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Abstract

This article presents a non-intrusive reduced order model (NIROM) for general, dy-

namic partial differential equations. Based upon proper orthogonal decomposition

(POD) and Smolyak sparse grid collocation, the method first projects the unknowns

with full space and time coordinates onto a reduced POD basis. Then we introduce

a new least squares fitting procedure to approximate the dynamical transition of the

POD coefficients between subsequent time steps, taking only a set of full model solu-

tion snapshots as the input. Thus, the physics and numerics of the original PDE model

is fully transparent to this methodology and its level of non-intrusiveness is improved

compared to existing ROMs. Furthermore, we take adaptive measures to address the

instability issue arising from reduced order iterations of the POD coefficients.

This model can be applied to a wide range of physical and engineering scenarios

and we test it on a couple problems in fluid dynamics. It is demonstrated that this

reduced order approach captures the dominant features of the high fidelity models with

reasonable accuracy while the computation complexity is reduced by several orders of

magnitude.
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1. Introduction

In many areas of science and engineering, iterative computations and data assim-

ilations for large-scale dynamical systems are often required to understand, to predict

and/or to control various phenomena. Straightforward simulations of such problems

may be very inefficient: Extensive resources are exhausted to produce intermediate re-

sults that have little significance due to different sources of parameter variations, errors

and noise. Therefore, reduced order models (ROMs) have become prevalent thanks to

their potential to achieve major speedup for standard numerical procedures. Their ap-

plicability relies on the presumption that the predominant physical mechanisms operate

on a much lower dimensional space. A particular class of implementations are based

on the proper orthogonal decomposition (POD) method whose variants have been suc-

cessfully applied in a wide spectrum of research fields: air pollution dispersion[1],

shallow water equations[2, 3], convective flows [4], ocean modelling [5, 3, 6, 7, 8, 9],

4-D variational data assimilation [10, 11, 12], neutron transport [13], fluid and structure

interaction[14, 15], inversion [16] and molecular simulation [17].

Traditionally, a reduced order model implies re-derive a simpler physical model

with additional restrictions such as homogenisation and parametrisation, or the substan-

tial rewriting of the numerical schemes for the physical model which is often termed

as “intrusiveness”. The intrusive reduced order model (ROM) has been suffering from

instability and non-linear inefficiency problems [18, 19, 7, 20, 21, 8, 22]. In addition,

the dependency of the source code results in that the ROM is difficult to modify and

implement[23].

To circumvent or avoid these issues, researchers found another way of solving the

reduced order system: non-intrusive method. The non-intrusive method is popular in

recent years since it is independent of the complex original dynamic system and it is

therefore easy to implement even when the source code is not available. A number of

non-intrusive reduced order modelling (NIROM) methods have been proposed. Wal-

ton et al. and Xiao et al. proposed a NIROM using radial basis function (RBF) method

and proper othogonal decomposition (POD)[24, 25]. Noack [26] and Noori [27] used

neural network to construct a NIROM. Xiao et. al. used a Smolyak sparse grid colloca-

tion method in which multidimensional, vector-valued Smolyak functions are used to

replace the differential equations and to evolve the state variables [28]. This approach

not only avoids the necessity of code modification but also circumvents the so-called

curse of dimensionality where computational complexity grows exponentially as the

dimension of the problem increases.

In this paper, we presented a new non-intrusive reduced order model method based

on least square fitting and Smolyak sparse grid. The advantage of this method lies in

it uses smolyak sparse grid method to lower the order of polynomial fit. As we know,

high order polynomials may cause a poorer fitting since they are oscillatory between

sample data points. This combination of Smolyak sparse grid and least square fitting

induces a great potential in problems with high number of sample data points( many

thousands of data points). Instead of traversing each nodal point in a Smolyak sparse

grid with its coordinates as the input to a full model simulation and then interpolating

with the collective output, we compute the coefficients of the Smolyak polynomials by

solving a least squares fitting problem whose data are recycled from the generation of
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the POD basis. We first properly decompose the temporally equidistant snapshots of

the solution variables generated by the CFD software Fluidity [29]. Then we assemble

the input data for the least square fitting by projecting the snapshots onto the reduced

basis. Finally, a linear system of normal equations is solved producing the desired fit

defined by its function values on a sparse grid, with which one can approximate the

infinite dimensional evolution of physical variables with finite dimensional map for

POD coefficients. Essentially, the physics and numerics of the original, full model are

transparent to the reduced order model and it can be readily made into a universal black

box that is compatible with arbitrary POD framework.

The structure of the paper is as follows. Section 2 reviews the general methodology

of POD followed by previous results on non-intrusive ROMs with the introduction

of a Smolyak sparse grid. Section 3 derives the least squares fitting problem and its

solution for the non-intrusive modelling. Section 4 presents the stabilisation techniques

we develops to address the instability issue we encounter with the direct application

of the least squares approximation. Section 5 demonstrates the methods capabilities

by solving two test problems in fluid dynamics. Finally in Section 6, a summary of

conclusions and discussions of future work are presented.

2. POD-Based Reduced Order Modelling and Smolyak Sparse Grids

We consider a physical, dynamical system such as the Navier-Stokes equations

which takes the form
∂ψ

∂t
= F(ψ) (1)

with appropriate initial and boundary conditions, where the vector-valued function ψ,

defined on a region in space, say Ω ⊂ R
3, and on the time interval [0,T ], is connected

to a prescribed forcing, F, that is in general a complex, integro-differential operator

derived from some physical laws.

2.1. Reduction via Proper Othogonal Decomposition

The solution ψ to the master equation (1) lives in an infinite-dimensional function

space and the first step of our reduced order modeling is to project it onto a finite-

dimensional subspace via proper orthogonal decomposition (POD). This procedure

generates a set of basis functions that is constructed from a collection of snapshots

that are taken at a number of time instances of the full model simulation. This ba-

sis serves as the axes of a coordinate system that one can represent and reconstruct

functions in physical space with coefficient vectors.

In the formulation presented here snapshots of each component of the solution

vector is individually recorded. Without loss of generality, we use the Navier-Stokes

equations to illustrate where ψ is consisted of 3 velocity components, (ux, uy, uz), and a

pressure component, p. Given a computational mesh ofN nodes, the sth snapshot of ψ

then contains fourN−vectors, denoted as Ψx
s , Ψ

y
s, Ψ

z
s, and Ψ

p
s respectively, with which

we assemble four separate N × S matrices as

Ψx = (Ψx
1,Ψ

x
2, . . . ,Ψ

x
S ), Ψy = (Ψ

y

1
,Ψ

y

2
, . . . ,Ψ

y

S
) (2)
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and so on for the other two components, where S is the number of snapshots available.

For the purpose of simplicity we will omit the superscripts denoting unknown compo-

nents from here on since the following procedure is applied to each of the four matrices

in an independent and identical manner.

Next we construct a normalised snapshot matrix Ψ̃ with columns

Ψ̃k = Ψk −
1

S

S∑

k=1

Ψk, k = 1, 2, . . . , S (3)

to which we then apply a singular value decomposition (SVD) as

Ψ̃ = UΣVT . (4)

Here the matrices U ∈ RN×N and V ∈ RS×S consist of the orthogonal vectors for

Ψ̃Ψ̃T and Ψ̃T Ψ̃, respectively and Σ is a diagonal matrix of size N × S whose nonzero

(positive) entries, arranged in a decreasing order, are the singular values of Ψ̃ and we

denote them as λk, k = 1, 2, · · · , S .

Eventually, the proper orthogonal decomposition of Ψ̃, namely, a reduced-order,

orthonormal set of basis functions {ϕk}Sk=1
are retrieved by renormalising the projections

of Ψ̃ onto the column vectors of V as

ϕk =
Ψ̃Vk√
λk

, k = 1, 2, . . . , S (5)

Moreover, this basis can be optimised by keeping only the first P members which corre-

spond to the largest P singular values, respectively. Note that these vectors are optimal

in the sense that no other rank-P set of basis vectors can be closer to the snapshot ma-

trix Ψ̃ measured in the Frobenius norm by the Eckart–Young Theorem. This further

reduction is especially accurate when there is a “scale separation” among the singular

values at λP, namely, ∑S
i=P+1 λ

2
i∑S

i=1 λ
2
i

≪ 1 (6)

With an optimal POD basis {ϕk}Pk=1
any variable ψ on aN-node mesh can be repre-

sented by

ψ = ψ +

P∑

j=1

α jϕ j, (7)

where α j ≡ α j(t) denote the time-varying coefficients of the POD expansion and ψ

is the time-independent mean of the ensemble of snapshots for the variable ψ which

is analogous to the average in (3). This series expansion transforms the full physical

space to the reduced order space and vice versa.

A standard Galerkin procedure can then be applied for the series expansion (7).

Substituting the series into the master equation (1) and following by a first-order fi-

nite difference discretisation in time, we finally arrive at a ROM, namely, an iteration

scheme for the reduced order POD coefficient at arbitrary time step in the form of

αn+1
k = fk

(
αn = (αn

1, α
n
2, · · · , αn

P)
)
, n = 1, 2, · · · . (8)
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plus the starting values α0
k

for k = 1, 2, · · · , P and the superscripts denote time discreti-

sation. The central subject in reduced order modelling is therefore to find an efficient

way to estimate the R
P → R functions fk so one can compute the POD coefficients at

arbitrary times and reconstruct the physical variables from them using the expansion

(7).

2.2. Non-Intrusive Reduced Order Modelling (NIROM) on a Smolyak Sparse Grid

Xiao et. al. developed a non-intrusive algorithm to interpolate the transitional func-

tions, i.e., f ′
k
s in (8), for the POD coefficients from their values on a Smolyak sparse

grid [28]. In particular, instead of the standard, intrusive approach that formulates a

linear system as a projected version of the master equation (1) that requires a major

re-derivation of the full model, they approximated each fk with a multidimensional

polynomial interpolant. Additionally, to avoid the curse of dimensionality, which is the

exponential growth of interpolation points entailing the increase of the POD basis size

P, a Smolyak sparse grid was introduced whose number of nodes is only a polynomial

function of its dimension size.

The Smolyak interpolant f̂
P,µ

k
(x) for any P-dimensional point x = (x1, x2, · · · , xP)

with approximation level µ can expanded as a weighted sum of tensor product operators

f̂
P,µ

k
(x) =

µ∑

|ℓ|=max(µ−P+1,0)

(−1)µ−|ℓ| ×
(

P − 1

µ − |ℓ|

)
× (

Uℓ1 ⊗ · · · ⊗ UℓP
)
( f̂

P,µ

k
)(x) (9)

where the summation index ℓ = (ℓ1, · · · , ℓP) ∈ NP, |ℓ| = ∑P
n=1 |ℓn| traverses through the

µ different levels of the sparse grid in each dimension and the operator

(
Uℓ1 ⊗ · · · ⊗ UℓP

)
( fk)(x) =

M(ℓ1)∑

i1=1

· · ·
M(ℓP)∑

iP=1

(
f̂

P,µ

k
(x
ℓ1

i1
, ..., x

ℓP

iP
) ×

P∏

j=1

ψ
ℓ j

i j
(x j)

)
(10)

is also a multidimensional sum weighted by the nodal values of the interpolant. Here

the ℓth
j

level 1D grid in the jth dimension, j = 1, 2, · · · , P, has the size

M(ℓ j) =

{
2ℓ j + 1, ℓ j = 1, 2, · · · , µ;

1, ℓ j = 0,
(11)

and its ith
j

node is denoted by x
ℓ j

i j
. Finally, the last term on the right hand side of (10) is

the product of one-dimensional, basis interpolating polynomials. For example, in the

standard Lagrange form,

ψℓi (x) =

M(ℓ)∏

n=1
n,i

x − xℓn

xℓ
i
− xℓn

. (12)

It is worth noting that the sparse grid, as the collection of all nodes, can be written as a

union of µ nested product grids

HP,µ =

µ∪

|l|=max(µ−P+1,0)

Gℓ =
µ∪

|ℓ|=max(µ−P+1,0)

( P⊗

i=1

{xℓi

k
}M(ℓi)

k=1

)
. (13)
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The interpolation conditions simply implies

f̂
P,µ

k

(
x
ℓ
i
= (x

ℓ1

i1
, ..., x

ℓP

iP
)
)
= fk(x

ℓ
i
), k = 1, 2, 3, · · · , P. (14)

with which Xiao et. al. applied the following algorithm to obtain a non-intrusive

reduced order model:

1. Perform a POD given snapshots of the solution to equation (1);

2. Generate a Smolyak sparse grid that covers the POD projections of solution snap-

shots onto the reduced order space;

3. For every node on the sparse grid, reconstruct an initial condition in physical

space using the transform (7);

4. Evolve the full model for a short time, ∆t, with the reconstructed initial condi-

tions and transform the results back to the reduced coefficient space with (7);

5. Find the Smolyak interpolants for the reduced order model (8) using the formulas

(9), (10) and (14) with the nodal data computed in the previous step.

3. Least Squares Fitting on a Smolyak Sparse Grid

The POD-based non-intrusive procedure circumvents the need to manipulate the

full model (1) or its numerical implementation and introduces impressive computation

economy with the use of Smolyak sparse grids. In this section, we will propose an alter-

native way to approximate fk(x), k = 1, 2, · · · , P using a least squares fitting approach

that is independent from the full model except for an input set of solution snapshots.

Effectively, Step 3 through 5 of the algorithm outlined at the end of Section 2.2 will be

replaced and the reduced order model will take form of a least squares fit instead of a

Smolyak interpolant.

Now we seek the optimal fit, denoted by F
P,µ

k
, k = 1, · · · , P, from the family of ad-

missible functions, Ω, namely, all RP → R polynomials defined on the same Smolyak

sparse grid as in Section 2.2. The least squares condition for data fitting demands that

F
P,µ

k
minimises the standard L2 distance in P−dimensional space, that is,

S−1∑

n=1

∥∥∥F
P,µ

k
(αn) − αn+1

∥∥∥2

2
= min

g∈Ω

S−1∑

n=1

∥∥∥g(αn) − αn+1
∥∥∥2

2
. (15)

Here the data set
{(
αn = (αn

1, · · · , αn
P), αn+1

k = fk(αn)
)
, n = 1, 2, · · · , S − 1

}
(16)

contains duple pairs of POD projections of the solution at two subsequent time steps

calculated by the full model and they are assumed to be connected by the transition

relation (8).

The formulas (9) through (12) demonstrates how any polynomial function g(x) on

the sparse grid HP,µ is uniquely specified by its values on grid nodes. Therefore, we

define a quadratic cost function of these nodal values as

Jk

({
g(x), xs ∈ HP,µ}) =

S−1∑

n=1

[
g(αn) − αn+1

k

]2
. (17)
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Substituting the nodal expansion for g(αn) into the right hand side and set all the partial

derivatives to be zero lead to a linear system, namely, the normal equations, whose

solution consists of the nodal values of F
P,µ

k
(x). Essentially, the series (9) and (10) can

be re-organised into a single sum

g(x) =
∑

xs∈HP,µ

g(x
s) wxs (x) (18)

where wxs is the weighting function associated with the node x
s. Consequently,

1

2

∂Jk

∂g(x∗)

∣∣∣∣∣∣
g≡F

P,µ

k

=
∑

xs∈HP,µ

F
P,µ

k
(x

s)×
( S−1∑

n=1

wx∗(α
n) wxs (αn)

)
−

S−1∑

n=1

wx∗ (α
n)αn+1

k = 0 (19)

for any node x
∗ on the gridHP,µ. Equivalently, in matrix notation,



⟨
wx1 ,wx1

⟩
s

⟨
wx1 ,wx2

⟩
s

⟨
wx1 ,wx3

⟩
s · · ·

⟨
wx2 ,wx1

⟩
s

⟨
wx2 ,wx2

⟩
s

⟨
wx2 ,wx3

⟩
s · · ·

⟨
wx3 ,wx1

⟩
s

⟨
wx3 ,wx2

⟩
s

⟨
wx3 ,wx3

⟩
s · · ·

...
...

...
...



·



F
P,µ

k
(x

1)

F
P,µ

k
(x

2)

F
P,µ

k
(x

3)

...



=



⟨
wx1 ,P+

k

⟩
s

⟨
wx2 ,P+

k

⟩
s

⟨
wx3 ,P+

k

⟩
s

...



(20)

in which {x1, x2, x3, . . . } is an arbitrary ordering of the nodes ofHP,µ, the inner product

⟨
f , g

⟩
s =

S−1∑

n=1

f (αn) g(αn) (21)

and the projector P+
k

returns the kth component of αn+1.

Clearly, the coefficient matrix of the linear system (20), given that it is rank-full as

long as the number of grid nodes is less than that of the snapshots, is symmetric and

positive-definite so it can be solved numerically with standard techniques such as QR

factorisation, successive over-relaxation and etc.

Repeating the above procedure for k = 1, 2, · · · , P we obtain the least square fit-

ting approximations to the reduced order model (8). The fundamental advantage of

this approach over the interpolation model is that the only thing we only need the de-

composed solution snapshots, {αn, n = 1, 2, · · · , S } from the full model without the

necessity to run it. This separates the ROM from detailed derivation and simulation

of the physics and the level of non-intrusiveness is improved, as well as the enormous

gain in computation economy.

4. Iteration Stabilisation with Coefficient Damping

As we found out in preliminary results, straightforward iterations of formulas (8)

using its least squares approximation reconstructed with the solution to the system (20)

suffers from instability issues that often arise in reduced order modelling. In particular,

depending on specific problems and parameters, some POD coefficients diverges to
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infinity after a random number of iterations when we use the reduced order modelling

to evolve the dynamical system.

While the numerical and physical origins of this instability seem to depend on

the specifics of the full model and are therefore beyond the scope of this paper, we

next offer a simple and effective remedy by supplementing the fitting algorithm with a

prediction-correction step: Once we detect that an output component of the model (8)

diverges from the Smolyak grid that covers the dataset, we enforce a damping to this

component. That is, with the tilde denoting the fitting approximations and the starting

value α̃1 = α1, one iteration of this ROM consists of two parts:

Prediction: α̂n+1
k = F

P,µ

k
(α̃n); (22a)

Correction: α̃n+1
k =



α̂n+1
k
, αmin

k
< α̂n+1

k
< αmax

k
;

δ αmin
k
, α̂n+1

k
≤ αmin

k
;

δ αmax
k

, α̂n+1
k
≥ αmax

k

(22b)

for n = 1, 2, · · · , k = 1, 2, · · · , P and the admissible range of α̃n+1
k

is pre-determined

from the data as

αmin
k =

S

min
i=1

αi
k, αmax

k =
S

max
i=1

αs
k. (23)

Here we have introduced a variable damping parameter, δ ∈ (0, 1] and we will see in

the numerical example that an empirical choice of δ ∈ (0.8, 1.0] usually yields results

with reasonable accuracy.

Notice that this filter only affects how the reduced order model substitutes the full

model, while the derivation of the model itself, and its non-intrusive features, remained

unaltered. There are various alternative options that may achieve regularity such as

limiting the scope of fitting data (e.g., Finite Impulse Response filter), putting more

weights on the data with small perturbations / gradients (e.g., weighted least squares)

and etc. However, for the sake of simplicity we elect to postpone the exploration toward

these directions to future work.

5. Numerical Examples

In this section we demonstrate the performance of the POD-based, non-intrusive re-

duced order scheme with least squares fitting by modelling a gyre flow and the flow past

a cylinder that produces a von Kármán vortex street with two different Reynolds num-

bers. For both test cases, the solutions from the fidelity full model, which is simulated

at the platform of Fluidity, serve as the reference, exact values for model comparisons

as well as the snapshots for the POD basis generation. The error analysis was carried

out with the same metrics used by Xiao et. al. [28], namely, the root mean square error

(RMSE) and correlation coefficient on the N-node finite element, physical mesh. For

example, the RMSE at the nth time step is defined by

RMSEn =
∥ψn

NIROM
− ψn

f
∥2

√
N

. (24)
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(a) full model, t = 18 days (b) LSROM, t = 18 days (c) Error in LSROM, t = 18 days

(d) full model, t = 36 days (e) LSROM, t = 36 days (f) Error in LSROM, t = 36 days

Figure 1: The gyre flow computed at time instances 18 (left) and 36 days (right). The panels (a) and (d) are

full model simulations. The panels (b) and (e) are LSROM approximations with 3 POD basis function for

each variable. The panels (c) and (f) are the differences between the full and LSROM models.

where ψn
ROM

and ψn
f

are the nodal snapshots of the NIROM solution and of the full

solution on the full mesh, respectively and ∥ · ∥2 is the standard vector 2-norm. In all

simulations, the ROM operates on a one level Smolyak sparse grid, that is, µ = 1 in

Eq. (15), as increasing the number of grid level is found to provide negligible accuracy

gain while the growing grid size demands doubling or quadrupling the snapshot data

to guarantee the wellposedness of the linear system (20).

5.1. Problem 1: Gyre flow

We first test the least squares NIROM (LSROM) on the simulation of a shallow-

water gyre flow. The geophysical scenario depicts a fluid circulating within a rectan-

gular domain of the size Lx × Ly = 1000km × 1000km. The flow is driven by the

uni-directional surface wind stress prescribed by

τy = τ0 cos(πy/Ly) and τx = 0 (25)

9
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Figure 2: Gyre flow: The evolutions of POD coefficients for 3×3 POD basis functions. In each of the figures

above, the horizontal axis is the timestep and the vertical axis is the value of the POD coefficients; the black,

solid line is the projected POD coefficient of the full model solution and the blue, dotted line is its LSROM

approximation. In these figures two curves are indistinguishable from each other.

where the maximum zonal stress τ0 = 0.1 N m−1. In the full model, we address the

Coriolis effect with the beta-plane approximation by setting β = 1.8 × 10−11 m−1 s−1

and we adopt the baseline fluid density ρ0 = 103 kg m−3.

In this case, the high-fidelity full model was generated on a 2823-node finite el-

ement mesh for a duration of T = 36.5 days using a time step of ∆t = 0.365 days.

Accordingly we record 100 snapshots of the solution from which only 3 POD basis

functions for each variable (velocities u, v and pressure p) are extracted using the pro-

cedure described in Section 2.1. Then with the least square fitting method outlined in

Section 3, we compute the nodal values of the transition functions (8) on the Smolyak

grid determined by Step 2 at the end of Section 2.2. And finally, we iterate the reduced

order model for each time step and reconstruct the LSROM-approximated solution on

the physical mesh with expansion formula (7).

The comparison between the full model and the LSROM approximation is illus-

trated in Figure 1, in which we plotted the velocity magnitudes at two time instances,

t = 18 days (the 50th time step) and t = 36 days (the 98th time step), as well as the

difference between full model and LSROM at these times. It is clear that the dominant

features of the flow field is accurately resolved by the reduced order model.

On the other hand, we plot the evolution of the POD coefficients in the reduced
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Figure 3: Gyre flow: The error diagnostics of the LSROM approximation with the reference of the

interpolation-based NIROM.

space in Figure 2. Here the 3 POD coefficients for each of the three variables (a total

of 9) are plotted for all times in which the full model projections are virtually indistin-

guishable from the NIROM approximations. POD #1 is the coefficient associated with

the leading POD basis function for each variable, or equivalently, α1 in the series ex-

pansion (7) and so on. This figure also confirms that new ROM is a good approximation

to the full model.

Quantitatively, Figure 3 displays evolutions of the RMSE and of the correlation

coefficient between the full model and the non-intrusive model, respectively. Here we

plotted the results for two gyre simulations of LSROM, one with 3 POD basis functions

and the other with 6, and the result by the interpolation-based NIROM with 3 POD

basis functions. Together they further verify that the ROM approximation achieves

an overall good agreement with full model, especially for the LSROM with only 3

POD bases for which the results are essentially equivalent to the interpolation based

NIROM [28] under the same setting. It should be noted that in these results the damping

parameter for stabilisation δ = 1.0 applied according to Section 4 and this choice is

optimal in the sense that the temporal maximum of the associated RMSE is minimised.

However, we notice an intrigue phenomenon: We are able to increase the accuracy,

indicated by smaller RMSE and larger correlation coefficient, with a doubled number

of POD bases (from 3 to 6). However, the improvement only lasts until the 57th time

step after which the RMSE soars and the correlation coefficient diverges from unity

significantly after the 80th time step. This demonstrates another aspect of the stability

issue we encountered as more POD modes potentially promote instability. An intuition

suggests that the fitting nature of the model necessitates more snapshot data (eg., more

frequently sampling or equivalently, smaller ∆t) to maintain a certain accuracy level as

we also see in exploratory simulations. Due to the scope of this paper we elect to study

the detailed statistical relationship between the sizes of the POD decomposition and

of the snapshot matrix in this LSROM framework to future work. For example, one

would want to determine a priori the optimal number of POD bases used given a fixed

number of snapshots and vice versa.

Furthermore, we compare the computation costs by different models in Table 1
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where we list the CPU times consumed by different stages of different models at each

time step. We observed that although the previous interpolation-based NIROM and the

new fitting-based LSROM share the POD projection costs and both methods achieve

great speed-ups from the full model, the cost of the fitting step in LSROM is negli-

gible compared to that of the interpolations in Xiao et. al.. Since the fitting solves a

model-independent linear system (20) and the interpolations always run the full model

for a short period of time, it is to be expected that the LSROM with improved non-

intrusiveness will possess even bigger advantage for more complicated scenarios.

Model Assembling Projecting Interpolation Fitting Total

and Solving

Full Model 1.0070 0.0000 0.0000 0.0000 1.0070

Interp. NIROM 0.0000 0.0040 0.0020 0.0000 0.0060

LSROM 0.0000 0.0040 0.0000 0.0001 0.0041

Table 1: Gyre flow: Comparison of the normalised CPU consumption by different models at each time step.

5.2. Problem 2: Flow past a cylinder

The second case on which we test the newly proposed LSROM method is also

a classical example in computational fluid dynamics: An viscous inlet flow passes

through a rectangular channel section that contains a cylinder and the oscillating down-

stream flow shed a street of von Kámán vortices. The simulation domain here is 2×0.4

in non-dimensional units and a cylinder of radius 0.12 is located at the point (0.2, 0.2).

The uniform upstream flow enters the domain from the left edge with unit speed right-

ward and it is slightly compressible. Typical outflow condition is applied at the right

edge while the fluid is required to have no slip and no outward flow at the upper and

lower edges of the channel. Finally, Dirichlet boundary conditions are enforced at the

cylinder wall. We run the model under two settings of Reynolds number, Re = 400 and

Re = 3600, to verify the general applicability of the method.

First, we run the high-fidelity full model with a prescribed Reynolds number Re =

400 on a 3213-node finite element mesh. Then we record the u, v and p solution

variables between t ∈ [2, 3] at regularly spaced time instances with ∆t = 0.01 and a

total of 100 snapshots are obtained from which we generated 6 POD basis functions

for each of the variables followed by the LSROM approximation procedure.

Figure 4 through 6 illustrates how the least squares NIROM resolves the full model

in this case. Visual inspection of Figure 4 confirms the satisfactory performance of the

LSROM for this problem by reproducing the location, the size and the magnitude of

almost all the vortices. Figure 5 displays the error distribution of the ROM and it is

general an order of magnitude smaller than the exact values. Figure 6 documents the

evolution of the POD coefficients of the full model and of the LSROM. Additionally,

the error diagnostics for this problem are shown in Figure 7 with a comparison to the

results obtained by the interpolation-based NIROM using the same number of POD

bases. Here the optimal damping parameter δ for the LSROM is chosen to be 0.94.

We see that for this test problem, the interpolation-based NIROM deviates from the

12



(a) full model, t = 2.1 (b) LSROM with 6 POD bases, t = 2.1

(c) full model, t = 2.5 (d) LSROM with 6 POD bases, t = 2.5

(e) full model, t = 2.8 (f) LSROM with 6 POD bases, t = 3

(g) full model, t = 3 (h) LSROM with 6 POD bases, t = 3

Figure 4: Flow past a cylinder at Re = 400. The figures above compare the full model (figures (a), (c), (e)

and (g)) and the LSROM with 6 POD basis functions (figures (b), (d), (f) and (h)) at t = 2.1, 2.5, 2.8 and 3.0.

(a) full model, t = 2.1 (b) LSROM, t = 2.5

(c) full model, t = 2.8 (d) LSROM, t = 3

Figure 5: Flow past a cylinder at Re = 400: The difference between full model and LSROM with 6 POD

basis functions. Re = 400.
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Figure 6: Flow past a cylinder at Re = 400: The evolutions of POD coefficients for 9 POD basis functions.

In each of the figures above, the horizontal axis is the timestep and the vertical axis is the value of the POD

coefficients; the black, solid line is the projected POD coefficient of the full model solution and the blue,

dotted line is its LSROM approximation.

LSROM and it performs slightly better after the midpoint in the temporal axis but both

methods are accurate approximations.

Next we increase the level of turbulence of the flow by setting Re = 3600 and we

keep track of the simulation for a longer duration for t ∈ [2, 6] with ∆t = 0.02. All the

other physical and numerical parameters remain the same. The corresponding results

are demonstrated in Figure 8 through 10. Here the optimal damping parameter δ for

the LSROM is chosen to be 0.84. Although the LSROM still qualitatively resolves the

main flow structures but the accuracy is apparently reduced compared to the previous

two test cases, the gyre flow and the flow past a cylinder at a lower Reynolds number.

This should not be surprising as the spatial and temporal gradients of the variable are

significantly magnified in this case and are thus harder to capture. These results can

no doubt be improved by tuning the numerical parameters, such as the number of POD

bases and of the snapshots used in the fitting, but the overall agreement achieved by this

very restricted set of POD basis is still worth reporting. And as we mentioned before,

we will postpone the investigation in this aspect to future study.
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Figure 7: Flow past a cylinder at Re = 400: The error diagnostics of LSROM with 6 POD bases in compari-

son with the interpolation-based NIROM with the same number of POD bases.

(a) full model, t = 2.1 (b) LSROM with 6 POD bases, t = 2.1

(c) full model, t = 3 (d) LSROM with 6 POD bases, t = 3

(e) full model, t = 4 (f) LSROM with 6 POD bases, t = 4

(g) full model, t = 5 (h) LSROM with 6 POD bases, t = 5

Figure 8: Flow past a cylinder at Re = 3600. The figures above compare the full model (figures (a), (c), (e)

and (g)) and the LSROM with 6 POD basis functions (figures (b), (d), (f) and (h)) at t = 2.1, 2.5, 2.8 and 3.0.
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(a) full model, t = 2.1 (b) LSROM, t = 2.5

(c) full model, t = 2.8 (d) LSROM, t = 3

Figure 9: Flow past a cylinder at Re = 3600: The error diagnostics of LSROM with 6 POD bases.
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(b) Evolution of the correlation coefficient

Figure 10: Flow past a cylinder at Re = 3600: The error diagnostics of LSROM with 6 POD bases.

16



6. Conclusions and Discussions

In this article a new non-intrusive reduced order model is introduced. The key

ingredient here is a least squares fitting procedure to approximate the reduced order

model formulated by standard POD routines that project the full model solution onto

a finite-dimensional space. The new method also represent the reduced order model

by polynomials defined on a Smolyak sparse grid whose coefficients are now obtained

by data fitting. Compared to other intrusive ROMs and a previous interpolation-based

non-intrusive ROM, this method only requires a number of solution snapshots from

the full model and does not need to modify nor further run the original model in the

process of ROM generation. In other words, the detailed physics and numerics of

the original model are completely transparent to this least squares NIROM (LSROM).

Another necessary module of the method involves the stabilisation of the reduced order

iteration in the place of the governing differential equations. A numerical damping

parameter is chosen to avoid the divergence of the POD coefficients.

The least square NIROM was tested on two CFD test cases against a high-performance

fluid solver (Fluidity). In the simulations of a shallow water gyre and of a Kármán vor-

tex street downstream of a cylinder at Re = 400 the non-intrusive model resolve the

flow structures with great precision, measured by root mean squared errors and corre-

lation coefficents, with only 3 or 6 POD basis functions. For the flow past a cylinder at

Re = 3600, the accuracy of LSROM with 6 POD bases is decreased but it still captures

the main features of the flow field. Preliminary results show that using more POD bases

could increase the accuracy for a limited time beyond which the instability emerges.

Future work will investigate the error and stability dependence on the number of POD

bases and on the number of solution snapshots adopted into the fitting. Overall, the

least squares fitting model with improved non-intrusiveness is a good approximation to

the full model with enormous gain in computation and modelling economy.

The future work will address the stability issues of the ROM with greater details,

such as optimising the data set for the least squares fitting by windowing or weighting,

and error analysis to determine the relationship between the optimal number of POD

bases used and the number of full model solution snapshots available. Morover, the

LSROM will be applied to more complicated problems in sciences and engineering to

fulfill its potential.
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[19] J. Östh, B. R. Noack, S. Krajnović, D. Barros, and J. Bore. On the need

for a nonlinear subscale turbulence term in POD models as exemplified for a

high-Reynolds-number flow over an Ahmed body. Journal of Fluid Mechanics,

747:518–544, 5 2014.

[20] M. Barrault, Y. Maday, N.C. Nguyen, and A.T. Patera. An empirical interpolation

method: application to efficient reduced-basis discretization of partial differential

equations. C. R. Acad. Sci. Paris, Ser, 339:667–672, 2004.

[21] S. Chaturantabut and D. C. Sorensen. Nonlinear model reduction via discrete

empirical interpolation. SIAM Journal of Scientific Computation, 32:2737–2764,

2010.

19



[22] M. J. Rewienski. A trajectory piecewise-linear approach to model order reduction

of nonlinear dynamical systems. PhD thesis, Citeseer, 2003.

[23] C. Han. Blackbox stencil interpolation method for model reduction. Master’s

thesis, Massachusetts Institute of Technology, 2012.

[24] S. Walton, O. Hassan, and K. Morgan. Reduced order modelling for unsteady

fluid flow using proper orthogonal decomposition and radial basis functions. Ap-

plied Mathematical Modelling, 37(20):8930–8945, 2013.

[25] D. Xiao, F. Fang, C. Pain, and G. Hu. Non-intrusive reduced order modelling of

the Navier-Stokes equations based on RBF interpolation. International Journal

for Numerical Methods in Fluids, 79(11):580–595, 2015.

[26] B. R. Noack, M. Morzynski, and G. Tadmor. Reduced-order modelling for flow

control, volume 528. Springer, 2011.

[27] R. Noori, A. R. Karbassi, K. Ashrafi, M. Ardestani, and N. Mehrdadi. Devel-

opment and application of reduced-order neural network model based on proper

orthogonal decomposition for BOD5 monitoring: Active and online prediction.

Environmental Progress and Sustainable Energy, 32(1):120–127, 2013.

[28] D. Xiao, F. Fang, A. G. Buchan, C. C. Pain, I. M. Navon, and A. Muggeridge.

Non-intrusive reduced order modelling of the Navier–Stokes equations. Com-

puter Methods in Applied Mechanics and Engineering, 293:522–541, 2015.

[29] C. C. Pain, M. D. Piggott, A. J. H. Goddard, F. Fang, G. J. Gorman, D. P. Mar-

shall, M. D. Eaton, P. W. Power, and C. R. E. De Oliveira. Three-dimensional

unstructured mesh ocean modelling. Ocean Modelling, 10(1):5–33, 2005.

20


