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Abstract 

The role of non-invasive respiratory support (high-flow nasal oxygen and noninvasive ventilation) in the manage-

ment of acute hypoxemic respiratory failure and acute respiratory distress syndrome is debated. The oxygenation 

improvement coupled with lung and diaphragm protection produced by non-invasive support may help to avoid 

endotracheal intubation, which prevents the complications of sedation and invasive mechanical ventilation. However, 

spontaneous breathing in patients with lung injury carries the risk that vigorous inspiratory effort, combined or not 

with mechanical increases in inspiratory airway pressure, produces high transpulmonary pressure swings and local 

lung overstretch. This ultimately results in additional lung damage (patient self-inflicted lung injury), so that patients 

intubated after a trial of noninvasive support are burdened by increased mortality. Reducing inspiratory effort by 

high-flow nasal oxygen or delivery of sustained positive end-expiratory pressure through the helmet interface may 

reduce these risks. In this physiology-to-bedside review, we provide an updated overview about the role of nonin-

vasive respiratory support strategies as early treatment of hypoxemic respiratory failure in the intensive care unit. 

Noninvasive strategies appear safe and effective in mild-to-moderate hypoxemia  (PaO2/FiO2 > 150 mmHg), while 

they can yield delayed intubation with increased mortality in a significant proportion of moderate-to-severe  (PaO2/

FiO2 ≤ 150 mmHg) cases. High-flow nasal oxygen and helmet noninvasive ventilation represent the most promising 

techniques for first-line treatment of severe patients. However, no conclusive evidence allows to recommend a single 

approach over the others in case of moderate-to-severe hypoxemia. During any treatment, strict physiological moni-

toring remains of paramount importance to promptly detect the need for endotracheal intubation and not delay 

protective ventilation.
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Introduction

Acute hypoxemic respiratory failure (AHRF) accounts for 

a prominent number of intensive care unit (ICU) admis-

sions worldwide [1], as dramatically highlighted by the 

ongoing novel coronavirus disease 2019 (COVID-19) 

pandemic [2–4]. Direct or indirect lung injury accounts 

for essentially all causes of acute hypoxemic respira-

tory failure through different pathophysiological path-

ways. All AHRF causes, however, lead to pulmonary 

edema caused by lung inflammation that yields aeration 

loss with hypoxemia, altered respiratory mechanics and 

increased respiratory drive.

Acute respiratory distress syndrome (ARDS) is a subset 

of AHRF. ARDS definition requires the presence of bilat-

eral pulmonary infiltrates on chest imaging, with hypox-

emia not fully explained by fluid overload or cardiac 

dysfunction and assessed under positive pressure venti-

lation with at least 5  cmH2O of positive end-expiratory 

pressure (PEEP) [5]. Hypoxemia severity is classified by 

the ratio of arterial partial pressure of oxygen  (PaO2) to 

inspired oxygen fraction  (FiO2), as mild  (PaO2/FiO2 ratio 

of 201–300 mmHg), moderate  (PaO2/FiO2 ratio of 101–

200  mmHg) and severe  (PaO2/FiO2 ratio ≤ 100  mmHg). 

ARDS has clinical outcomes comparable to AHRF with 

similar oxygenation impairment and equal number of 

involved lung quadrants [6]. Hence, AHRF and ARDS 

appear to belong to the same disease spectrum portrayed 

by lung injury, hypoxemia, altered respiratory mechanics 

and alveolar dead space fraction, and increased respira-

tory drive. Robust evidence indicates a direct relationship 

between the degree of hypoxemia and increased mortal-

ity [1, 5, 7], and preliminary data suggest that also the 

entity of dysregulated respiratory drive may be associated 

to worse outcome [8–10].

Non-invasive oxygenation strategies (high-flow nasal 

oxygen, helmet or face mask noninvasive ventilation and 

continuous positive airway pressure) compared with 

standard oxygen therapy have been shown to be capa-

ble of preventing endotracheal intubation in patients 

with mild hypoxemia [11]. However, the role of nonin-

vasive oxygenation strategies in patients with moderate-

to-severe hypoxemia remains unclear. Clinical outcome 

improves when non-invasive support successfully per-

mits to avoid endotracheal intubation. Differently, if 

intubation is needed after a failing trial of non-invasive 

support, mortality is increased, possibly due to the pro-

longed exposure of injured lungs to the additional dam-

age caused by the increased respiratory effort [12]. 

Current clinical practice guidelines have been unable 

to provide clear recommendations regarding the role of 

non-invasive respiratory support strategies in AHRF/

ARDS [13]. Notwithstanding that, the use of non-invasive 

support is common also in moderate-to-severe cases, 

especially during the COVID-19 pandemic [14–20], as 

the shortage of equipment, ventilators and personnel has 

posed stress on healthcare systems worldwide.

We hereby report a physiology-to-bedside state-of-

the art review about the role of noninvasive support in 

AHRF/ARDS. Our aim is to provide ICU physicians 

and researchers with an updated overview of the physi-

ological mechanisms underlying the benefits and harms 

of non-invasive respiratory support, with the final pur-

pose of allowing clinicians to best tailor interventions on 

patients’ individual requirements.

A summary of several clinical trials on non-invasive 

respiratory support in AHRF/ARDS is shown in Table 1.

Bene�ts of maintaining spontaneous breathing 
with non-invasive support
Non-invasive respiratory support includes high-flow 

nasal oxygen (HFNO) and non-invasive ventilation (NIV) 

or continuous positive airway pressure (CPAP) delivered 

through facemasks or helmet. �ese devices are applied 

externally, and pressure and flow are delivered to upper 

airways with minimal invasiveness (Fig. 2).

Use of non-invasive oxygenation strategies preserves 

physiological pathways of airway protection (e.g. cough 

and clearance of secretions) [21, 22] and may directly 

reduce the complications related to endotracheal intu-

bation (e.g. laryngeal and tracheal trauma) and invasive 

mechanical ventilation [11]. �ese include ventilator-

induced lung injury [23], ventilator-associated pneumo-

nia, sedation [24] and neuromuscular paralysis [25]. By 

preserving patients’ alertness and interaction with the 

environment, use of non-invasive support reduces the 

risk of discomfort and delirium.

Maintenance of spontaneous breathing has further 

benefits related to lung, heart and diaphragm physiology. 

Specifically, spontaneous breathing prevents diaphragm 

dysfunction and atrophy [26, 27], allows maintenance 

of cardiac pre-loading and cardiac output [28, 29], and 

yields increased aeration of the dependent lung, which 

minimizes ventilation/perfusion mismatch [30–32]. As 

Take-home message 

In hypoxemic patients, non-invasive support may help avoid 
invasive mechanical ventilation but carries the risk of patient self-
inflicted lung injury and delayed intubation that detrimentally affect 
clinical outcome. High-flow nasal cannula and high-PEEP noninva-
sive ventilation delivered through the helmet interface are the most 
promising tools for making spontaneous breathing less injurious 
and increase the likelihood of treatment success. Careful physi-
ological monitoring remains mandatory during any treatment to 
promptly detect the need for endotracheal intubation and provide 
protective ventilation
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such, non-invasive respiratory support is the less invasive 

strategy to improve hypoxemia in case of failure of con-

ventional oxygen therapy [22, 33–35].

Nevertheless, maintenance of spontaneous breath-

ing during moderate-to-severe AHRF and ARDS carries 

inherent risks, and the unwise use of noninvasive support 

may prolong the exposure of injured lungs to the harm-

ful effects of increased respiratory drive, ultimately lead-

ing to delayed endotracheal intubation and worse clinical 

outcome.

Harms of spontaneous breathing
�e potential harms of spontaneous breathing in non-

intubated AHRF and ARDS patients derive from the 

vicious circle generated by hypoxemia, dysregulated 

inspiratory effort, altered respiratory mechanics and 

inhomogeneous lung inflation (Fig. 1).

Increased respiratory drive is caused by multiple mech-

anisms: impairment in gas exchange and respiratory 

mechanics, metabolic acidosis, inflammation, fever and 

agitation [36]. �ese result in intense inspiratory effort, 

high tidal volumes and tachypnea, with or without addi-

tional mechanical support [9, 10, 37, 38]. Injured lungs 

are exposed to higher risk of volu- and baro-trauma, 

which further worsen lung damage in a form similar to 

the ventilator-induced lung injury observed during con-

trolled ventilation [39, 40].

Hyperventilation with intense inspiratory effort, high 

tidal volumes and inspiratory pressures may injure even 

healthy lungs [41]. However, the detrimental effects of 

intense inspiratory effort are magnified by the presence of 

lung injury, which makes the distribution of inspiratory 

forces inhomogeneous across the tissue [39]. �e intense 

inspiratory effort (estimated by the inspiratory deflection 

in esophageal pressure-ΔPES) causes the inflation of large 

tidal volumes in an aerated compartment whose size is 

reduced by the edema, alveolar flooding and atelectasis. 

Moreover, the intense inspiratory effort interacts with the 

solid-like behavior of the injured lung, ultimately gen-

erating a vertical gradient in regional transpulmonary 

pressure. �is mostly occurs at the beginning of inspira-

tion (before fresh gas flow arrives from the non-invasive 

support) and may shift lung gas from non-dependent 

anterior lung zones to dependent posterior regions: this 

phenomenon is termed pendelluft and causes additional 

regional over-stretch in the dependent lung regions, 

worsening inflammation [42–44]. Finally, the pleural 

pressure negative deflections induced by intense inspira-

tory effort transiently decrease alveolar and lung inter-

stitial pressure. �is increases transmural pulmonary 

capillary pressure and facilitates transvascular fluid fil-

tration, which exacerbates interstitial and alveolar edema 

[45].T
a

b
le

 1
 

(c
o

n
ti

n
u

e
d

)

P
u

b
li

ca
ti

o
n

P
M

ID
P

a
ti

e
n

t 
p

o
p

u
la

ti
o

n
In

te
rv

e
n

ti
o

n
C

o
n

tr
o

l
P

ri
m

a
ry

 o
u

tc
o

m
e

O
th

e
r 

o
u

tc
o

m
e

s
F

in
d

in
g

s

P
at

e
l e

t 
al

. [
8

7
]

2
7

1
7

9
8

4
7

A
R

D
S

H
e

lm
e

t 
P

SV
/C

PA
P

(n
 =

 4
4

)
Fa

ce
m

as
k 

N
IV

(n
 =

 3
9

)
En

d
o

tr
ac

h
e

al
 in

tu
b

a-
ti

o
n

9
0

-d
ay

 m
o

rt
al

it
y

H
e

lm
e

t 
N

IV
 r

e
d

u
ce

d
 

e
n

d
o

tr
ac

h
e

al
 

in
tu

b
at

io
n

 r
at

e
s 

an
d

 
m

o
rt

al
it

y

G
ri

e
co

 e
t 

al
. [

6
8

]
3

3
7

6
4

3
7

8
A

H
R

F 
d

u
e

 t
o

 C
O

V
ID

-1
9

 w
it

h
 

P
/F

 ≤
 2

0
0

 m
m

H
g

H
e

lm
e

t 
P

SV
(n

 =
 5

4
)

H
ig

h
 fl

o
w

 n
as

al
 

o
xy

g
e

n
(n

 =
 5

5
)

R
e

sp
ir

at
o

ry
 s

u
p

p
o

rt
-

fr
e

e
 d

ay
s 

at
 2

8
 d

ay
s

En
d

o
tr

ac
h

e
al

 in
tu

b
a-

ti
o

n
H

e
lm

e
t 

N
IV

 d
id

 n
o

t 
in

cr
e

as
e

 r
e

sp
ir

at
o

ry
 

su
p

p
o

rt
-f

re
e

 d
ay

s 
b

u
t 

re
d

u
ce

d
 t

h
e

 r
at

e
 o

f 
e

n
d

o
tr

ac
h

e
al

 in
tu

b
a-

ti
o

n

In
 t

h
is

 t
a

b
le

, o
n

ly
 r

a
n

d
o

m
iz

e
d

 c
o

n
tr

o
ll

e
d

 t
ri

a
ls

 w
h

ic
h

 e
n

ro
ll

e
d

 p
a

ti
e

n
ts

 w
it

h
 d

e
-n

o
vo

 h
yp

o
xe

m
ic

 r
e

sp
ir

a
to

ry
 f

a
ilu

re
 a

n
d

 in
cl

u
d

e
d

 e
it

h
e

r 
e

n
d

o
tr

a
ch

e
a

l i
n

tu
b

a
ti

o
n

 o
r 

m
o

rt
a

lit
y 

a
m

o
n

g
 t

h
e

 r
e

p
o

rt
e

d
 o

u
tc

o
m

e
s 

a
re

 r
e

p
o

rt
e

d

C
A

P
 c

o
m

m
u

n
it

y-
a

cq
u

ir
e

d
 p

n
e

u
m

o
n

ia
, A

R
F

 a
cu

te
 r

e
sp

ir
a

to
ry

 f
a

ilu
re

; N
IV

 n
o

n
-i

n
v

a
si

ve
 v

e
n

ti
la

ti
o

n
, A

H
R

F
 a

cu
te

 h
yp

o
xe

m
ic

 r
e

sp
ir

a
to

ry
 f

a
ilu

re
, S

C
T

 s
te

m
 c

e
ll

 t
ra

n
sp

la
n

t,
 A

R
D

S
 a

cu
te

 r
e

sp
ir

a
to

ry
 d

is
tr

e
ss

 s
yn

d
ro

m
e

, P
/F

  P
a

O
2
/

Fi
O

2
 r

a
ti

o
, P

S
V

 p
re

ss
u

re
 s

u
p

p
o

rt
 v

e
n

ti
la

ti
o

n
, C

P
A

P
 c

o
n

ti
n

u
o

u
s 

p
o

si
ti

ve
 a

ir
w

a
y 

p
re

ss
u

re
, I

C
U

 in
te

n
si

ve
 c

a
re

 u
n

it
, A

R
D

S
 a

cu
te

 r
e

sp
ir

a
to

ry
 d

is
tr

e
ss

 s
yn

d
ro

m
e



856

Vigorous inspiratory effort can generate inhomogene-

ity and differences in regional strength of the diaphragm, 

which injure the diaphragm itself. Diaphragm injury 

results in sarcolemmal rupture, sarcomeric disarray and 

muscle inflammation. �is causes diaphragm weakness, 

which detrimentally affects short- and long-term clinical 

outcome [46–48].

�rough all these mechanisms, spontaneous breath-

ing may result in patient self-inflicted lung injury (P-SILI) 

[40, 49, 50] (Fig. 1).

Clinical studies have demonstrated a causal relation-

ship between persistent high respiratory effort and fail-

ure of non-invasive support [9, 10, 37]. Persistently high 

inspiratory effort [9, 10], respiratory rate [51] and tidal 

volume [37, 38] despite noninvasive support are associ-

ated to treatment failure and the need for intubation. 

Inspiratory effort may be proportional to patient’s sever-

ity, and patient’s susceptibility to P-SILI is magnified in 

case of most severe acute respiratory failure [34].

�ese considerations strengthen the hypothesis that 

increased mortality of patients failing noninvasive sup-

port might be explained by worse severity combined with 

prolonged exposure of injured lungs to the higher respir-

atory drive causing P-SILI [52–54].

Still, some controversy exists about the concept of 

P-SILI itself. Physiological data on endurance-trained 

healthy individuals showed that potentially extreme 

transpulmonary pressure swings (up to 60  cmH2O) and 

tidal volumes (> 3 L) did not result in lung damage [55, 

56]. Accordingly, the mechanisms underlying P-SILI clin-

ical effects remain to be fully elucidated [9, 10, 57], thus 

implying that not all patients may be exposed to the same 

risk of P-SILI.

How to make spontaneous e�ort non-injurious 
during non-invasive support
To limit the risk of P-SILI during noninvasive support, 

research has been focusing on strategies that could ren-

der spontaneous breathing less injurious [46, 58].

First, non-respiratory factors that may increase respira-

tory drive (i.e. pain, discomfort, metabolic acidosis, fever) 

should be assessed and corrected. Afterwards, pharma-

cologic agents to reduce respiratory drive may be used. 

Indeed, only propofol and benzodiazepines have been 

shown to reduce respiratory effort [59, 60], while opioids 

primarily reduce respiratory rate with mixed effects on 

tidal volumes and inspiratory effort [61, 62]. However, 

the use of propofol and benzodiazepines may have rel-

evant side effect, which limit their use to highly selected 

critically ill patients. Opioids may improve dyspnea 

but also increase the risk of apnea and their use should 

always be accompanied by appropriate monitoring [24]. 

Dexmedetomidine seems to exert no direct effect on res-

piratory drive [63].

Fig. 1 Summary of the mechanisms of patient self-inflicted lung injury
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�e application of high PEEP levels also shows prom-

ise for P-SILI prevention. �e effect of PEEP on lung 

recruitment and oxygenation is well described [34, 64]. 

Recently, the application of moderate-to-high PEEP 

(10–15   cmH2O) levels during spontaneous breathing 

and ARDS was suggested to improve ventilation homo-

geneity and prevent pendelluft phenomenon through a 

more balanced distribution of negative inspiratory pres-

sure across the lung tissue [65]. Moreover, PEEP exerts 

a direct mechanical effect on the diaphragm by changing 

the force–length relationship of its fibers [66]. �is yields 

electromechanical uncoupling, reduces the inspiratory 

effort and lowers tidal volume, finally rendering spon-

taneous breathing less injurious [67]. For these reasons, 

strategies to apply higher PEEP level (i.e. 10–15  cmH2O) 

by means of non-invasive support are gaining growing 

attention for the non-invasive management of AHRF/

ARDS [10, 11, 68].

Techniques
High-�ow nasal oxygen

HFNO is provided by an air–oxygen blender directly 

connected to a flow meter (set up to 60 L/min), by a 

turbine connected to an oxygen flow meter or by a gas-

compressed based ventilator and a heated humidifier. 

Continuous flow of heated and humidified gas with  FiO2 

up to 100% is delivered to the patient through nasal can-

nula [69, 70].

HFNO allows accurate delivery of set  FiO2, provides 

low, variable levels of positive pressure in the airways 

generating a mild PEEP effect, and flushes the upper air-

ways yielding washout of dead space [71–77]. As com-

pared with standard oxygen, HFNO decreases inspiratory 

effort, work of breathing and respiratory rate, improves 

comfort and oxygenation [78–83]. In hypoxemic patients, 

the most beneficial effects are obtained as higher gas flow 

is applied (i.e. 60 L/min) [84].

�ese physiological effects make HFNO the optimal 

strategy for oxygen therapy in patients with high-flow 

demands, such as those affected by AHRF and ARDS 

[12].

Clinically, a randomized trial comparing HFNO with 

standard oxygen and intermittent sessions of facemask 

NIV showed no effects on the rate of endotracheal intu-

bation in the overall population, but a reduction in the 

intubation rate among the subgroup of patients with 

 PaO2/FiO2 ≤ 200 mmHg treated with HFNO [85].

Concerning the P-SILI risk, physiological data have 

shown that HFNO could be more protective for the lung 

when compared to standard oxygen by favoring a more 

homogeneous distribution of tidal volume [80]. Moreo-

ver, it has been shown that HFNO results in some alveo-

lar recruitment due to PEEP effect: this potentially yields 

reduced lung strain (i.e. ratio of tidal volume to function 

residual capacity, a major determinant of ventilation-

induced lung injury) [80]. Importantly, during HFNO, 

this is accomplished with minimal additional risk of 

barotrauma, since there is no inspiratory assistance for 

tidal breathing.

Non-invasive ventilation

Mode of ventilation

In most studies and clinical practice, NIV is delivered 

as a means of biphasic positive airway pressure (mainly 

pressure support ventilation [PSV] = pressure sup-

port + PEEP) or continuous positive airway pressure 

(CPAP): unlike PSV, CPAP does not provide any inspira-

tory support. Despite the differences in physiological 

effect and mechanisms of action between CPAP and NIV, 

CPAP is classified as NIV because it is frequently used 

as an alternative to PSV [86, 87]. Although ICU ventila-

tors can administer CPAP-NIV, in order to adequately 

fulfil patients’ flow needs without additional increase in 

work of breathing [88, 89], the use of oxygen/air blend-

ers, turbines or Venturi systems continuously delivering 

high flow are necessary during helmet CPAP, and could 

be encouraged also when facemasks are the chosen inter-

faces [90, 91].

Interfaces

Non-invasive ventilation may be delivered by facemasks 

or helmets. Both interfaces are characterized by peculiar 

features that are elucidated below.

Facemask Noninvasive ventilation

Facemasks (oronasal or full-face) are the most used 

interfaces for NIV. �e main difference between oronasal 

and full-face masks is their internal dead space, but this 

difference does not affect carbon dioxide rebreathing, 

minute ventilation, patient’s effort and clinical outcome 

[92]. Oronasal and full-face may be considered inter-

changeable even in the same patient, to optimize comfort 

and tolerance.

Facemask CPAP is usually delivered with pressure set 

between 5 and 8  cmH2O. Noninvasive ventilation is usu-

ally applied in the PSV mode, with PEEP ranging between 

5 and 8  cmH2O and pressure support of 8–14  cmH2O.

Both CPAP and PSV-NIV increase airway pressure, 

ameliorate arterial oxygenation, increase end-expiratory 

lung volume [93–96] and improve cardiac function by 

reducing left ventricular afterload and right ventricu-

lar preload [97, 98]. PSV-NIV also decreases inspiratory 

effort and work of breathing [94, 99].

However, studies conducted in the 2000s showed that 

CPAP is associated with only transient improvements in 

oxygenation and dyspnea, with no effects on intubation 
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rate [100]. Differently, use of PSV-NIV yielded more 

promising results [22]. �e results of a recent meta-

analysis that included patients with AHRF showed that 

the use of facemask PSV-NIV may associated with lower 

risk of intubation and mortality, as compared to standard 

oxygen [11].

Nevertheless, facemask NIV prevents endotracheal 

intubation in only 40–60% of the cases, and its failure is 

an independent factor associated to worse survival [53], 

which raises the following concerns about the use of face-

mask NIV: first, facemask NIV can be used only with lower 

PEEP levels (5–8   cmH2O), because of the presence of air 

leaks [87]. �is may be insufficient to correct hypoxemia 

[7] or reduce the inspiratory effort. Second, full inspiratory 

synchronization during PSV-NIV may increase transpul-

monary pressure swings and tidal volume [101, 102], 

which may contribute to P-SILI and are associated with 

treatment failure and high mortality [37, 38].

From a clinical standpoint, two recent randomized 

clinical trials showed that facemask PSV-NIV may be 

less effective than HFNO and helmet NIV in prevent-

ing endotracheal intubation during moderate-to-severe 

AHRF [85, 87].

Helmet non-invasive ventilation

Air leaks, discomfort and skin breakdown [103] limit 

the tolerability of facemask NIV, making prolonged treat-

ments with specific settings (i.e. high PEEP) difficult to 

apply [104].

�e helmet interface represents an alternative to face-

masks for NIV administration in hypoxemic patients. 

�e helmet is a transparent hood that covers the entire 

head, sealed with a soft neck collar. �e helmet has the 

advantage of better tolerability and less air leaks, ena-

bling the possibility to deliver prolonged treatments with 

high PEEP [26, 68, 87, 105, 106]. Helmets can be used to 

deliver both PSV-NIV and CPAP.

For helmet CPAP, a continuous fresh gas flow (Ven-

turi systems, gas compressed or turbine generators) is 

connected to the inlet port of the interface and a PEEP 

valve is connected to helmet outlet. Physiological studies 

suggest that a minimum fresh gas flow of 40–60  L/min 

(> 35 L/min) is required to substantially reduce the risk of 

 CO2 rebreathing [107].

In helmet PSV-NIV, pressure support level is usually 

set at 10–14   cmH2O with the shortest pressurization 

time, and PEEP of 10–12   cmH2O. Part of the pressure 

support is dissipated in the helmet and does not neces-

sarily correspond to the pressure inside at airway open-

ing and in the alveoli. �ese pressure-support settings, 

although sub-optimal for muscle unloading [10, 108, 109] 

and often associated with inspiratory desynchronization 

[101, 102], relieve inspiratory effort and may dampen 

swings in transpulmonary driving pressure, possibly 

reducing the risk of P-SILI. Moreover, the higher levels 

of PEEP improve lung recruitment and gas exchange, and 

may mitigate the risk of P-SILI when compared to HFNO 

and facemask NIV [10, 65, 106].

Patient-ventilator asynchrony may accompany the use 

of helmet PSV-NIV [110]. Trigger and cycling-off delays 

and errors may occur due to increased compliance of 

the helmet in relation to flow [10]. However, the helmet’s 

large internal volume (approximatively 18 L) acts as a res-

ervoir and allows the patient to receive inspiratory flow 

also in case of poor patient-ventilator interaction.

�e use of helmet has a learning curve. Importantly, the 

large internal volume of the helmet can expose patients 

to  CO2 rebreathing, which is directly related to patient 

 CO2 production and inversely to the fresh gas flow pass-

ing through the interface [107, 111].

Helmet PSV-NIV with specific settings (10–14  cmH2O 

with the shortest pressurization time, and PEEP of 10–12 

 cmH2O) was shown to improve oxygenation, dyspnea, 

inspiratory effort in comparison to HFNO, particu-

larly in patients with intense baseline inspiratory effort 

and more severe oxygenation impairment  (PaO2/FiO2 

ratio < 150 mmHg) [10].

Given the physiologic effects of helmet PSV-NIV, 

severe AHRF-ARDS patients (e.g. with a  PaO2/FiO2 

ratio < 150) may benefit from the use of this interface 

and may tolerate sustained application of higher PEEP to 

improve oxygenation and reduce inspiratory effort, espe-

cially if the inspiratory effort remains high with HFNO 

[10]. �e risk of  CO2 rebreathing necessitates monitor-

ing fresh gas flow rates, adjustment of pressure support 

parameters, and periodic arterial blood sampling.

Monitoring during non-invasive support
Non-intubated patients with AHRF undergoing a trial of 

non-invasive support must be closely monitored to iden-

tify early signs of failure and avoid delayed intubation [54, 

112]. Impairment in gas exchange, signs of high respira-

tory drive/effort and composite scores are used to assess 

the response to noninvasive support and guide the deci-

sion to intubate (Table 2).

Oxygenation should be continuously monitored by 

pulse oximetry  (SpO2), which however, could overesti-

mate the real arterial oxygen content in the presence of 

low arterial  PaCO2 [113]. Arterial blood gas analysis pro-

vides more accurate although intermittent assessment 

of patient’s oxygenation  (PaO2/FiO2 ratio) [113]. Moder-

ate–severe hypoxia predicts the need for intubation early 

after NIV initiation [37, 38, 114, 115] and low  SpO2/FiO2 

ratio is associated with risk of failure in patients sup-

ported with HFNO [51]. Severe hypoxia may not be per 

se an absolute indication for intubation, while trend over 
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time may be a more sensitive marker: improving oxy-

genation is associated with NIV success [87, 115], likely 

because worsening oxygenation indicates clinical deterio-

ration and/or P-SILI.

Inspiratory effort may be a specific predictor of the 

need for intubation, as it reflects the underlying sever-

ity, and it is the main determinant of P-SILI. Despite 

not being a reliable index of effort [116], respiratory rate 

remains the most used surrogate of respiratory drive 

because of its simplicity to use. Low or decreasing res-

piratory rate is associated with success of noninvasive 

support [117, 118]. During facemask PSV-NIV, expired 

tidal volume > 9–9.5  ml/kg PBW indicates lack of relief 

of inspiratory effort and is a predictor of NIV failure [37, 

38]. Differently, during helmet PSV-NIV, it is not pos-

sible to monitor tidal volume, as the value displayed by 

the ventilator includes the amount of gas needed to dis-

tend the interface. In this case, the volume inhaled by 

the patient cannot be measured or estimated without 

additional equipment, routinely not available at the bed-

side [119]. Precise values of inspiratory effort associated 

with high risk of failure of non-invasive support are not 

defined, although a ΔPES threshold of 15   cmH2O seems 

reasonable [120]. Also, lack of ΔPES reduction over time 

has been shown to be an early and accurate predictor of 

NIV failure in a recent physiologic study [9].

Since the power of a single parameter to predict the 

subsequent need for intubation is low, composite scores 

have been tested. �e ROX index, defined as the ratio 

between  SpO2/FiO2 and respiratory rate accurately 

predicted the outcome of HFNO [51]. Repeated assess-

ment of the HACOR scale (which includes heart rate, aci-

dosis, consciousness, oxygenation, and respiratory rate) 

allows dynamic monitoring of the risk of intubation dur-

ing facemask NIV [118]. To date, no validated score exists 

to predict failure during helmet NIV.

Clinical evidence
A summary of the advantages, disadvantages and main 

technical specificities of the discussed non-invasive sup-

port tools is displayed in Figs. 2 and 3. �e oxygenation 

improvement generated by non-invasive support may 

help avoid endotracheal intubation and permit main-

tenance of spontaneous breathing. However, sponta-

neous breathing in patients with lung injury carries the 

risk of delayed intubation and P-SILI during the treat-

ment. Non-invasive strategies appear safe, effective and 

essentially equivalent in mild-to-moderate hypoxemia 

 (PaO2/FiO2 > 150  mmHg), while no conclusive evidence 

exists regarding whether and which noninvasive strategy 

should be applied in the management of moderate-to-

severe  (PaO2/FiO2 ≤ 150 mmHg) cases.

In 2015, Frat et  al. [85] showed that patients with 

moderate-to-severe AHRF treated with HFNO were 

burdened by lower risk of intubation compared to those 

receiving facemask NIV. �ese results may be due to, at 

least in part, the increased comfort and relief of dyspnea 

produced by HFNO.

A clinical comparison between helmet NIV and face-

mask NIV was performed by Patel et al. [87]: a significant 

Table 2 Relevant physiological measures for monitoring of hypoxemic patients on noninvasive respiratory support

PBW predicted body weight, NIV noninvasive ventilation, HFNO high-�ow nasal oxygen, DeltaPes inspiratory e�ort

a The HACOR score is calculated as the sum of the scores for each individual variable, assigned as follows. Heart rate: ≤ 120 beats/min = 0, ≥ 121 beats/min = 1; 

pH: ≥ 7.35 = 0, 7.30–7.34 = 2, 7.25–7.29 = 3, < 7.25 = 4; Glasgow Coma Scale score: 15 = 0, 13–14 = 2, 11–12 = 5, ≤ 10 = 10;  PaO2/FiO2 ratio: ≥ 201 mmHg = 0, 

176–200 mmHg = 2, 151–175 mmHg = 3, 126–150 mmHg = 4, 101–125 mmHg = 5, ≤ 100 mmHg = 6; Respiratory rate: ≤ 30 breaths/min = 0, 31–35 breaths/min = 1, 

36–40 breaths/min = 2, 41–45 breaths/min = 3, ≥ 46 = 4

Parameter Monitoring technique/score calcula-
tion

Clinical thresholds associated with risk 
of failure

Limitations

SpO2/FiO2 Pulse oximetry  < 120 and/or worsening trend Underestimation of severity with low 
 PaCO2

PaO2/FiO2 Arterial blood gas analysis  < 150–200 mmHg and/or worsening 
trend

Intermittent

Respiratory Rate Clinical examination  > 25–30 and/or not decreasing with 
support

Poorly correlated with effort

Expired tidal volume Ventilator  > 9–9.5 ml/kg PBW Not feasible during HFNO, standard 
helmet NIV

∆PES Esophageal balloon catheter  > 15  cmH2O and/or reduction < 10 
 cmH2O during NIV

Needs some expertise

ROX (SpO2/FiO2)/Respiratory Rate  < 2.85 at 2 h of HFNO initiation Validated only for HFNO

 < 3.47 at 6 h of HFNO initiation

 < 3.85 at 12 h of HFNO initiation

HACOR  scalea Heart rate, acidosis, consciousness, oxy-
genation and respiratory  ratea

 > 5 at 1 h of NIV initiation Intermittent, time consuming, validated 
only for NIV
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Noninvasive respiratory support for acute hypoxemic respiratory failure

Noninvasive ven�la�on: CPAP and Pressure Support Ven�la�on (PSV)

Facemask HelmetHigh-flow nasal oxygen 

Se�ngs

• FiO2: 0.21-1

• Gas flow: 40-60 lpm

• Temperature:  31-37°C

Se�ngs

PSV-requires a ven�lator

• FiO2: 0.21-1

• PEEP: 5-8 cmH2O

• PS: 7-10 cmH2O

CPAP

• Con�nuous flow (>30 L/min) or 

CPAP mode on the ven�lator

• PEEP: 5-8 cmH2O

Use of HME is advisable

Se�ngs

PSV-requires a ven�lator

• FiO2: 0.21-1

• PEEP: 10-12 cmH2O

• PS: 10-12 cmH2O

• No humidifica�on needed

• Fastest pressuriza�on �me

CPAP-requires a flow generator

• Con�nuous flow (>60 L/min)

• PEEP valve: 10-12 cmH2O

• Ac�ve humidifica�on possible

Benefits

• Matches inspiratory flow

• Delivers set FiO2

• Delivers fully condi�oned gas

• Enhances comfort

• Provides posi�ve airway 

pressure (up to 4 cmH2O)

• Washout of nasopharyngeal 

dead space

• Reduces inspiratory effort

Benefits

• Delivers set FiO2

• Delivers fully condi�oned gas

• Provides PEEP to allow alveolar 

recruitment

• Provides PS (only for PSV) to 

unload inspiratory muscles

• Allows to monitor �dal volume 

(only PSV)

Benefits

• Delivers set FiO2

• Provides high PEEP to allow 

alveolar recruitment and 

enhance ven�lator homogeneity

• Con�nuous treatments with 

good tolerability

• Provides PS (only for PSV) to 

reduce inspiratory effort

• Asynchronous PS may prevent 

posi�ve PL swings

Pi�alls

• Small amount of PEEP delivered

Pi�alls

• Skin ulcer

• Air leaks, difficult delivery of 

high PEEP

• Full inspiratory synchroniza�on 

may increase PL swings and �dal 

volume

• Poor tolerability: need for 

treatment interrup�ons

Pi�alls

• Impossibility to measure �dal 

volume

• Upper limbs edema, with 

possible vasal thrombosis

Fig. 2 Benefits and risks of the tools for non-invasive respiratory support in AHRF/ARDS. PSV pressure support ventilation, CPAP continuous positive 

airway pressure, PS pressure support, PL, transpulmonary pressure, HME heat and moisture exchanger
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reduction in intubation rate and mortality was detected 

in the helmet group. �is was probably due to the physi-

ological advantages of helmet, namely delivery of higher 

PEEP in continuous sessions with enhanced comfort.

In a meta-analysis, Ferreyro et  al. showed an aggre-

gate reduced risk of endotracheal intubation and 

mortality with helmet NIV compared to both HFNO 

and facemask NIV, acknowledging however, the lack of 

large-scale conclusive data on the clinical effects of hel-

met NIV [11].

Recently, the first head-to-head randomized trial 

compared first-line continuous treatment with helmet 

Fig. 3 Mechanisms of action of standard oxygen therapy, HFNO, CPAP and PSV-NIV in a representative patient with AHRF. Tracings of pressure at 

airway opening (PAW, a continuous pressure 3  cmH2O is assumed for HFNO [80]), inspiratory flow, esophageal pressure (PES) and dynamic transpul-

monary pressure (PL, calculated as PAW − PES) are displayed. PES negative deflection during inspiration is the inspiratory effort (∆PES). PL positive 

deflection is the dynamic transpulmonary driving pressure (∆PL), which is an estimate of the static transpulmonary driving pressure [121]
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PSV-NIV with specific settings (PEEP = 12  cmH2O pres-

sure and pressure support = 10–12  cmH2O) vs. HFNO 

alone in patients with moderate-to-severe AHRF. Results 

showed no significant inter-group difference in the days 

free of respiratory support at 28 days, but lower intuba-

tion rate and increased 28-day invasive ventilation-free 

days the helmet group [68].

Conclusions
Because of its simplicity of use, physiological and clinical 

effects recent clinical guidelines suggest HFNO as the opti-

mal first-line intervention in AHRF [12]. Early treatment 

with high-PEEP helmet PSV-NIV may represent a tool to 

further optimize the non-invasive treatment in most severe 

patients, but further adequately powered randomized stud-

ies are warranted to provide conclusive evidence.

�e optimal interface for non-invasive support of 

AHRF/ARDS remains a debated topic. Personalized 

treatments based on patients phenotypes [3], clinicians’ 

expertise, optimized interface, control of respiratory 

drive and strict physiological monitoring to promptly 

detect treatment failure represent the wisest approach for 

a safe clinical management.
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