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by Proton Transfer Reaction—Time-of-Flight—Mass Spec-

trometry for 11 days every 4 h (3540 time points). FastGC 

PTR-ToF-MS was performed during the stationary phase 

on the 5th day.

Results More than 300 peaks have been extracted from the 

average spectra associated to each time point, 70 have been 

tentatively identified. Univariate and multivariate analyses 

have been performed on the data matrix (3640 measure-

ments × 70 peaks) highlighting the volatilome evolution 

and strain-specific features. Laboratory strains with oppo-

site mating type, and meiotic segregants of the same natural 

strain showed significantly different profiles.

Conclusions The described set-up allows the on-line high-

throughput screening of yeast volatilome of S. cerevisiae 

strains and the identification of strain specific features and 

new metabolic pathways, discriminating also genetically 

similar strains, thus revealing a novel method for strain phe-

notyping, identification, and quality control.

Keywords Saccharomyces cerevisiae · Fermentation · 

VOCs · Secondary metabolites · Profiling · Direct injection

1 Introduction

Saccharomyces cerevisiae has been exploited since more 

than 9000 years in food and beverage production (Cavalieri 

et al. 2003). Different strains have been selected and used as 

inoculum to conduct alcoholic fermentation, in particular in 

winemaking, and prevail over other natural microbiota pre-

sent in fresh must, which could negatively affect the process 

(Muller-Thurgau 1896). The principal characteristics that a 

S. cerevisiae strain has to bear to be selected for winemaking 

purposes are: (i) good fitness in fermentative conditions—

namely, the ability to metabolize grape must, survive to low 
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pH and temperatures and high concentrations of ethanol, (ii) 

ability to overgrow the resident fungal and bacterial popu-

lations, (iii) good metabolic features (Pretorius 2000). The 

last characteristic is particularly important for winemaking 

purposes, since the vast part of the wine flavour is defined 

by yeast metabolism (Schreier 1979). Indeed, beside etha-

nol, the concentration and type of higher alcohols, alde-

hydes, ketones, acetates, esters, and fatty acids, produced 

by different yeast species and strains have been shown to 

strongly affect the quality and characteristics of the final 

product (Herraiz et al. 1989, 1990). The first aim of inocu-

lating grape musts with selected S. cerevisiae strains was to 

reduce the risk of spoilage. Nowadays, however, this feature 

seems to be no longer sufficient for winemaker intents: the 

identification of strains able to enhance the wine organolep-

tic characteristics (i.e. the bouquet of aromatic compounds) 

is indeed the actual quest (Lambrechts and Pretorius 2000; 

Pretorius 2000).

So far, the potential of S. cerevisiae strains in enhancing 

the wine aromatic bouquet has been generally assessed by 

measuring the volatile organic compounds present at the end 

of alcoholic fermentation (Alves et al. 2015; Romano et al. 

2003). Nevertheless, a recent study on the time resolved 

metabolome of a Chardonnay wine fermentation showed 

that the metabolome varies considerably during time, 

suggesting that the yeast metabolism is tightly coupled to 

the fermentation progress (Richter et al. 2015). It can be 

expected that the variability of the metabolome could have 

an even higher extent in different fermentation conditions, 

considering that the substrate is subjected to modifications 

induced by a dynamic microbial population. As a conse-

quence, for an appropriate and realistic evaluation of the 

S. cerevisiae strains potential in enhancing the wine aro-

matic blend, it is fundamental to follow the production of 

the volatile compounds during the entire process. Although 

the need for time-resolved metabolic measurements has been 

acknowledged, the commonly used experimental setups are 

still technically, time and manpower demanding. In addition, 

any intervention to the growth conditions or post-sampling 

matrix processing (i.e. quenching or extraction procedure) 

can introduce errors affecting the reproducibility of the 

analysis (Kawase et al. 2014). Recently, methods for the 

real-time measurement of metabolites have been developed 

to quantify the volatile organic compounds (VOCs) released 

from the liquid medium during microbial growth (Link et al. 

2015; Mouret et al. 2015). Nevertheless, in such conditions 

the real VOCs amount effectively produced by the microor-

ganisms should be inferred from the VOCs released from 

the medium into the air.

Gas chromatography based methods are the reference for 

the analysis of yeast volatile secondary metabolites (Lloyd 

et al. 2015). Even if it is able to identify VOCs in low con-

centrations, this type of analytical technique is inherently 

slow due to the presence of, at least, one separation stage 

and this makes it unsuitable for characterizing the dynamic 

processes happening during yeast growth in real time (Alves 

et al. 2015). As recently shown in the case of aromatic bak-

ery yeasts (Capozzi et al. 2016; Makhoul et al. 2014) Proton 

Transfer Reaction—Mass Spectrometry (PTR-MS) coupled 

to a Time-of-Flight detector (ToF) and a multipurpose sam-

pler was successfully applied for the characterization of 

yeast VOC profiles for the first 16–24 h of bread leavening 

in nondestructive and rapid way. This setup also guaranteed 

temperature stability and automatization of experiments. In 

the present study, a similar approach made it possible to 

study VOC release during yeast colony development in real 

time for longer time for the first time.

In this work, we present a method for the in vivo real time 

assessment of the S. cerevisiae volatilome. We evaluated the 

approach comparing VOC profiles of two laboratory strains 

and four meiotic segregants of a natural strain isolated from 

wine must fermentation (Cavalieri et al. 2000). The new 

approach showed high reproducibility among different bio-

logical replicates and allowed to follow the dynamics of 

both known and unknown volatile compounds during yeast 

colony development. In general, we show that the real-time 

measurement of metabolites produced during yeast growth 

onto solid medium is cost- and time-effective and allows a 

characterization of volatile compounds produced by grow-

ing microbes.

2  Materials and methods

2.1  Yeast culture preparation, growth curve 

comparison and growth conditions

The yeast strains used in this study are the two laboratory 

strains BY4741 (Mat a his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) 

and BY4742 (Mat α his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) and 

four meiotic segregants of a S. cerevisiae strain isolated from 

Montalcino grapes fermentation (Cavalieri et al. 2000). The 

genetic variation between the former strains is known to be 

miniscule (Song et al. 2015). The latter strains share 99.99% 

genes. The genetic difference between M28 and the two lab-

oratory strains is much larger.

Before the measurement of yeast VOC, the growth curves 

of the tested strains were compared to acknowledge eventual 

fitness changes. For this comparison overnight pre-grown 

strains were inoculated in liquid YPD (1% yeast extract, 2% 

peptone, 2% dextrose) in 96-well plates and their growth 

was monitored by measuring the optical density at 600 nm 

(OD600) for 24 h, a time interval sufficient to highlight the 

differences in growth ability of the strains (prior reaching 

the stationary phase). After an overnight pre-culture at 28 °C 

in liquid YPD the strains were inoculated onto 2 mL solid 
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YPD medium (YPD supplemented with 2% agar) inside a 

20 mL vial and closed with a screw cap with a silicon/PTFE 

septum. A different trend of growth curves was observ-

able among the laboratory strains (BY4741 and BY4742) 

and the four M28 meiotic derivatives, with the laboratory 

strains showing a shorter lag phase compared to M28 strains 

(Table 1). This behaviour is not surprising, since the initial 

lag is necessary to the yeast to adapt to the environment (the 

fresh medium) and BY strains have been generated to show 

good performances in laboratory conditions (Table 1).

2.2  Headspace PTR-ToF-MS measurements

VOCs produced during yeast growth were measured every 

4 h by direct injection of the headspace mixture into a com-

mercial PTR-ToF-MS 8000 apparatus (Ionicon Analytik 

GmbH, Innsbruck, Austria). The instrumental conditions 

in the drift tube were as follows: drift voltage 557 V, drift 

temperature 110 °C, drift pressure 2.30 mbar, affording an 

E/N value of about 140 Townsend (1 Td = 10−17 cm2/V.s), 

where E corresponds to the electric field strength and N to 

the gas number density. The sampling time per channel of 

ToF acquisition was 0.1 ns, amounting to 350,000 channels 

for a mass spectrum ranging up to m/z = 400. Every single 

spectrum is the sum of 28.600 acquisitions lasting 35 μs 

each, resulting in a time resolution of 1 s. Sample meas-

urement was performed in 30 cycles resulting in an analy-

sis time of 30 s/sample. Between two measurements 1 min 

interval was kept to avoid memory effects. The experimental 

design consisted of 72 yeast samples (6 different strains × 12 

replicates), 12 vials with YPD solid medium only and six 

vials with air of the laboratory where yeast inoculations 

were performed. Measurements were performed in an auto-

mated way by using a multipurpose GC automatic sampler 

(Autosampler, Gerstel GmbH, Mulheim am Ruhr, Germany) 

as described in Makhoul et al. 2014. Each sample was meas-

ured every 4 h which was enough for VOC accumulation in 

the headspace of the vial according to the preliminary tri-

als. A gas calibration unit (GCU, Ionicon Analytik GmbH, 

Innsbruck, Austria) was employed to generate zero air for 

flushing sample headspace in order to prevent the microbio-

logical and chemical contamination of a sample headspace.

Due to high ethanol concentration in the sample head-

space, in order to prevent primary ion depletion and ethanol 

cluster formation (Romano et al. 2014) an Argon dilution 

system was applied after headspace sampling. The dilution 

ratio was 1 part of headspace to 3 parts of Argon. The Argon 

flow rate was 120 sccm and was controlled by a multigas 

controller (MKS Instruments, Inc). The total flow rate of 

the instrument was set to 160 sccm. Supplementary Fig. 1 

shows schematically the experimental setup used for head-

space measurements.

2.3  FastGC PTR-ToF-MS

Due to the high mass resolution provided by the TOF ana-

lyzer it is possible to separate and tentatively identify iso-

baric compounds. However, with this technique it is impossi-

ble to distinguish isomeric compounds. Moreover, as already 

mentioned, direct headspace air injection into the PTR-ToF-

MS is problematic in the case of samples with high ethanol 

concentration in a headspace. To overcome both problems 

the PTR-ToF-MS was also coupled with a fastGC add-

on (Ionicon Analytik GmbH, Innsbruck, Austria) as it is 

described elsewhere (Romano et al. 2014). The schematic 

setup is presented in Supplementary Fig. 2. The polar capil-

lary column  [MXT®-WAX  (Siltek® - treated stainless steel), 

6 m, 0.25 mm ID, 0.25 μm df] was maintained under pure 

 N2 with a constant flow rate of 4 sccm. Sample headspace 

air was injected with the flow rate of 150 sccm into a fastGC 

sampling loop (Supplementary Fig. 2) for 4 s, guaranteeing 

its total filling. The chromatographic measurement was reg-

istered for 130 s with the thermal ramp from 40 to 220 °C 

which resulted the thermal gradient of 2.25 °C/s (Supple-

mentary Fig. 3). Between two measurements an interval of 

100 s was set to prevent memory effects.

The acquisition time was decreased in order to obtain 

a higher (retention) time resolution in the chromatograms. 

Each spectrum consisted of 1000 acquisitions lasting 35 μs 

each, resulting in a time resolution of 210 ms.

Table 1  Growth characteristics 

of the tested strains

Growth curves were inspected in liquid YPD after an overnight pre-culture in the same conditions. Culture 

growth was evaluated by mean of optical density (OD) measurement at 600 nm

End of lag phase 

(h)

Doubling time (average 

hours ± standard deviation)

End of exponential 

phase (h)

Station-

ary phase 

 (OD600)

BY4741 9 3.39 ± 0.20 15 0.2

BY4742 9 3.56 ± 0.12 15 0.2

M28-1A 13 3.20 ± 0.07 22 0.65

M28-1B 13 4.92 ± 0.58 >24 >0.1

M28-1C 13 3.90 ± 0.18 24 >0.65

M28-1D 13 3.63 ± 0.08 >24 >0.65
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One round of measurements by means of fastGC PTR-

ToF-MS was performed during the stationary phase on the 

fifth day of the experiment.

2.4  Data processing and statistical analysis

Data processing of PTR-ToF-MS spectra with or without 

fastGC included dead time correction, external calibration 

and peak extraction steps performed according to a proce-

dure described elsewhere (Cappellin et al. 2010). The base-

line of the mass spectra was removed after averaging the 

whole measurement and peak detection and peak area extrac-

tion was performed by using a modified Gaussian to fit the 

data (Cappellin et al. 2011). To determine the concentrations 

of volatile compounds in ppbv (part per billion by volume) 

the formulas described by Lindinger et al. were used assum-

ing a constant reaction rate coefficient  (kR = 2 × 10−9 cm3/s) 

for  H3O
+ as primary ion (Lindinger et al. 1998). For  H3O

+ 

as a primary ion, this introduces a systematic error for the 

absolute concentration for each compound that is in most 

cases below 30% and can be accounted for if the actual rate 

constant is available (Cappellin et al. 2012).

Total mass spectrum of yeast, medium and blank samples 

measured by PTR-ToF-MS contained more than 300 peaks. 

Two-way ANOVA (strain and time, p < 0.01 with Bonfer-

roni correction) was applied to select mass peaks of yeast 

samples significantly different from blank ones. Mass peak 

belonging to 13C, 18O, and 27S isotopologues, water and etha-

nol clusters were excluded from the dataset. This procedure 

reduced the dataset to 70 mass peaks. When a monoisotopic 

mass peak was saturated its isotopologue was taken into 

account. The data related to two samples of BY4741 and one 

of BY4742 were eliminated because of evident anomalies 

probably related to environmental contaminations.

Relative standard deviation (RSD = standard deviation/

mean × 100%) was selected as an approach for character-

izing measurement variability (Parsons et al. 2008). It was 

calculated for each selected mass peak for each cycle of 

measurements.

Principal component analysis (PCA) was performed on 

the log transformed and mean centered data. 50 out of 70 

mass peaks of this dataset were assigned a sum formula and 

34 of these formulas were tentatively identified as one or 

more compounds based on literature and GC-MS measure-

ment of one sample of each yeast strain at the end of the 

experiment (Supplementary Table I). The tentatively iden-

tified compounds belong to different chemical classes such 

as alcohols, aldehydes, esters, organic acids, ketones, and 

sulfur compounds. For a better visualization, curves of all 

mass peaks were smoothed by fitting a cubic spline with a 

smoothing parameter equal to 0.5. Since samples cannot be 

measured at exactly the same time, values at all time points 

were predicted based on this fitting.

In the case of fastGC data dataset, after data processing, 

retention time and area under the peak were extracted from 

chromatograms by manual selection. The baseline of a chro-

matogram for each mass was calculated according to Sensi-

tive Nonlinear Iterative Peak (Morháč et al. 1997) and was 

removed for further analysis. The peak position for retention 

time calculation was obtained by Gaussian method.

From the fastGC PTR-ToF-MS dataset 203 mass peaks 

were extracted. However, only 25 mass peaks with a chro-

matographic peak present in at least 50% of the samples 

were analyzed.

Multivariate statistical analysis was performed using R 

3.2.0 internal statistical functions and external packages, 

namely ggplot2, ChemometricsWithR, VennDiagram, heat-

map3, vegan, Peaks.

3  Results and discussion

3.1  Efficiency of the method

Additional technical replicates are useful to define the meas-

urement error and biological ones can improve the efficiency 

of statistical testing (Blainey et al. 2014). The combination 

of the PTR-ToF-MS and the Autosampler gave the possibil-

ity to measure VOCs at a high-throughput level. The overall 

number of replicates was chosen in order to measure each 

sample every 4 h. Thus 12 biological replicates for each 

yeast strain were selected for evaluation of random biologi-

cal variation of the yeast volatilome. Furthermore, 12 techni-

cal replicates of yeast substrate and six empty samples were 

evaluated for random noise associated with equipment.

Gaus et al. established the general detection efficiency, 

sensitivity, reproducibility of PTR-ToF-MS measurements 

(Gaus et al. 2010). The reproducibility of the used PTR-

ToF-MS apparatus was controlled by periodic calibrations 

with a calibration gas standard (Ionicon Analytik GmbH, 

Innsbruck, Austria). Technical variation within the current 

dataset was 18.64% (reported as the median spectral RSD 

for substrate samples). Variation between individuals in one 

group includes both biological and technical variations. For 

M28 segregates biological variation ranged from 17.92 to 

28.96%, for the laboratory strains it reached 20%.

3.2  Evolution of yeast volatilome during colony 

development

In order to evaluate the potential of the technique to charac-

terize and differentiate the metabolic profiles of S. cerevisiae 

during colony development, we selected the well-known and 

widely used laboratory strains BY4741 and BY4742 together 

with four meiotic segregants of a natural strain, M28, iso-

lated from Montalcino grapes (Cavalieri et al. 2000). The 
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overall yeast volatilome selected for this study contained 

70 mass peaks out of which 50 mass peaks were assigned 

with a chemical formula and 37 were tentatively identified. 

The detailed information about the dataset is presented in 

Supplementary Table I. One of the aims of this study was 

to explore the evolution of yeast volatilome during colony 

development. For highlighting of the overall changes in yeast 

volatilome with time, principal component analysis (PCA) 

was performed on the dataset of yeast, medium and blank 

samples VOCs during the 11 days of experiment. Figure 1 

shows the evolution of VOCs produced during yeast colony 

development. The first two principal components explain 

87.3% of variability between samples in the dataset, with 

the first one capturing most of the variance (80.8%). The 

third principal component only marginally contributes to the 

explanation of sample variability (6.5%). In order to elimi-

nate the additional variance which could be provoked by 

medium and blank samples another PCA was performed on 

the dataset of only yeast VOCs which demonstrated similar 

results (Supplementary Fig. 4).

The yeast volatilome evolved describing semicircles 

starting from the top left of the score plot (Fig. 1a) start-

ing near medium samples and finishing at its bottom left 

side close to blank ones. Empty circles in Fig. 1a cor-

respond to the measurements collected during both the 

lag and exponential phases which last for one day for the 

M28 strains and about one and a half day for the labora-

tory strains (Table 1). Filled circles, on the other hand, 

represent measurements during the stationary phase. The 

first principal component shows changes of yeast VOC 

profiles from left to right during the lag and exponential 

growth phases due to the rapid colony propagation and in 

the opposite direction during the stationary phase with a 

time-dependent decrease in the production of almost all 

the secondary volatile metabolites. The second principal 

component, instead, mostly shows the differences between 

yeast volatilome during lag/logarithmic and stationary 

phases. Even if the laboratory and natural strains have evi-

dent differences in growth (Table 1), the yeast volatilome 

evolution of the different strains showed a similar trend. 

Fig. 1  Score plot (a) and loading plot (b) of principal component 

analysis of VOC emission evolution for yeasts, medium and blank 

samples during 11 days of experiment. Data are logarithmically trans-

formed and centered. Different colors indicate different yeast strains, 

medium and blank samples. The size of points grows with time of 

measurement
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This could be ascribed to the fact that the growth effect 

dominated the difference in the aroma between different 

strains.

The loading plot presented at Fig. 1b puts in evidence 

important mass peaks at different stages of yeast colony 

growth. During the exponential phase (up to one and a half 

day from the beginning of the experiment) the highest mass 

peaks in yeast VOC profiles were m/z73.065  (C4H8OH+—

tentatively identified (t.i.) as butanal), m/z65.045 (uniden-

tified), m/z59.049  (C3H6OH+—t.i. acetone), m/z69.070 

 (C5H9
+—common fragment), m/z46.037  (C13CH4OH+—t.i. 

isotope of acetaldehyde). Several mass peaks pointing to the 

right direction of the loading plot (Fig. 1b) played a major 

role in explaining the total variance and are also likely related 

to fermentation processes, i.e. m/z48.052  (C13CH6OH+—t.i. 

isotope of ethanol). Among other mass peaks pointing in the 

same direction of ethanol in the PCA loading plot (Fig. 1b) 

it is possible to find m/z43.017  (C2H3O+—common ester 

fragment), m/z57.034  (C3H4OH+—common fragment), m/

z75.044  (C3H6O2H
+—t.i. propanoic acid and a fragment of 

m/z 103.076). The next group of mass peaks contributing to 

the PCA loading plot includes m/z61.028  (C2H4O2H
+—ten-

tatively identified as acetic acid and common acetate frag-

ment) and m/z89.060  (C4H8O2H
+—t.i. ethyl acetate, isobu-

tyric acid, butanoic acid, and/or acetoin). These tentatively 

identified compounds can exhibit important changes during 

the growth of yeast colonies.

Saccharomyces cerevisiae strains are able to synthesize 

higher alcohols. Among them we tentatively identified 

3-methyl-1-butanol and 2-methyl-1-butanol, isobutyl alco-

hol and 1-butanol and their common fragments: m/z41.038 

 (C3H5
+—common fragment), m/z43.054(C3H7

+—com-

mon fragment), m/z71.085  (C5H11
+—t.i. dehydrated frag-

ment of alcohols such as 3-methyl-1-butanol and 2-methyl-

1-butanol), m/z57.069  (C4H9
+—t.i. a dehydrated fragment 

of butanol isomers).

It is clearly seen from Fig.  1b that four mass peaks 

such as m/z33.034  (CH4OH+—t.i. methanol), m/z49.011 

 (CH4SH+—t.i. methanethiol), m/z31.045 (unidentified), m/

z34.995  (H2SH+—t.i. hydrogen sulfide) started playing an 

important role close to the end of the experiment.

3.3  S. cerevisiae characterization

3.3.1  Curve investigation

Real time monitoring of VOCs was performed to investigate 

deeply the differences in yeast volatilome of selected strains 

and find possible explanations from genetic and phenotypical 

point of view. The laboratory strains BY4741 and BY4742 

differ genetically only in the deletion of LYS2 and MET15 

and by opposite mating type. Four meiotic segregants of the 

same natural strain, M28, were selected to investigate how 

much volatilome variation could be embedded in heterozy-

gosity in any given wild strain. Albeit deriving from the 

same parental strain, the four meiotic segregants differ in 

two macroscopic phenotypes: (i) M28-1A and M28-1D form 

smooth colonies, while M28-1B and M28-1C form filigreed 

colonies; (ii) segregants M28-1A and M28-1C are sensi-

tive to 5′,5′,5′-trifluoroleucine (TFL), while the segregants 

M28-1B and M28-1D are resistant to TFL due to a mutation 

in the Ssy1 gene (Brown et al. 2008). BY4741 and BY4742 

are sensitive to TFL as well.

Figure 1 captures the general picture of yeast colonies’ 

VOC profiles evolution during the 11 days showing the 

drastic differences with growth. To investigate the effect of 

growth deeply, nine mass peaks were selected for a detailed 

visualization of the time course. The relative plots are shown 

in Fig. 2. To improve clarity, a breakdown of the nine time 

courses is in high resolution is included in supplementary 

materials. The first seven mass peaks (Fig. 2a–g) were 

selected from PCA as they are the major players in the yeast 

volatilome evolution. The other two are interesting because 

of their particular behavior which will be described in detail 

further.

Figure 2a (Supplementary Fig. 5) shows the evolution 

of acetaldehyde (m/z46.037) as an example of the com-

pounds showing the decreasing trend such as m/z73.065 

 (C4H8OH+—tentatively identified (t.i.) as butanal), m/

z65.045 (unidentified), m/z59.049  (C3H6OH+—t.i. acetone), 

m/z69.070  (C5H9
+—common fragment). In particular, the 

profile of acetaldehyde highlights the differences in the 

growth profile observed between laboratory and natural 

strains. Indeed, while all the four meiotic segregants of the 

M28 strains displayed an initial high level of acetaldehyde, 

followed by a gradual decrease, both BY strains (especially 

BY4742) showed an initial lower level of acetaldehyde fol-

lowed by a peak of emission during the first days of growth. 

In the first 3 days the acetaldehyde profile of BY4742 

reached a level similar to the one produced by the M28’s 

meiotic segregants, while in BY4741 the acetaldehyde pro-

file underwent a temporary increase, whose maximum was 

significantly lower than the maximum produced by the other 

strains. Acetaldehyde is one of the first compounds produced 

during glucose fermentation, and tends to accumulate within 

the cells if not further metabolized (Stanley and Pamment 

1993). The observed trend is thus an indication of the strain 

growth. The variance in the total amount of acetaldehyde 

measured from strains having different genetic background 

was previously observed and is exacerbated when growing 

strains at 30 °C (Romano et al. 1994). Nevertheless, it was 

surprising to observe a noticeable distinction among closely 

genetically related strains with the opposite mating type (the 

BYs strains).

The curve of ethanol (m/z48.052) evolution is pre-

sented in Fig. 2b (Supplementary Fig. 6). For the four 
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Fig. 2  Curves of selected mass 

peaks tentatively identified 

as an isotope of acetaldehyde 

(a), an isotope of ethanol (b), 

ethyl acetate, isobutyric acid, 

butanoic acid, and acetoin (c), a 

dehydrated fragment of alcohols 

such as 3-methyl-1-butanol 

and 2-methyl-1-butanol (d), a 

dehydrated fragment of butanol 

isomers (e), isovaleric acid, 

ethyl propanoate, 2-methylbu-

tanoic acid (f), methanol (g), 

S-methyl thioacetate (h), and 

ethyl butyrate, ethyl isobutyrate, 

isobutyl acetate (i). Curves of 

each sample represent mean 

value and standard error of 

each yeast strain, medium and 

blank for each time point upon 

smoothing. Grey rectangles 

show the period when samples 

were measured with fastGC 

PTR-ToF-MS
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M28 segregants ethanol production reached its maxi-

mum during the 2nd day. The subsequent decrease of this 

compound was faster for M28-1B and M28-1D than for 

M28-1A and M28-1C. Both BY4741 and BY4742 were 

able to produce ethanol for longer time than the M28 

strains. The particular growth characteristic of each yeast 

strain can probably explain these differences.

Figure 2c (Supplementary Fig. 7) demonstrates the 

changes of m/z89.060 with time. This mass peak was ten-

tatively identified as ethyl acetate, isobutyric acid, buta-

noic acid, and/or acetoin. According to Saerens et al. 2008 

ethyl acetate is produced inside yeast cells during fermen-

tation and can diffuse through cell membrane into medium 

and headspace rapidly and completely. In addition, several 

of these compounds have been shown to hold a fundamen-

tal role in the strain’s ability to attract insects, a process 

through which S. cerevisiae likely relies to be dispersed 

among different environments, thus being relevant for the 

ecology of natural strains (Christiaens et al. 2014).

For the production of higher alcohols Fig. 2d (Sup-

plementary Fig. 8) shows that the TFL-resistant M28-1B 

and M28-1D strains produced significantly lower concen-

trations of 3-methyl-1-butanol and 2-methyl-1-butanol 

compared to the other M28 strains and the two laboratory 

strains. This observation can be ascribed to a frameshift 

mutation in the Ssy1 gene resulting in defective amino 

acids transport across the plasma membrane with the 

consequent up regulation of amino acids biosynthetic 

pathways as a compensatory cellular mechanism (Brown 

et al. 2008). Actually, the block of amino acids import in 

the TFL-resistant strains could explain the reduction of 

3-methyl-1-butanol levels in M281B/D since this metabo-

lite is normally produced via Ehrlich pathway from leucine 

and valine catabolism (Park et al. 2014), in agreement with 

the knowledge that production of amino acids within the 

cell in Ssy1 mutants reaches lower amino acid levels than 

those normally supplemented in the growth medium (Klas-

son et al. 1999). Figure 2e (Supplementary Fig. 9) illus-

trates the evolution of butanol with time. During the first 

3 days the level of butanol was slightly lower in the seg-

regants resistant to trifluoroleucine than in sensitive ones. 

However, with time this difference increased. A new path-

way for the biosynthesis of n-butanol requiring glycine 

as substrate has been recently proposed, and this could 

be the explanation of the low amounts of n-butanol in 

TFL-resistant strains where amino acid uptake is strongly 

impaired (Branduardi et al. 2013). The curve of butanol 

grew more rapidly than the one of 3-methyl-1-butanol and 

2-methyl-1-butanol. Supplementary Fig. 10 represents the 

correlation between the emissions of these alcohols. The 

curves placed under the diagonal line emitted faster and 

higher concentration of butanol that 3-methyl-1-butanol 

and 2-methyl-1-butanol.

The mass peak m/z103.076  (C5H10O2H
+—t.i. isovaleric 

acid, ethyl propanoate, 2-methylbutanoic acid) reached its 

maximum at the fourth day as it is shown in Fig. 2f (Sup-

plementary Fig. 11). To note, this compound was produced 

by BY4742 strain almost at a double rate than by the other 

strains. Isovaleric acid is produced from leucine through the 

Ehrlich pathway (Park et al. 2014), while ethyl propanoate 

and 2-methylbutanoic acid form by the reaction of ethanol 

with a fatty acid (Saerens et al. 2010). Despite these com-

pounds are known to be produced during yeast fermenta-

tions, the fact that we unexpectedly observed different levels 

in their production dynamics suggests that either the feed-

back inhibition sensitivity or the transport of amino acids 

present in the media differs significantly in different strains.

Figure 2g (Supplementary Fig. 12) shows that metha-

nol concentration grows with colony ageing. BY4741 pro-

duces more methanol than others, probably because of the 

MET15 deletion which is typical for this strain (Thomas 

and Surdin-kerjan 1997). Moreover, three mass peaks were 

tentatively identified as sulfur compounds such as m/z34.995 

 (H2SH+—t.i. hydrogen sulfide), m/z49.011  (CH4SH+—t.i. 

methanethiol), m/z91.023  (C3H6OSH+—t.i. S-methyl thio-

acetate). The distinctive feature of these compounds was 

their higher emission by BY strains than by M28 ones. As it 

is shown in Fig. 2h (Supplementary Fig. 13) the production 

of these compounds started earlier for BY4741 strain than 

for BY4742 reaching highest values between the second and 

the fourth day with a subsequent decrease. The active emis-

sion of these compounds by BY4742 started at the 4th day 

and was mostly constant during the following days. MET15 

codes for the O-acetyl homoserine-O-acetyl serine sulfhy-

drylase which catalyses the reaction between acetylated 

serine or homoserine with thiol to produce homocysteine 

or with methanethiol to produce L-methionine (Thomas and 

Surdin-kerjan 1997). It is very likely that deletion of this 

gene in the BY4741 strain is the main factor responsible of 

hydrogen sulfide and methanethiol accumulation, since they 

are not used as substrate.

3.3.2  Investigation of a single time point

Another objective of this work was to investigate the differ-

ences between each yeast strain at a specific time point. For 

this reason one whole cycle of measurements of all 90 sam-

ples after 108 h (4 days and a half) from the beginning of the 

experiment was selected. At this point, the rapid growth of 

the colonies is finished, but they are still not declining. The 

chosen interval corresponds to one cycle before the measure-

ment with fastGC. In order to focus on the features of the 

four meiotic segregants of M28 natural strain and the two 

laboratory strains, further analysis was performed separately 

for these two groups. Venn diagram presented at Fig. 3a 

shows that 40 out of 69 mass peaks do not differ significantly 
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for at least three meiotic segregants out of four. It also con-

firms that M28-1A and M28-1C in general produce more 

VOCs. Seven mass peaks such as m/z34.995  (H2SH+—t.i. 

hydrogen sulfide), m/z39.023  (C3H3
+—common frag-

ment), m/z41.038  (C3H5
+—common fragment), m/z43.054 

 (C3H7
+—common fragment), m/z49.011  (CH4SH+—t.i. 

methanethiol), m/z71.085  (C5H11
+—t.i. dehydrated frag-

ment of alcohols such as 3-methyl-1-butanol and 2-methyl-

1-butanol), m/z135.138 (unidentified) were significantly 

higher in M28-1C only. Moreover, it was found that M28-1B 

and M28-1D could be characterized by significantly higher 

emission of m/z71.048  (C4H6OH+—t.i. butenal), m/

z117.039 (unidentified), m/z117.092  (C6H12O2H
+—t.i. ethyl 

butyrate, ethyl isobutyrate, isobutyl acetate) as confirmed by 

Fig. 2i (Supplementary Fig. 14). It is important to mention 

that these two strains are characterized by their resistance to 

TFL, characteristics that has been shown to impact also on 

the production of volatile compounds (Casalone et al. 1997). 

In previous studies an increased production of isoamyl alco-

hol only was found in resistant strains. Nevertheless, it has to 

be considered that this is the first untargeted assessment of 

their complete volatilome, thus these results could indicate 

effects on different metabolic pathways.

According to the Venn diagram (Fig. 4a) and the heat 

map (Fig.  4b), BY4742 emits in general much more 

VOCs in comparison to BY4741. However BY4741 can 

be distinguished from BY4742 by higher concentration of 

m/z33.034  (CH4OH+—t.i. methanol, Fig. 2g), m/z63.008 

(unidentified), and m/z91.023  (C3H6OSH+—t.i. S-methyl 

thioacetate, Fig. 2h). The levels of other two sulfur com-

pounds such as m/z34.995  (H2SH+—t.i hydrogen sulfide) 

and m/z49.011  (CH4SH+—t.i. methanethiol) were signifi-

cantly higher for BY4741 during the first 3 days of yeast 

growth as for m/z91.023. However, from the third till the 6th 

day BY4742 emitted those two compounds in significantly 

higher concentrations than BY4741. These results reflected 

what previously observed in general in the latest PTR-

ToF-MS data, with the BY4742 strain accumulating high 

amounts of metanethiol as a consequence of the MET17 

gene deletion.

3.4  Saccharomyces cerevisiae distinction by fastGC 

PTR-ToF-MS

In processed data obtained by coupling fastGC with PTR-

ToF-MS we found less mass peaks than just with PTR-ToF-

MS. Figure 5 shows the nine peaks present in a yeast sample 

chromatogram made by fastGC PTR-ToF-MS. Column bleed 

was observed at temperatures higher than 200 °C. Each peak 

in the chromatogram represents a compound emitted by 

yeasts, injected in a fastGC column and eluted from it. The 

first peak belongs to oxygen  (O2
+—m/z31.988), which does 

Fig. 3  Venn diagram (a) of the 69 mass peaks which are grouped 

according to their concentration range in VOC profiles of the four 

meiotic segregants of M28 natural strain (p < 0.001, Tukey’s test) and 

heat map (b) of unsupervised hierarchical clustering of the centered 

and scaled data in both mass peaks (rows) and replicates of the M28 

strain (columns). Colors of the vertical side bar correspond to mass 

peak types presented at Venn diagram (a). Colors of the horizontal 

side bar annotate M28 strain
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not interact with the analytic column and is used as a ref-

erence peak. Acetaldehyde  (C13CH4OH+—m/z46.037) and 

methanol  (CH4OH+—m/z33.034) elute before ethanol. Due 

to fastGC features it was possible to measure high concen-

trations of ethanol and to investigate its fragmentation and 

cluster pattern without any dilution of the sample headspace. 

Mass peaks such as m/z48.052  (C13CH6OH+—t.i. isotope 

of ethanol), m/z29.039, m/z30.044  (C2H5
+—t.i. fragment 

of ethanol and its isotope), m/z65.059  (C2H6O·H3O+—t.i. 

ethanol cluster), m/z75.081  (C2H5OH·C2H5
+—t.i. etha-

nol cluster), m/z93.0904  (C2H6O·C2H6OH+—t.i. ethanol 

cluster) were observed during ethanol elution. FastGC data 

confirmed the results obtained with PTR-ToF-MS alone. 

Due to the possibility of fastGC to analyze samples with 

high concentration of ethanol it was verified that at the fifth 

day of experiment BY4741 and BY4742 emit more ethanol 

than the M28 segregants.

Common fragments such as m/z39.023  (C3H3
+), m/

z41.038  (C3H5
+), m/z43.054  (C3H7

+) form a double peak 

at the fastGC chromatogram (Fig. 6), representing two dif-

ferent compounds which are not distinguishable by only 

PTR-ToF-MS measurements. The first local maximum of 

this peak is also shared with m/z57.069, which most prob-

ably belongs to isobutanol according to the retention time. 

Some trace peak of most 1-butanol was found to the right 

from the first apex. The second one is instead shared with m/

z71.085  (C5H11
+—fragment of alcohols such as 3-methyl-

1-butanol and 2-methyl-1-butanol). FastGC PTR-ToF-MS 

also allowed to distinguish between two isomers such as ace-

tic acid and the fragment of ethyl acetate  (C2H4O2H
+—m/

z61.028) which has shorter retention time.

4  Conclusions

In this work yeast volatilome changes during colony growth 

were monitored in a rapid, real-time and nondestructive 

Fig. 4  Venn diagram (a) of the 69 mass peaks which are grouped 

according to their concentration range in VOC profiles of the two 

laboratory strains BY4741 and BY4742 (p < 0.001, Tukey’s test) and 

heat map (b) of unsupervised hierarchical clustering of the centered 

and scaled data in both mass peaks (rows) and replicates of the strains 

(columns). Colors of the vertical side bar correspond to mass peak 

types presented at Venn diagram (a). Colors of the horizontal side 

bar annotate the strains

Fig. 5  Example of a yeast chromatogram obtained by fastGC PTR-

ToF-MS
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way during the whole fermentation process. PTR-ToF-MS 

coupled to a multipurpose GC autosampler guaranteed the 

high throughput, reproducibility and automatization of the 

experiment. It was possible to trace the evolution of vari-

ous VOCs and to characterize two laboratory strains and 

four meiotic segregants of a natural strain isolated from 

wine must fermentation according to their VOC profiles. 

Remarkably, significantly different concentration levels of 

3-methyl-1-butanol and 2-methyl-1-butanol were found 

between TFL-sensitive and TFL-resistant meiotic segregants 

of the M28 yeast strain. Peculiar differences in methanol and 

several sulfur compounds were observed in the laboratory 

strains. Moreover, a fastGC add-on coupled to PTR-ToF-MS 

enriched the current investigation with the data of an addi-

tional gas chromatographic dimension without considerable 

increase in measurement time. This novel setup was useful 

in the separation of several isomeric compounds which were 

found in yeast VOC profiles and were inseparable for PTR-

ToF-MS without a fast GC add-on. Despite the high genetic 

similarity within the two groups of tested strains (BY and 

M28 series), it was possible to unveil the metabolic differ-

ences among these strains and highlight previously unob-

served strain-related patterns. The increased levels of vola-

tiles by products of amino acid metabolism could reflect the 

increased ability of the By series strains to exploit externally 

supplemented amino acids, potentially as an adaptation to 

the conditions present in the laboratory. This trait potentially 

could be resulting from the selection procedure that led to 

establish the father of By strains, S288c as the model for S. 

cerevisiae (Mortimer and Johnston 1998).

The possibility to screen strains in solid culture and 

the possibility to automate the process could enable in 

the future, rapid processing of large yeast collections in 

a timely and low cost manner. Quality control and stabil-

ity assessment of strains in collections is a problem that 

has accompanied the development of yeast microbiology. 

The current method could be proposed as a fast method 

of choice to phenotype industrial strains. Thus, the ability 

demonstrated in discriminating genetically very similar 

strains, suggests this as also as a method of choice for 

strain phenotyping, identification, and quality control.

Furthermore, this technique holds thus the potential to 

greatly help in the complete dissection of new metabolic 

pathways and regulations at a wider level and in the disclo-

sure of the complete phenotypic variability among natu-

ral and laboratory S. cerevisiae strains. In addition to the 

impact on the understanding of yeast metabolic pathways, 

the findings are also relevant for the potential implications 

in the exploitation of the microbial diversity in wine, beer, 

and bread productions and, more generally, for the inves-

tigation and monitoring of bioprocessing.
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