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ABSTRACT

Light scattering is known for blurring images to the point of making them appear as a white halo. For this reason
imaging through thick clouds or deep into biological tissues is difficult. Here we discuss in details a method we
developed recently to retrieve the shape of an object hidden behind a diffusing screen.

1. INTRODUCTION

In order to form an image our eyes rely on the rules of ray optics. The crystalline lens map light coming from
different directions to different points on the retina, and together with the knowledge of the lens’ accommodation
allows to obtain a reliable picture of our surrounding. But when the light coming at us is scattered before reaching
our eyes, as it might happen when we are immersed in a deep fog, this directional information is lost and the
quality of the picture is degraded. Up to the point when we can’t discern what surround us anymore. This
is especially a problem in the field of biophotonics, where tissues strongly scatter light and thus non-invasive
imaging is mostly limited to a shallow depth below the surface.1

Due to the huge importance of this problem, in the last decades many different approaches were proposed
and demonstrated, each with its advantages and disadvantages. For semi-transparent media it is possible to
perform imaging using gated techniques to separate the small amount of ballistic light that did not change
direction from the scattered background.2–5 Yet the achievable resolution rapidly degrades when the scattering
becomes stronger6 and this method breaks down when all ballistic light is blocked. Alternatively diffuse wave
tomography techniques can locate absorptive objects deep inside a scattering medium7 but do not permit to
resolve details.8,9It has been theoretically suggested that a complete knowledge of the scattering screen will
allow one to image objects hidden behind it.10 Major steps in this direction were achieved using ultrasound11

and electromagnetic waves in both the microwave12,13 and in the optical regime.14–21 Yet to obtain the required
knowledge of the scattering screen, it is necessary to access its back, thus severely limiting the usefulness of these
approach.

We recently described a method to retrieve the shape of a fluorescent object hidden behind a thin but strongly
scattering, and thus completely opaque, screen.22 Here we discuss in details, with the help of synthetic data, the
working principle of the method, its potential, limitations and how to avoid some of the possible pitfalls. This
also forms the basis to understand and exploit several papers that replicated and extended our work.23–25

2. THE METHOD

The geometry we will consider is depicted in Figure 1. A fluorescent object is placed behind a scattering slab
while a coherent light beam is shone at an angle θ from the front. When coherent light is elastically scattered it
produces speckle,26 so the hidden object will be illuminated by an irregular, and unknown, pattern of bright and
dark spots. If we call s(x,θ) the intensity speckle pattern generated by a beam at an angle θ that illuminate
the object and o(x) the position-dependent density of fluorophores in the hidden object, than the total amount
of fluorescence produced will be proportional to the superposition of the speckle with the fluorescent object. If
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Figure 1. Schematic depiction of the experimental system. A fluorescent object is positioned on the right of the scattering
screen. On the left we have a coherent light beam that illuminates the screen at a variable angle θ and a detector with a
filter to cut the illumination and collect only the fluorescence from the hidden object.

the scattering slab and the detector are static, the fraction of fluorescence that we can detected will be constant.
So we can write the collected amount of light as

I(θ) = α

∫
o(x)s(x,θ)d2x, (1)

where α is the collection efficiency.

2.1 The optical memory effect

Speckle might appear to be random, but it isn’t completely so. In particular speckle is known to be characterized
by the presence of several correlations27,28 that allow to predict, in certain circumstances, how the intensities
at two different points are related. The correlation we are interested in here is known as the optical memory
effect, and describes how the speckle generated by a coherent beam impinging on a scattering layer is related
to the speckle generated by a beam that impinges on the same scattering layer but with a different angle of
incidence.27,29 Due to the fact that the disordered system that the light has to traverse is the same, it turns out
that if we tilt by a small angle ∆θ the beam, the speckle pattern will not change, but just rotate by the same
angle and change gradually while the tilt angle becomes bigger.

Calling s(θ) =
∫
s(x,θ)d2x the average intensity of a speckle pattern and δs(x,θ) = s(x,θ) − s(θ) the

oscillations around this mean, we can describe how much the speckle pattern changes using the correlation
function28

C (∆x,∆θ) =

〈∫∫
δs(x,θ)δs(x + ∆x,θ + ∆θ)d2xd2θ

s2(θ)

〉
=
〈δs ? δs〉

s2
, (2)

where ? represents the cross-correlation product (f ? g) (∆x) =
∫
f∗(x)g(x + ∆x)dx and the angular brackets

represent an ensemble average over all realization of speckle. Considering only the dominant term (under the
assumptions that we are far away from Anderson localization30,31) we find27,28

C (∆x,∆θ) = e−k
2(∆x−d∆θ)2σ2

·
(

k|∆θ|L
sinh (k|∆θ|L)

)2

, (3)

where σ is the standard deviation of the gaussian incident beam, d is the distance of the object from the screen,
L is the layer thickness and k is the wave vector. The first term represents the autocorrelation of the speckle
pattern for a fixed angle of incidence, and rapidly approach a Dirac Delta centered at ∆x = d∆θ when the width
of the incident beam increases. The second term represent how much the speckle pattern changes when changing
θ and decay to half of the maximum value at ∆θ ' 1.5/(kL). Interestingly eq. 3 is completely independent from
how scattering the layer is. As a consequence the applicability of the method we describe is not determined by
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Figure 2. Synthetic data showing (from left to right) a pattern representing the hidden object, a speckle pattern and their
convolution.

the optical density of the medium, as it is common with many other methods,6 making it particularly useful
when thin but strongly scattering layers are present.

2.2 Measuring autocorrelations

The optical memory effect can be exploited to shift the unknown speckle pattern over the hidden fluorescent
object in a controlled way. If the optical memory range is large, i.e. the speckle pattern does not change
appreciably when we rotate the incident beam by ∆θ, eq. 1 takes the convenient form

I (θ) = α

∫
o(x)s(x− dθ)d2x = α [o ∗ s] (θ), (4)

i.e. a 2D function of the incidence angle that is proportional to the convolution between o and s. As shown in
Figure 2 the randomness of the speckle result in a measured [o ∗ s] (θ) that bears very little resemblance with
the original object, although general features like the presence of vertical and horizontal lines can be seen upon
a closer inspection. We can measure I (θ) directly by sequentially collecting the fluorescence for many angle of
incidence but, in order to extract informations about the function o, i.e. the shape of the hidden object, we need
to autocorrelate I:

[I ? I] (∆θ) = α2

∫ (∫
o(x)s(x,θ)d2x

)(∫
o(y)s(y,θ + ∆θ)d2y

)
d2θ =

= α2

∫∫
o(x)o(y)

(∫
s(x,θ)s(y,θ + ∆θ)d2θ

)
d2xd2y =

= α2

∫∫
o(x)o(y) ((s ? s) (|x− y| ,∆θ)) d2xd2y.

(5)

To go further we have to notice that the autocorrelation of s and the autocorrelation of δs differ just by a
constant:

(δs ? δs) = ((s− s) ? (s− s)) = (s ? s) + (s ? s)− 2 (s ? s) = (s ? s)− (s ? s) = (s ? s)−As2, (6)

where A is the area covered by the speckle we are autocorrelating. Making an ensamble average 〈·〉, performing
the change of variable ∆x = y − x and using eq. 3 and 6 in eq. 5 we obtain

〈I ? I〉(∆θ) = α2

∫ (∫
o(x)o(x + ∆x)d2x

)(
〈δs ? δs〉 (∆x,∆θ) +As2

)
d2∆x =

= α2

∫ (∫
o(x)o(x + ∆x)d2x

)(
s2C (∆x,∆θ) +As2

)
d2∆x =

= α2s2
∫

[o ? o] (∆x)e−k
2(∆x−d∆θ)2σ2

·
(

k|∆θ|L
sinh (k|∆θ|L)

)2

d2∆x + α2As4
∫

[o ? o] (∆x)d2∆x =

= α2s2 ·
(

k|∆θ|L
sinh (k|∆θ|L)

)2 ∫
[o ? o] (∆x)e−k

2(∆x−d∆θ)2σ2

d2∆x + α2As4‖o‖2,

(7)
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Figure 3. If the function o(x) is composed by the object we are interested in retrieving plus a clearly separated dot, then
its autocorrelation contains two clear copies of the object itself.

where ‖o‖2 is the square of the total integral of o(x).

Apart from the proportionality constant α2s2, the first term in eq. 7 represents the speckle decorrelation for
large ∆θ and the second the convolution of the object autocorrelation (o ? o) with a narrow gaussian. Finally
the last term is an offset. Therefore, as long as the size of the object is smaller than 2d∆θ the autocorrelation
of the measured I is proportional to the autocorrelation of the hidden object o plus a constant.

2.3 Inverting the autocorrelation

Even if we are able to measure perfectly o ? o, we still need to extract o from it. Since an autocorrelation is a
lossy operation, not everything can be retrieved, even in principle. In fact the autocorrelation of any function is
always centered at ∆θ = 0, so any information about the absolute position of o is lost, and only relative positions
can be found. Furthermore the autocorrelation of a positive and real function must be centrosymmetric, thus
creating an ambiguity about the object original orientation.

A particularly simple case occurs when, as shown if Figure 3, the function o(x) is composed by the object we
are interested in retrieving plus a clearly separated dot. In this case the autocorrelation o ? o factor in a central
part that contains the object autocorrelation and two copies of the object itself on the sides. If we are not that
lucky it is important to recover o ? o as accurately as possible. Form eq. 7 we see that, assuming that the object
we want to recover is smaller than d times the memory range and that the speckle pattern is fine enough (i.e. σ
is large), then o ? o is well approximated by 〈I ? I〉 minus a constant. This poses a conceptual problem, since we
have no direct way to estimate α2As4‖o‖2 and subtract it. On the other hand we can assume the minimum value
of o ? o to be zero (o is a positive function and thus its autocorrelation must be positive too), and thus subtract
any offset from 〈I ? I〉. This approximated approach proved effective in experimental conditions.22,24 It is also
important to notice that, in order to properly approximate o ? o, we need to perform an ensemble average over
the realization of the speckle patterns on I ? I. This can be easily obtained by measuring I(θ) for several central
angle separated by more than the memory range, so that they correspond each to a different speckle pattern.

The shape of the hidden object can be obtained using a Gerchberg–Saxton-like algorithm32,33 that iteratively
imposes the fact that the autocorrelation of the object is o ? o and that o(x) > 0. There are several possible
variants of this algorithm, as the ones used in stellar speckle interferometry34 or in x-ray scattering.35,36 Here we
will show a simple implementation in the Mathematica language of the so-called Error Reduction algorithm:33

g=RandomReal[{0, 1}, {dim, dim}];
mf=Sqrt[Abs[Fourier[oo]]];

er[g ] := ( g1 = Re[InverseFourier[ mf*Exp[I Arg[Fourier[g]]]] ] ;

g1 = ((g1 + Abs[g1])/2); Return[g1]; g1 =.);

ER[i ] := ( g = Nest[er, g, i] );
where oo is the variable containing the measured o ? o and dim is its size. A measure of how well the algorithm
converged after i iterations of ER can be obtained by calculating e = |g ? g− o ? o|. It is important to notice that
the error reduction algorithm is known to get stuck into a local minimum from time to time, so a good strategy
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Figure 4. Left panel: autocorrelation of the object. Central panel: the autocorrelation of o ∗ s provides a crude approx-
imation of o ? o. Right panel: to remove the noise we can perform an average over the realizations of s. The result is a
good approximation of o ? o with a slight loss of resolution due to the finite size of the speckle grains, as expected from
eq. 7.

Object e = 2.97642 e =180.152

e = 282.176 e = 248.098 e =1240.26

Figure 5. Original object (upper left corner) together with the result of 5 runs of 2000 iterations of the error reduction
algorithm.

is to run the algorithm several times and choose the solution that gives the smallest value of e.24 In Figure 5 we
show the original object and 5 instances of 2000 iterations of the error reduction algorithm, with the associated
residual error e, for different random initial conditions. As we can see the quality of the reconstruction varies
widely, but the value of e is a very good indicator of which reconstruction is the best. We also notice that the
various reconstructions do not have a fixed position and that sometimes they appear flipped. This is due, as
discussed above, to the ambiguities in the autocorrelation.33

3. CONCLUSIONS

In this paper we discussed how it is possible to exploit the optical memory effect to measure the autocorrelation
of a object hidden behind a scattering layer, and how to retrieve the shape of the object from this autocorrelation.
Since our original paper on imaging through a scattering layer22 several variations on our method were proposed
and demonstrated,23–25 but all ultimately rely on the relationship between the measured quantity 〈I ? I〉 with
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the desired quantity o ? o. The main result of this paper is eq. 7, that formally describes this relationship with
the only assumption that the scattering layer is diffusive.
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