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Abstract 

Engineered nanomaterials (ENMs) are key drivers for the development of highly sophisticated new technologies. As 
all new attainments, the rapidly increasing used of ENMs raise concerns about their safety for the environment and 
humans. There is growing evidence showing that if engineered nanomaterials are released into the environment, 
there is a possibility that they could cause harm to aquatic microorganisms. Among the divers effects triggering their 
toxicity the ability of ENMs to generate reactive oxygen species (ROS) capable of oxidizing biomolecules is currently 
considered a central mechanism of toxicity. Therefore, development of sensitive tools for quantification of the ROS 
generation and oxidative stress are highly sought. After briefly introducing ENMs-induced ROS generation and oxida-
tive stress in the aquatic microorganisms (AMOs), this overview paper focuses on a new optical biosensor allowing 
sensitive and dynamic measurements of H2O2 in real-time using multiscattering enhanced absorption spectroscopy. 
Its principle is based on sensitive absorption measurements of the heme protein cytochrome c whose absorp-
tion spectrum alters with the oxidation state of constituent ferrous FeII and ferric FeIII. For biological applications 
cytochrome c was embedded in porous random media resulting in an extended optical path length through multiple 
scattering of light, which lowers the limit of detection to a few nM of H2O2. The sensor was also integrated in a micro-
fluidic system containing micro-valves and sieves enabling more complex experimental conditions. To demonstrate 
its performance, abiotic absorption measurements of low concentrations of dye molecules and 10 nm gold particles 
were carried out achieving limits of detection in the low nM range. Other biologically relevant reactive oxygen species 
can be measured at sub-μM concentrations, which was shown for glucose and lactate through enzymatic reactions 
producing H2O2. In ecotoxicological investigations H2O2 excreted by aquatic microorganisms exposed to various 
stressors were measured. Pro-oxidant effects of nano-TiO2 and nano-CuO towards green alga Chlamydomonas rein-

hardtii were explored in various exposure media and under different light illuminations. Dynamics of Cd2+ induced 
effects on photosynthetic activity, sensitisation and recovery of cells of C. reinhardtii was also studied.

Keywords: Ecotoxicity, Nanomaterials, Reactive oxygen species, Oxidative stress, Hydrogen peroxide, Optical 
biosensor, Multiscattering, Absorption spectroscopy
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Background
�e material revolution engendered by nanotechnologi-

cal advances in the last decades has not only enabled the 

development of highly sophisticated fine-tuned materials 

for new applications but also confronted established risk 

assessment and regulatory affairs with new challenges: 

the possible (eco-)toxicological implications of the 

expected increment of engineered nanomaterials (ENMs) 

discharged into environmental compartments [1].

Natural water bodies, one environmental sink of dis-

charged ENMs, are estimated to receive 0.4–7% of the 

total global mass flow of ENMs [2]. Once in the aquatic 

Open Access

Journal of Nanobiotechnology

*Correspondence:  christian.santschi@epfl.ch 
1 Nanophotonics and Metrology Laboratory (NAM), École Polytechnique 
Fédéral de Lausanne, EPFL/IST/IMT/NAM, Station 11, 1015 Lausanne, 
Switzerland
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12951-017-0253-x&domain=pdf


Page 2 of 18Santschi et al. J Nanobiotechnol  (2017) 15:19 

systems ENMs interact with different biotic and abi-

otic components and potentially harm different organ-

isms [3]. �ere is currently an agreement [4] that three 

major phenomena drive the detrimental effects of the 

ENMs to aquatic organisms: (i) their dissolution, (ii) their 

organism-dependent cellular uptake and (iii) the induc-

tion of oxidative stress and consequent cellular damages. 

�e ability of ENMs to generate reactive oxygen species 

(ROS) capable of oxidizing biomolecules is currently con-

sidered a central (but by no means sole) mechanism of 

toxicity, potentially leading to oxidative stress and dam-

age (Fig. 1) [5–12].

It is postulated that increased levels of ROS and oxi-

dative damage will occur in exposed organisms (despite 

the presence of basal or enhanced antioxidant defence 

systems of repair and replacement), which may be linked 

to some aspect of impaired biological functions at cellu-

lar or higher levels of organization [13]. �us, from the 

nanoecotoxicological perspective seeking the elucida-

tion of environmental hazards of ENMs, it follows that 

an in-depth understanding of their toxic mode of action, 

that is, of normal and ENM-stimulated ROS produc-

tion as well as antioxidant levels in aquatic organisms 

is required. �is will allow to quantitatively link the 

Fig. 1 Mechanisms of ROS generation by engineered nanomaterials via intracellular chemical reactivity (left hand side) or via physical interac-
tions with subcellular compartments (right hand side). ENPs generate ROS by direct and indirect chemical reactions. Direct reactions involve the 
photoexcitation of O2, which yields singlet oxygen (1O2) and superoxide (O2

·−). Indirect chemical reactions involve reactions between leached ENP 
constituents (e.g. metal ions, organic compounds) that engage in redox cycling that yields superoxide (O2

·−) and hydrogen peroxide (H2O2) or in 
hydroxyl radical (OH·) producing Fenton and Haber–Weiss reactions. ROS yielding interactions encompass the interference with electron transfer 
chains in chloroplasts, peroxisomes, mitochondria and the endoplasmatic reticulum. Furthermore, interactions of ENPs and mitochondria or the 
endoplasmatic reticulum can also cause a loss of organelle membrane integrity that triggers the release of Ca2+ ions from interior stores, which 
may activate ROS generating Ca2+/calmodulin-dependent enzymes, i.e. certain nitrogen monoxide synthase isoforms that produce NO·. Interac-
tions with NADPH oxidase (NOX) complexes in the cell membrane yield O2

·− [29]. Illustration adapted from Unfried, Albrecht [29], not to proportion. 
Reprinted with permission from (Nanotoxicology 2014; 8: 605–630). Copyright (2014) 
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presence of ENMs with pro-oxidant processes and to 

estimate the expected degree by which ENM-stimulated 

oxidative damage may potentially affect overall health of 

organism.

Hence, there has been a keen interest in the detection 

and quantification of ROS in aqueous and biological sys-

tems, which is a technically tricky task due to their very 

low concentration in the pico- to micromolar range and 

their extremely short-lived nature with half times ranging 

from nanoseconds to hours [14]. Most conventional ROS 

sensing methods rely on exogenous probes or resulting 

endogenous reaction products and molecular biomarkers 

reflecting oxidative damage and antioxidant status [13, 

15–17]; they suffer one major technical drawback—the 

invasive nature of the detection method itself [18].

�e present article provides an overview of the main 

findings of the project “Non-invasive continuous moni-

toring of the interaction between nanoparticles and 

aquatic microorganisms” within in the framework of the 

Swiss National Research Program 64 on the Opportuni-

ties and Risk of Nanomaterials. �e review begins with 

a brief introduction in the ENMs-induced ROS genera-

tion and oxidative stress in the aquatic microorganisms 

(AMOs) as well as short presentation of the existing 

detection techniques. �e newly developed method 

for non-invasive quantification of extracellular H2O2 in 

real-time and monitoring with an unprecedented limit 

of detection is described, while its capabilities are illus-

trated by exploring the pro-oxidants effects of the ENMs 

to AMOs [18].

ENMs and oxidative stress in aquatic 
microorganisms
Investigations performed in the mid-90’s led to the con-

clusion that nanoparticles have the ability to stimulate 

the generation of reactive oxygen (ROS) and nitrogen 

species (RNS) at or near the cell surface and to induce 

oxidative stress [10, 12, 19]. �e oxidative stress hypoth-

esis was successfully expanded into nanotoxicology 

and recognised as a major mechanism for nanoparticle 

induced effects [23]. �erefore, the impacts of ENMs on 

the pro-oxidant/antioxidant equilibrium can provide rel-

evant information on their ecotoxicical importance [5].

�e toxicity of metal and metal oxide ENMs to organ-

isms can be classified in direct and indirect effects [20, 

21]. Direct toxic effects are principally controlled by 

their chemical composition and surface reactivity. Indi-

rect effects are mainly governed by physical restraints, 

the release of toxic ions or the production of ROS. �e 

latter is thought to result in elevated cellular response 

classified as defence, pro-inflammatory effects and 

cytotoxicity [22]. Toxicological effects of ENMs may 

include (i) inflammation related to generation of ROS 

and oxidative stress, depletion of glutathione and accu-

mulation of oxidised glutathione in response to ROS 

generation, (ii) DNA and membrane damage, protein 

denaturation and immune reactivity, (iii) reduction or 

loss in photosynthetic activity in algae and plants. Direct 

toxic effects require, as a prerequisite, contact and 

adsorption of the ENMs with the AMOs [3, 23]. Once 

the ENMs are adsorbed, they may penetrate through 

the biological membrane and, therefore, be internalised 

(Fig.  2). Uptake mechanisms and different pathways 

leading to internalisation are discussed elsewhere [3, 4, 

24]. It is important to note that ENMs can be internal-

ised without necessarily inducing cytotoxicity, meaning 

that ENMs are not toxic per se [25]. However, ENMs are 

prone to adsorption of ambient pollutants, which can 

be transferred into the cells by ENMs acting as carriers 

(Trojan Horse effect). ENMs can trigger ROS formation 

extra- and intracellularly by direct and indirect chemi-

cal reactions [12] (Fig.  1). �e mechanisms underlying 

the generation of the ROS in AMOs could involve (i) the 

release of metal ions from ENMs, (ii) the catalytic activ-

ity of ENMs and (iii) the redox properties at the parti-

cle surface. �e pro-oxidant potential of ENMs strongly 

dependent of their chemical and physical properties, 

notably chemical composition and purity, particle size, 

shape and the resulting relative large reactive surface 

area and surface chemistry [7, 14]. For metal- contain-

ing ENMs, dissolution processes leading to ion release 

play a major role in terms of ecotoxicity. Many transition 

metal ions, such as Fe3+, Cu2+, Cr3+ are redox active and 

some of them, e.g. Fe and Cu can catalyse Fenton reac-

tions yielding biologically highly reactive hydroxyl radi-

cals OH·. �e Haber–Weiss reactions in the presence 

of super oxide ions O2
− can also reduce redox-active 

metal ions which further couple to the Fenton reac-

tions. Hence, valence state and bioavailability of redox-

active ions are strongly related to the generation of ROS. 

Numerous inorganic ENMs, such as Ag, Pt, TiO2, CeO2, 

ZnO, CuO, SiO2 and different quantum dots were shown 

to generate ROS and induce oxidative stress in different 

organisms [5, 10, 12, 26–30]. Selected examples con-

cerning ENM-induced oxidative stress or damage in 

microalgae, representative for aquatic phytoplankton are 

given in Table 1.

Photoactive ENMs including fullerenes and semicon-

ducting metal oxides, such as TiO2, CuO, CeO2, ZnO and 

Al2O3, can generate ROS when illuminated [43, 44]. It has 

been demonstrated that these ENMs, the most promi-

nent being TiO2, can activate molecular oxygen radi-

cals, 1O2 and O2
−, which belong, together with OH·, to 

the biologically most potent ROS. It is well known that 

those photoactive particles are primarily active at wave-

length in the UV regime (<390 nm) but it has also been 



Page 4 of 18Santschi et al. J Nanobiotechnol  (2017) 15:19 

demonstrated in several studies that TiO2 is capable to 

induce oxidative stress in the absence of light.

Overall, environmental contaminants, including 

ENMs, have the capability to induce generation of ROS 

in AMOs and, consequently, to alter the cellular redox 

homeostasis leading to oxidative stress. Oxidative stress 

occurs as a result of (i) increase in oxidant generation, 

(ii) reduction of antioxidant protection and (iii) failure to 

repair oxidative damage [45].

Towards development of the novel tool 
for non-invasive monitoring of the pro-oxidant 
e�ects of engineered nanomaterials
Various approaches are available to determine oxidative 

stress [46]: (i) Quantification of radicals, including O2
−, 

OH· and H2O2, (ii) quantification of oxidative damage 

markers and (iii) quantification of antioxidants. A sche-

matic illustration of the main approaches is displayed in 

Fig. 3. Superoxide O2
−, represents one of the aboriginal 

Fig. 2 Active and passive cellular uptake pathways for ENMs in eukarotic cells. Passive uptake occurs via diffusion and facilitated diffusion via 
transport proteins, i.e. gated channel proteins and carrier proteins. Active uptake pathways involve transmembrane carrier proteins and endocytic 
pathways including receptor-mediated phagocytosis, clathrin-mediated endocytosis (120 nm, via clathrin-coated pits) and caveolae-mediated 
endocytosis (60 nm, via lipid rafts), non-specific endocytosis by macropinocytosis and non-clathrin, non-caveolae endocytosis (90 nm, fluid phase). 
All pathways except caveolae-mediated endocytosis and diffusion merge with the lysosomal degradation system comprising numerous vesicle 
maturation steps within the cell. A lysosome typically ranges from 200 to 500 nm in diameter. Phagocytosis is mediated by specific membrane-
receptors that are activated upon contact with a ligand to produce phagosomes (>250 nm). During their maturation process, phagosomes trans-
form into late phagosomes, which fuse with lysosomes to form phagolysosomes. During macropinocytosis, internalisation occurs via an unspecific 
invagination resulting in pinocytic vesicles (<150 nm), which eventually merge with lysosomes. Clathrin-mediated endocytosis and non-clathrin, 
non-caveolae-mediated endocytosis produces caveosomes that either transfer their contents into the Golgi apparatus, endoplasmatic reticulum 
(ER) or into the cytosol or may also undergo transcytosis. Reprinted with permission from (Environmental Science-Nano 2014; 1: 214–232). Copy-
right (2014) Royal Society of Chemistry
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forms of aerobic ROS. It is very reactive and short-living 

and can be converted to H2O2 through the reaction with 

SOD. H2O2 is one of the major and most stable ROS pro-

duced intracellularly by physiological and pathological 

processes and can cause oxidative damage. Its stability 

allows it to diffuse through the cell wall and can therefore 

be extracellularly detected [47]. Oxidative damage mark-

ers such as lipids, DNAs and proteins can be examined 

for alterations to quantify the extent of oxidative damage 

due to oxidative stress. Furthermore, several enzymes, 

such as SOD, CAT and GR, belonging to the antioxida-

tive defence system, can be measured in order to quantify 

oxidative stress. Recent progress in fluorescent, lumines-

cent and colorimetric ROS and RNS probes was compre-

hensively reviewed [48].

�e above-mentioned oxidative stress “indicators” can 

provide a useful picture on the cell-ENM interactions. 

However, they are endpoint-based and qualitative, thus 

unable to provide quantitative information about the rate 

and amount of generated ROS. In addition they are often 

very laborious and fail to provide dynamic and continu-

ous information on specific physiological phenomena 

happening at the exposed living cells.

Hereinafter a new, very sensitive detection scheme for 

continuous measurement of extracellular H2O2 based 

on multiscattering enhanced absorption spectroscopy 

is present. Its high sensitivity allows non-invasive and 

real time measurements of H2O2 related to aerobic cell 

activity, including oxidative stress. Stress-induced H2O2 

can rapidly diffuse across plasma membranes [49, 50], is 

relatively long-lived (half-life 4–20  h,  <1  s in living tis-

sues) and, therefore, extracellular H2O2 could serve as 

an indicator of pro-oxidant processes [51–54]. A non-

exhaustive list of H2O2 detection methods can be found 

in Table 2.

Fluorescent and chemi-luminescent methods exhibit 

low LODs in the nM range. However, a major drawback 

of those methods is their incompatibility with bioorgan-

isms and they are therefore endpoint detection schemes.

Multiscattering enhanced absorption spectroscopy 
(MEAS)
�anks to its versatility, absorption spectroscopy has 

become a popular method with a broad range of appli-

cations. Adsorption spectroscopy provides a fast, sim-

ple and inexpensive method for the detection of a wide 

Table 1 Selected examples of ENM-induced oxidative stress or damage in microalgae

ENM Algae Media Mechanism Reference

TiO2 C. reinhardtii SE Generation of ROS by photocatalysis [31]

TiO2 and UV light C. reinhardtii Lake water and MOPS buffer [32]

TiO2 Chlorella sp. OECD Generation of intracellular ROS by HA [33]

CdTe/CdS C. reinhardtii MES, MOPS, HEPES Oxdative stress [34]

Al2O3, SiO2, ZnO and TiO2 Chlorella sp. SE ROS may not be the dominant 
mechanism for algal growth 
inhibition

[35]

Ag C. vulgaris, Dunaliella tertiolecta Growth medium BG-11 ROS induced lipid peroxidation and a 
decrease of cell viability

[36]

Pt C. reinhardtii
P. subcapitata

ISO 8692 medium and 4-fold diluted 
tris-acetate-phosphate medium

Substantial oxidative stress and 
negligible membrane damage; 
significant growth inhibition

[30]

Coated and uncoated CuO C. reinhardtii High salt medium ROS formation may be the primary 
toxicity mechanism

[37]

CeO2 P. subcapitata Standard US EPA The oxidative activity is mediated by 
OH and initiation of lipid peroxida-
tion

[38]

Core–shell CuO C. reinhardtii High salt growth medium ROS are responsible for chlorophyll 
deterioration, significant decrease 
of PSII primary photochemistry

[39]

CuO C. reinhardtii Various media, lake water Oxidative stress and damage of 
membrane integrity

[40]

CuO and light C. reinhardtii Synthetic fresh water Chlorophyll bleaching, oxidative 
stress and membrane damage; 
CuO and UV-light has synergistic 
effect

[41]

TiO2, CdTe and QDs C. reinhardtii CM growth medium Lipid peroxidation induced by oxida-
tive stress, QDs and TiO2 exhibit 
different mechanisms

[42]
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variety of targets [66]. Absorption spectroscopy can be 

applied in wide spectral span ranging from X-ray [67] 

to infrared light [68] and provides a beneficial tool for 

investigating biomolecules [69, 70]. In conventional 

absorption spectroscopy configurations the spectral light 

intensity, passed through the sample under test, is meas-

ured and normalised with respect to the intensity of the 

incident light. Knowing the optical path length (OPL) l 

through the sample and the absorption coefficient α of 

the analyte of interest, its concentration can be deter-

mined using Beer-Lambert’s law (1) [71].

I0 and I represent the light intensity before and after 

travelling through the sample, respectively. Long OPLs 

requires large amounts of analytes which are often costly, 

especially for biosamples.

(1)
I

I0
= e

−αCl

Fig. 3 Classification of methods used to determine and quantify oxidative stress. Reprinted with permission from (Toxicologic Pathology 2002; 30: 
620–650). Copyright (2002) SAGE Publications

Table 2 Selection of H2O2 detection methods [14]

Technique/probe Observable LOD Application notes Reference

Direct detection Absorbance of H2O2 mM [55, 56]

Cyt c Absorbance nM Optimal reaction in low ionic strength solutions [57, 58]

Xylenolorange + Fe3+ Absorbance of complex μM Carried out in acidic acids [59]

Xylenolorange + Ti4+ Absorbance of complex μM Carried out in acidic acids [59]

Luminol Chemi-luminescence nM Interference with Mn2+ and Fe3+ [60–62]

2,7-Dichlorodihydrofluorescein (DCFH) Fluorescence of product pM-nM Can be oxidised by other ROS [16, 63]

p-Hydroxyphenylacetic acid Fluorescence of product nM Optimal reaction at pH > 8.5 [64, 65]
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Significant efforts have been put in the development of 

various techniques aiming to improve the sensitivity of 

absorption spectroscopy [72–74]. A simple and versatile 

technique, was presented by Koman et al. [75]. In order 

to extend the OPL and, thus, the sensitivity, advantages 

were taken from disordered media where the OPL is 

increased via multiple scattering since spatial variations 

of the refractive index prevent the light to follow the 

shortest trajectory. In a configuration containing sus-

pended polystyrene (PS) beads, as schematically shown 

in Fig. 4, the limit of detection (LOD) was improved sub-

stantially [75].

In order to demonstrate its performance MEAS was 

carried out on low concentrations of phenol red, envy 

green and 10 nm gold nanoparticles (AuNp). �e absorb-

ance A of standard and multiscattering experiments are 

displayed in Fig.  5 [75]. Using this approach, sensitiv-

ity and LOD of commercially available bioassays can be 

improved. �is has been shown for OxiSelect, an assay 

for H2O2 detection [75].

 

According to Eq. (3) the sensitivity S for a certain ana-

lyte concentration becomes maximal. Hence, the OPL 

can be adjusted by selecting an adequate scatterer con-

centration and thereby optimised with respect to a spe-

cific application.

(2)A = −log

(

I

I0

)

= Cl

Fig. 4 The presence of scatterers (500 nm polystyrene beads) in the 
MEAS configuration enhances the OPL and, consequently, lowers the 
LOD. Principle and transmission measurements of the absorption of 
phenol red in conventional and MEAS configurations. Reprinted with 
permission from (Analytical Chemistry 2015; 87: 1536–1543). Copyright 
(2015) American Chemical Society

Fig. 5 Absorption enhancement for a phenol red, b 10 nm Au NPs 
and c envy green for different concentrations C of 500 nm PS scat-
terers: C1 = 0.6 nM and C2 = 3 nM. The insets in b and c show the 
normalised transmission spectrum T and the LOD is defined as 3 
times the noise level. The error bars correspond to the standard devia-
tion over five independent measurements. Reprinted with permission 
from (Analytical Chemistry 2015; 87: 1536–1543). Copyright (2015) 
American Chemical Society
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For a better understanding of the multiscattering phe-

nomenon a probabilistic Monte Carlo approach was 

implemented (Fig.  6). Wavepackets are launched into 

the system containing randomly distributed PS beads. 

�e random scattering angles were determined using 

Henyey-Greensteins approximation [76] which describes 

the scattering cross-section σ for an individual scat-

terer using Mie theory [77, 78]. �e attenuation of each 

wavepacket was computed following Beer-Lambert’s law 

(1) and, finally, the residues of the individual wavepack-

ets leaving the system were summed together. In order 

(3)S =

∣

∣

∣

∣

∂

∂C

�I

I0

∣

∣

∣

∣

= αle
−αCl

to achieve an appropriate accuracy the random trajec-

tories of 108 wavepackets were calculated. �e simula-

tions showed excellent agreement with experimental 

results and allow prediction of OPLs for different con-

centrations, refractive indexes and sizes of the scatterers. 

Due to bead–bead interactions the proposed numerical 

approach is not accurate for high filling factors F [79] 

nevertheless, for F  <  10% good numerical/experimental 

agreements were found [75].

Sensitive real-time detection of H2O2

MEAS was employed to improve the sensitivity for the 

detection of H2O2 in aqueous solutions. �e detection prin-

ciple is based on sensitive adsorption measurements of the 

heme protein cytochrome c (cyt c) [18], since the absorp-

tion spectrum of cyt c depends on the oxidation state of 

its heme group [80]. �e catalytic redox behaviour of cyt 

c reduces H2O2 into water whereas the ferrous FeII heme 

group is oxidised into the ferric FeIII heme group providing 

information on the H2O2 concentration in its environment. 

Cyt  c exhibits three oxidation state-dependent absorp-

tion peaks in the visible range, namely, at λ = 530 nm in 

the oxidised and λ = 520 and λ = 550 nm in the reduced 

state. �e absorption at λ = 542 nm and λ = 556 nm pro-

vide adequate reference signals since at those wavelengths 

the absorption is independent of the oxidation state (Fig. 7). 

�e sensing molecules, cyt c, were embedded in a porous 

matrix consisting of either aggregated PS beads or a filter 

membrane. �e aggregates were prepared as follows: PS 

beads were suspended in an aqueous solution of cyt c prior 

to addition of glutaraldehyde to crosslink cyt c resulting 

in cyt c/PS beads aggregates [18]. Transmission measure-

ments were performed using an inverted microscope and 

the temporal evolution of a normalised average oxidation 

state coefficient φ ranging from 0 to 1 for completely oxi-

dised and reduced cyt c, respectively, was determined. 

Calibration experiments carried out for this configuration 

with known concentrations of H2O2 revealed a LOD below 

100  pM which enables continuous measurements of the 

dynamics of ROS produced by bioorganisms when under-

going stress situations [18].

Since H2O2 is the reaction product of many enzymatic 

reactions [Eq. (4)] [81], its real-time detection combined 

with those reactions enables the detection of further 

metabolites such as glucose and lactate.

Koman et  al. presented a detection scheme for sensi-

tive and real-time detection of those metabolites [40]. 

Taking advantage of the above presented multiscatter-

ing approach they were detected with sub-micromolar 

LODs. Moreover, this enzymatic approach allows real-

time measurements of multiple analytes in parallel which 

(4)analyte + enzyme → H2O2 + X

Fig. 6 Schematic illustration of the numerical approach. a Inten-
sity distribution of light scattered at a spherical object. b Intensity 
distribution of large amounts of wavepackets scattered at a spherical 
object. c Wavepackets travelling through a random media. Reprinted 
with permission from (Analytical Chemistry 2015; 87: 1536–1543). 
Copyright (2015) American Chemical Society
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offers the possibility to follow the evolution of several 

metabolites. �is feasibility has been demonstrated using 

the example of parallel detection of glucose and H2O2.

Portable setup and micro�uidic chip
To step towards reliable and sensitive routine H2O2 

measurements, a portable setup containing a multiscat-

tering sensing element was built (Fig.  8) [82]. An aque-

ous solution of cyt c was spotted onto a porous filter 

membrane using a microarray robot with a delivery 

volume of 5  nl of 4  mM cyt c solution. Subsequently, 

the cyt c was crosslinked with vaporous glutaraldehyde 

in order to retain the cyt c in the membrane. Using the 

membrane approach the reproducibility of the ampli-

fication was remarkably improved compared to the 

aggregates described in the previous section. A closed 

chamber delimited by an o-ring and two glass cover slips 

was employed to carry out static experiments (Fig.  8a). 

�e sensing element was placed at the bottom of the 

chamber prior to the measurements. Figure  9a shows 

the time evolution of φ in the static regime for different 

H2O2 concentrations in PBS buffer solution [82]. Meas-

urements performed in this configuration exhibit a sig-

nal enhancement due to multiscattering, on the order 

of 5. In a further step the configuration was extended 

with a multi-layered microfluidic arrangement contain-

ing micro-valves and sieves [83], enabling more complex 

experimental sequences; for instance exposure/rinsing 

steps to study recovery or sensitisation of bioorganisms. 

Schematic overview and photographs of the principle 

of the portable oxidative stress sensor (POSS) are dis-

played in Fig.  10. �e implementation of microsieves 

offers the possibility to perform experiments with non-

adhering bioorganisms such as algae, which are retained 

in the reaction chamber as illustrated in Fig. 10h, i. �e 

sensing element is placed in the microfluidic channel in 

order to minimise possible interferences between organ-

isms and analytes. Figure 9b shows the differential oxida-

tion state coefficient Δφ vs. H2O2 concentration for the 

static and microfluidic regime. Δφ defined as the differ-

ence between the initial value of φt =  0 and the value at 

time t: �ϕ = ϕt=0 − ϕt. �e calibration curve resembles 

a sigmoidal shape when increasing H2O2 concentration, 

which is typical for ligand binding assays and can be fit-

ted using a 4-parameter logistic model [84]. For the given 

configuration with a porous membrane a LOD of 40 nM 

of H2O2 was achieved [82]. Exposing the sensing element 

to reducing agents the cyt c alters from its ferric FeIII state 

to its ferrous FeII state. Hence, after reducing an oxidised 

sensing element can be reused. �is has been shown by 

exposing the sensing spot to AA. Four consecutive oxida-

tion/reduction cycles were carried out without lowering 

the performance of the sensor [82]. Furthermore, glu-

cose and H2O2 and lactate and H2O2 were simultaneously 

measured adding glucose (GOx) and lactate oxidase 

(LOx), respectively, for the enzymatic conversion into 

H2O2 [Eq.  (4)] [40]. �us, to avoid that the fast conver-

sion already takes place in the solution the oxidase was 

incorporated inside the sensing element. In practise, a 

mixture of oxidase and cyt c was deposited onto the filter 

membrane prior to crosslinking with glutaraldehyde, as 

described above for cyt c. An unambiguous measurement 

of glucose and lactate concentrations requires simultane-

ous measurements of the substrate (glucose and lactate 

Fig. 7 Spectrum of cyt c in its oxidised and reduced state. The inter-
mediate states reflect an average value of oxidised and reduced cyt c. 
Absorption measurements in transmission configuration without and 
with multiscattering enhancement. Reprinted with permission from 
(Scientific Reports 2013; 3: 3447). Copyright (2013) Nature Publishing 
Group
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in the present cases) and H2O2 with subsequent subtrac-

tion of the background H2O2 contribution. For the sake 

of completeness, it should be mentioned that, due to dif-

fusion issues, interferences were observed when placing 

the sensing elements for the substrate and H2O2 in the 

same chamber. �is problem was solved by adapting the 

microfluidic configuration to separate the sensing ele-

ments [40]. Finally, LODs as low as 240 and 110 nM for 

lactate and glucose, respectively, were achieved for the 

configuration at hand.  

Here ENM-induced H2O2 excretion by cells exposed to 

ENMs was monitored with a recently developed optical 

biosensor in a portable setup (POSS; portable oxidative 

stress sensor) specifically designed for field experimen-

tation [82]. In this way, POSS may contribute to the elu-

cidation of ENM-specific pro-oxidant interactions with 

cells and thus help to narrow the gap between material 

innovation and sound risk assessment.

Selected applications to probe the pro-oxidant 
e�ect of nanoparticles to microalga C. reinhardtii

To demonstrate the performances of the developed sens-

ing tool, the pro-oxidant effects of CuO and TiO2 nano-

particles to green alga C. reinhardtii, a representative 

Fig. 8 Portable setup (a) closed chamber for static measurements, b microfluidic channel for flow experiments, c schematic drawing of the port-
able setup and d front view photograph. Reprinted with permission from (Biosensing and Bioelectronics 2015; 68: 245–252). Copyright (2015) Elsevier

Fig. 9 a Time evolution of the oxidation coefficient φ for different H2O2 concentrations in the static regime. b Differential oxidation coefficient 
∆φ vs. H2O2 concentration in the static and microfluidic regime. Reprinted with permission from (Biosensing and Bioelectronics 2015; 68: 245–252). 
Copyright (2015) Elsevier
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model AMO are presented [32, 85] together with meas-

urements of the potential to generate abiotic ROS as 

well as oxidative stress and membrane damage. �ese 

two ENMs were chosen since they have different prop-

erties—CuO nanoparticles have a tendency to dissolve, 

while nano-TiO2 is rather inert; (ii) both have photocat-

alytic properties; (iii) nano-CuO is with relatively high 

toxic potential [86], while nano-TiO2 is moderately toxic; 

(iv) they are of high environmental relevance given their 

increasing use in different products.

�e nanoparticle-induced cellular pro-oxidant process 

in C. reinhardtii were studied using the newly developed 

cytochrome c biosensor for the continuous quantifica-

tion of extracellular H2O2 and fluorescent probes (Cell-

RoxGreen for oxidative stress and propidium iodide for 

membrane integrity [32, 41, 87]) in combination with 

flow cytometry. Both the dynamics of abiotic (ENM only) 

and biotic (ENM +  cells) pro-oxidant processes related 

to the exposure of C. reinhardtii to nano-CuO and nano-

TiO2 are present below.

Nano-CuO

Chlamydomonas reinhardtii were exposed to CuO nan-

oparticles in five different media, namely TAP, MOPS, 

OECD, MES and Geneva lake water [85] and the biologi-

cal responses including growth, size increase, chlorophyll 

autofluorescence, intracellular ROS and membrane dam-

age were quantified.

�e concentration of Cu ions dissolved from the 

nano-CuO in the different media increased in the order: 

MOPS  <  MES  <  Geneva lake water  <  OECD  <  TAP. 

Nano-CuO exposure induced oxidative stress and 

membrane damage, but the intensity of the effects was 

susceptible to medium and exposure duration [40]. 

Comparison of the exposure of C. reinhardtii to nano-

CuO and released Cu2+ revealed that in all but one of 

the five different exposure media free ionic copper was 

likely the main toxicity-mediating factor. However, a 

threshold concentration of Cu2+ must be reached for 

biological effects to occur. However, a nano-CuO par-

ticle effect was observed in cells exposed in the Good’s 

Fig. 10 a Conceptual design of the multilayered microfluidic configuration, b–e principle of operation of the microfluidic valves, schematic draw-
ings and photographs, f, g time evolution of the analyte concentration for filling and rinsing action, h, i schematic drawing and photograph of the 
micro sieve. Reprinted with permission from (Nanotoxicology 2016; 10: 1041–1050). Copyright (2016) Taylor & Francis
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buffer MOPS, in which nano-CuO dissolution was very 

low. �ese findings highlight how the dominant toxicity 

mediating factors change with exposure medium, time 

and the biological endpoint considered and thus demon-

strate that nanotoxicity is a highly dynamic process. Fur-

thermore, the observed ROS generation and oxidative 

stress observed in C. reinhardtii exposed to nano-CuO 

in lake water, were in line with the increasing extracel-

lular H2O2 determined using the POSS (Fig. 11). Abiotic 

H2O2 formation by nano-CuO was also observed, but the 

values were much lower than those found in the pres-

ence of algae. Simultaneous exposure of C. reinhardtii 

to nano-CuO and simulated solar light induced synergis-

tic effect in ROS generation, whereas exposure to ionic 

copper and the same solar simulated light conditions 

resulted in antagonistic effects [41, 87]. No measurable 

alterations in nano-CuO aggregation, copper dissolu-

tion or abiotic ROS production were found under the 

tested light irradiations suggesting that the synergistic 

effects are not associated with light-induced changes in 

nano-CuO properties in the exposure medium [40, 41]. 

Nano-CuO toxicity to microalgae is generally recognized 

to be associated with the amount of copper released by 

the nanoparticles [41]. However, the combined effects 

observed for light irradiation and CuO-NPs could not be 

explained with the measured copper dissolution suggest-

ing that under stressful light conditions other mecha-

nisms of actions might be involved.

Nano-TiO2

�e nano-TiO2 exposure experiments were performed in 

MOPS and water sampled from lake of Geneva [32]. �e 

observed pro-oxidant effects were strongly dependent on 

the exposure concentration and medium. In lake water 

exposures the proportion of cells affected by oxidative 

stress increased with the concentration of nano-TiO2, 

with highest responses obtained for algae exposed to 100 

and 200  mg L−1 nano-TiO2. Similarly, membrane dam-

age predominantly occurred in lake water rather than in 

MOPS. UV light pre-treatment of TiO2 enhanced median 

intracellular ROS levels in lake water exposure while no 

significant effect was found in MOPS.

In MOPS H2O2 concentrations (cH2O2) determined 

using POSS were highest at the start and decayed to 

values close to the LOD after 60 min exposure (Fig. 12) 

in all treatments. cH2O2 values were higher in UV pre-

treated samples at nearly all concentrations (except 

10 mg L−1 nano-TiO2). �e initial cH2O2 peaks are pos-

sibly due to the formation of hole/electron pairs and 

their subsequent photocatalytic reaction with H2O and 

O2 at the surface of the nano-TiO2 particles [88]. Results 

suggest that nano-TiO2 behaves as both peroxide source 

and sink through photocatalytic reactions at the sur-

face of the nanoparticles. Experiments carried out with 

lake water did not exhibit initial peroxide peak con-

centrations after sonication. �is may be explained by 

ROS quenching species in the form of dissolved organic 

Fig. 11 Time evolution of the differential oxidation coefficient ∆φ during an exposure for 60 min to nano-CuO, C. reinhardtii and nano-CuO and C. 

reinhardtii in lake water. A control experiment was carried out in lake water
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matter (DOM), which, in contrast to MOPS, are present 

in lake water.

�e biotic exposure experiments revealed higher decay 

rates of the initial peaks at the beginning of the experi-

ments, suggesting a peroxide annihilation by algae.

Overall, our findings showed that (i) irrespective of the 

medium, agglomerated nano-TiO2 in the micrometer size 

range produced measurable abiotic H2O2 concentrations 

in biologically relevant media, which is enhanced by UV 

irradiation, (ii) cH2O2 undergo decay and are highest in 

the first 10–20  min of exposure and (iii) the generation 

of H2O2 and/or the measured H2O2 concentration is a 

dynamic process modified by the ambient medium as well 

as nano-TiO2 concentrations and the presence of cells.

Comparison of the extracellular H2O2 measurements 

and intracellular oxidative stress [32, 82] further showed 

significant differences between extracellular and intra-

cellular pro-oxidant processes. Indeed, an increase of 

the intracellular oxidative stress was found under the 

conditions where no significant increase in extracellu-

lar biotic H2O2 was measured. �e above observation 

indicates that extracellular H2O2 measurements can-

not directly serve as a predictor of cellular pro-oxidant 

processes or oxidative stress in C. reinhardtii, however, 

they provide valuable information about the extracellu-

lar dynamics of the most stable ROS in the extracellular 

medium.

Extracellular H2O2 measurements during altering 
illumination regimes
It is well known that light conditions influence the meta-

bolic activity of algae and therefore cellular ROS generation 

[89, 90]. ROS released by photosynthetic organisms gener-

ally originate from the photosystems II and I [89, 90] (PSII 

and PSI) located in the thylakoid membrane of the chlo-

roplast. Disturbances of the electron transport chain from 

PSII to PSI favour reduction of molecular oxygen O2 to O2
− 

which triggers a reaction cascade leading to the formation 

Fig. 12 Extracellular H2O2 [nM] (cH2O2) produced during 60 min by four nano-TiO2 concentrations with (b, d) and without UV pre-treatment (a, c) 
in abiotic (a, b) and biotic (c, d) conditions in the MOPS buffer: nano-TiO2 only (a), nano-TiO2 after 20 min UV pre-treatment (b), algae exposed to 
nano-TiO2 (c) and algae exposed to UV pre-treated nano-TiO2 (d). The horizontal red line represents the LOD and insets depict enlargements of the 
respective 0–1000 nM concentration range Reprinted with permission from (RSC Advances  2016; 6: 115271–115283). Copyright (2016) Royal Society 
of Chemistry
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of OH and H2O2 [91]. According to previous studies, chlo-

roplast derived H2O2 is able to diffuse out of the chloroplast 

[92] and through the cell walls and is, therefore, present in 

the extracellular media. Here, we examined the dynamics 

of extracellular H2O2 during altering illumination regimes. 

C. reinhardtii in model medium were exposed to 100 nM 

of Cd2+ in different light conditions [18].

(5)C .reinhardtii + Cd
2+ light

−−→
extracellular H2O2

Fig. 13 Dark- and light-adapted C. reinhardtii are exposed to 100 nM of Cd(II). Time evolution of (a) the differential oxidation state coefficient ∆φ, b 
the H2O2 production and c the H2O2 production rate. After injection of Cd(II) the light-adapted algae under illumination start excreting H2O2 with-
out delay, whereas there is a production delay under dark conditions. d ROS production for dark-adapted algae exposed to 100 nM of Cd(II) when 
the illumination is successively turned on and off during the measurement. e These data support the following action mechanism of Cd(II) on the 
photosynthetic apparatus of C. reinhardtii: Cd(II) binding to the plastoquinone pool disturbs the electron transport chain between PSII and PSI. 
Upstream, the light driven electron extraction from oxygen evolving complex (OEC) remains functional and generates light-dependant ROS at the 
PSII acceptor side. Reprinted with permission from (Scientific Reports 2013; 3: 3447). Copyright (2013) Nature Publishing Group
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Figure 13 indicates an enhanced H2O2 production rate 

and no production delay under light conditions suggest-

ing a correlation between ROS regulation and the activity 

of the photosystems.

Recovery and sensitisation
In contrast to end-point measurements, sensitive and 

non-invasive continuous H2O2 measurements enable 

the investigation of recovery and sensitisation. To dem-

onstrate the practicability of such experiments the C. 

reinhardtii were repeatedly exposed to Cd2+, using a 

microfluidic configuration as described above [83]. Cd2+ 

concentrations are typically <10 nM in fresh water. How-

ever, higher concentrations of Cd2+ were found in the 

exposure media containing CdSe quantum dots [5] or 

CdTe/CdS [34].

Extracellular H2O2 concentrations were measured 

while C. reinhardtii were exposed to 100  and 500  nM 

of Cd2+ [step (1)]. A subsequent rinsing [step (2)] and 

further exposure to Cd2+ [step (3)], even at 100 nM, 

exhibits an increased H2O2 production rate compared to 

the previous exposure (Fig. 14).

1. 1st exposure of C. reinhardtii to Cd2+ → H2O2 pro-

duction

2. Rinsing

3. 2nd exposure of C. reinhardtii to Cd2+ → increased 

production rate of H2O2

�is shows that exposure to even low concentration 

of Cd2+ leads to a sensitisation of exposed cells, thus sug-

gesting an adverse impact on the health of microorgan-

isms. In parallel, intracellular ROS was assessed based on 

the fluorescence intensity of de-esterified H2DFC-DA [93]. 

At high Cd2+ concentrations (500 nM) intra- and extracel-

lular measurements correlated very well, confirming the 

suitability of extracellular H2O2 measurements as indica-

tor of cellular stress. However, unlike extracellular H2O2 

Fig. 14 Algae exposure to Cd2+. Oxidative state coefficient φ versus time for: a 500 nM and b 100 nM exposure cycles. c, d Extracellular H2O2 
concentration CH2O2. Intracellular ROS measured a fluorescence method for e 500 and f 100 nM Cd2+ exposures for identical cycles as in a and b. 
Reprinted with permission from (Nanotoxicology 2016; 10: 1041–1050). Copyright (2016) Taylor & Francis



Page 16 of 18Santschi et al. J Nanobiotechnol  (2017) 15:19 

concentrations, intracellular levels remain stable in the 

100 nM exposure, suggesting an efficient ROS/AOX regula-

tion through the cell walls.

Conclusions and outlook
�is review paper provides a short overview on nano-

particle toxicity for aquatic microorganisms based 

on the paradigm of oxidative stress and highlights the 

recent developments of an optical biosensor based on 

absorption measurements of cyt c for the sensitive, 

non-invasive and continuous measurement of H2O2. 

�e use of this new tool for studying the pro-oxidant 

effects of ENMs to aquatic microorganisms was dem-

onstrated by exposing the representative aquatic micro-

organism C. reinhardtii to nano-CuO and nano-TiO2 in 

various exposure media and under different light treat-

ments. Sensitive continuous measurements of extracel-

lular H2O2 provided valuable information on both the 

potency of the studied nano-CuO and nano-TiO2 to 

generate ROS as well as on the mechanisms of toxicity. 

�e results were in good agreement with the oxidative 

stress and membrane damage results obtained under 

the same conditions using a combination of fluorescent 

staining with flow cytometry. �e developed biosensor 

allows rapid measurement of the rate and amount of 

H2O2 measured in the extracellular medium in response 

to cell exposure to ENMs. Hence, detailed knowledge 

of the dynamics of H2O2 excretion can provide valuable 

insights into complex biological responses. �e devel-

opment of the portable setup and the multi-layered 

microfluidic chip with an integrated optical sensor for 

the continuous sensitive detection of extracellular H2O2 

opens novel avenues for new types of exposure experi-

ments, leading to a better understanding of ROS biology 

as well as to numerous opportunities for nanoecotoxi-

cological studies. Developing and employing new sens-

ing tools and methods enables conducting experiments 

under more realistic conditions such as environmental 

relevant concentrations, aged nanomaterials and simul-

taneous exposure to various stressors. Furthermore, 

studying the dynamics of cellular metabolites leads to 

new insights in the extremely complex adverse outcome 

pathways.
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