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ABSTRACT

Detailed information about a home’s occupancy is necessary to
implement many advanced energy-efficiency optimizations. How-
ever, monitoring occupancy directly is intrusive, typically requir-
ing the deployment of multiple environmental sensors, e.g., mo-
tion, acoustic, CO2, etc. In this paper, we explore the potential for
Non-Intrusive Occupancy Monitoring (NIOM) by using electricity
data from smart meters to infer occupancy. We first observe that
a home’s pattern of electricity usage generally changes when oc-
cupants are present due to their interact with electrical loads. We
empirically evaluate these interactions by monitoring ground truth
occupancy in two homes, then correlating it with changes in statisti-
cal metrics of smart meter data, such as power’s mean and variance,
over short intervals. In particular, we use each metric’s maximum
value at night as a proxy for its maximum value in an unoccupied
home, and then signal occupancy whenever the daytime value ex-
ceeds it. Our results highlight NIOM’s potential and its challenges.
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1. INTRODUCTION
Based on recent estimates, commercial and residential buildings

continue to account for 75% of the electricity usage in the United
States [23], with residential buildings alone accounting for nearly
45%.1 As a result, improving building energy-efficiency is becom-
ing an increasingly important research area. One of the simplest

1Research supported by NSF grants CNS-1253063, CNS-1143655,
CNS-0916577, CNS-0855128, CNS-0834243, CNS-0845349.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
BuildSys’13, November 14 - 15, 2013, Roma, Italy.
Copyright 2013 ACM 978-1-4503-2431-1/13/11 ...$15.00.
http://dx.doi.org/10.1145/2528282.2528294.

ways to reduce wasted energy and improve energy-efficiency is
to automatically regulate a building’s electricity usage in real time
based on its occupancy [2, 15, 19, 25]. Researchers have proposed
many applications that use occupancy information to drive a va-
riety of novel building management optimizations. For example, a
building management system may save energy in unoccupied build-
ings by automatically i) disconnecting inactive electrical devices
(or loads), such as televisions, gaming consoles, and cable boxes,
to lower vampire power usage [11], ii) adjusting environmental set-
points and guardbands for air conditioners, heaters, and humidifiers
to operate outside occupants’ normal comfort level, thereby short-
ening the length of their duty cycle [2, 14, 24], iii) turning off or
dimming lights aggressively to reduce energy waste [9], and iv)
placing idle desktop computers and other IT equipment into low-
power standby states, e.g., Suspend-to-RAM [3].

A key prerequisite for implementing these occupancy-driven ap-
plications is an accurate, inexpensive, and non-intrusive method for
monitoring occupancy. While determining occupancy is possible
using GPS information from smartphones, the approach requires
active participation by all occupants: they must carry their phone at
all times and integrate it with each building’s occupancy-detection
system. The approach is clearly not feasible if occupants do not
own smartphones, as with many young and low-income users, or
are unwilling to link their phones with building management sys-
tems due to privacy concerns. Thus, many systems monitor occu-
pancy by strategically deploying one or more environmental sen-
sors, including motion [2, 24, 26], door [1], acoustic [8, 17], cam-
era [14, 15, 20], contact [26, 29], and CO2 [10, 31] sensors.

As this prior research shows, directly sensing occupancy using
environmental sensors poses many challenges. For example, users
must carefully place and calibrate motion sensors to prevent spu-
rious detection from pets or events outside windows [24]. While
CO2 sensors are less sensitive to placement position and external
events, users must precisely calibrate them based on a building’s
ventilation system. Furthermore, these sensors incur an inherent
detection delay, as additional occupants cause CO2 levels to in-
crease slowly [14, 31]. Each of the other environmental sensing
options above introduce their own similar types of domain-specific
challenges. In general, such direct occupancy monitoring also re-
quires purchasing and retrofitting buildings with many external sen-
sors. As a result, these systems must address problems common to
any large distributed system, including detecting, diagnosing, and
correcting sensor failures and ensuring each sensor has a reliable
network connection. Finally, since retrofitted sensors are typically
not connected to the power grid, they require periodic battery re-
placement or recharging, which imposes a significant maintenance
burden in distributed deployments that employ many sensors [18].

The limitations above have led researchers to study indirectly
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Figure 1: Overlay of average power usage every minute (black) with binary occupancy (red), where one indicates at least one

occupant is present and zero indicates no occupants are present, over one day (8am-11pm) for two homes.

monitoring occupancy using contextual information sources, in-
cluding wired [7, 28] and wireless network traffic [4, 16, 25] and
online sources [30], such as calendars and chat applications. In-
direct approaches correlate one or more activities with occupancy,
and are cheaper and less intrusive than direct approaches, as they
do not require deploying and maintaining extra sensors. However,
accuracy depends on occupants regularly performing specific ac-
tivities, e.g., generating network traffic or updating a calendar.

In this paper, we empirically explore the potential of indirectly
monitoring occupancy solely through electricity use—possibly the
most common occupant activity. In particular, we focus on moni-
toring occupancy in residential homes using the coarse-grained data
produced by commodity smart meters, which record a home’s elec-
tricity usage anywhere between every one to fifteen minutes. Typ-
ical smart meter data clearly demonstrates that a home’s pattern
of electricity usage changes whenever occupants are present. Fig-
ure 1 illustrates this point by overlaying average power usage every
minute with binary occupancy (one is occupied, zero is unoccu-
pied) between 8am and 11pm for two homes. Though the homes
have different occupants, loads, and daily routines, the pattern of
power usage clearly change whenever people are home.

Prior research that detects occupancy from electrical events re-
quires expensive, specialized, and highly-calibrated equipment to
record and analyze high-frequency data, e.g., �2kHz [27]. In con-
trast, smart meters are already widely deployed: by 2011, an esti-
mated 493 utilities had collectively installed more than 37 million
in the United States [13]. Thus, we target data that is already avail-
able to utilities, and does not require deploying any additional sen-
sors. While existing work has demonstrated a correlation between
occupancy and coarse-grained electricity usage [26] by using oc-
cupancy to infer electricity usage, our work examines the reverse
relationship by using electricity usage to infer occupancy. Our hy-
pothesis is that occupants’ interaction with electrical loads, e.g.,
turning them on and off, enables simple Non-Intrusive Occupancy
Monitoring (NIOM) by detecting changes in statistical metrics in
a home’s power data, such as its mean, variance, and range. In
evaluating our hypothesis, we make the following contributions:
Data Collection and Analysis. In §2, we analyze data from two
deeply instrumented homes to quantify the opportunity for NIOM.
We collect ground truth data on both occupants’ physical interac-
tions with the electrical system that imply occupancy, e.g., flipping
a switch, and the homes’ real occupancy using GPS sensors, and
then compare it with the homes’ smart meter data. Our analysis not
only reveals how the homes’ pattern of electricity usage changes
when occupants are present, but also why it changes and which
types of loads contribute the most occupancy-implying events.
NIOM Algorithm. In §3, we use the observations from our data
analysis to develop a simple NIOM algorithm that monitors occu-
pancy by first detecting occupancy events based on changes in the

statistical metrics of power data, and then clustering nearby events
together to produce a continuous trace of occupancy. We propose
automatically setting metric thresholds by using their value at night
as a rough approximation of its value in an unoccupied home.
Implementation and Evaluation. In §4, we evaluate NIOM’s ac-
curacy by comparing with both ground truth occupancy data and an
approach based on Non-Intrusive Load Monitoring (NILM) [22],
which first extracts the power usage of each load and then detects
occupancy from the power usage of interactive loads. Our results
show that our simple approach is more effective at separating oc-
cupied from unoccupied periods than the NILM-based approach.

Finally, §5 concludes by discussing the i) new applications
NIOM enables, ii) potential to extend our approach to monitor the
number of occupants in a home and their location, and iii) possibil-
ity of other simple, useful, and tractable non-intrusive analytics.

2. DATA COLLECTION AND ANALYSIS
We instrument two homes (Home-A and Home-B in Figure 1

from the Smart* dataset [6]) with a variety of sensors to collect
ground truth data about each home’s electrical events and its occu-
pancy. Detailed information about the physical characteristics of
both homes is available in recent work [6]. Ground truth data is
critical in assessing and evaluating NIOM. We first briefly describe
the sensors, the raw data they generate, and how we post-process
this data to obtain ground truth data for i) the occupants’ physical
interactions with electrical loads, e.g., flipping switches and push-
ing buttons, and ii) the homes’ occupancy information. We then
compare this data with the homes’ smart meter data, and make a
series of observations to motivate NIOM. Note that the NIOM al-

gorithm presented in Section 3 only uses a home’s smart meter data

to infer occupancy. We only use our external sensors to quantify the
potential for NIOM in a home.

2.1 Instrumentation
Physical Interactions. To monitor occupants’ physical interac-
tions with loads, we use multiple eGauge energy monitors [12]
installed in the homes’ electrical panels to record total (real) grid
power usage and the (real) power usage for each of the individual
branch circuits every second. We use the branch circuit data to ex-
tract events—large changes in power—that imply occupants’ phys-
ical interactions with loads. Reliably extracting these events di-
rectly from the homes’ aggregate electricity data is challenging due
to the presence of background loads, such as heaters, air condition-
ers, and refrigerators, that are driven by automated controllers and
consequently do not imply occupancy. Notably, automatically ex-
tracting these events from a home’s aggregate power data is closely
related to performing NILM. Since background loads are wired to
dedicated circuits in both homes, monitoring branch circuits natu-
rally separates their electricity use from that of interactive loads,



(a) Background Loads (b) Interactive Loads with Event Labels

Figure 2: Power usage of background (a) and interactive (b) loads from Home-A for the same day as in Figure 1(a). We include event

labels in (b) that indicate occupants’ physical interactions with electrical loads.

which people manually control (e.g., by turning them on and off).
We supplement our raw electricity data by using Insteon-enabled
i) wall switches, ii) door sensors, and iii) thermostats. These sen-
sors signal a computer whenever someone physically presses a wall
switch, opens a door that triggers an electrical event, such as a
freezer door that turns on an interior light, or adjusts a thermostat.

To asses NIOM’s potential, we post-process this raw electric-
ity and switch data to automatically generate an event trace of oc-
cupants’ physical interactions with electrical loads. Examples of
these events include occupants using a remote control to turn on a
television, pressing a button to cook food in the microwave, or tog-
gling a wall switch. Ultimately, the correlation between a home’s
pattern of electricity usage and occupancy derives from these phys-
ical interactions with electrical loads. Our goal is to learn the types
of physical interactions occupants have with electrical loads, as
well as their rate and frequency, to quantify the potential to moni-
tor occupancy via smart meter data. For instance, if occupants are
home and not interacting with any electrical loads, such as when
reading a book, the correlation between electricity usage and oc-
cupancy may be weak. To extract events from our electricity data,
we focus on circuits that power interactive loads and ignore those
dedicated to background loads. Since each of these circuits only
supports a small number of loads, we manually profile every load
per circuit and derive power event detection rules tailored for each
of a circuit’s loads. In general, we find that a change in power
greater than 30W indicates occupant interaction. We then augment
these events with any events generated directly from the Insteon
wall switch, door, and thermostat sensors to yield a final event trace.
Ground Truth Occupancy. In addition to automatically track-
ing occupants’ interaction with electrical loads, we monitor ground
truth occupancy via occupants’ smartphones. This type of moni-
toring is feasible because the two primary occupants in each home
reliably carry their phones at all times, and the occupants without
smartphones are never home without the primary occupants also
being home. We gather occupancy data by installing the Google
Latitude mobile app on each phone. Latitude enables authenticated
users to query a URL to retrieve a phone’s current GPS coordinates
(latitude and longitude), which we collect from a central server ev-
ery 30 seconds and translate into a binary occupancy trace by con-
sidering locations within 500 meters of the home as ‘occupied.’
Note that we only use the GPS data for deriving ground truth occu-

pancy, and not when detecting occupancy from smart meter data.

2.2 Analysis and Observations
Figure 1 (from §1) illustrates how a home’s pattern of electricity

usage changes whenever occupants are present. In both homes, the
load profile reveals a number of attributes in the data that appear to
correlate with occupancy, including a higher mean power usage, a
higher minimum power usage, i.e., a raised power floor, a higher

maximum power usage, and more bursty power usage. On this
day, Home-B exhibits a drastic change in the pattern of power us-
age when occupants are present. Interestingly, for Home-A, which
exhibits the weaker correlation between electricity usage and oc-
cupancy, there appear to be periods when occupants are present,
but the load profile is similar to the profile when occupants are not
present. For example, in Figure 1(a), the home is occupied between
8am and 9am, but the load profile at this time appears to be similar
to the profile from 10am to 11am, when the home is unoccupied.
As we show in §4, since occupants may not continuously inter-
act with the electrical loads, any system that uses smart meter data
to monitor occupancy has the potential to generate false negatives,
i.e., by incorrectly determining that no one is home.

We use our event traces to examine the extent of occupancy’s
correlation with electricity usage, including the frequency of oc-
cupants’ physical interactions with loads and its impact on home
electricity usage. Here, we focus on Home-A, since it exhibits the
weaker correlation. For Home-A, in Figure 2, we separate the elec-
tricity usage of the interactive loads and background loads for the
same day as in Figure 1(a). Figure 2(a) shows the power usage
of just the background loads, while Figure 2(b) shows the power
usage of just the interactive loads, as well as our event labels that
signify occupants’ physical interactions. Since users do not interact
with background loads, Figure 2(a) has no event labels.

Figure 2 illustrate multiple points about the potential for NIOM.
First, note that the background loads in Figure 2(a) have a signif-
icant and highly variable load profile between 40W and 1.5kW.
In total, on this day, the background loads contribute the major-
ity (56%) of the home’s electricity usage, while exhibiting a range
in power usage of 1366W, e.g., a peak usage of 1413W and a min-
imum usage of 47W. As a result, we cannot simply assume that an
unoccupied home has a low or constant power usage. However, the
background loads do exhibit a consistent pattern of power usage
regardless of occupancy. Second, Figure 2(b) indicates that occu-
pants have near-continuous interaction with electrical loads while
home, physically interacting with them at an average rate of 11.58
interactions per hour. In total, these interactive loads contribute
44% of the home’s electricity usage, while exhibiting an even wider
range of power usage than the background loads, e.g., with a peak
usage of 1937W and a minimum usage of 21W. In addition, the
longest observed “dead period"—when occupants are home but do
not interact with electrical loads—is only 58 minutes (between 9pm
and 10pm when they are watching TV). Unlike the background
loads, the interactive loads only consume significant power when
occupants are home. Since aggregate power is the combination of
the interactive and background loads, we expect any change in the
pattern of power usage to also indicate a change in occupancy.

While we only use one day’s worth of data to illustrate the points
above, Table 1 shows the number of events over 71 days starting



Category Count Percentage

Lights 3048 39.25

Kitchen 2882 37.12

IT 1374 17.69

Large Appliances 263 3.39

Miscellaneous 198 2.55

Total 7765 100

Table 1: Number of physical interactions with different types

of electrical loads over a 71 day period.

in mid-April caused by different types of loads, including light-
ing, IT devices, e.g., computer, television, and gaming console),
kitchen appliances, (e.g., toaster, microwave, and coffee maker),
large appliances, (e.g., washing machine and dryer), and miscella-
neous (e.g., vacuums and fans). In total, the occupants interacted
with loads 7765 over this period at a rate of 109 events per day,
and 10.08 events per hour when occupied. Not surprisingly, a large
majority of events are due to lighting. As we discuss in §4, lighting
is a particularly challenging load for NILM algorithms to detect.

While the observations above use one-minute average power
data, they also hold for coarser data, although the correlations be-
come more subtle as the data becomes coarser. For example, an
occupied home may have 2X higher average power than an unoc-
cupied home using average power data over five minutes, but only
1.1X higher average power using average power data over one hour.
In general, as data becomes coarser, it averages out the “peaky" fea-
tures of interactive loads in power data that imply occupancy.

3. NIOM ALGORITHM
Unlike the analysis in the previous section, where we use ex-

ternal sensors to establish ground truth and study the potential for
NIOM, our NIOM algorithm uses only a home’s smart meter data
to infer occupancy. Below, we describe three statistical metrics
we monitor in smart meter data to detect occupancy and our intu-
ition for using them. We then propose a simple threshold-based
NIOM algorithm that detects changes in each metric and then clus-
ters them to generate a continuous trace of binary occupancy.
Average Power. As Figure 1 indicates, occupancy generally im-
plies a higher average power usage. Intuitively, the correlation
between high average power and occupancy is due to occupants
turning interactive loads on, which increases the home’s aggregate
power. To detect changes in average power Naverage, at time t, we
simply average the previous consecutive data points over a window
τ in the power time-series, and then signal potential occupancy at
time t if the result exceeds a predefined threshold Paverage. Both
τ and Paverage must be jointly set. As τ becomes smaller, to pre-
vent false positives, Paverage should increase such that it is always
greater than the maximum power over τ data points when the home
is unoccupied. Similarly, as τ becomes larger, Paverage should de-
crease to prevent false negatives.
Standard Deviation. Figure 1 also suggests that an occupied home
has more variable power usage than an unoccupied one. Intuitively,
the correlation between more variable power usage and occupancy
is due to occupants toggling interactive loads on and off. To detect
changes in standard deviation Nstddev , at time t, we also compute
the standard deviation of the previous τ consecutive data points in
the power time-series, and then signal potential occupancy at time
t if the result exceeds a predefined threshold Pstddev . As above,
both τ and Pstddev must be jointly set, since a larger τ determines
Pstddev’s magnitude. Detecting changes in standard deviation in
addition to average power is useful, since occupants may toggle
loads on and off frequently, such that average power does not rise

above the Paverage threshold, but the standard deviation does rise
above the Pstddev threshold.
Power Range. Finally, Figure 1 suggests that occupancy implies a
larger absolute range in power. We define the power range Nrange

as the difference between the absolute minimum and absolute max-
imum power over the previous τ consecutive data points. Intu-
itively, the correlation between a large power range and occupancy
stems from our observation that occupants sometimes have few in-
teractions with electrical loads. While minimal interactions with
electrical loads may not increase the average power or standard de-
viation, they are likely to increase the power’s absolute range, since
any interaction will briefly raise the maximum power. As above, we
signal potential occupancy if the power range over the last τ data
points is above a threshold Prange.

Note that we only intend our threshold-based approach above
to detect daytime occupancy, e.g., 6am to 11pm. Nighttime oc-
cupancy correlates less with electricity usage, since occupants are
generally sleeping. As a result, nighttime occupancy is much
harder to determine. One simple approach, we which use in this
work, is to infer nighttime occupancy from daytime occupancy: if
anyone is at home at during the previous evening then we assume
the home is occupied throughout the night. This works well be-
cause people are usually home at night with high probability, unless
they are out of town. However, the approach may not be appropri-
ate in some cases, e.g., if all occupants work night shifts.

Changes in each of the metrics above result in a series of discrete
time-stamped occupancy events. To generate a continuous occu-
pancy trace, we cluster these events, such that if any two events
are within τcluster time window, we label the intervening period
as being occupied. As τcluster increases, the greater the likeli-
hood of false positives, e.g., detecting someone is home when no
one is home, while, as τcluster decreases, the greater the likelihood
of false negatives, e.g., detecting no one is home when someone
is home. After clustering, occupancy detection using each metric
produces a continuous time-series of the home’s binary occupancy.
We then combine these time-series to generate a final solution by
detecting occupancy if any of the metrics signal occupancy.

Of course, for each metric, accuracy is sensitive to τ and the
metric’s P threshold. If the power usage of the background loads
is consistent, a static threshold works well. However, we investi-
gated setting static thresholds based on training data and found that
these thresholds did not work well over long periods, since the set
of active background loads and their operation changed over time,
e.g., as occupants turn them on and off and environmental condi-
tions change. As a result, we set each metric’s threshold dynami-
cally based on its maximum value the previous night. Our premise
is that a home’s nighttime power usage and unoccupied power us-
age are dictated solely by its background loads. Thus, nighttime
usage should provide a rough approximation of background load
usage, and if any metric’s value exceeds its maximum value using
background loads, then the home is likely occupied.

One benefit of our approach is that it requires no training data
that specifies the home’s ground truth occupancy and electricity
usage over an extended period. Training data is difficult to gather,
since it requires deploying sensors to collect data during a training
phase, which is exactly the problem NIOM is attempting to avoid.
However, one drawback with our approach is that the nighttime
power usage of background loads may not be an accurate indicator
of background load power usage during the day. This is especially
true for loads with daily cycles, such as air conditioners, which may
use significantly more energy during the day. That said, our results
indicate that nighttime usage performs well in our two test homes.
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Figure 3: Home-B’s load profile and ground truth occupancy over a summer week (top) and its detected occupancy using our NIOM

algorithm (bottom), which combines results from all three metrics.

True Positives True Negatives False Positives False Negatives

Average Power 53.50% 24.84% 0.54% 21.12%

Standard Deviation 49.69% 24.69% 0.70% 24.93%

Power Range 37.15% 25.30% 0.08% 37.47%

Combination 66.11% 24.52% 0.86% 8.50%

Table 2: NIOM accuracy for Home-B over the same summer week as Figure 3 using nighttime-based thresholds.

4. EVALUATION
The previous section outlines a simple threshold-based NIOM

algorithm. In this section, we quantify its accuracy in two homes
to demonstrate the algorithm’s performance. We set τ = 15 data
points for each metric and τcluster = 60 for the clustering thresh-
old, which means our approach will generate false positives if occu-
pants frequently leave and return within an hour. Unless otherwise
noted, we set thresholds for each metric based on the metric’s max-
imum value at night (1am-4am). Below, we compare our results
with both ground truth occupancy and a NILM-based approach.

4.1 Comparison with Ground Truth
Figure 3 plots Home-B’s load profile and ground truth occupancy

over a summer week (top) and its detected occupancy using our
NIOM algorithm (bottom), which combines the clustered results
from all three metrics. As the graph shows, the detected occupancy
is nearly identical to the ground truth occupancy. Table 2 shows
the full breakdown of the percentage of time each individual metric
yields true positives (detects occupancy and the home is occupied),
true negatives (detects no occupancy and the home is not occupied),
false positives (detects occupancy but the home is not occupied),
and false negatives (detects no occupancy but the home is occu-
pied). The overall accuracy is then (TP+TN) / (TP+TN+FP+FN).
As the table shows, each metric individually generates a significant
number of false negatives, with average power having the highest
accuracy at 78.34%. Interestingly, combining metrics significantly
reduces the percentage of false negatives (by more than double in
all cases) while causing only a slight increase in false positives
(<0.5%), resulting in an overall accuracy of 90.63%.

The increased accuracy is due to an increase in the true positive
rate (or recall), i.e., the detection accuracy given that occupants are
present, from 0.72 using average power to 0.87 when combining
metrics. The result demonstrates that, in this case, additional met-
rics beyond average power provide useful information. Since all
metrics and their combination have low false positive rates, they
all exhibit high precision, i.e., the probability that the home is oc-
cupied when the algorithm detects occupancy, with the combined
algorithm having a precision of 0.99. Of course, since the home

is occupied 74.61% of the time, an algorithm that always assumes
occupants are present will have an accuracy of 74.61%. As a result,
the F-measure—the harmonic mean of precision and recall—is of-
ten used instead of accuracy to assess a binary classifier’s overall
performance, with values closer to 1 indicating better performance.
The F-measure from combining the metrics is 0.93, while the F-
measure of the best individual metric (average power) is only 0.70.

Figure 4 and Table 3 shows similar results over a summer week
from Home-A. Notice that Home-A’s profile is significantly differ-
ent than Home-B’s, primarily due to its use of multiple window
air conditioning units instead of a single large centralized system,
as well as other high-power background loads (as shown in Fig-
ure 1(a)). In addition, the occupants in Home-A are less likely
to turn off their air conditioning when they leave the home than
Home-B because they own pets. As a result, occupancy detection
is more challenging in Home-A. While combining the metrics still
yields the best accuracy (at 79.09%) and F-measure (at 0.82), each
individual metric is only slightly worse. Even so, Home-A’s results
maintain a low rate of false positives. Home-A also demonstrates
how sensitive our algorithm is to each threshold. In this case, lower-
ing the threshold to be the average of each metric over night (rather
than the maximum) significantly improves the results, yielding an
overall accuracy of 90.39% and an F-measure of 0.94.

Both experiments above examine summer periods. However, we
expect the set of background loads to change each season. For in-
stance, air conditioners have a significant influence on both load
profiles above. As a result, we also examine a spring week from
Home-A, which shows the weaker correlation between occupancy
and electricity usage. Figure 5 and Table 4 show the results, which
exhibit a higher percentage of false negatives than the summer re-
sults. The increase in false negatives is due largely to the lack of
air conditioning, which narrows the difference in the load profile
between an occupied and unoccupied home, as indicated in Fig-
ure 5(top). The narrowed difference makes occupancy detection
more sensitive to the selection of thresholds. In addition, during
the summer, occupants in both homes often manually control air
conditioners—turning them on when they are home and turning
them off when they leave—which makes them act more like high-
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Figure 4: Home-A’s load profile and ground truth occupancy over a summer week (top) and its detected occupancy using our NIOM

algorithm (bottom), which combines results from all three metrics.

True Positives True Negatives False Positives False Negatives

Average Power 60.82% 11.91% 4.39% 22.88%

Standard Deviation 60.89% 14.39% 1.91% 22.81%

Power Range 62.68% 14.31% 1.98% 21.02%

Combination 67.27% 11.82% 4.47% 16 .44%

Table 3: NIOM accuracy for Home-A over the same summer week as Figure 4 using nighttime-based thresholds.

power interactive loads, rather than background loads that are con-
sistently on regardless of occupancy. Thus, the algorithm is able to
infer occupancy in the summer by detecting the presence of these
loads in the aggregate data. Interestingly, in this case, the overall
accuracy of 73.27% is slightly less than trivially assuming someone
is always home, which yields an overall accuracy 75.3%. How-
ever, the true negative rate, i.e., the accuracy given no one is home
(TN/(TN+FP)), is much higher (0.86 versus 0), since the false pos-
itives remain low.

4.2 Comparison with NILM-based Approach
Finally, we compare the results of our simple NIOM algorithm

with an approach based on a modern NILM algorithm. NILM is a
well-studied problem with the ambitious goal of disaggregating a
home’s aggregate time-series power data to obtain the time-series
power data for each of its constituent loads. One obvious way to
monitor occupancy is to first perform NILM, and then analyze the
resulting power usage of the interactive loads to detect occupancy.
As Figure 2(b) shows, interactive loads highly correlate with oc-
cupancy, and have nearly zero power usage when occupants are
not present. For comparison, we obtain the interactive load pro-
file using a NILM algorithm, and cluster events as in §3 to gen-
erate a continuous trace of occupancy. We then generate events
in the interactive load trace from the NILM disaggregation using
the same method as in §2 to detect occupants’ physical interactions
with loads based on the power usage of the interactive loads, e.g.,
any change in power >30W signals an interactive event.

We employ a NILM algorithm based on Factorial Hidden
Markov Models (FHMM) used by Kolter and Johnson [22] to
evaluate their Reference Energy Disaggregation Dataset (REDD),
which is similar to a technique by Kim et al. [21]. FHMMs map
well to NILM, since changes in building power reveal load state
transitions, but not the actual state of each load. Figure 6 and Ta-
ble 5 show the results. Note that our FHMM results are conserva-
tive, as we use the same data for training and disaggregation. Ta-
ble 5 shows that with our standard clustering threshold of N = 60,
the NILM-based approach simply predicts 100% occupancy. This
behavior is due to the fact that while NILM tends to work well for
identifying background loads with regular and consistent power us-

age, it has difficulty with interactive loads with no regular pattern of
operation. Since interactive loads, such as lighting, do not exhibit
many identifiable power features, have no regular usage patterns,
and are often low-power, it is difficult for NILM algorithms to ac-
curately extract them. As a result, as shown in Figure 6, NILM
outputs large numbers of spurious events and obscures the clear
periods of inactivity that signal occupancy. Lowering the cluster-
ing threshold corrects for this somewhat, as shown in Table 5, but
barely improves (and eventually reduces) overall accuracy; In other
words, the algorithm essentially does no better than the trivial ap-
proach of always predicting occupancy. Our comparison is only to
demonstrate that the wealth of prior research on NILM does not
directly apply to NIOM, and possibly other non-intrusive analytics.

5. CONCLUSION AND FUTURE WORK
In this paper, we explore the potential for NIOM, which analyzes

electricity data from smart meters to infer occupancy, in two homes.
Our intuition is that a home, when occupied, has a higher aver-
age power, standard deviation, and absolute power range over short
intervals than when unoccupied. We develop a simple threshold-
based NIOM algorithm based on this intuition and then empirically
evaluate its accuracy. Our results show that the algorithm per-
forms well, especially during the summer, although dynamically
setting appropriate thresholds remains a challenge. In the future,
we plan to apply more sophisticated methods for associating occu-
pancy with power usage. For example, rather than using a binary
classifier, we could assign a probability of occupancy based on re-
cent electricity usage. In addition, machine learning techniques
(using our metrics as features) may perform better than simply set-
ting ad-hoc thresholds based on a home’s nighttime power usage.
However, these techniques have the drawback of requiring some
form of training data, which is challenging and time-consuming to
collect and our current approach avoids.

While researchers have focused heavily on the problem of
NILM, NIOM represents another example of the type of simple
and useful analytics possible with smart meter data. As we show
in §4, directly applying a NILM algorithm to occupancy monitor-
ing and other analytics may not be appropriate. Other potential
examples of non-intrusive analytics that are distinct from NILM
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Figure 5: From top to bottom, Home-A’s load profile and ground truth occupancy over a spring week, as well as occupancy detection

based on the combination with thresholds for each metric set based on its maximum value at night from 1am to 4am.

True Positives True Negatives False Positives False Negatives

Average Power 50.17% 21.88% 2.81% 25.14%

Standard Deviation 38.49% 24.08% 0.61% 36.82%

Power Range 40.64% 23.24% 1.45% 34.68%

Combination 52.09% 21.18% 3.52% 23.21%

Table 4: NIOM accuracy for Home-A over a spring week using nighttime-based thresholds.

include include separating the temperature-dependent power usage
from the temperature-independent power usage, or detecting differ-
ent types of loads based on common power usage characteristics.
For example, in recent work, we show that resistive, inductive, and
non-linear loads each present highly identifiable characteristics—
smooth power growth/decay, large power spikes, and rapid and ran-
dom power fluctuations—in smart meter data [5]. As another ex-
ample, converting smart meter data into the frequency domain can
identify cyclical loads with semi-regular duty cycles. Each of these
analytics, while useful, is simpler and likely more tractable than
performing a complete disaggregation using NILM.

Even with the limitations of our current approach, NIOM has
compelling applications given the widespread deployment of smart
meters by utilities. For instance, prior work highlights that resi-
dential users often either i) do not program or ii) mis-program pro-
grammable thermostats [24]. While the NEST thermostat attempts
to address the problem by automatically programming itself based
on occupancy patterns it learns using a built-in motion sensor, it
carries a significant cost (roughly $250). However, NIOM’s po-
tential to extract occupancy patterns from smart meters en masse

enables utilities to automatically determine i) how much a pro-
grammable thermostat benefits each home and ii) suggest an op-
timal customized thermostat schedule. Utilities could include these
results in electric bills or as part of routine energy audits to moti-
vate consumers to upgrade to programmable thermostats and esti-
mate their savings, or properly program their existing thermostat.
While the applications above only require offline data, our algo-
rithm could be run against real-time power data, although we do
not evaluate its performance here. We expect future smart meters
to enable customer’s access to their data in real-time. Our algo-
rithm’s primary limitation in a real-time setting is its cluster thresh-
old, which requires each metric being below its particular threshold
for a certain time window before signaling occupancy. This clus-
tering time window will dictate the system’s detection latency.

Finally, our work only infers binary occupancy from smart me-
ter data, i.e., whether anyone is home, and does not consider other
dimensions of occupancy, such as the number of occupants or their
location e.g.„ which room they are in. Our data suggests that the
more people within a home, the more electrical events they pro-

duce, although the relationship is not linear since some activities
are shared. Thus, accurately monitoring a home’s occupancy count
would likely require a technique more advanced than our simple
threshold-based approach. Monitoring occupants’ location might
also be possible by detecting the operation of particular loads, such
as kitchen appliances, and then associating these loads with room
occupancy. However, such associations would likely require some
knowledge of the mapping of devices to rooms, as well as higher
resolution smart meter data, since one-minute average power does
not reveal many identifiable load characteristics [5].
Acknowledgements: We would like to thank both the anonymous
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