
HAL Id: hal-01925360
https://hal.archives-ouvertes.fr/hal-01925360

Submitted on 16 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-intrusive sparse subspace learning for parametrized
problems

Domenico Borzacchiello, Jose Aguado, Francisco Chinesta

To cite this version:
Domenico Borzacchiello, Jose Aguado, Francisco Chinesta. Non-intrusive sparse subspace learning
for parametrized problems. Archives of Computational Methods in Engineering, Springer Verlag, In
press, 10.1007/s11831-017-9241-4. hal-01925360

https://hal.archives-ouvertes.fr/hal-01925360
https://hal.archives-ouvertes.fr

Non-intrusive sparse subspace learning for

parametrized problems

Domenico Borzacchiello José V. Aguado

Francisco Chinesta

Abstract

We discuss the use of hierarchical collocation to approximate the numerical so-

lution of parametric models. With respect to traditional projection-based reduced

order modeling, the use of a collocation enables non-intrusive approach based on

sparse adaptive sampling of the parametric space. This allows to recover the low-

dimensional structure of the parametric solution subspace while also learning the

functional dependency from the parameters in explicit form. A sparse low-rank

approximate tensor representation of the parametric solution can be built through

an incremental strategy that only needs to have access to the output of a determin-

istic solver. Non-intrusiveness makes this approach straightforwardly applicable to

challenging problems characterized by nonlinearity or non affine weak forms. As

we show in the various examples presented in the paper, the method can be inter-

faced with no particular effort to existing third party simulation software making

the proposed approach particularly appealing and adapted to practical engineering

problems of industrial interest.

Reduced order modeling; Non-intrusiveness; Low rank approximations; Sparse

identification; Sparse subspace learning; Hierarchical collocation

1 Introduction

1.1 Motivation

Models are often defined in terms of one or several parameters regardless of the na-

ture of the phenomenon they describe. Parameters allow to adaptively adjust a general

model to a wide range of different scenarios governed by the same physical laws. In

continuum mechanics, for instance, models are expressed mathematically as partial dif-

ferential equations (PDE) representing the balance or the conservation laws governing

the evolution of the fundamental variables that describe the state of a system. Numer-

ical methods for the solution of such differential models have reached in many cases

a remarkable degree of maturity, enabling the development of a variety of simulation

software. This technological advancement has resulted in a massive usage of the simu-

lation tools at the industrial scale, mainly as a means of solving practical problems such

as design, optimization or inverse identification [1]. In this context, the user is usually

interested in assessing the adequacy of a particular configuration with regard to a given

1

design or performance criterion. This means in practice that the user decides, based on

simulation results, whether a particular design fulfills or not the product specifications,

or, in an optimization context, whether the process performance is improved or wors-

ened by a specific setup. The decision-making process based on simulation commonly

referred to as simulation-based engineering [2, 3].

In spite of the simplicity of this concept, simulation-based engineering may be

somehow limited by the need of evaluating multiple configurations before converg-

ing to a satisfactory result, that is, a design that fulfills the product specifications or

a setup that optimizes the process performance. This practice, in which simulations

have to be carried out for several changing configurations is the foundation of multi-

query simulation. Each query (i.e. configuration evaluation) requires allocating some

time to prepare a new simulation, execute it and analyze the results. Delays due to

communication and information exchange in collaborative work projects should also

be taken into account. This may render the design, or optimization, process very time

consuming, thus only allowing for the evaluation of few configurations. Even though

simulation-based engineering can be to some extent automated, the amount of configu-

rations that can be evaluated within reasonable time remains very low when compared

to the amount of potential configurations, which is potentially disproportionate [4].

In this paper, we shall assume that the ensemble of potential configurations of the

system under study can be explicitly defined in terms of a set of parameters varying

in a given interval. These parameters may be related to the material’s behavior, the

geometry or boundary conditions definition, for instance. In addition, parameters are

assumed to be uncorrelated, which provides the parametric domain with a cartesian

structure. We shall note by µ ∈ M ⊂ RD a D-tuple parameter array in the parametric

domainM. Since real applications are usually defined in terms of several parameters,

parametrized problems can be seen in fact as high-dimensional problems, due to the

need of large-scale exploration a high-dimensional parametric domain. This explains

why brute-force approaches based on extensive “grid search” are generally precluded.

1.2 Computational methods for parametrized problems

Many methods have been developed in order to address the problem of dimensionality

by proposing strategies for parsimonious exploration of the parametric domain. Design

of Experiments (DoE), widely used in the industry, is a very practical approach that can

help reducing the number of simulations based on a series of statistical indicators [5].

In the context of optimization, the parametric domain exploration may be guided by

some optimization algorithm, such as gradient-based methods or any of their numerous

variants [6]. The optimization algorithm has to be chosen carefully, according to the

properties and structure of the cost function at hand.

An alternative approach for addressing parametrized problems is based on reduced

order modeling methods (ROM). Since most of the time is consumed in multi-query

simulation, ROM methods are designed so as to reduce the computational complexity

of evaluating a given configuration. This is usually achieved by splitting the compu-

tational cost by means of an “offline-online” strategy. The key idea behind ROM is

to build a problem-specific, low-dimensional subspace, that may either be learnt from

available simulation data or computed by setting up an optimization problem. In the

2

next subsections we briefly review both approaches as well as the bottlenecks in their

practical implementation.

1.2.1 A posteriori reduced order modeling

Approaches based on learning from available simulation results are also known as a

posteriori ROM methods. They typically require inspection of the parametric domain

in the offline stage. This consists in carrying out simulations for different parameter

samples using a full-order solver (based on finite elements for instance). Data collected

in the learning stage is used to extract a reduced basis which is assumed to span the

entire solution subspace for any parameter choice [7, 8, 9]:

∀µ ∈ M : u(x;µ) ≈ uN(x;µ) ∈ VN := span{φi(x)}Ni=1, (1)

where u(x;µ) and uN(x;µ) stand for the solution of some parametrized model and its

approximation onto the low-dimensional subspace, namely VN . In the adopted nota-

tion, the semicolon symbol is used to differentiate physical coordinates, x, from pa-

rameters µ.

Note that in practice VN is contained in WM , an approximation space of dimension

M used by the full-order solver. Provided that N ≪ M, a reduced-order model can be

built by projecting the residual of eq. (1) in the sense of Galerkin, onto the reduced

subspace VN . In this way the parametric solution is implicitly expressed by the set of

reduced equations in terms of the coordinates of the solution onto the low-dimensional

subspace.

Therefore in the online stage, if the solution is required for a new parameter con-

figuration, a small algebraic system needs to be solved. Although this strategy results

in a remarkable computational time save, a number of questions remain open:

• Sampling. Offline sampling of the parametric space is of critical importance.

On one hand, sampling has to be fine enough to ensure that the structure of

the underlying subspace is captured within the level of desired accuracy. On

the other hand, extensive sampling is usually unachievable in high-dimensional

problems. In the context of the reduced basis method, an error estimator is used

so as to guide the sampling process [10]. Error estimation evaluation in nonlinear

problems is still object of ongoing studies [11].

• Affinity. Parameters must define an affine transformation. If that is not the

case, the advantages of the offline-online strategy are compromised. Interpola-

tion techniques have been proposed so as to overcome this issue [12], although

a careful treatment is needed in order to preserve the spectral properties of the

full-order operators [13].

• Nonlinearity. Nonlinear problems are a particular example of loss of affinity.

Indeed, the evaluation of the non-linear terms entails a computational complexity

which is in the order of that of the original non-reduced model [14]. Several

approaches exist including empirical interpolation techniques [15, 16], hyper-

reduction [17, 18], empirical quadrature rules [19] and collocation approaches

[20].

3

• Intrusiveness. ROM methods implementation in third-party simulation software

is quite intrusive since it requires access to the discrete operators arising from the

discretization of the partial differential equations, which is not always possible

[21].

1.2.2 A priori reduced order modeling

A priori ROM methods propose an alternative approach for parametrized problems.

They are designed so as to compute the solution of the parametrized problem as an

explicit function of the parameters. Therefore, a priori ROM methods do not produce

a reduced system of equations but the parametric solution itself. Note that in this

regard, parameters are treated exactly the same as if they were coordinates. Hence, we

shall drop the semicolon indicating the parametric dependence and note: u(x,µ). As a

consequence, the computational domain becomes of higher dimension, as it must cover

not only the physical and/or time coordinates, but also the parametric domain [22].

Since grid-based discretization is precluded in higher dimensional problems, tensor

subspaces must be introduced to represent parametric solutions efficiently [8, 23, 24].

Several tensor subspaces have been proposed, see [25] for details. For the sake of

brevity, we shall only present here the canonical tensor subspace, which lies at the

basis of the Proper Generalized Decomposition (PGD) method [26, 27, 28]. Hence, the

parametric solution is sought as:

u(x,µ) ≈ uN(x,µ) ∈ TN := span{ φi
0(x) φi

1(µ1) · · · φi
D(µD) }Ni=1, (2)

where TN is the subspace of tensors with canonical rank equal to N. Note that in prac-

tice TN ⊂ WM0
⊗WM1

⊗ · · · ⊗WMD
, where WMd

is a generic approximation space (finite

element like) of dimension Md, with 0 ≤ d ≤ D. In addition, φi
d

are separated functions

of each coordinate, usually called modes. Recall that this particular structure is possi-

ble thanks to the cartesian structure that has been assumed for the parametric domain.

Note that the complexity of the tensor subspace defined in Eq. (2) grows linearly with

the number of dimensions, while the complexity of a grid-based discretization grows

exponentially.

While a posteriori ROM methods extract a subspace from data, a priori methods

are designed so as to build a tensor subspace by setting up an optimization problem,

that is, no sampling of the parametric domain is in principle required. In particular,

PGD allows building a tensor subspace such as the one shown in Eq. (2) progressively

by computing rank-one corrections, i.e. by building a series of nested subspaces:

T1 ⊂ T2 ⊂ · · · ⊂ TN where TN := TN−1 + T1. (3)

In order to compute each rank-one correction, the weak form of the PDE at hand is re-

garded as an optimization problem where the set of admissible solutions is constrained

to T1. This yields a nonlinear optimization problem due to the tensor multiplicative

structure of the subspace, see Eq. (2), which can be efficiently solved by applying

an alternating directions algorithm [29]. In this algorithm, the optimization is per-

formed alternatively along each dimension until convergence [30, 31]. In this way,

the algorithm splits a high-dimensional problem into a series of low-dimensional ones,

achieving linear complexity in the dimensionality of the problem.

4

A priori ROM allows fast online exploration of several configurations, since evalu-

ating a single parameter choice demands no more than reading a look-up table. There-

fore, parametric solutions can be used as a black-box simulation database, to be easily

integrated as a part of complex systems such as real time simulators [32] or Simula-

tion Apps [33]. Other applications in which parametric solutions fit perfectly are fast

process optimization [34] and real-time inverse identification and control [35].

Aside from the question of the parametric domain sampling, which is completely

encompassed by a priori methods, both a priori and a posteriori approaches share es-

sentially the same unresolved questions and challenges already discussed above: in-

trusiveness, affinity and by extension nonlinearity. The only differences rely on the

technicality intrinsic to a tensor framework. The requirement for affinity translates in

the need of a tensor structure in the problem setting. Without this, the alternated op-

timization of the modes cannot be performed in linear complexity. The same issue

is encountered with non-linear problems: the tensor structure of the non-linear terms

is in general not known a priori, and therefore, their evaluation becomes extremely

expensive (comparable to that of a grid-based discretization). This issues make the in-

tegration of a priori ROM methods in third-party simulation software seems impractical

unless major modifications in the original code are implemented.

1.3 Contributions and paper structure

From the discussion in the previous sections the following conclusion can be drawn:

the main bottleneck of projection-based reduced order modeling can be resumed in that

not only the solution must be reducible but also the problem formulation must have a

proper structure.

In an attempt to encompass this limitation, we propose a sparse subspace learn-

ing (SSL) method for computing parametric solutions, based on the following main

ingredients:

• Collocation approach in the parametric domain to circumvent the need of affinity

or tensor structure in the problem setting, since the method is no longer based on

Galerkin projection.

• Hierarchical basis providing nested collocation points (i.e. greedy sampling) and

built-in error estimation capabilities.

• Incremental subspace learning to extract a low-rank approximation throughout

the greedy collocation refinement process.

• Sparse adaptive sampling to extend hierarchical collocation to higher dimen-

sions.

The SSL method is able to produce parametric solutions based only on the output

of a deterministic solver to which the parameters are fed as an input. SSL can be cou-

pled, in principle, to any third-party simulation software. The affinity of the parameter

transformations is no longer an issue, as well as the treatment of nonlinearity which

is entirely handled by the direct solver. Parametric sampling is intrinsically parallel.

5

Although this feature is not explored in this paper, it makes this approach compatible

with parallel and high performance computing.

The rest of the paper is organized as follows. In section 2 we illustrate the im-

plementation of SSL and a detailed application example. In section 3 we extend the

discussion to transient and pseudo-transient problems. Multi-parametric problems are

treated in section 4, where a practical application to a three dimensional transient car

crash model with four parameters is also presented. In the given examples we use both

academic and commercial software to point out the ease of integrating the proposed

approach using existing simulation software in a black-box fashion. Technical details

on the incremental subspace learning are available in appendix A.

2 Sparse Subspace Learning

In this section we introduce the main contribution of this paper, the sparse subspace

learning (SSL) method.

2.1 Underlying idea

Consider the solution of a parametrized problem is the scalar field u(x,µ), with x ∈ Ω

and µ ∈ M, the physical and parametric domains respectively. Given the approxima-

tion spaces

WNs
:= span{φi(x)}

Ns

i=1
and ZNµ

:= span{ψ j(µ)}
Nµ

j=1
,

its numerical approximation can be expressed as:

u(x,µ) ≈ uh(x,µ) :=

Ns∑

i=1

Nµ∑

j=1

S i jφ
i(x)ψ j(µ) .

The scalars S i j are representation coefficients computed trough numerical method after

appropriate discretization of the equations governing the problem in consideration. The

complexity of this representation is Ns × Nµ, with Ns and Nµ being the number of

degrees of freedom in the physical and parametric space.

In the framework of parametric reduced order modeling, the notion of reducibility

of the solution has a two-fold meaning [36, 37]. In particular, it requires that the matrix

of representation coefficients S have two structural properties:

• Sparsity. This roughly translates into asking that most of the coefficients in S

vanish, or in practice that there are a few dominant components whose magni-

tude is much greater than the rest. The sparsity, ζ, is defined as the number of

vanishing coefficients of S per row. Hopefully, ζ ∼ Nµ.

• Low-rank. The parametric solution lives in a lower dimensional subspace of

WNs
, that is, r ≪ min (Ns,Nµ). This basically consists in the assumption that

only few columns of S are linearly independent.

6

Through a collocation strategy it is possible to determine the low rank structure, by

extracting a reduced basis from the solutions at sampled points, while simultaneously

capturing the functional dependency from the parameters, in order to have numerical

parametric solution in explicit form. Parametric collocation approach seeks to compute

representation coefficients S i j as a linear combination of sampling or measurements of

the sought function evaluated at particular points {xi} and
{

µl

}

:

Mil := uh(xi,µl) .

Data can be structured into a matrix M which is a collection of output of a deterministic

solver (sometimes called the snapshots matrix), each column containing the solution

computed for a specific value of input parameters µ. In the following we assume that

the solver output is a reliable approximation of the true solution within a controllable

tolerance, that is, the discretization of the physical space Ns is sufficient to guarantee

the desired accuracy.

In practice, the relation between the representation and measurements coefficients

is given by a linear application that writes as:

SR =M ,

where the matrix R is a linear operator mapping the rows of S into the rows of M.

Once the snapshots matrix is available, the representation coefficients are obtained by

applying R−1 to the rows of M. This operation is potentially costly since R is a large

dense matrix that needs updating each time the parametric space is refined (i.e. new

columns are appended to the snapshots matrix). The transformation matrix results from

the choice of the representation basis and the sampling points, since

R jl = ψ
j(µl) .

Therefore, an optimal choice of the sampling strategy to select the points
{

µl

}

and the

representation basis ψ j(µ) would lead ideally to the highest possible sparsity s while

giving rise to an operator R that is easily invertible and updatable as the sampling

is refined. This concept is exploited in the next section using hierarchical parametric

collocation.

2.2 Discovering sparsity through hierarchical collocation

The most intuitive way to apply collocation in the parametric space is by using an

interpolative basis. This choice results into

S ≡M

because the linear operator R is the identity matrix in this case. Although the num-

ber of sampling can be adjusted to control the convergence in the parametric sampling
{

µl

}

, interpolative basis do not in general yield sparsity of the solution. On the other

hand, spectral basis, such as polynomials or trigonometric functions, guarantee spar-

sity, provided that the solution have the required regularity to be represented in the

chosen basis. When that is the case, spectral coefficients decrease exponentially with

7

the order of approximation [38]. The price to pay for sparsity is that the operator R is

full, because spectral basis are not interpolative. This implies that the computational

cost needed to compute the representation coefficients becomes impractical for large

systems and high dimensional parametric problems, for which the number of required

sampling is high and each sampling evaluation is costly. Furthermore, if refinement is

needed, R must be updated and a new linear system has to be solved again.

To circumvent this problem there are two possible approaches:

• Subsampling. By choosing the number of representation functions ψ j(µ) to be

higher than the number of sampled solutions (S has more columns than M) one

obtains an over-determined system. Through an appropriate regularization and

choice of the sampling points, which must be incoherent with respect of repre-

sentation basis [39], a unique solution can be determined. This is the approach

followed by Sparsity Promoting techniques [40] Compressed Sampling [41] and

Basis Pursuit [42]. In practice, regularization is ensured by asking the maximum

sparsity in the solution, which is equivalent in minimizing the zero-norm of each

column in S. This problem is NP-hard and therefore a surrogate norm is chosen

instead of the norm zero, often the norm-1, leading to a smooth convex func-

tional. The minimization step can be performed using many of the techniques

specifically developed for this problem [43, 44]. Once all the coefficients are

computed the ones with the lowest magnitude are simply purged. Although this

approach is extremely efficient in terms of the number of sampling measurements

needed, the computation of these coefficients becomes exponentially harder as

the number of parameters increases [45].

• Hierarchical Collocation. In this approach the representation coefficients are

not computed all at once but through and incremental procedure based on multi-

level sampling. This idea is used in Sparse Grid [46] and Stochastic Collocation

[47] using a hierarchical sampling based on a sequence of nested sets of points.

In this way the operator R is quasi-interpolative because it is block-triangular.

This means that the computation of the sparse coefficients in S does not require

the solution of an algebraic system, or the minimization of a nonlinear functional,

but can be computed relatively easily directly from the solution samplings.

Hierarchical sampling is the approach followed in this paper. This is based on the

definition of a hierarchy of collocation points sets. At level k of the sampling hierarchy,

the corresponding set of points has N
(k)
µ elements.

P(k) ≡
{

µl

}N
(k)
µ

l=1

In hierarchical collocation the point sets are nested:

· · · ⊂ P(k−1) ⊂ P(k) ⊂ P(k+1) ⊂ · · · ∀k ∈ N ,

This implies that each level contains the N
(k−1)
µ points of the previous level plus N

(k)
µ −

N
(k−1)
µ additional points. The subsets of new points that are progressively added are

called hierarchical refinements:

H (k) ≡ P(k) \ P(k−1) ∀k ∈ N+ .

8

The nested structure of sampling sets also entails that the subspaces

Z(k) := span{ψ j(µ)}
N

(k)
µ

j=1

are also nested:

· · · ⊂ Z(k−1) ⊂ Z(k) ⊂ Z(k+1) ⊂ · · · ∀k ∈ N .

In hierarchical collocation the basis functions are quasi-interpolative in the sense that,

for a given a hierarchical level k and N
(k−1)
µ < j ≤ N

(k)
µ

ψ j(µl)

= 0 if µl ∈ P
(k−1)

= δ jl if µl ∈ H
(k)

, 0 otherwise

(4)

This is essential in order to ensure the block triangular structure of the matrix R, which

is the key feature in order to have an easy direct solution of the linear system for the

determination of the representation coefficients. Indeed, in reason of the particular

structure of R, back substitution can be used to compute the columns of S:

• For the first level k = 0, 0 < j ≤ N
(0)
µ , the representation coefficient are simply

equivalent to the snapshots : Mi j = S i j, ∀i = 1, . . . ,Ns

• For subsequent levels k > 0, N
(k−1)
µ < j ≤ N

(k)
µ , the following explicit formula is

used

S i j = Mi j −

N
(k−1)
µ∑

l=1

S il ψ
l(µ j) ∀i = 1, . . . ,Ns (5)

The previous equation is applied recursively over the hierarchical levels using few

simple algebraic operations and without the need of updating the previously computed

S i j coefficients. Indeed, the second term in the right hand side of (5) corresponds to

the predicted values from interpolation of the previously computed snapshots uh(x,µ j)

onto the sampling points of the new hierarchical refinement

M̄i j =

N
(k−1)
µ∑

l=1

S il ψ
l(µ j) ∀i = 1, . . . ,Ns , µ j ∈ H

(k) ; k ∈ N+ (6)

Therefore, we conclude that the representation coefficients S i j are simply recovered as

the difference between the actual function values Mi j and the predictions M̄i j:

S i j = Mi j − M̄i j .

For this reason, in the context of hierarchical collocation, the representation coeffi-

cients S i j are also called the surplus coefficients. The corresponding functions

s(x;µ j) =

Ns∑

i=1

S i jφ
i(x)

9

are consequently named the surplus functions.

The matrix R is never formed or inverted in practice, which is why the method is

easily implemented in a greedy incremental way. The termination criterion is simply

based on the convergence of the surplus functions in a given norm, like for instance the

euclidean norm

∥
∥
∥s(x;µ j)

∥
∥
∥

2
=

√√√
Ns∑

i=1

S 2
i j
.

Alternatively the ℓ2 − norm or the infinity norm can be also used. The algorithm is

stopped when the norm of all the surplus functions in a hierarchical level falls below a

given tolerance ǫh. This constructive approximation is described in algorithm 1.

Algorithm 1 Hierarchical sampling: HS

1: Set S i j ≡ Mi j for k = 0

2: for k = 1 to Lmax do

3: Compute predictions M̄i j using Eq. (6)

4: Run Mi j = uh(xi,µ j) ⊲ “True” solution

5: Compute S i j = Mi j − M̄i j ⊲ Surplus coefficients

6: Check
∥
∥
∥s(x;µ j)

∥
∥
∥ < ǫh for all µ j in current level

7: end for

To discover the sparsity in the parametric space, algorithm 1 requires the solution at

all sampling points, even though only few relevant surplus coefficients are retained in

the end. Reduction is obtained “a posteriori”, by pruning negligible coefficients once

the snapshots Mi j are already computed. This means that most of snapshots are not

actually used because they lead to small coefficients S i j which are inevitably pruned.

In order to avoid computing useless direct solutions, it is possible to introduce the of

concept adaptive sampling.

In hierarchical multivariate interpolation and quadrature, this concept has been ex-

tensively investigated and rigorous error estimation strategies exist in order to adapt

the sampling procedure while retaining a given accuracy [48, 49, 50]. In the present

study the functions that we are trying to approximate are the solutions of parametric

partial differential equations. Therefore residual can be computed explicitly at new

sampling points from the prediction M̄i j given by the interpolation of previous hierar-

chical levels and used to define a sampling strategy based on a proper error estimator.

In practice the residual based error estimation checks whether the predicted values are

accurate enough. In case of positive outcome a new direct solution is not required and

the corresponding sampling point can be simply skipped. Based on this basic sampling

adaptivity strategy, the adaptive algorithm 2 can be constructed.

The benefits of the adaptive strategy will be further discussed in the examples pre-

sented in section 2.4.3.

10

Algorithm 2 Adaptive Hierarchical Sampling: AHS

1: Set S i j ≡ Mi j for k = 0

2: for k = 1 to Lmax do

3: Compute predictions M̄i j using Eq. (6)

4: Compute Ei j = e(M̄i j) ⊲ Residual error estimation

5: if Ei j > ǫtol then

6: Run Mi j = uh(xi,µ j) ⊲ M̄i j as first guess solution

7: Compute S i j = Mi j − M̄i j ⊲ Surplus coefficients

8: else

9: Set S i j = 0

10: end if

11: Check
∥
∥
∥s(x;µ j)

∥
∥
∥ < ǫh for all µ j in current level

12: end for

2.3 Incremental subspace learning

Although the hierarchical collocation approach provides many advantages, the final

parametric solution is not optimal in terms of its compactness. As a matter of fact, the

number surplus functions needed to approximate the parametric solutions is in princi-

ple equal to the number of hierarchical collocation points. In most applications, it is

likely that a low rank approximation of the solution exists. The structure of the low-

dimensional subspace for the hierarchical surpluses can be learned using approximate

low-rank tensor decomposition techniques on the matrix S. This is especially impor-

tant when one is interested in solving large problems, which may lead to thousands

of full-order solves, especially when multi-parametric problems are to be addressed.

Indeed, the storage of the matrix S can be limited by memory availability when solving

large-scale problems. In what follows, we shall denote a matrix A with values in the

field Km×n either by A|m×n, the first time it is introduced, or simply A, in subsequent

appearances. Therefore the representation coefficient matrix at hierarchical level k is

S
|Ns×N

(k)
µ

. After k hierarchical refinements, we seek a matrix approximation of rank-r

given by

Sk ≈ UkΣkV∗k, (7)

where U|Ns×r and V
|N

(k)
µ ×r

are orthonormal matrices and Σ|r×r is a diagonal matrix with

nonnegative coefficients. Because of sparsity, the rank of Sk after k refinements is at

most equal to the number of nonzero columns, that is, N
(k)
µ − ζ. The decomposition

in equation (7) can be computed in practice by either truncating the singular value

decomposition of S to the r highest singular values [51], or using randomized singu-

lar value decomposition (rsvd) [52], or constructive incremental approximations like

parafac [53] and candecomp [54]. Low rank approximation can be performed as a

post-processing step in “batch mode”, after convergence of the sparse learning sam-

pling. However, this approach is expensive in terms of both memory requirements

and computational cost because it implies storing an manipulating S throughout the

whole process of parametric refinement. On the other hand the size of S grows dy-

namically thought the adaptive hierarchical sampling procedure as additional columns

11

are appended each time the parametric space is refined and new surplus functions are

computed. Therefore the tensor decomposition technique should enable incremental

updating after each refinement on order computations from scratch. In this way hier-

archical collocation can be coupled with a subspace extraction step that is performed

on-the-fly as new surpluses are computed. The idea of incremental subspace learning

is presented in several works and it is mostly used to compress continuously streaming

data flows with application to computer vision and pattern recognition where on batch

subspace extraction is unfeasible due to the sheer size of the datasets [55, 56, 57].

Once a matrix update ∆k+1 is appended to the matrix Sk the following factorization is

considered [58]:

Sk+1 =
[

Sk ∆k+1

]

≈
[

Uk Jk+1

]
[

Σk Lk+1

0 Kk+1

] [

Vk 0

0 I

]∗

(8)

where Lk+1 = U∗
k
∆k+1, Kk+1 = J∗

k+1
Hk+1, Hk+1 = (I − UkU∗

k
)∆k+1, Jk+1 is an orthogonal

basis for Hk+1 and I is the identity matrix. The middle factor can be further decomposed

as
[

Σk Lk+1

0 Kk+1

]

≈ Ũk+1Σ̃k+1Ṽ∗k+1, (9)

and finally the low rank decomposition is updated :

Uk+1 =
[

Uk J
]

Ũk+1 , (10)

Vk+1 =

[

Vk 0

0 I

]

Ṽk+1 , (11)

and

Σ
k+1 = Σ̄k+1. (12)

The low-rank tensor approximation in equation (9), can be obtained by means of any of

the above mentioned techniques. The computational cost of the update only depends on

the size of ∆ and not on the full dataset size. In this work we employ rsvd to perform

this operation and to allow the rank to change throughout the refinement levels k. The

resulting incremental version of the rsvd is therefore referred to as irsvd. For the

sake of concision, implementation details are reported in appendix A.

The irsvd can be seen as an incremental subspace learning technique as it allows

to update the low rank representation dynamically as new snapshots in the solutions

are computed. It can be combined with hierarchical adaptive sampling into a sparse

subspace learning (ssl) approach, in which the sampling of the parametric space si-

multaneously used to build reduced basis and discover the sparse structure of the sub-

space. The use of a low rank representation for S is not only beneficial in terms of

memory usage but it also simplifies the hierarchical sampling algorithm. Indeed, when

S is approximated using the canonical tensor decomposition (7), the interpolation of

12

Algorithm 3 Sparse Subspace Learning: SSL

1: For k = 0 S i j ≡ Mi j.

2: Compute S0 ≈ U0Σ0V0
∗ ⊲ rsvd

3: for k = 1, 2, . . . do

4: Compute predictions M̄i j using Eqs. (13),(14)

5: Compute Ei j = e(M̄i j) ⊲ Residual error estimation

6: if Ei j > ǫtol then

7: Run Mi j = uh(xi,µ j) ⊲ M̄i j as first guess solution

8: Compute S i j = Mi j − M̄i j ⊲ Surplus coefficients

9: else

10: Set S i j = 0

11: end if

12: if All
∥
∥
∥s(x;µ j)

∥
∥
∥

2
< ǫh then

13: break

14: else

15: Update Sk ≈ UkΣkVk
∗ ⊲ irsvd

16: end if

17: end for

the surplus functions onto the sampling point of a new hierarchical level can be per-

formed more efficiently. Instead of recombining the columns of S we interpolate the

right (parametric) singular vectors V:

V̄i j =

N
(k−1)
µ∑

l=1

Vilψ
l(µ j) (13)

and obtain the predictions at new sampling points as:

M̄ = UΣV̄∗ (14)

The cost of the interpolation step depends on the numerical rank r of the approxima-

tion which is much smaller than the number of surplus functions Ns in many practical

applications. The resulting procedure is detailed in algorithm 3.

2.4 Parametric lid driven cavity flow

We consider a classic benchmark problem in computational fluid dynamics: the lid-

driven cavity flow (fig 1). The choice of the benchmark is motivated by its mathemati-

cal features that typically need a careful treatment in the framework of projection based

parametric reduced order modeling, like nonlinearity and non-convexity [59]. There-

fore it can be considered as a minimal working example to showcase the features of

the sparse subspace learning approach. In particular we consider low Reynolds steady

laminar flow governed by the equations :

µ u · ∇ u − ∆u + ∇ p = 0

∇ · u = 0
, (15)

13

x = 0 x = 1

y = 1

y = 0

y

x

ux , uy = 0 ux , uy = 0

ux , uy = 0

uy = 0

ux = 16x2(1− x)2

Figure 1: Schematics for the 2D lid driven cavity flow.

with u(x, µ) and p(x, µ) being the velocity and pressure fields and µ =
ρVL

η
being the

Reynolds number. For this problem we seek a numerical approximation for u(x, µ),

(x, µ) ∈ [0, 1]2 × [0, 1000].

2.4.1 Deterministic solver

For a given choice of the Reynolds number the flow is solved with a high order mixed

finite element formulation [60]. A cartesian mesh of 40 elements per direction is used.

The nonlinearity is handled using a pseudo-transient method. Starting from an initial

guess, that can be the corresponding Stokes flow for example, equation are integrated

in time using a stable time-stepping algorithm until the steady state. Convergence is

assessed using by checking the relative residual norm of eq. (15) and the ℓ2 norm of

the difference of the velocity field between two successive iterations.

2.4.2 Choice of the parametric basis

In low Reynolds number regime it can be reasonably assumed that the flow is laminar

and that the solution of the equations (15) varies smoothly with the parameter µ. In this

case we can adopt a high order polynomial basis to represent u(x, µ) in the parametric

space for Reynolds numbersM ≡ [0, 1000].

When using polynomial approximation an optimal choice for the sampling is de-

fined by the set of Gauss-Chebychev-Lobatto (GCL) points

P(k) ≡

{0, 1000} if k = 0
{

µ j = 500(cos(
2 j−1

2k) + 1)∀ j = 1, . . . , 2k−1
}

∪ P(0) if k > 0

The corresponding parametric basis is constructed using hierarchical Lagrangian inter-

14

=

S R M

0 50 100 150 200 250 300 350 400 450 500

nz = 88405

0

50

100

150

200

250

300

350

400

450

500

Figure 2: Heatmap plot showing the magnitude of both sampling points Mi j and rep-

resentation coefficients S i j, evidencing the sparsity of the solution of the parametric

lid-driven cavity flow in the space spanned by hierarchical polynomial function. The

block triangular structure of the matrix R is also shown.

polation. For a given hierarchical level k and N
(k−1)
µ < j ≤ N

(k)
µ :

ψ j(µ) ≡ L
(k)

j
(µ) =

∏

µi∈P(k)\µ j

µ − µi

µ j − µi

∀µ j ∈ H
(k)

2.4.3 Results

In order to get better insight on the structure of the sparse representation of the solution

in the parametric space, algorithm 1 is run first without adaptiveness in the sampling.

Figure 2 shows a heatmap plot of the elements in the representation S and measure-

ments M matrices to give a qualitative visualization of the sparsity of the of first with

respect to the second. Indeed, more than half of the elements in S can be pruned with-

out significant effect on the solution, that is with a relative approximation error less

than 10−6. The same figure shows the block diagonal structure of the interpolation op-

erator R obtained from the quasi-interpolative feature of the hierarchical polynomial

basis used in this example.

As a second step we solve the same problem with adaptive sampling. This can be

introduced in a straightforward and non-intrusive way. Indeed, most of well designed

iterative solvers (linear and nonlinear) perform a check on the initial guess solution

before actually start running. If the convergence criterion is already met by the first

attempt solution, the solver does not perform any iteration and returns the initial guess

as the correct solution. Following this rationale, the predictions from hierarchical M̄i j

interpolation offers an optimal initial guess to initialize the deterministic solver at a

new sampling point. If this solution is good enough the solver is not run and the

corresponding surplus coefficient is automatically set to zero. This strategy avoids the

delicate task of defining a specific error estimation approach for each new problem

by leaving this issue to the deterministic solver which can be therefore easily plugged

in the SSL algorithm. Running algorithm 2 confirms this idea. In figure 3 we report

the magnitude of the hierarchical surpluses as a function of the simulation number

(simulation are ordered in the sense of hierarchical levels). These decay very fast until

15

0 100 200 300 400 500 600
10

-20

10
-15

10
-10

10
-5

10
0

j

k
s
(µ

j
)k

∞

Figure 3: The norm of the sparse surplus functions s(x, µ j) decreases with the refine-

ment in the parametric space. The stagnation observed is due to the fact that the con-

vergence tolerance in the direct solver is set to 10−8, while the point with zero (to the

machine precision) surplus coefficients correspond to the simulations that were skipped

by the adaptive algorithm.

they reach a plateau around the level of 10−8. This phenomenon is explained by the

fact that convergence criterion tolerance was set to this value, therefore the presence

of the plateau indicates that the parametric sampling reached the level of precision of

the direct solver. The points that are set to zero (to the machine precision) correspond

to the cases where the adaptive algorithm skipped the solution and automatically set

the corresponding surplus to zero. In this case, more than half of the solution were not

computed at all.

As the parametric sampling is refined, the sparse surplus coefficients S i j converge

and the prediction M̄i j becomes an increasingly better initial guess for Mi j. This im-

plies that the convergence in the parametric space also accelerates the convergence on

the deterministic iterative solver which require less and less iterations to reach con-

vergence. To quantify this idea, we represented a measure of the computational work

associated to each direct solution performed by the solver as a function of the magni-

tude of the surplus coefficients, figure 4. We assume, as a measure of the computational

work, the number of iterations required by the pseudo-transient solver to converge to

the steady state. In this way we make this measure platform independent. In figure 4

the surplus coefficients are shown to be linearly correlated to the computational work

in the asymptotic convergence regime. Since polynomial approximation guarantees

exponential convergence of the S i j coefficients, the linear decay of the computational

work with the surplus coefficients implies that even though the number of sampling

points increase the overall computational work per hierarchical level decreases.

The numerical rank obtained in the final approximation using a tolerance of 10−7

in the irsvd algorithm is r = 9. Both space functions and parameters functions are

represented in figure 5. For further details see appendix A.

16

10
-10

10
-5

10
0

10
5

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

Level 8

Level 9

W
j

ks(µj)k
∞

Figure 4: The surplus norm of surplus functions s(x, µ j) correlates linearly with the

amount of computational work W j required to compute direct solutions Mi j using the

predictions M̄i j as initial guess in the nonlinear solver. The computational work is

measured by the number of nonlinear iterations required by the direct solver to compute

a solution. Since the computational work decays linearly with the magnitude of the

surplus functions, and the latter decays exponentially with the order of the spectral

approximation, we observe that the overall computational work per hierarchical level

decreases when the hierarchical sampling reaches its asymptotic convergence regime.

3 Time dependent models

Parametric solutions of transient, or pseudo-transient, models can also be computed in

the SSL framework. A first possibility consists in considering a space-time discretiza-

tion

uh(x, t,µ) :=

NsNt∑

i=1

Nµ∑

j=1

S i jφ
i(x, t)ψi(µ) , (16)

in which the set of functions φi(x, t) forms a representation basis in the space-time

domain, (x, t) ∈ Ω × [0,T]. This allows applying exactly what has been described

in section 2. In particular, a subspace for the hierarchical surpluses may be found as

shown in section 2.3.

An alternative approach consists in splitting space and time into separated dimen-

sions, which yields:

uh(x, t,µ) :=

Ns∑

i=1

Nt∑

j=1

Nµ∑

k=1

S i jkφ
i(x)ϕ j(t)ψk(µ) , (17)

where the set of functions φi(x), ϕ j(t) and ψk(µ) form a representation basis in the

physical space x ∈ Ω, time interval t ∈ [0,T] and parametric space µ ∈ M, respectively.

The scalars S i jk are representation coefficients forming a third-order tensor.

Both Eq. (16) and (17) are in principle equivalent, as they yield a total complexity

of Ns × Nt × Nµ. However, Eq. (17) allows seeking for a tensor subspace, which is

17

S
p
a
ce

F
u
n
ct
io
n
s
v
i
(x
)

1

0 200 400 600 800 1000
Re

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

R
i(R

e
)

1

2

3

4

5

6

7

8

9

P
a
ra
m
et
ri
c
F
u
n
ct
io
n
s
R

i
(µ
)

2 3

4 5 6

987

Figure 5: Sparse Subspace Learning solution for the parametric lid-driven cavity steady

state laminar flow for Reynolds number between 0 and 1000. The space modes are

given by vi(x) =
∑

n Uniφn(x). The first nine modes are visualized by streamlines and

intensity of the corresponding field. The corresponding parametric functions are also

reported. These are defined as Ri(µ) =
∑

n Vmiψm(µ). In this example the tolerance

criterion used for the direct solver convergence was 10−8, while the truncation criterion

adopted for the determination of the numerical rank r in the irsvd algorithm is 10−7.

likely to be more compact in terms of representation than its matrix counterpart. We

shall elaborate on the tensor subspace approach in next lines. For the sake of clarity,

we shall denote a tensor� with values in the field Kn1×n2×n3 either by�|n1,n2,n3
(the first

time it is introduced) or simply �, in subsequent appearances.

Suppose that the hierarchical collocation approach allowing for a sampling of the

18

parameter domain is applied exactly in the same manner as described in section 2. As a

result, we get a three-dimensional tensor �|n1,n2,n3
, containing the hierarchical surpluses,

where n1 is typically the number of degrees of freedom related to the space discretiza-

tion, n2 is the number of time steps and n3 is the total number of collocation points at

convergence. We seek a tensor decomposition of rank-(r1, r2, r3) given by

� =

r1∑

i=1

r2∑

j=1

r3∑

k=1

σi jkui
1 ⊗ u

j

2
⊗ uk

3 , (18)

which using the tensor multiplication [[25], sec. 2.5], can also be written as follows:

� = � ×1 U1 ×2 U2 ×3 U3 , (19)

where the factor matrices U1|n1×r1
, U2|n2×r2

and U3|n3×r3
are usually orthonormal and

define linear transformations in each direction. They can be regarded as the singular

vectors in each direction. On the other hand, �|r1×r2×r3
is called the core tensor, and its

entries express the level of interaction between the different singular vectors.

A tensor decomposition such as Eq. (19) is usually computed with the hosvd

algorithm [61], based on the application of the svd on successive matricizations of the

original data. Briefly:

S(d) = UdΣdV∗d, d = 1, 2, 3. (20)

The core tensor is computed:

Σ
(d) = ΣdV∗d(U1 ⊗ · · · ⊗ Ud−1 ⊗ Ud+1 ⊗ · · · ⊗ UD). (21)

Which in our case means that the core can be computed either as

Σ
(1) = Σ1V∗1(U2 ⊗ U3), (22)

Σ
(2) = Σ2V∗2(U1 ⊗ U3), or (23)

Σ
(3) = Σ3V∗3(U1 ⊗ U2). (24)

Applying the hosvd may be expensive in terms of both memory requirements and

computational cost, especially if the input data does not fit in fast memory. For this

reason, we propose to replace the standard svd by the the irsvd, already presented in

section A.2. In this manner, the factor matrices can be updated in order to account for

the data stream.

3.1 Application to Sheet Metal Forming Simulation

In this example we apply SSL to transient stamping simulation of a hotformed auto-

motive b-pillar. The objective is to assess the process sensitivity to the friction between

the metal blank and the stamping tooling (punch and dye). Then numerical solution

is sought in Ω × T × M, where the space domain Ω is shown in figure 6, the time

interval is defined as T ≡ [0, 8][s] and M ≡ [0.05, 0.3] is the parametric space of

friction coefficients. Frictional contacts are modeled using Coulomb’s friction law. Di-

rect simulations were run on 4 hierarchical levels using the commercial software Pam-

Stamp 2G. The metal blank is modeled using quadrilateral shell elements with 1.5mm

19

initial uniform thickness. The stress-strain relation for steel is modeled by means of

Krupkowsky’s law taking into account the strain hardening during the metal forming

process. The punch and the dye are assumed as rigid elements. From each simulation

we export displacements, plastic strain, thickness and thinning fields, each requiring a

separate tensor approximation.

For the displacement field, for instance, the final solution numerical rank is (6, 5, 3),

ensuring reasonable accuracy for this application (less than 1% error on the predicted

displacement). Other fields produce similar results. Figure 6 shows space, time and

parametric modes for the displacement field, while three particular solutions for the

thinning are shown in figure 7.

4 Extension to high-dimensional parametric problems

In higher dimensional problems the extension of hierarchical sampling is non trivial.

Sampling high-dimensional spaces using the strategy described so far is limited by the

curse of dimensionality. Indeed, the sampling points at a hierarchical level k would be

simply given by the tensor product of point samplings P
(k)

d
along each dimension d.

Assuming D dimensions, this writes:

P(k) = P
(k)

1
⊗ P

(k)

2
⊗ . . .P

(k)

D
≡

D⊗

d=1

P
(k)

d

Given that each point set is the union of all previous hierarchical refinements

P
(k)

d
=

k⋃

h=0

H
(h)

d
,

The D-dimensional hierarchical refinement given by the tensor product rule would be :

H (k) ≡ P(k) \ P(k−1) =

D⋃

h=1

H
(k)

h
⊗

D⊗

d=1
d,l

P
(k−1)

d

∪

D⊗

d=1

H
(k)

d
∀k ∈ N+

The tensor product rule implies that hierarchical refinements grow exponentially

with the dimension D of the problem. To alleviate this issue we adopt Smolyak’s

rule to construct higher dimensional refinement sets [62]. This replaces the traditional

tensor product rule by the following expression:

H (k) ⊃ H (k)
s =

⋃

|h|1=k

D⊗

d=1

H
(hd)

d
,∀k ∈ N+ (25)

with h ≡ {h1, . . . , hd, . . . , hD}. The complexity Smolyak’s rule grows polynomially

with the dimensionality of the parametric hypercube, instead of exponentially, while

retaining the same accuracy on the approximation of the function, provided that the

high order mixed derivatives are bounded [46]. Therefore the method is not subject to

20

Die

Punch

Frontal

Lateral

a) Mode 1 (b) Mode 2) Mode 3

Mode 1 Mode 2 Mode 3 Mode 4

−80 −60 −40 −20 0

Punch stroke (mm)

0 2 4 6 8

−0.4

−0.2

0

0.2

0.4

Time (sec)

0.1 0.2 0.3

−0.4

−0.2

0

0.2

0.4

Friction coefficient (-)

Figure 6: Order reduction of the stamping solution: normalized space, time and pa-

rameter modes of the displacement field.

the curse of dimensionality at least in the space of smooth functions. This concept has

been successfully used in the framework of sparse grid interpolation and quadrature

[63], with a variety of different basis functions including hierarchical polynomials and

wavelet functions [64] and extended to dimensionally adaptive strategies [65]. Note

that changing the ℓ1 norm for a different norm in equation (25) yields different sam-

pling strategies. Using the infinity norm (maximum norm) the classical tensor-product

21

Time

F
r
ic
t
io
n
c
o
e
ffi
c
ie
n
t

Figure 7: The figures shows the solutions for three different friction coefficients 0.05

(top), 0.175 (middle) and 0.3 (bottom) at times t = 2.32 s (left), t = 5.41 s (center) and

t = 8.50 s (right).

sampling is obtained. An alternative approach is represented by the hyperbolic-cross

sampling [66].

4.1 Application to Stokes flow around parametric NACA four dig-

its airfoil

In this section we show an application of the Sparse Subspace Learning method to the

problem of steady state viscous incompressible and inertialess flow around a NACA

four-digits airfoil. The geometry of the airfoil is known in analytical closed form as

a function of four parameters: the chord c, the maximum thickness t, the maximum

camber m and the position of maximum camber as a fraction of the chord p.

In dimensionless form, the problem only depend on three parameters if the chord

is chosen as reference unit length. Therefore the parametric solution of this problem is

sought in the three-dimensional space

{t,m, p} ∈ [0.06, 0.15] × [0, 0.1] × [0.34, 0.5]

22

reference mapping deformed

Figure 8: Airfoil shape variation with respect to a reference shape (NACA 0012 airfoil)

are take into account by deforming a reference triangular mesh (leftmost panel). The

nodes in the original mesh are moved according to a displacement field u solution of

the elliptic problem (27) with imposed Dirichlet boundary condition prescribing the

right shape on the airfoil boundary (central panel). An exemple of a typical mesh is

shown in the rightmost panel.

The velocity and pressure fields are governed by Stokes equations:

∆v − ∇p = 0

∇ · v = 0
(26)

paired with appropriate boundary condition prescribing no-slip at the airfoil boundary

v(x = xb) = 0 and uniform asymptotic velocity v∞ = cos(α)i + sin(α)j; with the angle

of attack α = 10◦ for this case. The airfoil shape variation is taken into account through

the mapping

x(x0) = x0 + u(x0)

where x0 is the coordinate in a reference (undeformed) domain, x is the physical coor-

dinate in the transformed domain and u is a displacement field. In practice the mapping

is found through the solution of the elliptic problem for the u:

c1u + c2∆x0
u + c3∇x0

[∇x0
· u] = 0 (27)

with prescribed Dirichlet boundary conditions on the airfoil boundaries in order im-

pose the correct shape to the deformed domain. The subscript x0 indicates that the

derivatives are taken with respect to the coordinates in the reference domain.

The reference shape is chosen as the symmetric profile NACA 0012. The reference

domain is then meshed using triangular elements. Equation (27) is solved on this do-

main to find the mapping u corresponding to a given shape of the family NACA 4-digits

airfoils and the reference mesh is deformed accordingly, as shown in figure 8. The co-

efficients appearing in this equation are chosen on empirical basis as c1 = 50, c2 = 1,

c3 = 24.5. The values are selected in order to avoid severe distorsion of the mesh. The

Stokes problem is then solved on the deformed mesh using Crouziex-Raviart mixed

finite elements formulation.

There are two bottlenecks associated to this problem in the framework of projection

based parametric reduced order modeling:

23

0.35

0.1

0.4

p

0.14

0.45

m

0.05 0.12

t

0.5

0.1
0.08

0 0.06

0.35

0.1

0.4

p

0.14

0.45

m

0.05 0.12

t

0.5

0.1
0.08

0 0.06

full sampling sparse sampling sparse adaptive sampling

Figure 9: Comparison between tensor product sampling strategy (leftmost panel),

sparse grid sampling using Smolyak’s rule (central panel) and sparse adaptive sampling

(rightmost panel). Note how the sampling along p is automatically refined in proximity

of the values m = 0.1. This is because for m = 0 (symmetric profile) the position of

maximum camber p does not affect the shape profile. On the contrary for cambered

airfoils the value of the parameter p has a strong effect on the shape and therefore on

the flow solution, therefore more sampling points are needed in this region.

• The parametric mapping u(x0, t,m, p) needs to be determined from the solution

of equation (27). The difficulty in this step is associated to the parametrization

of the Dirichlet boundary conditions describing the airfoil shape that are not

expressed in a tensor format and an approximate decomposition must be sought.

• Even if a separated variable approximation of u(x0, t,m, p) can be obtained with

reasonable accuracy, the weak form associated to problem (26) is not necessarily

affine with respect to parameters {t,m, p}.

A strategy to recover affine approximations in terms of geometrical parameters can be

found in [67].

In this case the use of collocation does not require an affine approximation of the

linear operators arising from the problem discretization, since the proposed method

only relies on the output of the deterministic solver. This takes values of {t,m, p} as

input and computes the Stokes flow around the corresponding airfoil using a triangular

mesh generated through equation (27). A sparse and low rank approximation of both

the flow solution and the mapping are constructed simultaneously.

The sampling algorithm is run until all hierarchical surpluses fall below 10−8 and

the truncation threshold for the rank was taken as 10−15. In figure 9 we present a com-

parison between three possible sampling strategies. With respect to classical tensor

product of 1D sampling points, Smolyak’s rule requires only a 0.6% of all points and

adaptive Smolyak’s rule only 0.03%. The final solution approximate rank (for the pre-

scribed precision) is 16. To assess the validity of the solution we compared results

of the reduced parametric model to the results of the direct solver for some parameter

combinations giving specific airfoils in the NACA 4-digits family. Results are pre-

sented in figure 10 and confirm that the accuracy of the model is around 10−8. Note

that error is sensibly smaller close to the location of the sampling points.

24

NACA 2412 NACA 6409

NACA 6515 NACA 6406

Figure 10: Error maps of the reduced order parametric solution with respect to di-

rect solutions for specific airfoils shapes of the NACA four-digits family. The error is

globally around 10−8 everywhere in the parametric space except in proximity of the

collocation points where the error is remarkably smaller.

25

4.2 Application to crash simulations

Rigid Obstacle

64 Km/h

[mm]

A

B C D

Figure 11: Parametric simulation of the crash model for the NCAP Offset Deformable

barrier frontal impact test. Final deformation corresponding to different combination of

the parameters : (A) µ1 = 2.34 mm, µ2 = 2.09 mm, µ3 = 2.362.34 mm, µ4 = 1.61 mm;

(B) µ1 = 3.74 mm, µ2 = 2.09 mm, µ3 = 3.78 mm, µ4 = 1.61 mm; (C) µ1 = 3.74 mm,

µ2 = 0.84 mm, µ3 = 3.78 mm, µ4 = 0.64 mm; (D) µ1 = 2.34 mm, µ2 = 0.84 mm,

µ3 = 2.34 mm, µ4 = 0.64 mm.

Parametric modeling is of capital importance in simulation based engineering ap-

plications such as process and product optimization, identification, control and uncer-

tainty quantification. Reduced order modeling offers a practical way to alleviate the

curse of dimensionality that is inevitably encountered in high-dimensional parametric

problems. In industrial practice the need of simulation code certification has somehow

slowed down the process of integrating high fidelity simulation software with reduced

order modeling tools. This is partly due to the intrusiveness of most of reduced order

modeling approaches, which inevitably require modification of the original code to a

certain extent.

In this last section we show the results of parametric crash simulations performed

using the commercial code Pam Crash. The reason behind the choice of this problem is

very well related with the intrusiveness issue. In crash simulation, parametric modeling

is extremely important in order to have a quick assessment of parameter sensitivity

and performance/safety estimators before the actual physical model is built and tested.

26

The “digital twin” approach is a cost-wise efficient way to have a quick sweep of the

parameter state space and identify the optimal configurations in the pre-design step.

These will be eventually verified using high performance simulation and ultimately

certified by experimental testing.

Crash simulation code include binary actions that are external to the core PDE

solver, such as plasticity or contact detection. In particular the last is extremely time

consuming and can take up to 90% of the simulation time. In general such “control

actions” are present in most simulation software, which is seldom limited to a simple

core PDE solver.

Traditional reduced order modeling requires a redefinition of the control actions.

For instance the very concept of contact detection changes when the problem is for-

mulated in terms of a reduced basis with global support, due to the intrinsically local

nature of contacts.

A non-intrusive approach allows to leave control actions to a lower level, inside

the deterministic solver, since the reduced parametric model is built only on the solver

output. For the same reason, it is also possible to build reduced models for specific

quantity of interests extracted from simulation results.

In the example reported in this section, crash simulations were run using the com-

mercial software Pam Crash. The tested configuration correspond to the NCAP Offset

Deformable barrier frontal impact, shown in figure 11. The car is driven at 64km/h

and with 40% overlap into a deformable barrier which represents the oncoming ve-

hicle. The test replicates a crash between two cars of the same weight, both travel-

ling at a speed of 50km/h. In particular safety can be assessed with respect to the

geometrical parameters in the model. In this case we considered four parameters,

µ ≡ {µ1, µ2, µ3, µ4}, corresponding to the thicknesses of different parts (inner rail, outer

rail, lower-outer rail and front frame).

The reduced parametric displacement field is sought in the tensor form

uh(x, t,µ) =

rs∑

i=1

rt∑

j=1

rµ∑

k=1

Ci jkφ
i(x)ϕ j(t)ψk(µ) , (28)

Simulation were scripted using Python and a Matlab generic interface was used to

recover the simulation results and build the reduced model. Globally, 401 simulations

were run in parallel, each taking approximately one hour on 32 cores. The final de-

formations corresponding to different choices of the parameters are shown in figure

11.

The model was exported using the pxdmf format for canonical tensor representa-

tions developed in the framework of PGD [68]. This allows the visualization and the

post-processing of the solution in real time using open source software Paraview. This

solution can be easily explored for sensitivity analysis or uncertainty quantification

with respect to the parameters.

5 Concluding remarks

We showed the application of hierarchical adaptive sampling in the parametric space

combined with an incremental tensor approximation technique in order to learn the

27

low-rank and sparsity features characterizing the solution of parametric models. We

tested the proposed approach through numerical experimentation on different models,

including time dependent and multi-parametric problems. Results show that the col-

location strategy can be easily integrated with existing deterministic solvers in a non-

intrusive way, as the method does not require access and manipulation of the solver

internal operators or routines. This feature enables reduced order modeling for prob-

lems which are not straightforwardly compatible with traditional projection-based ap-

proaches requiring the appropriate format in the problem setting. Approximating a

parametric solution in explicit form not only requires the construction of a reduced

basis but also the determination of the parametric modes. When these have a sparse

representation, the number of coefficients needed to accurately describe the functional

dependency of the solution in the parametric space is typically small, although this is in

general higher than the numerical rank of the approximation. Therefore, in agreement

with other studies [69], we observed that if the number of direct runs sampling is fixed,

the offline/online approach yields a more accurate solution (when the structure of the

problem makes it possible) than an explicit offline solution. However, as pointed out

in [70], in many applications the hierarchical collocation approach is sufficient to have

reasonable accuracy for an explicit representation of the solution, or a given quantity

of interest, without the need of solving a reduced system each time a new query is

demanded.

In many engineering applications, the proposed approach is particularly suitable

for delivering fast performance estimators, allowing for quick parametric sweeps so

as to assess sensitivity with respect to the parameters, find optimality or evaluate and

quantify uncertainty in the data.

Acknowledgments

The authors of the paper would like to acknowledge Jean-Louis Duval, Jean-Christophe

Allain and Julien Charbonneaux from the ESI group for the support and data for crash

and stamping simulations.

A Incremental Random Singular Value Decomposition

A.1 Randomized singular value decomposition

Suppose we are given the input data matrix S, which in our case contains the hierar-

chical surpluses, and assume that a rank-r approximation like in Eq. (7) wants to be

computed. There are two main ideas behind the rsvd:

• The first is to realize that a partial SVD can be readily computed provided that

we are able to construct a low-dimensional subspace that captures most of the

range of the input data matrix.

• The second is to observe that such low-dimensional subspace can be computed

very efficiently using a random sensing method.

28

Let us start with the first of the aforementioned ideas. Suppose that we are given a

matrix Q|m×p with r ≤ p ≪ n orthonormal columns such that the range of S is well

captured, i.e.:

‖S −QQ∗S‖ ≤ ε, (29)

for some arbitrarily small given tolerance ε. Then, the input data is restricted to the

subspace generated by its columns, that is: B|p×n = Q∗S. Observe at this point that we

implicitly have the factorization A ≈ QB. Next, we compute an SVD factorization of

the matrix B = ŨΣ̃Ṽ∗, where factors are defined as Ũ|p×p, Σ̃|p×p and Ṽ|n×p. This oper-

ation is much less expensive than performing the SVD on the initial data set because

the rank is now restricted to the rows of B. Finally, in order to recover the r dominant

components, we define an extractor matrix P|p×r and set: U = QŨP, Σ = Pt
Σ̃P and

V = ṼP. In summary, given Q, it is straightforward to compute a SVD decomposition

at a relatively low cost O(mnp + (m + n)p2).

Now we address the second question, that is, how to compute the matrix Q. We

first draw a random Gaussian test matrix, Ω|n×p. Then, we generate samples from the

data matrix, i.e. Y|m×p = AΩ. Observe that if the rank of input data matrix was exactly

r, the columns of Y would form a linearly independent set spanning exactly the range

of S, provided that we set p = r. Since in general the true rank will be greater than r,

we must consider an oversampling parameter by setting p = r + α. This will produce

a matrix Y whose range has a much better chance of approximating well the range of

the input data matrix. Finally, Q can be obtained from the orthogonalization of Y. In

fact, it can be shown that the following error bound is satisfied

‖S −QQ∗S‖ ≤
[

1 + 9
√

p min{m, n}
]

σr+1, (30)

with a probability in the order of O(1 − α−α). That is, the failure probability decreases

superexponentially with the oversampling parameter [52].

Remark 1 (On the optimal decomposition) Observe that the standard SVD produces

Q|m×r such that

‖S −QQ∗S‖ = σr+1,

but at a higher cost O(mn min{m, n}).

A prototype version of the randomized SVD is given in the Algorithm 4.

Neglecting the cost of generating the Gaussian random matrix Ω, the cost of gen-

erating the matrix Q is in the order of O(mnp + mp2) flops. In consequence, the com-

putational cost of the entire rsvd procedure remains as O(mnp + (m + n)p2). The

algorithmic performance of the rsvd can be further improved by introducing a num-

ber of refinements at the price of worsening slightly the error bounds. In particular, the

most expensive steps in the rsvd algorithm consist in forming matrices Y and B, which

require in the order ofO(mnp) flops. The first can be reduced toO(mn log(p)) by giving

some structure to the random matrixΩ, while the second can be reduced toO((m+n)p2)

via row extraction techniques, which leaves the total cost O(mn log(p) + (m + n)p2).

The interested reader can find further details on these refinements as well as on their

impact on the assessment in [52].

29

Algorithm 4 Randomized singular value decomposition: rsvd

Require: S|m×n, r, α ⊲ Data matrix, rank and oversampling parameter

Set p = r + α

1: Draw Ω|n×p ⊲ Random Gaussian test matrix

2: Generate samples Y|m×p = SΩ

3: Compute Q|m×p = orthogonalize(Y) ⊲ Captures range of S

4: Restrict B|p×n = Q∗S

5: Compute [Ũ|p×p,Σ|p×p,V|n×p] = svd(B) ⊲ Standard deterministic SVD

6: Set U|m×p = QŨ

return U|m×r,Σ|r×r,V|n×r ⊲ Retain r first components

A.2 Incremental randomized singular value decomposition

In this section we present an incremental variant of the randomized SVD algorithm,

discussed in section A.1. The objective is twofold: (i) to be able to learn a subspace for

the hierarchical surpluses as they are streamed from the sparse sampling procedure; (ii)

to perform it at a computational cost that scales reasonably with the number of samples.

Let us assume that we want to compute a rank-r approximation of some streamed

data, and that we have chosen an oversampling parameter α such that p = r + α,

as in section A.1. Let us denote by S0|m×n the old data matrix, whereas S|m×n′ is the

new data columns such that the total data is now S1|m×(n+n′) = [S0 | S]. We would like to

compute an approximated SVD decomposition S1 ≈ U1Σ1V∗
1

at a cost which is roughly

independent on n, the number of columns of the old data. For the sake of completeness,

recall that U1|m×p, Σ1|p×p and V1|(n+n′)×p.

In order to do so, suppose that we are given a non-truncated SVD approximation

of the old data, i.e. S0 ≈ U0Σ0V∗
0
, with U0|m×p, Σ0|p×p and V0|n×p. Suppose that we

also dispose of the matrix of random samples Y0|m×p. Then, in order to account for the

new data we only need to generate a random Gaussian test matrix Ω|n′×p and perform

a small product which only involves the new data:

Y1 = Y0 + SΩ. (31)

The matrix Q1|m×p can be obtained from the orthogonalization of Y1 at a cost that re-

mains stable, as it does not depend on n nor n′. Next, input data has to be restricted to

the range of Q1. Recalling that we already dispose of a non-truncated SVD approxi-

mation of the old data:

B1 ≈ Q∗1

[

U0Σ0V∗
0

S
]

=
[

Q∗
1
U0Σ0 Q∗

1
S
]

︸ ︷︷ ︸

B̃

[

V∗
0

0

0 In′×n′

]

, (32)

where In′×n′ is the identity matrix of size n′. Similarly to section A.1, observe that Eq.

(32) yields a factorization S1 ≈ Q1B̃. Hence, if we compute a SVD decomposition of

the factor B̃,

B̃ = ŨΣ1Ṽ∗, with Ũ|p×p, Σ1|p×p and Ṽ|(p+n′)×p, (33)

30

we can conclude the algorithm by setting:

U1 = Q1Ũ and V1 =

[

V0 0

0 In′×n′

]

Ṽ. (34)

A prototype version of the incremental randomized SVD is given in the Algorithm

5.

Algorithm 5 Incremental randomized singular value decomposition: irsvd

Require: S|m×n′ , U0|m×p, Σ0|p×p, V0|n×p, Y0|m×p ⊲ Streamed data, old factors and old

samples

1: Draw Ω|n′×p

2: Correct samples Y1|m×p = Y0 + SΩ

3: Compute Q1|m×p = orthogonalize(Y1)

4: Form B̃|p×(p+n′) =
[

Σ0 U∗
0
S
]

5: Compute [Ũ|p×p,Σ1|p×p, Ṽ|(p+n′)×p] = svd(B̃)

6: Set U1|m×p and V1|(n+n′)×p as indicated in Eq. (4)

return U1,Σ1,V1 and Y1 ⊲ Do not truncate: retain all p components

Observe that the cost of the irsvd algorithm is driven by O((m+n)p2) when choos-

ing n′ ∼ p, while if one chooses n′ ≫ p, the cost matches the standard rSVD, that is

O(mn′p). A more detailed analysis of the flop count indicates that in fact, the only de-

pendence on n of the algorithm is due to the cost of updating the right singular vectors

in Eq. (34). On the other hand, the reader should keep in mind that, for the applications

targeted in this paper, the number of rows of the input dataset (degrees of freedom after

discretization of a PDE) is at least one or two orders of magnitude bigger than the num-

ber of columns (solution snapshots). As a consequence, the cost of the irsvd turns out

to be roughly independent on n. A final consideration that should not be neglected is

that, for data sets that do not fit in the core memory, the cost of transferring data from

slow memory dominates the cost of the arithmetics. This can be generally avoided with

the incremental algorithm presented in this section.

A.3 A numerical example: order reduction applied to the lid-driven

cavity problem

In this section, we provide numerical evidence on the performance of the irsvd, as

described in section A.2. In particular, we apply irsvd on the set of hierarchical

surpluses, Sldc, coming from the solution of the lid-driven cavity problem, as described

in 2.4. The size of the data matrix is m = 14, 082 rows and n = 513 columns. An

overkill value of the oversampling parameter is taken, α = r (i.e. p = 2 r).

Firstly, we show that the low-rank singular value decomposition given by the irsvd

tends to both the standard svd and the rsvd as the number of processed columns

approaches the number of columns of the entire dataset. To that end, we choose a rank

r = 20 and a fixed bandwidth n′ = 5. Figure 14 shows the evolution of the singular

values as the number of processed columns increases. It can be noticed that, in fact,

after a relatively low number of columns are processed (say 20), the singular values are

31

already very close to the reference ones. This is simply because when coupling irsvd

with the hierarchical sampling the surpluses that come from higher hierarchical levels

are naturally associated to the first singular vectors. On the contrary, lower hierarchical

levels yield smaller surpluses, as the hierarchical sampling method converges. When

the entire dataset is processed, the irsvd yields a SVD that matches the standard one,

see Figure 12f.

In order to further assess the convergence of the irsvd towards the standard svd

decomposition, the energy error between both decompositions is measured:

εr =

√
∑r

i=1 (σirsvd − σsvd)2

∑r
i=1 σ

2
svd

, (35)

for a given rank r. Figure 13 shows the evolution of εr for several bandwidth. It can be

observed that the bandwidth hardly influences the convergence results.

Next, the computational cost of the irsvd must be assessed. Figure 14a shows the

runtime (denoted by τ) of the irsvd, i.e. Algorithm 5, as a function of the bandwidth.

The runtime is computed as the average of three executions. Results confirm that,

as discussed in section A.2, the computational cost is independent on the bandwidth

size. Besides, it can be observed that greater ranks yield greater runtimes. In fact,

the computational complexity should depend quadratically on the rank. This quadratic

scaling is confirmed by Figure 14b, which shows the normalized rank r̃ = r/r0 (with

r0 = 10) against the normalized runtime τ̃ = τ/τ0, where τ0 is the runtime associated

to r0. It can be seen that for all bandwidth the normalized runtime scales super-linearly

with the normalized rank (linear scaling is depicted for reference).

Finally, it is worth to highlight that in many practical applications the cost of irsvd

turns out to be independent on n, the total number of columns of the data set. This

is simply because usually m ≫ n and then the computational complexity reduces to

O(mp2). In other words, the cost only starts being influenced by n when n ∼ m. Figure

15 shows the runtime of each irsvd call, averaged over three runs. For the sake of

clarity, runtimes have been normalized to their mean value, while the vertical axis

scale is chosen so we can observe ±50% deviations from the mean. Results show that

runtime deviates very few from the mean. Moreover, the cost of each call remains fairly

constant as the number of processed columns increases, which confirms the discussion

above.

References

[1] F. Zorriassatine, C. Wykes, R. Parkin, and N. Gindy. A survey of virtual proto-

typing techniques for mechanical product development. Proceedings of the In-

stitution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,

217(4):513–530, 2003.

[2] J.T. Oden, T. Belytschko, J. Fish, T.J.R. Hughes, C. Johnson, D. Keyes, A. Laub,

L. Petzold, D. Srolovitz, and S. Yip. Simulation-based engineering science: rev-

olutionizing engineering science through simulation. Report of the NSF Blue

32

Ribbon Panel on Simulation-Based Engineering Science. National Science Foun-

dation, Arlington, VA, 2006.

[3] S.C. Glotzer, S. Kim, P.T. Cummings, A. Deshmukh, M. Head-Gordon, G. Kar-

niadakis, L. Petzold, C. Sagui, and M. Shinozuka. International assessment of

research and development in simulation-based engineering and science. Panel

Report. World technology evaluation center, Inc., Baltimore, MD, 2009.

[4] R.E. Bellman. Dynamic Programming. Courier Dover Publications, New York,

republished edition, 2003.

[5] D.C. Montgomery. Design and analysis of experiments. John Wiley & Sons,

Hoboken, NJ, 8th edition, 2013.

[6] E.K.P. Chong and S.H. Zak. An introduction to optimization. Wiley series on

discrete mathematics and optimization. John Wiley & Sons, Hoboken, NJ, 4th

edition, 2013.

[7] A. Antoulas, D.C. Sorensen, and S. Gugercin. A survey of model reduction meth-

ods for large-scale systems. Contemp. Math., 280:193–220, 2001.

[8] R.A. Bialecki, A.J. Kassab, and A. Fic. Proper Orthogonal Decomposition and

Modal Analysis for acceleration of transient FEM thermal analysis. Int. J. Numer.

Meth. Engng., 62(6):774–797, 2005.

[9] A. Quarteroni, A. Manzoni, and F. Negri. Reduced Basis Methods for Partial

Differential Equations: An Introduction. Modeling and Simulation in Science,

Engineering and Technology. Springer, Basel, 1st edition, 2015.

[10] D.B.P. Huynh, G. Rozza, S. Sen, and A.T. Patera. A successive constraint lin-

ear optimization method for lower bounds of parametric coercivity and infsup

stability constants. C.R. Math., 345(8):473–478, 2007.

[11] C. Daversin and C. Prud’homme. Simultaneous empirical interpolation and re-

duced basis method for non-linear problems. C.R. Math., 353(12):1105–1109,

2015.

[12] M. Barrault, Y. Maday, N.C. Nguyen, and A.T. Patera. An “empirical interpola-

tion method”: application to efficient reduced-basis discretization of partial dif-

ferential equations. C.R. Acad. Sci. I-Math., 339(9):667–672, 2004.

[13] C. Farhat, T. Chapman, and P. Avery. Structure-preserving, stability, and accu-

racy properties of the energy-conserving sampling and weighting method for the

hyper reduction of nonlinear finite element dynamic models. Int. J. Numer. Meth.

Engng., 102:1077–1110, 2015.

[14] S. Chaturantabut and D.C. Sorensen. Nonlinear model order reduction via Dis-

crete Empirical Interpolation. SIAM J. Sci. Comput., 32(5):2737–2764, 2010.

33

[15] M.A. Grepl, Y. Maday, N.C. Nguyen, and A.T. Patera. Efficient reduced-basis

treatment of non-affine and nonlinear partial differential equations. ESAIM Math.

Model. Num., 41(3):575–605, 2007.

[16] Y. Maday, N.C. Nguyen, A.T. Patera, and S.H. Pau. A general multipurpose

interpolation procedure: the Magic Points. CPPA, 8(1):383–404, 2009.

[17] D. Ryckelynck. A priori hypereduction method : an adaptive approach. J. Com-

put. Phys., 202(1):346–366, 2005.

[18] D. Amsallem and C. Farhat. An online method for interpolating linear parametric

reduced-order models. SIAM J. Sci. Comput., 33(5):2169–2198, 2011.

[19] J. Hernández, M.A. Caicedo, and A. Ferrer. Dimensional hyper-reduction of

nonlinear finite element models via empirical cubature. Comput. Meth. Appl.

Mech. Engrg., 313:687–722, 2017.

[20] M.L. Rapún, F. Terragni, and J.M. Vega. Lupod: Collocation in POD via LU

decomposition. J. Comput. Phys., 335:1–20, 2017.

[21] D. Kumar, M. Raisee, and C. Lacor. An efficient non-intrusive reduced ba-

sis model for high dimensional stochastic problems in CFD. Comput. Fluids,

138:67–82, 2016.

[22] E. Prulière, F. Chinesta, and A. Ammar. On the deterministic solution of mul-

tidimensional parametric models using the Proper Generalized Decomposition.

Math. Comput. Simul., 81(4):791–810, 2010.

[23] W. Hackbusch. Tensor spaces and numerical tensor calculus. Springer Series

in Computational Mathematics. Springer-Verlag, Berlin-Heidelberg, 1st edition,

2012.

[24] L. Grasedyck, D. Kressner, and C. Tobler. A literature survey of low-rank tensor

approximation techniques. arXiv:1302.7121, 2013.

[25] T.G. Kolda and B.W. Bader. Tensor decompositions and applications. SIAM Rev.,

51(3):455–500, 2009.

[26] A. Ammar, B. Mokdad, F. Chinesta, and R. Keunings. A new family of solvers for

some classes of multidimensional partial differential equations encountered in ki-

netic theory modeling of complex fluids. Part II: transient simulation using space-

time separated representations. J. Non-Newtonian Fluid Mech., 144(2-3):98–121,

2007.

[27] A. Nouy. A priori model reduction through Proper Generalized Decomposition

for solving time-dependent partial differential equations. Comput. Meth. Appl.

Mech. Engrg., 199:1603–1626, 2010.

34

[28] F. Chinesta, A. Leygue, F. Bordeu, J.V. Aguado, E. Cueto, D. Gonzalez, I. Alfaro,

A. Ammar, and A. Huerta. PGD-based Computational Vademecum for efficient

design, optimization and control. Arch. Comput. Methods Eng., 20(1):31–59,

2013.

[29] F. Chinesta, P. Ladevèze, and E. Cueto. A short review on model order reduc-

tion based on Proper Generalized Decomposition. Arch. Comput. Methods Eng.,

18(4):395–404, 2011.

[30] A. Ammar, F. Chinesta, P. Dı́ez, and A. Huerta. An error estimator for separated

representations of highly multidimensional models. Comput. Meth. Appl. Mech.

Engrg., 199(25-28):1872–1880, 2010.

[31] A. Uschmajew. Local convergence of the alternating least squares algorithm for

canonical tensor approximation. SIAM J. Matrix Anal. Appl., 33(2):639–652,

2012.

[32] C. Quesada, I. Alfaro, D. Gonzalez, E. Cueto, and F. Chinesta. PGD-based model

reduction for surgery simulation: solid dynamics and contact detection. Lect.

Notes Comput. Sc., 8789:193–202, 2014.

[33] J.V. Aguado, D. Borzacchiello, Ch. Ghnatios, F. Lebel, R. Upadhyay, C. Binetruy,

and F. Chinesta. A Simulation App based on reduced order modeling for manu-

facturing optimization of composite outlet guide vanes. Adv. Model. Simul. Eng.

Sci., 4(1), 2017.

[34] D. Borzacchiello, J.V. Aguado, and F. Chinesta. Reduced Order Modelling for ef-

ficient numerical optimisation of a hot-wall Chemical Vapour Deposition reactor.

Int. J. Numer. Method H., 27(4), 2016, in press.

[35] Ch. Ghnatios, F. Masson, A. Huerta, A. Leygue, E. Cueto, and F. Chinesta. Proper

Generalized Decomposition based dynamic data-driven control of thermal pro-

cesses. Comput. Meth. Appl. Mech. Engrg., 213-216:29–41, 2012.

[36] A. Cohen and R. DeVore. Approximation of high-dimensional parametric PDEs.

Acta Numer., 24:1–159, 2015.

[37] M. Bachmayr, A. Cohen, and W. Dahmen. Parametric PDEs: Sparse or low-rank

approximations? arXiv:1607.04444, 2016.

[38] J.P. Boyd. Chebyshev and Fourier spectral methods. Courier Corporation, 2001.

[39] E. Candès and J. Romberg. Sparsity and incoherence in compressive sampling.

Inverse Probl., 23(3):969, 2007.

[40] A. Gilbert and P. Indyk. Sparse recovery using sparse matrices. Proc. IEEE,

98(6):937–947, 2010.

[41] D.L. Donoho. Compressed sensing. IEEE T. Inform. Theory, 52(4):1289–1306,

2006.

35

[42] S.S. Chen, D.L. Donoho, and M.A. Saunders. Atomic decomposition by basis

pursuit. SIAM Rev., 43(1):129–159, 2001.

[43] R. Tibshirani. Regression shrinkage and selection via the lasso. J. R. Stat. Soc.

Series B Methodol., pages 267–288, 1996.

[44] H. Zou and T. Hastie. Regularization and variable selection via the elastic net. J.

R. Stat. Soc. Series B Stat. Methodol., 67(2):301–320, 2005.

[45] S.L. Brunton, J.L. Proctor, and J.N. Kutz. Discovering governing equations from

data by sparse identification of nonlinear dynamical systems. Proc. Natl. Acad.

Sci. USA, 113(15):3932–3937, 2016.

[46] H.J. Bungartz and M. Griebel. Sparse grids. Acta Numer., 13:147–269, 2004.

[47] F. Nobile, R. Tempone, and C.G. Webster. A sparse grid stochastic collocation

method for partial differential equations with random input data. SIAM J. Numer.

Anal., 46(5):2309–2345, 2008.

[48] D. Pflüger, B. Peherstorfer, and H.J. Bungartz. Spatially adaptive sparse grids for

high-dimensional data-driven problems. J. Complexity, 26(5):508–522, 2010.

[49] T. Gerstner and M. Griebel. Dimension-adaptive tensor-product quadrature. Com-

puting, 71(1):65–87, 2003.

[50] F. Nobile, R. Tempone, and C.G. Webster. An anisotropic sparse grid stochas-

tic collocation method for partial differential equations with random input data.

SIAM J. Numer. Anal., 46(5):2411–2442, 2008.

[51] G.H. Golub and C.F. Van Loan. Matrix computations. The Johns Hopkins Uni-

versity Press, Baltimore, MD, 3rd edition, 1996.

[52] N. Halko, P.G. Martinsson, and J.A. Tropp. Finding structure with random-

ness: Probabilistic algorithms for constructing approximate matrix decomposi-

tions. SIAM Rev., 53(2):217–288, 2011.

[53] R. A. Harshman. Foundations of the parafac procedure: Models and conditions

for an “explanatory” multi-modal factor analysis. UCLA Working Papers in Pho-

netics, 1970.

[54] J. D. Carroll and J. J. Chang. Analysis of individual differences in multidimen-

sional scaling via an n-way generalization of eckart-young decomposition. Psy-

chometrika, 35(3):283–319, 1970.

[55] Y. Li. On incremental and robust subspace learning. Pattern recognition,

37(7):1509–1518, 2004.

[56] H. Zhao, P. C. Yuen, and J. T. Kwok. A novel incremental principal component

analysis and its application for face recognition. IEEE Transactions on Systems,

Man, and Cybernetics, Part B (Cybernetics), 36(4):873–886, 2006.

36

[57] A. Sobral, C. G. Baker, T. Bouwmans, and E. Zahzah. Incremental and multi-

feature tensor subspace learning applied for background modeling and subtrac-

tion. In International Conference Image Analysis and Recognition, pages 94–103.

Springer, 2014.

[58] M. Brand. Incremental singular value decomposition of uncertain data with miss-

ing values. Computer VisionECCV 2002, pages 707–720, 2002.

[59] A. Quarteroni and G. Rozza. Numerical solution of parametrized navier-stokes

equations by reduced basis methods. Numer. Methods Partial Differ. Equ.,

23(4):923–948, 2007.

[60] C. Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zang Jr. Spectral methods in

fluid dynamics, 2012.

[61] L. De Lathauwer, B. De Moor, and J. Vanderwalle. A multilinear Singular Value

Decomposition. SIAM J. Matrix Anal. Appl., 21(4):1253–1278, 2000.

[62] S.A. Smoljak. Quadrature and interpolation formulae on tensor products of cer-

tain function classes. Dokl. Akad. Nauk SSSR, 148(5):1042–1045, 1963. Transl.:

Soviet Math. Dokl. 4:240-243, 1963.

[63] T. Gerstner and M. Griebel. Numerical integration using sparse grids. Numer.

Algorithms, 18(3):209–232, 1998.

[64] M. Dauge and R. Stevenson. Sparse tensor product wavelet approximation of

singular functions. SIAM J. Math. Anal., 42(5):2203–2228, 2010.

[65] J. Garcke. A dimension adaptive sparse grid combination technique for machine

learning. ANZIAM Journal, 48:725–740, 2007.

[66] D. Dũng, V.N. Temlyakov, and T. Ullrich. Hyperbolic cross approximation.

arXiv:1601.03978, 2016.

[67] A. Quarteroni, G. Rozza, and A. Manzoni. Certified reduced basis approximation

for parametrized partial differential equations and applications. J. Math. Indus.,

1(1):3, 2011.

[68] F. Bordeu. Pxdmf : A file format for separated variables problems version 1.6.

Technical report, Ecole Centrale de Nantes, 2013.

[69] P. Chen, A. Quarteroni, and G. Rozza. Comparison between reduced basis and

stochastic collocation methods for elliptic problems. J. Sci. Comput., 59(1):187–

216, 2014.

[70] B. Peherstorfer, S. Zimmer, and H.J. Bungartz. Model reduction with the reduced

basis method and sparse grids. In Sparse grids and applications, pages 223–242.

Springer Berlin Heidelberg, 2012.

37

About the authors

Domenico Borzacchiello, Jose V. Aguado and Francisco Chinesta

Institut de Calcul Intensif (ICI) at Ecole Centrale de Nantes

1 rue de la Noë, BP 92101, 44321 Nantes cedex 3, France

e-mail: {domenico.borzacchiello, jose.aguado-lopez, francisco.chinesta}@ec-nantes.fr

web: http://ici.ec-nantes.fr

38

S
in

g
u

la
r

v
al

u
es

(a) Columns: 5 of 513

0 5 10 15 20
10−6

10−2

102

106

svd rsvd irsvd

(b) Columns: 10 of 513

0 5 10 15 20
10−6

10−2

102

106

(c) Columns: 15 of 513

0 5 10 15 20
10−6

10−2

102

106

(d) Columns: 20 of 513

0 5 10 15 20
10−6

10−2

102

106

(e) Columns: 100 of 513

0 5 10 15 20
10−6

10−2

102

106

(f) Columns: 513 of 513

0 5 10 15 20
10−6

10−2

102

106

Subspace dimension

Figure 12: Singular values evolution in terms of the cumulated number of columns pro-

cessed by the irsvd. Comparison is made against reference results given by standard

svd and rsvd, for rank r = 20 and bandwidth n′ = 5.
39

0 200 400 600
10−6

10−5

10−4

10−3

10−2

10−1

100

Processed columns

E
n

er
g

y
er

ro
r

-
ε

r=
2
0

n′ = 5

n′ = 10

n′ = 15

n′ = 20

Figure 13: Energy error measuring the convergence of the singular values, for fixed

rank r = 20, as a function of the number of processed columns for different values of

the bandwidth n′.

5 10 15 20
0

0.05

0.1

Bandwidth - n′

A
v
er

ag
ed

ru
n

ti
m

e
-
τ

[s
]

r = 10 r = 20

r = 30 r = 40

r = 50

(a) Runtime is independent on the bandwidth

for all rank

1 2 3 4 5

2

4

6

8

10

Rank scaling - r̃

R
u

n
ti

m
e

sc
al

in
g

-
τ̃

n′ = 5 n′ = 10

n′ = 15 n′ = 20

Linear scaling

(b) Runtime scales super-linearly with the rank

for all bandwidth

Figure 14: Assessment of computational performances of irsvd: bandwidth indepen-

dence and rank scaling.

40

R
u

n
ti

m
e

n
o

rm
al

iz
ed

to
th

e
m

ea
n

(a) n′ = 5

0 200 400 600

0.6

0.8

1

1.2

1.4

(b) n′ = 10

0 200 400 600

0.6

0.8

1

1.2

1.4

(c) n′ = 15

0 200 400 600

0.6

0.8

1

1.2

1.4

(d) n′ = 20

0 200 400 600

0.6

0.8

1

1.2

1.4

Processed columns

Figure 15: Assessment of computational performances of irsvd: data size indepen-

dence.

41

