be syntactically or semantically equivalent to the
interface used in the BPEL process. In case of a interface
mismatches, a set of Transformers can be specified to han-
dle theses mismatches on a SOAP message level.

These mechanisms allow a non-intrusive adaptation of
partner services within a BPEL process without any down-
time of the overall system. No modifications to the process
definition or the partner services are required. Therefore,
VieDAME is a feasible candidate for transparently enhanc-
ing BPEL engines used in high-availability environments.
Our evaluation demonstrates that the system scales very
well even when the number of users is high and the overhead
introduced by the monitoring, selection and transformation
is minimal.

Our future work includes extending and improving our
VieDAME environment by implementing more advanced Se-
lector algorithms that can learn from previous execution
traces to choose the best selection strategy for different time
periods, thereby allowing an optimal transaction per sec-
onds rate. Another important issue is the development of
algorithms for assisting developers to create Transformers
between semantically equivalent replacement services. For
increasing the performance, we will implement additional
batch processing and storage concepts to allow even more
concurrent requests. Moreover, we will extend our evalua-
tion scenario to examine the real performance gain in pro-
cess execution times when replacing particularly slow ser-
vices with high-performance pendants, as these results will
be essential to the decision whether the VieDAME is ready
for application in production environments.

0.
1

2l

3l

4]

]

[6]

(7l

(8]

9l

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

Active Endpoints. ActiveBPEL Engine, 2007.
http://www.active-endpoints.com/ (Last accessed:
May 07, 2007).

Apache Software Foundation. Apache ODE, 2007.
http://ode.apache.org/ (Last accessed: Oct 21,
2007).

Apache Software Foundation. Apache Synapse, 2007.
http://ws.apache.org/synapse/ (Last accessed: Oct
21, 2007).

L. Baresi and S. Guinea. Dynamo: Dynamic
Monitoring of WS-BPEL Processes. In Proceedings of
the International Conference on Service-Oriented
Computing (ICSOC’05), Amsterdam, The
Netherlands, pages 478-483. Springer, 2005.

L. Baresi, S. Guinea, and L. Pasquale. Self-healing
BPEL Processes with Dynamo and the JBoss Rule
Engine. In International Workshop on Engineering of
Software Services for Pervasive Environments (ESSPE
’07), pages 11-20. ACM, 2007.

A. Brogi and R. Popescu. Automated Generation of
BPEL Adapters. In Proceedings of the International
Conference on Service-Oriented Computing
(ICSOC’06), Chicago, USA, pages 27-39. Springer,
2006.

A. Charfi. Aspect-Oriented Workflow Languages:
AO4BPEL and Applications. PhD thesis, TU
Darmstadt, Fachbereich Informatik, 2007.

G. Dobson. Using ws-bpel to implement software fault
tolerance for web services. In FEUROMICRO ’06:
Proceedings of the 32nd EUROMICRO Conference on
Software Engineering and Advanced Applications,
pages 126—133, Washington, DC, USA, 2006. IEEE
Computer Society.

O. Ezenwoye and S. M. Sadjadi. Enabling robustness
in existing BPEL processes. In Proceedings of the 8th
International Conference on Enterprise Information
Systems (ICEIS’06), Paphos, Cyprus, 2006.

O. Ezenwoye and S. M. Sadjadi. RobustBPEL2:
Transparent Autonomization in Business Processes
through Dynamic Proxies. In Proceedings of the 8th
International Symposium on Autonomous
Decentralized Systems (ISADS’07), Sedona, Arizona,
2007.

R. T. Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis,
University of California, Irvine, 2000.

Interface21. Spring Framework, 2007.
http://www.springframework.org (Last accessed:
Oct 24, 2007).

M. B. Juric, B. Mathew, and P. Sarang. Business
Process Ezxecution Language for Web Services. Packt
Publishing, second edition, 2006.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,

J. Palm, and W. G. Griswold. An overview of
AspectJ. Lecture Notes in Computer Science,
2072:327-355, 2001.

G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In M. Aksit and

S. Matsuoka, editors, Proceedings Furopean
Conference on Object-Oriented Programming, volume

[16]

17]

[18]

[19]

[20]

21]

22]

23]

24]
[25]

[26]

27]

(28]

29]

[30]

31]

1241, pages 220—242. Springer-Verlag, Berlin,
Heidelberg, and New York, 1997.

W. Kongdentha, R. Saint-Paul, B. Benatallah, and

F. Casati. An Aspect-Oriented Framework for Service
Adaptation. In Proceedings of the International
Conference on Service-Oriented Computing
(ICSOC’06), Chicago, USA, pages 15-26. Springer,
2006.

Y. Liu, A. H. Ngu, and L. Zeng. QoS Computation
and Policing in Dynamic Web Service Selection. In
Proceedings of the 13th International Conference on
World Wide Web (WWW’04), 2004.

Mercury Interactive. LoadRunner, 2007.
www.mercury . com/us/products/loadrunner/ (Last
accessed: Oct 25, 2007).

OASIS. Web Service Business Process Execution
Language 2.0, 2006. URL: http://www.oasis-open.
org/committees/tc_home.php?wg_abbrev=wsbpe
(Last accessed: Apr. 17, 2007).

Object Management Group — Business Process
Management Initiative. Business Process Modeling
Notation (BPMN) Specification, Version 1.0, 2006.
http://www.bpmn.org/ (Last accessed: Oct. 21, 2007).
Object Refinery Limited. JFreeChart, 2007.
http://www.jfree.org (Last accessed: Oct 24, 2007).
M. P. Papazoglou, P. Traverso, S. Dustdar, and

F. Leymann. Service-Oriented Computing: State of
the Art and Research Challenges. IEEE Computer, 11,
2007.

Red Hat. Hiberante ORM, 2007.
http://www.hibernate.org (Last accessed: Oct 24,
2007).

Red Hat. JBoss Application Server, 2007.
http://www.jboss.org (Last accessed: Oct 24, 2007).
Red Hat. JBoss Seam, 2007. http://wuw. jboss.org
(Last accessed: Oct 24, 2007).

RedHat. JBoss AOP, 2007.

http://labs. jboss.com/jbossaop/ (Last accessed:
Oct 21, 2007).

RedHat. JBoss jBPM WS-BPEL Extension, 2007.
http://docs. jboss. com/jbpm/bpel/ (Last accessed:
Oct 21, 2007).

M. Reichert and P. Dadam. ADAPTflex: Supporting
dynamic changes of workflow without loosing control.
Journal of Intelligent Information Systems,
10(2):93-129, 1998.

F. Rosenberg, C. Platzer, and S. Dustdar.
Bootstrapping Performance and Dependability
Attributes of Web Services. In Proceedings of the IEEE
International Conference on Web Services (ICWS’06),
Chicago, USA. IEEE Computer Society, 2006.

W3C. Web Service Addressing (WS-Addressing), 2007.
http://www.w3.org/Submission/ws-addressing/
(Last accessed: Oct 21, 2007).

W3C. XSL Transformations (XSLT) Version 2.0,
2007. http://wuw.w3.org/TR/xs1t20/ (Last accessed:
Jan 23, 2007).

