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Abstract

Background: Pediatric inflammatory bowel disease (IBD) is challenging to diagnose because of the non-specificity of
symptoms; an unequivocal diagnosis can only be made using colonoscopy, which clinicians are reluctant to recommend for
children. Diagnosis of pediatric IBD is therefore frequently delayed, leading to inappropriate treatment plans and poor
outcomes. We investigated the use of 16S rRNA sequencing of fecal samples and new analytical methods to assess
differences in the microbiota of children with IBD and other gastrointestinal disorders.

Methodology/Principal Findings: We applied synthetic learning in microbial ecology (SLiME) analysis to 16S sequencing
data obtained from i) published surveys of microbiota diversity in IBD and ii) fecal samples from 91 children and young
adults who were treated in the gastroenterology program of Children’s Hospital (Boston, USA). The developed method
accurately distinguished control samples from those of patients with IBD; the area under the receiver-operating-
characteristic curve (AUC) value was 0.83 (corresponding to 80.3% sensitivity and 69.7% specificity at a set threshold). The
accuracy was maintained among data sets collected by different sampling and sequencing methods. The method identified
taxa associated with disease states and distinguished patients with Crohn’s disease from those with ulcerative colitis with
reasonable accuracy. The findings were validated using samples from an additional group of 68 patients; the validation test
identified patients with IBD with an AUC value of 0.84 (e.g. 92% sensitivity, 58.5% specificity).

Conclusions/Significance: Microbiome-based diagnostics can distinguish pediatric patients with IBD from patients with
similar symptoms. Although this test can not replace endoscopy and histological examination as diagnostic tools,
classification based on microbial diversity is an effective complementary technique for IBD detection in pediatric patients.
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Introduction

Crohn’s disease (CD) and ulcerative colitis (UC), collectively

termed inflammatory bowel diseases (IBD), are incurable condi-

tions that cause ulceration of the intestinal mucosa. If left

untreated, IBD may require repeated surgical intervention to

remove affected parts of the gastrointestinal system [1] leading to

malabsorption and nutritional complications [2]. Despite its

importance, timely diagnosis is difficult because patients often

present with non-specific symptoms [3], and the presence of CD or

UC can only be confirmed by colonoscopy.

Diagnosis is particularly challenging in children, for whom

presenting symptoms may vary widely and may only consist of

subtle extra-intestinal manifestations [4]. This in turn leads to a

typical delay in the diagnosis of pediatric IBD, ranging from 4

weeks in severe colitis [5] to 6–7 months in milder disease [4].

Reducing this diagnostic delay is important, since a long period of

unmanaged symptoms can significantly impact growth [5] and
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early treatment is essential to preserving long-term quality of life

[6]. Thus a sensitive yet non-invasive detection tool, that could

identify patients at high risk for IBD, and therefore warranting

endoscopic evaluation, would be a valuable diagnostic aid.

Non-invasive tests for IBD already exist, including antibodies [7],

imaging-based screens [8,9], and fecal biomarkers [10]. Specificities

for existing methods range from 89% to 95% for either CD or UC

[11], however,these methods are either limited to active disease,

poorly sensitive (,55%), or their outcome can be confounded by

diseases other than IBD [11], limiting their clinical utility [12,13].

The design of an accurate test for IBD is challenging, since the

precise cause of IBD is unknown. No single genetic, environmental

or epidemiological factor alone is diagnostic of IBD [14]. Instead,

current evidence about the aetiology of IBD points toward a

complex interplay between genetic, environmental, and immuno-

logical factors[15–17] and the intestinal microbiota[18–20].

Arguing in favour of the involvement of gut microbes in the

pathogenesis of IBD, it is known that colonisation with commensal

bacteria is required to elicit colitis in mice [19,21]. Similarly, in

IBD patients it is known that antibiotics can treat CD colitis in the

short term [22] and probiotics may prevent relapse of UC [23].

We hypothesized that changes in the intestinal microbiota,

whether causative of or responsive to disease, may provide a

viable diagnostic of disease status.

Previous microbial diversity studies have found characteristic

changes in the composition of the gut flora during IBD that could

potentially be used to screen patients with non-specific symptoms

[18,24]. In one of the most comprehensive studies to date, Frank and

colleagues [24]mappedmicrobiotacomposition in124IBDandnon-

IBDpatientsbybiopsysamplingcoupledwith16SrRNAsequencing.

Their work showed that patients with a long-standing history of IBD

had decreased levels of Firmicutes and increased level of Proteo-

bacteria, when compared to control individuals. While these results

firmlyestablishedtherelationshipbetweenGImicrobiotaanddisease

status, the overall approach is unsatisfactory as a diagnostic tool

because of low sensitivity (31%) and low overall accuracy (51%, as

determined from the third figure in [24]).

More recent studies have been able to accurately distinguish CD

and healthy individuals on the basis of pyrosequencing data [25],

but the same model was unable to distinguish UC from healthy

individuals or to differentiate patients in remission from patients

with active disease, raising questions about whether such

approaches show clinical potential. Finally, none of these studies

examined pediatric cohorts.

Here we demonstrate an approach that is capable of routinely

differentiating children with IBD from controls with other gastroin-

testinal diseases in a case-control study of ninety-one pediatric

patients. Our methodology shows high sensitivity and specificity over

a range of disease prevalence and it can be used to i) identify key taxa

associated with each disease state, ii) discriminate CD and UC and iii)

differentiate patients with active disease from those in remission. We

confirmed our results by blind validation with an independent cohort

of seventy-seven pediatric patients. This method applies next-

generation sequencing and robust statistical analysis using machine

learning techniques and, significantly, is a test for IBD based on non-

invasive fecal sampling.

Results

Supervised Classification Distinguishes IBD and Non-IBD
Patients in Existing Tissue-based Studies

The case-control study of Frank and colleagues [24] used an

unsupervised clustering approach: principal components analysis

(PCA). When the class labels (healthy vs. diseased) are known for a

training set of samples, then supervised learning methods can also

be applied (e.g. support vector machines, random forests, etc.).

These algorithms have been widely and successfully applied to

many problems in the biomedical sciences [26,27,28] and their use

in a clinical setting is emerging in the analysis of gene expression

data [29,30,31,32] and microbiome data [33].

We first investigated whether supervised learning could offer

sufficient performance to be employed in a microbiota-based IBD

detection tool, by applying it to the published IBD data set of

Frank et al [24]. We employed our Synthetic Learning in

Microbial Ecology (SLiME) method to classify samples from the

existing data set as IBD or control. SLiME is a software pipeline

which applies supervised classification algorithm to sequencing

data, using associated metadata as the classification label.

Demultiplexed sequences are classified into lineages, clustered to

select a representative set and used to estimate the abundance of

each taxa in each sample. The resulting frequency table is

normalized and fed to a supervised classification algorithm.

SLiME is based on Random Forests (RFs) [34], which we chose

for its accuracy and speed, although we achieved similar results

using other supervised learning approaches such as bagging,

stacking and support vector machines (see Fig. S1). Applying

SLiME to the existing data set yielded accurate classification of

patients into IBD or non-IBD groups. Based on repeated ten-fold

cross validation, the area under the ROC curve (AUC) – which is

a measure of the overall accuracy of the classification algorithm

over the range of possible disease incidence [35] – was 0.73

(Fig. 1A). Choosing a cutoff on the curve which gives relatively

high sensitivity (ie. 87.6%) yields 47.3% specificity, amply

surpassing the accuracy of the clustering method originally

employed [24].

Supervised Classification Distinguishes IBD and Non-IBD
Pediatric Patients on the Basis of Stool

Although the results obtained using the existing Frank et al. [24]

data set were encouraging, there are several reasons why they

might not translate to a clinically useful diagnostic test. First,

samples were obtained invasively through surgical tissue resection

from adult patients with advanced disease, and may not reflect

changes observed in fecal samples from patients with less advanced

disease. Second, the control specimens in the Frank et al. study

were largely composed of tissue from cancer patients, and thus

were not typical of patients investigated for IBD in the pediatric

setting. We therefore designed a new case-control study to evaluate

whether fecal samples from children not undergoing surgery could

be utilized to differentiate between patients with and without IBD.

We selected a group of ninety-one children and young adults

receiving care in the gastroenterology program of Children’s

Hospital (Boston, USA), and obtained fecal samples. Of these

children, 23 had Crohn’s disease, 43 had ulcerative colitis, one had

undefined IBD (colitis with elements of CD and UC) and 24 had

non-IBD functional disease (patients with gastrointestinal symp-

toms but no intestinal inflammation). To evaluate the potential of

our method to differentiate between children with IBD and

children without IBD, we thought it essential to study not

completely healthy children, but children with gastrointestinal

symptoms. These are the children who would present to the

gastroenterologist for evaluation, and for whom IBD is in the

differential diagnosis. Demographics of the patient populations are

given in Table 1. We isolated DNA from the fecal samples and

sequenced a portion of the 16S rRNA gene using high throughput

454 pyrosequencing (see Materials and Methods). We then applied

SLiME to the resulting microbial compositional data.

Pediatric IBD Detection by Microbiome Mapping
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Remarkably, performance of our method improved on this data

set despite the substitution of mucosal samples with stool samples,

yielding a ten-fold cross-validated AUC of 0.83 for distinguishing

IBD patients from controls (Fig. 1B). Sensitivity and specificity for

the diagnostic test can be obtained by selecting the desired

threshold along the curve. For instance, choosing a cutoff on the

curve at relatively high sensitivity (Fig. 1B, circle) yields 80.3%

sensitivity and 69.7% specificity for the test. The result is

particularly remarkable considering that fecal samples may not

be truly representative of the total intestinal microbiota. Indeed,

bacteria living in association with the intestinal epithelium, and

thus capable of interacting with innate immune receptors, are

likely not to be present in fecal samples.

The performance of the same classification algorithm was

higher when it was applied to distinguish from controls only those

IBD patients with clinically active disease, yielding an AUC of

0.91 (Fig. 1B dashed line). Table S6 and S7 show how the classifier

performs amongst the three disease groups (CD,UC and control)

at one arbitrary threshold. To test if the chosen sequencing

technology altered the classification of patients into controls and

IBD samples, we repeated sequencing for 10 of the samples using

the Sanger sequencing method. Supervised learning results,

however, were independent of the sequencing method employed

(Fig. S2). We hypothesized that some of the improvement in

performance might be due to increased sampling depth if a subset

of discriminatory bacteria are present at low abundance. To test

this hypothesis, we identified the bacterial taxa most strongly

associated with IBD (either positively or negatively), and plotted

their abundance. As shown in Fig. S3, many of the most

informative taxa are present at a level of less than 1% per sample

Figure 1. Accuracy of disease classification. (A) SLiME applied to
Frank et al. biopsy data set. The black line indicates performance
obtained when features were generated by taxonomical binning of the
original sequence data (AUC = 0.73); dashed line shows performance
when features were selected based on their importance in the pediatric
case-control data set and then applied to the Frank et al. study (AUC
= 0.71). (B) ROC curve for SLiME classification of active IBD patients vs
controls in the pediatric case-control data set. Two different threshold
selections are highlighted: circle, for which SLiME has 80.3% sensitivity
and 69.7% specificity; triangle, for which SLiME has 45.8% sensitivity
and 92.4% specificity.
doi:10.1371/journal.pone.0039242.g001

Table 1. demographics of paediatric (training) cohort.

Crohn’s UC Control IBDU

n 23 43 24 1

Gender Male 13(56%) 21(49%) 10(42.%) 1

Female 10(44%) 22(51%) 14(58%) 0

Age Median +/2 s.d. 14.1363.84 13.764.25 9.0864.3 14

Range 3–20 4–24 3–17

Montreal
class.

L1 1(4%)

L2 1(4%)

L3 15(65%)

L4 6(26%)

B1 18(78%)

B2 4(17%)

B3 1(4%)

E1 2(5%)

E2 6(14%)

E3 35(81%)

Disease
Activity

Control 0 0 24 0

Inactive 14 11

Mild 5 15 1

Moderate 3 9

Severe 1 8

Medications Salicylates only 1 (4%) 6(14%)

6mp/AZA/MTX 11 (48%) 12(28%)

Anti-TNF 7 (30%) 4(9%)

Calcineurin
inhibitor

0 23(53%)

Antibiotics 6 (26%) 14(33%) 1

(Steroids) 13 (57%) 25(58%) 1

doi:10.1371/journal.pone.0039242.t001

Pediatric IBD Detection by Microbiome Mapping
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– the level at which we would expect to see one count or less at the

sequencing depth used in Frank et al [24]. Thus, sequencing depth

is an important factor in diagnostic accuracy and may account to a

large degree for the lower AUC we obtained in the classification of

the Frank et al. data set.

Distinctive Taxonomical Groups are Associated with IBD
We identified a number of bacterial taxa strongly associated

with IBD that both confirmed and supplemented previous studies.

Fig. 2 shows taxa that are significantly associated with either IBD

or control patients (q-value ,0.01, Kruskal-Wallis test, FDR

adjusted [36], E(p0) = 0.18, see Fig. S4). Only a few of these taxa

show a distribution consistent with an ideal microbial biomarker –

a bacterial group whose presence/absence indicates disease

phenotype. For example, the Enterobacteriales are indicators of

active IBD (ie. patients with clinically active disease and not in

remission), while Rikenellaceae and Porphyromonadaceae are

generally found within the control group. By contrast, most of the

discriminatory groups in Fig. 2 are more or less abundant in IBD

patients, but not exclusive to one population (e.g., the Butyr-

icicoccus and Subdoligranum genera decrease in the IBD patients

with clinically active disease, but are still present in some IBD

patients with inactive disease). This highlights the need for

quantitative global surveys of microbial diversity rather than

simple indicators of presence/absence.

Microbial Alterations are Similar in Stool and Tissue
Samples

Our finding that classification was similarly accurate in tissue

and stool samples led us to ask whether the same alterations in the

gut profile were observed in both sample types or whether distinct

but similarly predictive changes occurred in each. To test this, we

used the bacterial taxa identified in the pediatric case-control

(stool-based) study to re-classify the tissue samples in the study by

Frank et al. [24] The classification accuracy based on features

from the pediatric study was nearly identical to the model using

features picked from the tissue-based study: AUC = 0.71 (Fig. 1A),

an increase in estimated measurement error of only 3%.

The relative change (upwards or downwards) of taxa in IBD

vs. control groups is remarkably concordant between the two

studies, with the exception of Lactobacillales (Fig. 3). Unsurpris-

ingly, due to the largely different sequencing depth many of the

low-abundance taxa detected in the pediatric case-control (e.g.,

Alistipes) are of little importance in the classification, when

applied to the Frank et al. data (Fig. S5). On the other hand, the

Subdoligranulum genus and the Proteobacteria phylum remain

two consistently important features across data sets (Fig. 3).

These results are encouraging because they suggest stool samples

can be used to study changes in other compartments such as the

mucosa.

Microbiota Diversity Decreases as Disease Severity
Increases

An important clinical question is to establish whether a marker

of disease activity exists, and to what extent it can be used to

stratify patients according to disease severity. To address this

question, we measured disease activity by means of standard

clinical indices (PUCAI [37], PCDAI [38]), based on symptoms

and blood test results [39], and compared to SLiME predictions.

While SLiME could not reliably classify on the basis of activity due

to the small number of patients in each distinct level of disease

severity, we nevertheless observed that overall microbiota diversity

was strongly associated with disease activity. As disease severity

increased, independently of the type of disease (CD or UC), overall

bacterial diversity decreased as measured by the Shannon diversity

index (Fig. 4). These results further support the view that IBD

reflects an overall GI tract dysbiosis rather than the effect of a

small number of pathogenic taxa [20,24,40]. Moreover, a number

of microbial taxa showed significant association with disease

activity levels. Among the most discriminative taxa was the

Proteobacteria phylum (Fig. 5, see also Fig. S6). Specifically, the

Gammaproteobacteria class was prevalent in all active forms of the

disease. Severe disease in particular was associated with the

Serratia and Escherichia-Shigella genera as well as the Coryneo-

bacteriacea family.

Gut Microbiota Shows Characteristic Changes from
Active Disease to Remission

The factors responsible for triggering episodes of active disease

are largely unknown. To identify microbial groups potentially

associated with the establishment of active disease, we compared

the composition of bacteria in fecal samples taken during active

disease and remission periods. Classification with SLiME could

distinguish between active and remission samples with an AUC of

0.72. Amongst the taxa which were significantly associated with

active disease (Fig. S7) we found Proteobacteria (q-value ,0.05,

Kruskal-Wallis test, FDR adjusted [36], E(p0) = 0.35, see Fig. S8)

which was in agreement with previous observations [41]. This

finding appears to confirm the hypothesis that before or during

active disease Proteobacteria rapidly expand and potentially

displace other bacterial groups, such as Actinobacteria. On the

other hand, members of the Eubacteriaceae, Incertae Sedis XIV

and Bifidobacteriaceae families were associated with remission,

which to our knowledge has not been reported previously. The

Lachnospiraceae family, Subdoligranulum and Butyricicoccus, a

butyrate-producing organism that can ferment dietary polysac-

charides, were also associated with remission.

Diversity is Correlated with Antibiotic Therapy
We found that overall microbial diversity, as measured by the

Shannon diversity index, was the single most important feature for

discriminating between patients undergoing antibiotic therapy or

not. Although we could not classify whether samples were

obtained from antibiotic-treated patients with high accuracy

(AUC ,0.6), we did find that Shannon diversity index was

significantly and negatively associated with antibiotic therapy in

the IBD samples (p-value = 0.0067, Wilcoxon test, see Fig. S9).

This observation is consistent with a simple model of antibiotic

effect on the gut microbiota: most taxa and bacterial groups are

killed by antibiotics, while the few bacterial strains which have

resistance survive and increase in relative abundance.

Differential Diagnosis of Ulcerative Colitis and Crohn’s
Disease is Possible

Ulcerative colitis is generally limited to the colon, while

intestinal inflammation in Crohn’s disease may occur in any

region of the gastrointestinal tract. Classification of pediatric IBD

patients into UC or CD at the time of fecal testing is desirable,

given the different clinical management of the two diseases. Even

though distinguishing UC from CD was not the primary aim of

our study design, we found that SLiME applied to the case-control

data set could separate UC patients and control patients (Fig. 6A,

cross-validated AUC = 0.82 and 0.83 respectively), but was less

accurate in distinguishing Crohn’s disease patients (AUC = 0.68).

When we excluded controls from the data and attempted to

distinguish between CD and UC in all IBD patients, we were able

Pediatric IBD Detection by Microbiome Mapping
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to do so with accuracies (AUC = 0.76,ie. a specificity of 49% at

95% sensitivity) superior to current noninvasive clinical meth-

ods [13].

The most informative bacterial families in discriminating UC,

CD and Control samples as determined by Kruskal-Wallis test

were the Eubacteriaceae, Bacteroidaceae, and Verrucomicrobia-

ceae (Fig. 6B, also see Fig. S10). Verrucomicrobia were

consistently employed in the classifier because bacteria of this

group were completely absent from UC patients, which tended to

be characterized by Lactobacillales or Bacilli and Gammaproteo-

bacteria.

Steroid treatment could potentially affect the composition of the

microbiota and in turn the accuracy of the classification between

CD and UC. To assess this effect, we limited our analysis to those

patients undergoing steroid therapy. However, we found no

substantial difference in the accuracy of the classification (AUC

= 0.73, 40% specificity at 95% sensitivity, Fig. S11) between CD

and UC patients in the steroid subgroup with respect to the totality

of all IBD patients.

Classification in CD or UC performed differently depending on

whether the patient was experiencing active disease or remission,

and surprisingly was more accurate at distinguishing CD and UC

patients in remission (AUC = 0.73) than for patients with active

disease (AUC = 0.67). This finding suggests that changes in

microbiota composition during acute inflammation may be similar

in both UC and CD, rendering distinction by microbial diversity

more challenging.

Blind Validation with an Independent Patient Sample
Confirms the Accuracy of Supervised Classification

To confirm the general validity of our results, we selected an

independent patient sample of 68 children and young adults.

Following fecal sampling and 16S rRNA sequencing, we applied

SLiME – trained on our initial pediatric cohort – to the new

dataset. Encouragingly, SLiME maintain good performance in

distinguishing IBD patients from controls (AUC = 0.84, Fig. S12).

Table S8 illustrates the classification performance of SLiME on

the validation cohort at a chosen threshold.

Figure 2. Taxa significantly associated with IBD. Center panel is a compositional heatmap of the selected taxa for each of the samples in the
pediatric case-control study. Left panel indicates the significance of the association of each taxa with disease state, as measured by the q-value. Right
panel shows a measure of effect size (Cohen’s delta), highlighting in red those taxa which are significantly more prevalent in IBD samples. Bottom
panels show relevant metadata for each sample, including disease activity as measured by PUCAI [32] and PCDAI indices [33].
doi:10.1371/journal.pone.0039242.g002

Pediatric IBD Detection by Microbiome Mapping
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Classification by SLiME is Comparable to Testing by Fecal
Calprotectin

We compared the accuracy of SLiME with the outcome of

the fecal calprotectin test on a portion of our samples from both

the pediatric cohort and the validation cohort, to determine

how our method compared to the most clinically accepted non-

invasive test for IBD. On those 120 samples where we could

obtain calprotectin measurements retrospectively (Table S9), we

found that SLiME could classify the samples as IBD with

comparable accuracy to calprotectin (AUC = 0.85 compared to

calprotectin’s AUC of 0.77). Superposing the two ROC curves

(Fig. S13) shows that SLiME is slightly more specific, but

otherwise comparable to calprotectin. Given that calprotectin

levels should be raised in both CD and UC patients, it is not

surprising that SLiME could distinguish CD samples from UC

samples better than calprotectin (AUC 0.69 compared to AUC

0.50 for calprotectin, Fig. S14).

Discussion

Delay in the diagnosis of pediatric IBD is likely due to the non-

specific presentation of the disease. An inexpensive and sensitive

diagnostic tool could reduce this delay by rapidly identifying

patients at high risk for IBD and, therefore, warranting endoscopic

evaluation. In this study, we demonstrated the feasibility of a new

approach to detecting pediatric IBD based on analysis of fecal

microbiota. The sensitivity and specificity of our approach, as

measured by ROC curve analysis, matches or surpasses that of

alternative methods proposed for clinical use.

Two key methodological advances are responsible for improved

performance compared to previous studies. These include the

SLiME software package, which is freely available for public use,

and increased sampling depth, which allows low abundance but

highly informative groups to be sampled. The advantages of

employing machine learning methods to analyze microbiome data

have already been discussed [33]. Compared to clustering

Figure 3. Taxa in the pediatric data set (stool-based) and the Frank et al. data set (tissue-based) agree in their relative abundance.
Mean difference in normalized abundance between IBD samples and control samples is plotted for each taxa. Positive values (x-axis) mean the taxa is
more prevalent in IBD samples, while negative values are associated with taxa more abundant in control samples. Stool-based and tissue-based data
set are differentially colored (dark blue and light blue respectively).
doi:10.1371/journal.pone.0039242.g003

Pediatric IBD Detection by Microbiome Mapping
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methods, machine learning excels in classifying unlabelled data

and extracting pivotal features from large and complex data sets.

SLiME is a pipeline which allows the routine application of these

algorithms to microbiome data.

Previous surveys of microbial diversity in IBD relied on

clustering analyses to differentiate between IBD and non-IBD

samples [18,24,41]. As a result, these studies suffered from poor

sensitivity and, more importantly, did not generate predictive

models that could be employed to distinguish new unlabelled

samples. In this study, we employed SLiME to achieve high

sensitivity as well as high specificity in differentiating IBD samples

from controls. Models generated by SLiME were capable of

classifying unlabelled samples with accuracy, as demonstrated by

the large AUC obtained both after cross-validation and after blind

validation with an independent cohort. Importantly, our approach

was effective across disparate data sets using different sample types,

and processing and sequencing technologies. Finally, we generated

a list of taxa specifically associated with each disease state (active

IBD, remission samples, CD and UC) facilitating biological

interpretation.

Although we succesfully employed specific taxa as predictive

biomarkers, our results indicate that IBD reflects an overall GI

tract dysbiosis rather than the effect of a small number of

pathogenic taxa. This result is in agreement with previous

observations [20,24,40] and suggests that a global community

survey rather than a test for bacterial presence/absence is better

suited to identifying IBD.

Departing from the traditional clustering analysis, a recent and

promising study [25] showed the use of a predictive model in

classifying samples as IBD on the basis of microbial diversity.

However, the same study arised concerns regarding a) the ability

to distinguish UC patients from controls and b) the ability to

discriminate between samples from patients with active disease

and those in remission. Our study answers these questions, and

importantly we report only cross-validated results that should

more closely reflect accuracy in a clinical setting.

Some potential limitations in our study stem from its relatively

small scale. For instance, while we are able to succesfully

distinguish both UC and CD patients, SLiME appears to classify

UC patients more succesfully than CD patients. However, we find

that this difference in performance disappears after downsampling,

confirming that it is probably due to the uneven split between CD

and UC patients in our training cohort.

We also attempted to find correlations between therapeutic

regimens (antibiotics, salicylates, anti-TNF, methotrexate, etc.)

and microbial composition. Unfortunately SLiME was not capable

to differentiate between subgroups with different therapeutic

regimens, most likely due to the broad range of treatments

employed in our cohort and the small number of patients in each

Figure 4. Stratification of patients by activity levels. Overall
microbial diversity as measured by the Shannon Diversity Index. Activity
was assessed on the basis of patient symptoms using PCDAI and PUCAI
clinical indices.
doi:10.1371/journal.pone.0039242.g004

Figure 5. Best features to discriminate by activity levels. Activity
levels are considered simultaneously, employing the Kruskal-Wallis test.
Grey bar indicate the q-value and thus the strength of the association
between the features and the disease state. Color bars indicate the
average percentage of reads for each disease activity level.
doi:10.1371/journal.pone.0039242.g005
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subgroup. While these results indicate that SLiME may not be

influenced by different therapeutic interventions while differenti-

ating patients with IBD from controls, recruiting a larger number

of patients following similar therapeutic regimens would have

allowed to identify key microbial changes brought about by the

therapy.

It is arguable that both these potential limitations will be

addressed by studies with larger patient samples, better suited to

compare alternatives in disease behaviour and therapeutic

management of IBD. In addition, a cross-sectional study design

on fecal samples taken at the time of diagnosis and before the start

of any therapy, rather than the case-control study we employed,

would allow to estimate more precisely the sensitivity of SLiME

when employed in the general population.

Even though our results demonstrate the potential of the

gastrointestinal microbiome as a diagnostic tool in IBD, further

validation will be necessary before this tool is accepted into clinical

practice. Our comparison between SLiME and calprotectin is

encouraging, insofar as it shows that the two methods have

comparable accuracies on this data set. However, other IBD fecal

biomarkers – such as C-reactive protein, fecal lactoferrin, fecal

calprotectin [10] – and blood biomarkers [42] have shown high

sensitivity in IBD diagnosis. Further comparison of SLiME against

these biomarkers in larger patient samples will allow clinicians to

gauge the relative benefits of each method.

Despite these limitations, our results demonstrate the consider-

able potential of microbiome-based diagnostics in the clinic,

particularly in the case of pediatric patients where diagnosis is

often challenging. Similar approaches could evaluate the efficacy

of novel therapies (e.g. probiotics, antibodies), predict the outcome

of disease and forecast the timings of flare-ups. While not replacing

endoscopy and histological examination as diagnostic tools, we

propose that classification based on microbial diversity can be

included as an effective complementary technique to aid in the

diagnosis of IBD, particularly in pediatric patients.

Materials and Methods

Participants and Ethics
Fecal samples were obtained from 91 children and young adults

with Crohn’s disease, ulcerative colitis, and a control population

composed of children with non-inflammatory conditions of the

gastrointestinal tract (such as functional abdominal pain, consti-

pation and diarrhea). The control population was composed of

patients with symptomatology suggestive of IBD: constipation

(n = 9), abdominal pain (n = 8), gastroesophageal reflux (n = 2),

poor weight gain (n = 1), diarrhea (n = 1), blood in stool (n = 2) and

oropharyngeal dysphagia (n = 1). Table 1 shows the patient

demographics. Recruitment was conducted in the clinic or

inpatient hospital wards under a protocol approved by the

Children’s Hospital Committee on Clinical Investigation. Written

informed consent was obtained from patients (if over 18), or from

parents or legal guardian (if patients were minors) for participation

in the study. Written informed consent was obtained from all

participants.

Fecal samples were generally obtained within 4 hours of the

bowel movement, and stool was frozen at 280 degrees C on the

receipt of the sample from the patient. Clinical data were recorded

at the time of sample acquisition including: disease type, disease

location, disease duration, disease activity (as determined by the

Pediatric Crohn’s disease activity index for CD, and the pediatric

ulcerative colitis activity index for UC), and current prescribed

medications.

Figure 6. Discrimination of CD and UC. (A) Above, ROC curve for the classification of CD vs UC in samples where diagnosis of IBD is already
established. Below, ROC curve for the classification of each disease class against all other classes. (B) Strength of association for the best features (q-
value ,0.05) [31] which allow discrimination between CD and UC.
doi:10.1371/journal.pone.0039242.g006
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An additional independent patient sample of 68 children and

young adults was selected for blind validation. Table S1 shows the

patient demographics of this additional sample set. Diagnoses for

the control populations, data on disease duration and histological

evidence for both sample sets are contained in Table S2, S3 and

S4 respectively.

DNA Extraction and Sequencing
DNA from stool samples was extracted using the QIAamp DNA

Stool Mini Kit (Qiagen, Inc., Valencia, CA) according to

manufacturer’s instructions. The manufacturer protocol was

altered to accommodate larger volumes of stool and to improve

homogenization using bead-beating techniques at several steps: a)

a minimum of 2 mL of Buffer ASL and 300 mg of stool was used

in the protocol; b) a ratio of 700 uL of Buffer ASL per 100 mg of

stool weight was used for larger volumes using no more than

1500 mg of stool and 10.5 mL of Buffer ASL; c) following the

addition of Buffer ASL to each sample (step #2), 0.70 mm Garnet

Beads (MO BIO Laboratories, Inc., Carlsbad, CA) were added to

the suspension and vortexed for 10 seconds; d) a second bead-

beating was done following the heating of the suspension (step #3)

in 0.1 mm Glass Bead Tubes (MO BIO Laboratories, Inc.,

Carlsbad, CA), and vortexed for 10 minutes.

Extracted DNA was employed for 454 FLX Titaninum

pyrosequencing of PCR-amplified windows of the 16S gene.

Variable region V3–V5 amplification primers were designed

with FLX Titanium adaptors (A adaptor sequence: 59 CCATCT-

CATCCCTGCGTGTCTCCGACTCAG 39; B adaptor se-

quence: 59 CCTATCCCCTGTGTGCCTTGGCAGTCTCAG

39) on the 59 end of the 16S primer sequence: 454B_ 357F (59

CCTACGGGAGGCAGCAG 39) and 454A_barcode_926R (59

CCGTCAATTCMTTTRAGT 39). See Table S5.

Polymerase chain reaction (PCR) mixtures (25 ml) contained

10 ng of template, 16Easy A reaction buffer (Stratagene, La Jolla,

CA), 200 mM of each dNTP (Stratagene), 200 nM of each primer,

and 1.25 U Easy A cloning enzyme (Stratagene). The cycling

conditions for the V3–V5 consisted of an initial denaturation of

95uC for 2 min, followed by 25 cycles of denaturation at 95uC for

40 sec, annealing at 50uC for 30 sec, extension at 72uC for 5 min

and a final extension at 72uC for 7 min. Amplicons were

confirmed on 1.2% Flash Gels (Lonza, Rockland, ME) and

purified with AMPure XP DNA purification beads (Beckman

Coulter, Danvers, MA) according to the manufacturer and eluted

in 25 mL of 16low TE buffer (pH 8.0). Amplicons were quantified

on Agilent Bioanalyzer 2100 DNA 1000 chips (Agilent Technol-

ogies, Santa Clara, CA) and pooled in equimolar concentration.

Emulsion PCR and sequencing were performed according to the

manufacturer’s specifications. Sequencing was performed with a

target of 5000 raw reads per sample.

Sanger Sequencing
Polymerase chain reaction (PCR) mixtures (25 ml) contained

10 ng of template, 16Easy A reaction buffer (Stratagene, La Jolla,

CA), 200 mM of each dNTP (Stratagene), 200 nM of each primer

(63f: 59 GCCTAACACATGCAAGTC 39; U1525R: 59 AAG-

GAGGTGWTCCARCC 39), and 1.25 U Easy A cloning enzyme

(Stratagene). The cycling conditions consisted of an initial

denaturation of 95uC for 2 min, followed by 30 cycles of

denaturation at 95uC for 40 sec, annealing at 50uC for 30 sec,

extension at 72uC for 2 min and a final extension at 72uC for

7 min. PCR products were purified with QIAquick PCR

purification kit (QIAGEN, Inc, Valencia, CA) according to the

manufacturer, and size selected on a 1% agarose gel. The gel

bands were purified with QIAquick gel extraction kit (QIAGEN)

according to the manufacturer’s instructions with one modifica-

tion: the gel bands were dissolved at room temperature on a Dynal

Bioteck Rotator (Model RKDYNAL, setting 30, Invitrogen, Life

Technologies, Carlsbad, CA) for 15 minutes. Cleaned amplicons

were cloned (pCR2.1-TOPO vector, TOPO-TA Cloning kit and

electrocompetent cells TOP 10; Invitrogen, Carlsbad, CA) and

sequenced.

Processing Sequencing Samples
Sequences were processed using a data curation pipeline

implemented in MOTHUR [43], which removed sequences from

the analysis if they were less than 200 nt or greater than 600 nt,

had a low read quality score (,25), contained ambiguous

characters, had a non-exact barcode match, or had more than 4

mismatches to the reverse primer sequences (926R). Remaining

sequences were assigned to samples based on barcode matches,

after which barcode and primer sequences were trimmed.

Chimeric sequences were identified using the ChimeraSlayer

algorithm [44], and reads were classified with the MSU RDP

classifier v2.2 [45] using the taxonomy maintained at the

Ribosomal Database Project (RDP 10 database, version 6). After

processing, the resulting sequencing depth was 26906898 (median

6 median abs. deviation) reads per sample.

Synthetic Learning in Microbial Ecology (SLiME)
Using a set of training data, supervised learning algorithms can

be trained to classify each microbiota sample into distinct classes

(eg. IBD/non-IBD) based on a defined set of features (eg. the

relative abundance of each OTU). We first assigned each sequence

in the data set to a taxonomical group using the RDP Naive

Bayesan classifier [46]. For each sample we then calculated the

relative abundance of each taxa with respect to the total number of

sequences in each sample. We then trained a random forest (RF)

classifier (R-project implementation [29,47] ) to assign the class

(IBD or non-IBD) based on the relative sequence abundances in

every taxa. We used ten-fold cross-validation to compute accuracy

of the classifier, where training of the classification algorithm

employs a random 90% of the available patients and the

performance of the generated model is tested on the remaining

10% of patients.

Fecal Calprotectin Test
Calprotectin was assayed using the calprotectin ELISA kit

(Bühlmann Laboratories/ALPCO Diagnostics) and followed the

manufacter testing protocol. Samples were shaken on an orbital

shaker at 600 rpm. ELISA plates were read with the Varioskan

(Thermo Scientific). SkanIT software (Thermo Scientific) was used

to fit the standard curve using four parameter curve fitting.

Statistical Analyses
Several approaches can be used to identify the features which

were most important to the classification task: a) a priori

statistical tests, b) statistics intrinsic to the supervised learning

algorithm or c) iterative measures of the importance of each

variable [48]. To minimize computational complexity and

exclusively for the purpose of visualization we selected taxa

independently from the classification task and chose to employ

an a priori statistical test. Taxa were tested for significant

association with disease state by means of non-parametric

Kruskal-Wallis test, which does not include an assumption of

normality. Multiple p-values were then converted to q-values, by

FDR adjustment [36] and a significance threshold was chosen

between q-value ,0.01 or q-value ,0.05 by estimating the p0
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parameter as well as the number of false positives vs. cutoff (see

[36] for details). In the case of IBD/control, CD/UC and

activity classification, features individuated by Kruskal-Wallis

test were largely overlapping with the list of most discriminative

features obtained by iterative measures and intrinsic measures

(data not shown). No feature selection or other dimensionality

reduction was used in the classification task.

Receiver operating characteristic analysis was used to evaluate

the classification algorithms across a range of possible disease

prevalences. Reported AUC values are median AUC values

resulting from 3 repetitions of 10-fold cross validations.

All calculations were performed in R [47] and plots were

generated in R using the ggplot library [49].

Supporting Information

Figure S1 Patients are classifiable as IBD and non-IBD
with a variety of supervised learning algorithms. ROC

curves for SVM, Bagging (decision tree as base classifier), Stacking

(decision tree as base classifier) and RFs are shown.

(PDF)

Figure S2 Sequencing technology does not significantly
influence classification accuracy. ROC curves for active

IBD vs. control classification in ten samples where sequencing was

repeated by Sanger methods and yielded the same area under the

curve.

(PDF)

Figure S3 Relative abundance of each discriminatory
feature compared to the sequencing depth of other IBD
microbiota surveys. Two vertical lines indicate the minimum

detectable abundance in the Frank et al. study (right) and the

Willing et al. study (left). Due to low sequencing depth, the Frank

et al. survey could have detected only 13 of the features considered

discriminatory for classification (right vertical line).

(PDF)

Figure S4 FDR adjustment of Kruskal-Wallis p-values
for those features which best discriminate between IBD
samples and control samples. (Top-left) The expected

proportion of false positive samples (p0) is estimated by fitting.

(Top-right) A plot of the calculated q-values versus the initial p-

values. (Bottom-left) The number of significant tests for every given

q-value cut-off. (Bottom-right) The number of expected false

positives for a given number of significant tests considered.

(PDF)

Figure S5 Taxa in the pediatric data set (stool-based)
and the Frank et al. data set (tissue-based) vary in their
importance as features. Best features - as determined by the

RandomForest algorithm - applied to the pediatric data set are

used to classify the Frank et al. data set. The importance of each

feature - calculated as the decrease in accuracy of the algorithm

when the feature is not used - is plotted for both studies.

Noticeably, feature at the genus level are far more important in the

pediatric data set than when used on the Frank et al. data set. This

may reflect the greater depth of sequencing (see Figure S2).

(PDF)

Figure S6 FDR adjustment of Kruskal-Wallis p-values
for those features which best discriminate between
levels of IBD activity. (Top-left) The expected proportion of

false positive samples (p0) is estimated by curve fitting. (Top-right)

A plot of the calculated q-values versus the initial p-values.

(Bottom-left) The number of significant tests for every given q-

value cut-off. (Bottom-right) The number of expected false

positives for a given number of significant tests considered.

(PDF)

Figure S7 Features that show the greatest difference
between active and inactive state in the pediatric case-
control study. All features with significant association (q-value

,0.05, see Figure S12){Storey,2003} to either active disease or

remission are shown. Grey bars indicate the q-value of each taxon,

heat maps describe the median normalized abundance in each

sample. The right panel indicates the effect size and highlights in

red the taxa which are prevalent in active samples.

(PDF)

Figure S8 FDR adjustment of Kruskal-Wallis p-values
for those features which best discriminate between
active IBD samples and inactive IBD samples. (Top-left)

The expected proportion of false positive samples (p0) is estimated

by curve fitting. (Top-right) A plot of the calculated q-values versus

the initial p-values. (Bottom-left) The number of significant tests

for every given q-value cut-off. (Bottom-right) The number of

expected false positives for a given number of significant tests

considered.

(PDF)

Figure S9 Antibiotic therapy reduces overall microbial
diversity. Box plot showing the distribution of Shannon diversity

indices for all patients undergoing antibiotic therapy, compared to

the patients with IBD and without antibiotics, as well as controls.

(PDF)

Figure S10 FDR adjustment of Kruskal-Wallis p-values
for those features which best discriminate between CD
samples and UC samples. (Top-left) The expected proportion

of false positive samples (p0) is estimated by curve fitting. (Top-

right) A plot of the calculated q-values versus the initial p-values.

(Bottom-left) The number of significant tests for every given q-

value cut-off. (Bottom-right) The number of expected false

positives for a given number of significant tests considered.

(PDF)

Figure S11 ROC curve for the CD vs UC classification in
the steroid-treated subgroup. The performance in this subset

of the cohort is comparable to the totality of IBD patients.

(PDF)

Figure S12 Blind validation of a SLiME model -
previously trained on our pediatric cohort - applied to
an independent set of fecal samples from 77 patients.
ROC curve shows that high sensitivity and high specificity are

maintained across a range of disease prevalences.

(PDF)

Figure S13 Comparison of SLiME and fecal calprotectin
assay. The two assays have comparable efficacy in distinguishing

IBD patients from control when applied to all samples in the

training and validation cohorts for which calprotectin could be

measured (n = 120).

(PDF)

Figure S14 Comparison of SLiME and fecal calprotectin
assay. SLiME is slightly superior in distinguishing CD from UC

samples, when applied to all CD and UC samples (n = 90) in the

training and validation cohorts for which calprotectin could be

measured.

(PDF)
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Table S1 Patient demographics for the validation set

(RTF)

Table S2 Control patients’ diagnose

(RTF)

Table S3 Disease Duration at Time of Sample Acquisi-
tion

(RTF)

Table S4 Histological evidence of disease at diagnostic
colonoscopy

(RTF)

Table S5 454 barcodes and primers

(RTF)

Table S6 Confusion matrix for the SLiME classification
of the pediatric training cohort. Sensitivity 87.6%. Specificity

45.8%. Note this is only one possible cutoff value. Different

sensitivity and specificity can be obtained by appropriately tuning

the cutoff.

(RTF)

Table S7 Confusion matrix for the SLiME classification
of the training cohort on the subset of patient with
clinically active disease at the time of sampling.
Sensitivity 82.5%. Specificity 75%. Note this is only one possible

cutoff value. Different sensitivity and specificity can be obtained by

appropriately tuning the cutoff.

(RTF)

Table S8 Confusion matrix for the blind validation of
the SLiME classifier on an independent validation
cohort. Sensitivity for IBD vs controls is 94.5%, while specificity

is 46.1%. Note this is only one possible cutoff value. Different

sensitivity and specificity can be obtained by appropriately tuning

the cutoff.

(RTF)

Table S9 Summary of calprotectin assay results
(RTF)
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