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Abstract 

A viscous-liquid drop spreads on a smooth horizontal surface, which is 

uniformly heated or cooled. Lubrication theory is used to study thin drops 

subject to capillary, thermocapillary and gravity forces, and a variety of 

contact-angle-versus-speed conditions. It is found for isothermal drops that 

gravity is very important at large times and determines the power law for 

unlimited spreading. Predictions compare well with the experimental data on 

isothermal spreading for both two-dimensional and axisymmetric 

configurations. It is found that heating (cooling) retards (augments) the 

spreading process. When the advancing contact angle is zero, heating will 

cause the drop to spread only finitely far. For positive advancing contact 

angles, sufficient cooling will cause unlimited spreading. Thus, the heat 

transfer serves as a sensitive control on the spreading. 



Ausbreitung eines Flüssigkeitstropfens auf einer 

horizontalen, temperierten Platte 

Zusammenfassung: 

Bringt man eine viskose Flüssigkeit auf eine glatte horizontale Platte, so 
breitet sich der geformte Tropfen unter bestimmten Bedingungen aus. Hierbei 
wird zusätzlich der Einfluss einer gleichmäßigen Beheizung oder Kühlung der 
Platte berücksichtigt. Somit sind am Tropfen die Kapillaritäts-, die 
Thermokapillaritäts- und die Schwerkraft erlaßt; die Bedingung an der 
bewegten Kontaktlinie wird im Modell durch ein universelles Potenzgesetzt für 
den Kontaktwinkel als Funktion der Geschwindigkeit der Kontaktlinie 
eingebracht. Wir beschränken uns auf "dünne" Tropfen, d.h. der anfängliche 
Kontaktwinkel wird als klein angenommen (Schmierschicht-Approximation). 

Die Ergebnisse der Analytik zeigen, daß im isothermen Fall für große 
Zeiten die Schwerkraft den Prozess kontrolliert und somit bei unbegrenzter 
Ausbreitung das Zeitgesetz bestimmt. Für beide Geometr.ien, eben oder 
achsensymmetrisch, befinden sich unsere Ergebnisse in guter Ubereinstimmung 
mit experimentellen Resultaten anderer Authoren. 

Wird die Platte beheizt (gekühlt), so läuft der Ausbreitungsvorgang 
langsamer (schneller) ab als im vergleichbaren isothermen Fall. Ein Vergleich 
dieser Modellaussagen mit Experimenten ist derzeit nicht möglich - thermisch 
kontrollierte Tropfenausbreitungen sind offenbar nicht durchgeführt. Für einen 
statischen Kontaktwinkel von 8 A = 0 führt die Beheizung der Platte dazu, daß 
der Tro{'fen sich lediglich bis zu einer endlichen Größe ausbreitet. Umgekehrt 
kann be1 einem positiven statischen Kontaktwinkel e A > 0 eine ausreichende 
Kühlung der Platte zu unbegrenzter Ausbreitung tühren. Somit kann die 
Temperierung der Platte als wirksames Instrument zur Kontrolle des 
Ausbreitungsvorgangs aufgefaßt werden. 
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1. Introduction 

The spreading of a liquid on a smooth solid is a fundamental problern in 

fluid mechanics. It exemplifies the general problern of moving contact lines 

which enters a host of applications such as coating technology, mold filling 

and the performance in Space of fuel tanks. It involves the modeling of the 

local mechanics near the contact lines whenever a continuum theory of the 

motion is employed. A spreading drop involves bulk, surface and line forces 

intrinsically coupled through a free-boundary problem. The configuration is 

shown in Figure 1. 

Body forces affect the drop in a classical sense; gravity will greatly 

promote the spreading if the hydrostatic head is appreciable. 

Surface forces enter the description through the liquid/gas interface on 

which surface tension acts. Further, if the contact line moves, and the no 

slip condition is applied on the solid/liquid interface, then, as shown by 

Dussan V. and Davis (1974), there is a force singularity at the contact line. 

The implication then is that on a continuum level there is effective slip at 

the liquid/solid interface. This is also a surface effect. 

At the contact line there is a contact-angle condition. In the two-

dimensional case, the interface slope h at the contact line at x = a must 
X 

satisfy the compatibility condition h (a,t) 
X 

tan 0, where 0 is the contact 

angle and the interface is located atz= h(x,t), as shown in Figure 1. One 

must specify a constitutive law for 0, since it is here that the chernistry of 

the surfaces has an effect. If the interface rnoves with speed U, then one may 

specify 0 = F(U); this determines the mobility of the contact line. Dussan V. 

(1979) discusses such rnodels and the data that underlie them. The contact-

angle condition gives a line effect in the rnodel description. 



-2-

There are a nurober of approaches to the mode1ing of the dynamics of 

spreading drops. These can be rough1y categorized as (i) excision, 

(ii) microscopic and (iii) uniform analyses. 

(i) Tanner (1979) considered viscous and capillary forces only and used 

lubrication theory to describe the bu1k drop, away from the contact 1ine. 

Analysis of the excised contact-line region is replaced by a priori statements 

about the "outer" balances and about the drop shape. For unlimited spreading, 

he found power 1aws for the drop radius as a function of time t for 1arge 

. H f d l/7 . d" . d l/10 · h · t~mes. e oun a- t ~n two ~mens~ons an a- t ~n t e ax~symmetric 

case. Starov (1983) further extracted the multiplicative prefactor in these 

forms. Lopez, Miller and Ruckenstein (1976) took a similar approach, but 

ignored capillarity, and instead included gravity or 1ong-range molecular 

forces near x = a. They sought similarity solutions and found for the 

gravity-dominated drop that a - t
1

/
5 

in two dimensions and a - t
1

/
8 

in the 

axisymmetric case. The authors pointed out that these similarity solutions 

gave infinite shear stresses at the contact lines; thus, the solutions break 

down at the points of interest. The case in which long-range forces dominate 

leads to thin films with no discernible leading edges. 

(ii) Another approach to spreading is that of de Gennes (1985) who 

wished to examine the small-scale physics of contact lines. He included in 

his model long-range van der Waals repulsions and so obtained a drop that 

possesses no contact line nearby, but instead found a thick drop that smoothly 

blends into a "foot", an extended thin film from the main drop sometimes far 

forward along the plate. On the one hand there is no longer a contact line 

nearby to consider, and on the other hand he did not consider the actual 

contact line at the "foot's" edge. This approach may lead to useful 

information on the functional form of F, but its direct pursuit requires one 
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to exarnine "feet" whose thicknesses are in the 10 A. range; these are 

essentially invisible in a continuurn theory. 

(iii) There is a uniform approach to the continuurn theory in which one 

considers the who1e drop including the contact line, inserts local slip nearby 

and poses 8 = F(U). Greenspan (1978) posed such a rnodel including both 

capillary and viscous forces and with F linear. He used 1ubrication theory 

for f1at drops and obtained an evo1utionary systern giving the drop history. 

The present paper airns to ana1yze the spreading of a viscous drop on a 

srnooth, horizontal plate. The approach generalizes that of Greenspan (1978) 

in three ways. (i) The ang1e-versus-speed characteristic is genera1ized to 

8- 8A + K·
1
ul/rn, where 8A is the (static) advancing contact angle and ~ is an 

ernpirical coefficient. We terrn the factor rn the rnobi1ity exponent. This form 

with rn - 1 was used by Greenspan, while the case rn = 3 is suggested by 

Schwartz and Tejeda (1972) using data on contact-line dynamics. (ii) Gravity, 

acting vertically downward, is inc1uded. (iii) The plate is uniformly heated 

or cooled, compared to the surrounding gas. If the plate is hotter than the 

surrounding air, then the non-isothermal 1iquid/gas interface will have the 

contact line hotter than the drop summit. Therrnocapillarity will drive a flow 

in the viscous drop that will either augment or hinder the spreading. The 

heat transfer is conduction dorninated in this lubrication limit. 

The analysis obtains generalized evolution equations for the spreading in 

both two-dirnensional and axisymrnetric configurations. The equations are then 

exarnined in the lirnit of smal1 capillary nurober in which spreading rates, 

interface shapes and velocity fields can be deterrnined over the whole drop. A 

nurober of interesting results are obtained. 

In the isothermal case solutions that include viscous forces, gravity and 

surface tension show how thin drops with negligible gravity effects can spread 
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to such large size that gravity becomes important, as observed by Cazabat and 

Cohen Stuart (1986). When the static advancing angle 0 = 0, the drop spreads 
A 

to infinity. The power laws obtained here agree very well with those of 

previous theory and experiment, validating both the lubrication theory and the 

choices of the mobility exponent m = 3. 

In the nonisothermal case thermocapillary-driven flows alter the 

spreading process. For example, a drop with advancing contact angle OA = 0 

will spread forever under isothermal conditions. The same drop, if OA- 0 

still, will spread only finitely far if the plate is heated. Conversely, if 

OA > 0, the isothermal dropwill spread and then come torestat a finite 

size. However, if the plate is cooled sufficiently, and OA > 0 still, then it 

will spread forever. The heating or cooling can thus be used to control the 

spreading process. 
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2. Formulation 

Consider a drop of liquid on a smooth, horizontal rigid plane located at 

a position z - 0 and kept at a constant temperature T = TW. The drop is 

composed of a non-volatile Newtonian liquid with constant material properties 

and surrounded by a passive gas, whose viscosity and thermal conductivity are 

taken to be very small compared to those of the liquid; the far-field gas 

temperature is T . The drop, shown in Figure 1, is either two-dimensional in 
CX) 

Cartesian coordinates (x,z) or axisymmetric in cylindrical coordinates (r,z). 

We shall examine both cases and denote equation numbers by indices p (plane) 

and a (axisymmetric), respectively. The shape of the interface between the 

spreading liquid and the ambient gas is denoted by z ~ h, and the position of 

the contact-line is given by either x - a or r - a. 

The velocity and thermal fields in the liquid are governed by the Navier-

Stokes, the continuity, and the energy equations: 

(2.1) 

'V•v = 0 (2.2) 

(2.3) 

where k = (0,1), v- (u,w) is the velocity vector, p is the pressure and T is 

the temperature of the liquid. Here g is the magnitude of the gravitational 

acceleration, p is the density, ~ is the viscosity, c is the specific heat, 
p 

and A the heat conductivity of the liquid. 

The equations (2.1)-(2.3) are subject to the following boundary 

conditions at the liquid/solid interface: 

z ... 0: 
8u 

u ... ß'az w = 0 T (2.4) 
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The rigid plane is considered to be an impenetrable, perfectly-conducting 

material. Following Dussan V. and Davis (1974), the no-slip condition at the 

rigid boundary is relaxed to avoid the appearance of a shear-stress 

singularity at the moving contact line. The slip coefficient ß' in equation 

(2.4) is taken tobe a small constant. 

At the liquid/gas interface there are the following conditions: 

z = h: w -
8h ah 

u (2.Sp) 
at ax 

w -
ah 8h 

u (2.Sa) 
at ar 

n•T•n 2H a (2.6) 

t•T•n t•'ila (2.7) 

->.. aT 
>.. 

CO 

(T-T ) 
6 

(2.8) 
an CO 

Here T denotes the stress tensor of the liquid, n and t are the unit 

normal and tangential vectors with n pointing out of the liquid (see Figure 

1). Equation (2.5) is the kinematic condition while equations (2.6) and (2.7) 

give the dynamic conditions, balancing normally and tangentially, the stress 

components across the liquid/gas interface. The mean curvature H in equation 

(2.6) is given by 

(2.9) 

Here the surface tension a depends linearly on temperature 

a(T) a - a:(T-T ) w w (2.10) 

a: > 0, so that equation (2.7) incorporates the effects of thermocapillarity. 

The surface tension in equation (2.10) is denoted by a and aW is the surface 

tension at a temperature TW. 
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The thermal boundary condition at the liquid/gas interface is chosen to 

be of third type, i.e., we use a mixed condition on the heat flux and the 

local temperature, involving the parameter group A
00

/A5, which contains all 

limiting cases between an adiabatic and a perfect conducting boundary. Here 

A denotes the thermal conductivity of the ambient gas, while 5 is the 
00 

thickness of the thermal boundary layer established within the gas. Such a 

model may break down near the contact line when h is smaller than 5 but such a 

model is a reasonable one for an initial investigation. 

We must specify initial conditions, symmetry or smoothness conditions, 

and volume constraints on the drop shape. These are as follows: 

h(x,O) - h0 (x) ho<ao) - 0 a(O) ao (2.llp) 

h(r,O) - h0 (r) ho<ao) 0 a(O) = ao (2 .lla) 

ah
0 

a
3
h 

(0) - 0 
__ o 

(0) - 0 ax 
ax

3 
(2.12p) 

ah
0 {r 

a
3
h (r)} ~ 0 (0) - 0 lim 

__ o 

ar 
r-.0 ax

3 
(2.12a) 

(2.13p) 

(2.13a) 

Thus, the drop is symmetric and smooth initially with an edge at a
0 

and 

an initial contact angle of o
0

. The volume of the drop is conserved during 

the spreading process and can be calculated from the initial drop shape. The 

volume per unit width in the two-dimensional case is given by 
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ao 
v0 = I h0 (x)dx (2.14p) 

-ao 

while the volume in the axisymmetric case is given by 

(2.14a) 

For t > 0 the drop retains its symmetries; the edge, symmetry, smoothness 

and volume conditions are thus given as follows: 

h[a(t),t] 0 (condition of contact) (2.15) 

ah a
3

h 
ax (O,t) = 0 ' ßx3 (O,t) 0 (2.16p) 

symmetry and 
smoothness conditions) 

~~ (O,t) = 0 , lim {r 
83 ~ (r,t)} = 0 

r-+0 ar 

:: ::::: : :: ~ : ::: : ::: ' ' } 
ar 

(contact-angle condition) 

a(t) 

I h(x,t)dx = v
0 

-a(t) 

a(t) 

2~I 0 rh(r,t)dr = v
0 

(conservation of volume) 

(2.16a) 

(2.17p) 

(2.17a) 

(2.18p) 

(2.18a) 

Based on various experimental results, Dussan V. (1981) discusses how the 

contact angle 8 depends on the speed at of the contact line. The following 

constitutive form is chosen here: 

m ~ 1 (2.19) 
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where ~ > 0 is an empirical constant and OA ~ 0 is the (static) advancing 

contact angle. The typical behavior of experimental data (from Dussan V. 

1981) and the above model (2.19) for various m are shown in Figure 2. The 

form (2.19) form= 3 is suggested by the data of Schwartz and Tejeda (1972). 
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3. Scaling and the lubrication approximation 

The analysis of Greenspan (1978) uses lubrication theory to simplify the 

governing system for isothermal spreading. The present work generalizes that 

of Greenspan in three ways. (i) The effects of gravity are included. (ii) 

The contact-angle-versus-speed characteristic (2.19) allows for power-law 

behavior with exponent m; Greenspan used m = 1. (iii) Non-isothermal 

spreading is allowed through the action of thermocapillarity. 

We generalize the analysis of Greenspan (1978) by introducing the 

following set of dimensionless variables: 

m 

* :lL * L * _z_ * 
do 

X r z t t 
ao ao aoeo ao 

2-m 

* _!L * 
_w __ 

* 
aoeo 

u w 
el+m 

p p , (3.1) 
m J.LK-

K,(/0 K, 0 

v* 

Thus, the space variables (x,z) or (r,z) are scaled using the initial 

shape of the drop in horizontal and vertical directions, respectively. The 

time scale is constructed using the horizontal length scale a
0 

together with 

m 
an estimate of the initial speed of the contact line, K-8

0
, which is obtained 

by use of equation (2.19) for BA= 0. Conservation of mass determines the 

velocity scales. The pressure scale is obtained by balancing the pressure 

gradients and viscous terms in the horizontal component of the Navier-Stokes 

equations. The temperature scaling is chosen to allow the largest possible 

(unit order) temperature difference. 
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If scalings, (3.1) are introduced into system (2.1)-(2.19), the leading-

order asymptotic equations valid as 8
0 

_. 0 lead to the "lubrication 

approximation": 

-pr + u zz 
= 0 

-pz - Q 
c 

u + w 
X z 

(ru) + 
r 

T = 0 
zz 

- 0 

- 0 

rw - 0 z 

where subscripts denote partial differentiation. For simplicity, all 

asterisks have been dropped. The boundary conditions are as fol1ows: 

z = 0: 

z = h: 

Further, for 

h(x,O) 

h(r,O) 

u = ßu 
z 

w = 0 

uh 
X 

w - h = uh 
t r 

-Cp = h 
XX 

c h 1 h - P == rr + r r 

~Cu = -(T + h T) 
Z X X Z 

~Cu = -(T + h T ) 
z r r z 

T + 13T = 0 
z 

t = 0: 

= h
0

(x) h
0

(1) 

= h
0

(r) h
0

(1) 

= 0 

- 0 

hox(O) = 0 hOxxx(O) - 0 

8 = 1 

a(O) 1 

a(O) 1 

(3.2p) 

(3.2a) 

(3.3) 

(3.4p) 

( 3. 4a) 

(3.5) 

(3.6) 

(3.7p) 

(3.7a) 

(3.8p) 

(3.8a) 

(3.9p) 

(3.9a) 

(3.10) 

(3.llp) 

(3.lla) 

(3.12p) 



1 

1 - J h0 (x)dx 

-1 

and, for t > 0 

h(a,t) - 0 

h (O,t) - 0 
X 

h (O,t) - 0 
r 

h (a,t) == -S(t) 
r 

J
a(t) 

1- h(x,t)dx 

-a(t) 

a(t) 
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1im [rhorrr(r)] - 0 
r-~>0 

lim [rhrrr(r,t)] - 0 
r-~>0 

1 - 2~J 0 rh(r,t)dr 

(3.12a) 

(3.13p) 

(3.13a) 

(3.14p) 

(3.14a) 

(3.15) 

(3.16p) 

(3.16a) 

(3.17p) 

(3.17a) 

(3.18p) 

(3.18a) 

The instantaneous contact angle S(t) is expressed in terms of the 

dimensionless speed at of the contact 1ine, i.e. 

A nurober of dimension1ess parameters arise. These are the capillary 

nurober C, the Bond nurober G, the thermocapi1lary nurober ~c. the Biot nurober B, 

as we11 as the s1ip coefficient ß. Their definitions are as follows: 
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2 
.AcoaOBO 

c = 

J.LoK: 
G = 

pgao 
B ~ 

3-m aw .Ao 
aWBO 

(3.20) 

ll.C = 

PoK: 
ß = 

{1' 

1-m aOBO a:(TW-Tco)BO 

The capillary nurober compares dissipative effects to mean surface 

tension. The Bond nurober relates gravity forces to mean surface tension. The 

thermocapillary nurober measures the fractional thermal change in the surface 

tension. Finally, the Biot nurober characterizes the quality of the heat 

transfer occurring at the liquidjgas interface. In particular B ~ 0 and B ~ co 

give the adiabatic and the perfect-conducting limits, respectively. 

The simplified Navier Stokes equations (3.2) and (3.3) show that the 

horizontal pressure gradient is balanced by the viscous shear stresses, while 

vertically there is a hydrostatic balance. From the energy equation (3.5) we 

see that heat is transported across the drop mainly by conduction. 
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4. Derivation of the evolution equation 

Within the lubrication approximation the Navier-Stokes equations (3.2) 

and (3.3) and the continuity equation (3.4), decouple from the heat transport. 

Therefore, one can solve for the thermal field, governed by equation (3.5) and 

subject to the thermal boundary conditions (3.6c) and (3.10) to obtain 

T = 1 + B(h-z) 
l+Bh 

(4.1) 

The position of the liquidjgas interface, h(x,t) or h(r,t) is unknown a 

priori, and through h the temperature will depend on both space coordinates as 

well as on time. The interface temperature can be found from equation (4.1) 

as 

_1_ 
T(h) = l+Bh (4.2) 

Equation (4.2) shows for both the adiabatic and the perfectly-conducting 

limits that the temperature along the liquid/gas interface is constant. In 

fact, 

B -+ 0: T(h) 1 
(4.3) 

B -+ ro: T(h) 0 

The adiabatic limit results in the interface temperature TW, while the 

perfectly-conducting limit gives T . In order to have variations in 
<Xl 

temperature and therefore surface-tension gradients along the interface, we 

must have the Biot number in the range 0 < B < ro. 

We use continuity equation (3.4) and integrate across the liquid layer, 

using the appropriate boundary conditions (3.6b) and (3.7) to obtain 

a Jhou ht + ax dz 0 (4.4p) 

Q_ Jh 
ht + ar ou dz 0 (4.4a) 
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The integration of the momentum equation (3.3) and application of the normal-

stress boundary condition (3.8) .gives 

h + Cp(x,O,t) - Gh = 0 
XX 

hrr +; hr + Cp(r,O,t) - Gh = 0 

(4.Sp) 

(4.Sa) 

The horizontal momentum equation (3.2) is integrated twice with respect 

to z and the boundary conditions (3.6a) and (3.9) are applied, to obtain 

cJ:udz- {~
3 

+ ßh
2}o3xh + ~c (l+:h) 2 {~

2 

+ ßh} hx (4.6p) 

c ~J:(ru)dz ~ {~
3 

+ ßh
2}o3rh + ~C (l+:h) 2 {~

2 

+ ßh} hr (4.6a) 

Here the operators n
3
x and n

3
r are defined as 

D h = {h - Gh} . 3x XX X 
(4.7p) 

(4.7a) 

Equations (4.4) and (4.6) then provide an evolution equation for the drop 

shape as follows: 

Cht + n~3 + 2] c B [~
2 

+ ßh] hxt - 0 . (4.8p) ßh D3xh + .ö.C 
(l+Bh)

2 

Cht 1 {[h
3 

2] C B [~
2 

+ ßh]rhrt = 0 . (4.8a) + - 3 + ßh rD3 h + .ö.C 2 r r (l+Bh) 

The evolution equation (4.8) allows us to bypass the free-boundary 

problern for h, though the edge position a(t) is still unknown. The edge, 

symmetry and volume condition on the drop shape, equations (3.11)-(3.19), 

still apply. 

In what follows, the Biot nurober will be considered tobe much smaller 

than unity 
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B << 1 (4.9) 

so that the effect of thermocapillarity, as shown in evolution equations 

(4.8), is incorporated only in the product CB/~C, this serves as the effective 

Marangoni number M, 

M (4.10) 

When M > 0, the plate is heated with respect to the gas, while is M < 0, it is 

cooled. 

The flow fie ld 

After the solutions of the evolution equation (4.8) are known, one can 

calculate the velocity field: 

Cw 

Cw 

[ z 

3 
- z 

2 
h - ßhz] D h -

6 2 4x 

[ 

3 2 

~ - ~ h - ßhz] D h -
4r 

[~
2 

+ ßz] hxD 3xh 

- M[~
2 

+ ßz] 

where the operators n
4

x and D
4

r are defined by 

(4.9p) 

h 
XX 

(4.9a) 

(4.10p) 

(4.10a) 
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5. The C ~ 0 problern 

In this paper only the quasi-steady limit, C ~ 0, will be analyzed. As 

discussed by Rosenblat and Davis (1985), the dropping of the unsteady term in 

equation (4.8) leads to an "outer" solution in time. The initial condition on 

h must be dropped while that on a(t) is enforced. The unsteady term at in the 

contact-line conditions (3.17) and (3.19), is, of course, retained since this 

allows the drop to evolve. Details of the analysis are shown for the two-

dimensional drop. The details are similar for the axisymmetric drop and only 

results are given. 

Equation (4.8) for C ~ 0 can be integrated once; the integration constant 

is zero due to the symmetry conditions. Our numerical integrations of the 

resulting equation show that the solutions are indistinguishable for cases 

when the slip coefficient ß = 10-
6 

and ß = 0. This is consistent with 

Greenspan's (1978) observation (for the case G = 0, m = 1, M = 0) that the 

imposition of slip is not necessary if one examines only the leading term of 

the small-C approximation. 

If ß is set to zero, then the once-integrated evolution equation becomes 

Similarly, 

h 

Gh)x + ~ M hx = 0 

h 

[
_rl (rh ) - Gh] + 1 M -I 

r r r 2 h 

(5.lp) 

0 (5.la) 
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6. Results: isothermal spreading 

When the systern is isotherrnal, M = 0, equation (5.1) can be solved, 

subject to the conditions of syrnrnetry (3.16), contact (3.15) and constant 

vo1urne (3.18). The result is 

h(x,t) = 1 jG cosh x}G - cosh a,/G 
2 

sinh ajG - ajG cosh ajG 

Sirnilar1y, 

h(r,t) 
0 I

0
(rjG) - r

0
(ajG) 

~ --~------~-------
a r

1
(ajG) - ~ ajGI

0
(ajG) 

where I is the rnodified Bessel function of the first kind. 
n 

(6.lp) 

(6.la) 

Forrns (6.1) are now substituted into the contact-ang1e conditions (3.17) 

and (3.19) to yie1d 

- h (a,t) 
X 

1 J J -1 = 2 G[a G coth a G - 1] 

- h (a,t) 
r 

I
1

(ajG)/I
0

(ajG) 
Q ----~------~---------
a ~ ajG - I

1
(ajG)/I

0
(ajG) 

(6.2p) 

(6.2a) 

Equations (6.2) are differential equations for a = a(t) subject to the initial 

condition a(O) = 1. 

Case 1: 8A > 0, G = 0. 

The drop spreads to an equi1ibriurn configuration. This is governed by 

equation (6.2p) with a = 0, a = a , and h rep1aced by its G = 0 lirnit. The 
t ro X 

result is 



a 
CXl 

a 
CXl 
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(6.3p) 

(6.3a) 

Clearly, given the volume of the drop, the srnaller the contact angle, the 

larger the final size. This final state is independent of exponent rn. One 

can easily showalso by perturbing equation (6.2) about the final state (6.3) 

that there is exponential approach to equilibrium. This is always the case 

for limited spreading, the spreading to a = a < <X> 
CXl 

Gase 2: eA > 0, G > 0. 

Gravity acting vertically downward will flatten the drop center and hence 

increase a . In fact, for small G, 
CXl 

1 
a (2~J2 (1 + L 

G) CXl 30 

and 

1 

a (~J3 (1 + L 
G) CXl 72 

Figure 3 shows the evolution of the drop shapes with 9A- 0.25 

(6.4p) 

(6.4a) 

and G = 0 and G 

0.5. Gravity both accelerates the spreading and increases a . 
<Xl 

Figure 4 shows the instantaneous strearnlines in the approach to steady 

state. The density of the streamlines indicates the speed. Notice that the 

fluid is flowing downward, frorn the surnrnit towards the contact line, and 

particularly downward along the liquid/gas interface. 
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Gase 3: 8A = 0, G = 0. 

Since 8A = 0, the dropwill experience unlimited spreading, i.e., a-+ co 

as t -+ co When G 

l 
2 

0, equation (6.2p) has the form 

Hence, as t-+ co 

where 

_1_ 

a - c t2m+l 
m 

c 
m 

Similarly, in the axisymmetric case 

and for t -+ co 

where 

a -

c 
m 

8 

_1_ 

c t3m+l 
m 

(6.5p) 

(6.6p) 

(6.6p) 

(6.5a) 

(6.6a) 

(6.7a) 

1/3 
For the exponent m = 1 formulae (6.6p) and (6.6a) give a- t and 

a - respectively. As shown in Table I, these behaviors, are those of 

Greenspan (1978). For the exponent m = 3, these formulae give a- t
1

/ 7 
and 

1/10 
a - t . The former agrees with the excision result of Tanner (1979) and 

agrees with bis experiment. The latter agrees with the excision result of 
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Tanner (1979) and Starov (1983) and the experiments of Tanner (1979), Cazabat 

and Cohen Stuart (1986) and Chen (1988). 

The present resu1ts in both geometries support the use of the present 

uniform theory and the mobility exponent m = 3, for capillary-dominated 

spreading. 

Gase 4: 8A 0. G > 0. 

Since 8A = 0, the drop will experience unlimited spreading in that a ~ ~ 

as t ~ ~. If one inspects equation (6.2), one sees that gravity should have a 

profound effect on the spreading process. In case 3, h (a,t) was approximated 
X 

for small G with fixed a. However, when the spreading is unlimited, any fixed 

value of G, no matter how small, will eventually resu1t in a)G becoming large; 

the limits a ~ ~. G ~ 0 and G ~ 0, a ~ ~ are not equivalent. 

When a)G is large, equation (6.2p) becomes 

1 jG 
2 

so that as t ~ ~. 

where 

_l_ 

a - d tm+l 
m 

d 
m 

Similarly, in the axisymmetric case, equation (6.2a) gives 

1 
2 m 

a at = 2)G 

so that as t ~ ~. 

_1_ 

a - d t2m+l 
m 

(6.8p) 

(6.9p) 

(6.10p) 

(6.8a) 

(6.9a) 



where 

d 
m 

_1_ 

[2jG(2m+l)] 2m+l 

-~-

(6.10a) 

For the exponent m = 1 formulae (6.9p) and (6.9a) give a- t
1

/
2 

and 

1/3 . 1 a- t , respect~ve y. These results are new. For the exponent m = 3 these 

formulae give a- t
1

/
4 

and a- t
117

, respectively. Bothofthese differ 

slightly from the excision results of Lopez et al. (1970). The axisymmetric-

spreading data of Cazabat and Cohen Stuart (1986) seem to agree better with 

the form t
118 

than our t
117

, suggesting that the mobility exponent m = 3.5 

might give a better fit for their data. 

The present results in both geometries support the use of the present 

uniform theory with a mobility exponent m equal to or somewhat greater than 3. 

The results show that the long-time spreading with gravity is 

substantially accelerated compared to the case G = 0, given the same mobility 

exponent m. The fact that gravity promotes spreading is no surprise. What 

seems paradoxical is the fact that a thin drop, which at early times is 

negligibly affected by gravity, will be greatly affected by gravity later when 

it is much thinner. Cazabat and Cohen Stuart (1986) have conducted spreading 

experiments on smooth surfaces with axisymmetric drops under isothermal 

conditions. They report during the spreading two different scaling laws 

depending on whether or not gravity is important. In a first phase of the 

spreading process they found capillary effects to be dominant while, in a 

secend phase, for larger t, the influence of gravity seems to be controlling 

the process. This behavior can be understood as follows. At early times the 

hydrostatic pressures are small compared to capillary forces, but as the drop 

becomes flatter and flatter, the curvature goes to zero faster than the 

thickness and the small hydrostatic pressures ultimately dominate. 
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Figure 5 illustrates this behavior; it shows our numerical solution of 

equation (6.2p) form- l and various G. Note that as t ~ oo, the drop width 

a - t 1/ 2 when G ~ 0; compare this to the G = 0 result, a - Note as well 

that if one excludes initial transients, that the G = 0 behavior a- t
113 

is 

valid for early times even if G ~ 0. These results are consistent with the 

observations of Cazabat and Cohen Stuart (1986). They find that in practice 

the two ranges are not separated by va1ues of the instantaneous Bond number 

2 
G(a) _ pga (t) 

a 
(6.11) 

viz. G(a) < 1 meaning capi11ary domination and G(a) > l meaning gravity 

domination. 
-3/2 

They are demarked by fixed values of a at. 



-27-

7. Results: nonisothermal spreading 

When the plate is heated or cooled, there are thermocapillary forces that 

render the drop dynamic; fluid flow is always present. The shape of the drop 

is governed for C ~ 0 by equation (5.1). When this is integrated once we find 

for the plane geometry that 

hxx - Gh + ~ M in h = - s 1 
(7. lp) 

where s
1 

is a constant. Clearly, both h and h are regular at x = a while the 
X 

curvature undergoes rapid variations there due to streng thermocapillary 

gradients over very thin regions. The same singularity would be present if 

slip were retained; the factor 3/2 would then be replaced by unity. 

Similarly, in the axisymmetric case 

1 (rh ) - Gh + -
2

3 
M in h = - sA 

r r r -, (7.la) 

Equation (7.lp) can be multiplied by h and integrated again, to yield 
X 

(7.lp) 

where s
2 

is another constant. 

In all that follows, the Marangoni nurober M is nonzero giving 

thermocapillary-driven motions in the drop. For reason of clarity we neglect 

gravitational effects (G=O). For small values of M, perturbation theory can 

be used to solve equation (7.1), subject to the symmetry (3.16) and contact 

conditions (3.15), for constant volume (3.18). The asymptotic representation 

of h is 
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3 a -x 2 2 

{ 

2 2 [ 
h(x,t) - 4 ~ + M 2(a + x )~n(2a) 

2 2 2 3 [CO a -r 
h(r t) - - -- + - M 2: 

' X 4 8 
a n=l 

[~nl -[!]21 

+ (a2 -r2+n[a:/) _ ~}] (7.2a) 

We substitute forms (7.2) into the contact-angle conditions (3.17) and (3.19) 

to obtain 

l/m + e - - h (a,t) at A x 

al/m + e = - h (a,t) 
t A r 

3xa
4 M] 

32 
(7.3a) 

Equations (7.3) are approximations of differential equations for a- a(t) 

subject to the initial conditions a(O) = 1. 

Gase 1: 8A > 0, G = 0 

The drop spreads to an equilibrium configuration with a = a and the CO 

fluid flow approaches a steady state. From equations (7.3) it follows for 

small M that 

(7. 4p) 

and 



a 
CO 
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(7. 4a) 

By comparison with equations (6.4) it is seen that thermocapillarity on a 

heated plate acts oppositely to gravity. 

The drop on a heated plate (M>O) exhibits a circulation driven by 

thermocapillarity as shown in Figure 6. The higher surface tension at the 

drop summit and a lower surface tension at the edges are responsible for the 

liquid/gas interface being "pulled" towards the drop summit. The flow is 

inward toward the center where it turns around. This turning is driven by a 

pressure gradient in which there is a higher pressure at the center and this 

deforms the drop; the interface steepens near the center and flattens near the 

e_dge. This effect is similar to the deformation of the surface in a slot 

caused by a recirculating thermocapillary flow as explained by Sen and Davis 

(1982). By conservation of mass, the edge is at a position 

aco < acoO- ( 2 ~A)
1 1 2 as shown in equation (7.4p). 

A comparison of the transient behaviors forM= 0 and M = 0.2 is shown in 

Figure 7. The heating decelerates the spreading and limits the final drop 

size. The evolution to the final shape involves the spreading flow down the 

interface as shown in Figure 4 and a counterflow up the interface driven by 

thermocapillarity. The result is the complex flow field shown in Figure 8. 

Equations (7.2), (7.3) and (7.4) also hold for the case of a cooled 

plate, M < 0. In such a situation the direction of the thermocapillary flow 

is reversed, resulting in a flatter drop with extended edges aco > acoO as given 

in equation (7.4). Figure 9 shows the drop evolution for two values of M. 

For large enough M, the drop dips into the center giving a non-convex drop 

which no longer approaches a steady shape; it spreads to infinity. This is 
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caused by the thermocapillary-driven flow pulling liquid outward along the 

liquidjgas interface as shown in Figure 10. Here the thermally-driven flow 

aids the pure-spreading flow, shown in Figure 4. 

Case 2: 8 - 0 G ... 0 
A ' 

In the absence of thermocapillarity, the drop with advancing contact 

angle zero will always spread to infinity, i.e. a ~ oo as t ~ oo. 

For small M and 8A- 0 equations (7.3) have tobe integrated to give an 

approximate representation of a(t). Form= 1 we integrate equations (7.3p) 

numerically with a(O) = 1; the solutions are shown in Figure 11. When M = 0, 

there is the usual a - t
1

/
3 

of isothermal spreading. Weak heating (M > 0) 

retards the spreading and, as we shall see, causes the drop with 8A = 0 to 

cease spreading with a
00 

< oo. Weak cooling (M < 0) promotes the spreading. 

Case 3: Critical spreading, G = 0 

Given that cooling can promote spreading, one can ask whether a cooled 

drop with 8A > 0 can be made to spread to infinity. Figure 12 shows our 

numerical solutions to equation (7.3p) for 8A = 0.25 and when M < -0.1 there 

seems to be spreading to infinity. We therefore investigate the critical 

combinations of M and 8A that result in unlimited (a
00 

= oo) or limited 

spreading (a
00 

< oo). 

In equations (7.3), we set a = a
00

, at = 0 and obtain an algebraic system 

(7. Sp) 

(7. Sa) 
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A numerical scherne, based on Laguerre's rnethod, is ernployed to solve for 

the zeros of this polynornial with real coefficients as the pararneters are 

varied in the ranges -1 ~ M ~ 1 and 0 ~ eA ~ 1. Figure 13 shows the positive 

real solutions for a 
00 

f(M) for two different values of the advancing contact 

angle eA. Frorn these plots we see that any increase of the M decreases the 

final drop width a
00

• Given a fixed drop volurne, an increase in 8A will result 

in a srnaller final drop width. This feature rnay be seen in Figure 13 by 

cornparing the curves obtained for eA = 0 and eA = 0.5. Figure 13a further 

shows that the simultaneaus lirnit M ~ 0 and eA ~ 0 involves a Singular 

behavior as a ~ oo 
00 

In particular we can characterize the singularity by 

applying separate lirnits, viz. 

M << 8A << 1: 
-1/2 

(7. 6p) a a: eA CO 

-'1/3 
(7. 6a) a a: eA CO 

-1/3 
(7. 7p) a a: M 

00 
8A << M << 1: 

-1/4 
(7.7a) a a: M 

00 

Frorn Figure 13b we can infer that, although the singularity is preserved 

for M = 0, we have a real solution for a existing within a range of negative 
00 

M. A left lirnit point terrninates this range. This lirnit point is associated 

with a change in the nurnber of real solutions of equation (7.5). (We presume 

that the lower branch existing to the right side of the limit point is stable, 

while the upper one is unstable.) In the range to the left of the lirnit point 

no real positive solution of equation (7.5) exists and as a consequence we 

expect unlirnited spreading. We find frorn equation (7.5) that there is 

unlirnited spreading if 
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(7. 8p) 

{
zr.}l/3 4/3 

M < MLP = - 2 8A (7. Ba) 
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8. Discussion and conclusion 

We have considered the spreading of Newtonian-viscous liquid drops on a 

heated or cooled horizontal plate. We used lubrication theory to reduce the 

governing equations to a set of evolution equations for the interface shape h 

and the contact-line position a as defined in Figure 1. This system includes 

the effects of viscosity, surface tension, gravity, thermocapillarity and 

wetting characteristics and generalizes Greenspan (1978) to non-isothermal 

systems with gravity and with power-law forms for 8 = F(U). Both two-

dimensional and axisymmetric drops have been examined for small capillary 

numbers. 

Isothermal spreading: 

When gravity acts downward toward the plate, static drops (8A > O) are 

flattened at their centers and hence extend outward further than they would in 

a gravity-free environment. 

When the drop spreads finitely far, the final approach is exponential. 

However, at earlier times or if the drop spreads to infinity (8A = 0), the 

drop spreading follows a power law. We have found that gravitational forces 

can be very important on the scaling law at long times when the drop is very 

flat, even though they are negligible at earlier times when the drop is 

thicker. This prediction is in accord with the observations of Cazabat and 

Cohen Stuart (1987). Table I, shows if one takes the mobility exponent m = 3 

1/3 
so that (8- 8A) ~ U , that there is excellent agreement between the present 

theory and the existing isothermal experiments, a result that gives validation 

to both the m = 3 model and the uniform theory used. This uniform theory 

supposes that all local (molecular) physics at the contact line is 

incorporated into the function F of 8 = F(U). 
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Nonisothermal spreading: 

The influence of the heat transport on a spreading drop is substantial. 

The thermocapillary forces have their strongest effect near the contact line 

where they compete with the effects of wetting and capillarity. They retard 

(augment) the spreading when the plate is heated (cooled). They further 

create strong deformations in the interface shape near the contact line; the 

curvature is logarithmically infinite there in the model posed. 

The general conclusion is that heating (cooling) the plate retards 

(augments) spreading. When 8A = 0, the isothermal drop will spread to 

infinity. If the plate is heated, and eA = 0 still, then the dropwill spread 

only finitely far. If eA > 0, the isothermal drop will spread finitely far. 

If the plate is cooled sufficiently, and eA > 0 still, then the dropwill 

spread to infinity. We examined the final states and determined the precise 

conditions of heating/cooling versus eA for which unlimited or finite 

spreading occurs. These results show the existence of a mechanism for the 

thermal control of spreading, one that is quite sensitive to the thermal 

gradients. This is a potentially important practical tool. 

There are a nurober of generalizations of the present work that would be 

interesting. A direct numerical simulation of the evolution equation could 

determine effects present when C is not small. More general thermal boundary 

conditions might be appropriate especially if one wishes to model more 

precisely the contact-line region. The heat transport in our model in 

conduction dominated. Thus, the thermocapillary circulation transports little 

heat, though, this transport might become substantial if the heating were more 

intense. Convective effects might be incorporated into the evolution equation 
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as well as variations with temperature of the viscosity. We have a uniformly

heated plate so that the contact angle eA' a local value, is constant. If the 

plate had non-uniform temperature, then one might have to account for 

eA = 8A(T), or more generally, 8 = F(U,T). 

The present work suggests experiments of several varieties. One class 

could involve qualitative questions such as augmentation or retardation of 

spreading by heat transfer. A second class could involve quantitative 

explorations into power laws for spreading, and interface shapes. 
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TABLE I 

Reference Plane Axisyrnrnetric Dominant 

a cx: tn a cx: tn Force 

n n 

Tanner (1979) 0.148 0.106-0.112 ST 

Cl) 

E-< 
* :z; 

Cazabat & Cohen Stuart L ST 
~ ---

10 ~ 
H 
~ 
~ 

1* 
p.. 
::< 

(1986) --- G ~ 

8 
1---· 

Chen (1988) 0.080-0.135 ST 

··-

Lopez et al. (1976) 1 1 G 5 8 

Tanner (1979) 1 L ST 
7 10 

Starov (1983) --- L ST 10 

Greenspan (1978) rn=l 1 1 ST 3 4 

1 1 :>< 
Ehrhard & Davis rn=l ST ~ 

3 4 0 
~ 

::c 

1 1 
E-< 

2 3 
G 

Ehrhard & Davis rn=3 1 L ST 
7 10 

1 1 G 
4 7 



Figure 1: 

Figure 2: 

Figure 3: 

Figure 4: 

Figure 5: 

Figure 6: 

Figure 7: 

Figure 8: 
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Figure Captions 

Sketch of the problern geometry. 

Typical measurements of contact angle after Dussan V. (1979); 

Symbols represent experimental data, solid lines correspond to 

various mobility exponents m in model equation (2.19). 

Isothermal spreading (M = 0); evolution of the drop shapes with 

(G- 0.5) and without (G- 0) gravity for eA = 0.25. 

Isothermal spreading (M = 0): evolution of the stream function 

with 9A- 0.25, and G - 0.05. Given are instantaneous 

streamlines in steps ö~ 0.01. 

Isothermal spreading (M- 0): positions of the contact lines as 

function of time for various G with 8A- 0.25. 

Nonisothermal spreading: steady drop shape and streamlines 

M - 0.2, G - 0. The horizontal and vertical axes are rescaled 

using units appropriate to the steady drop under isothermal 

conditions. 

Nonisothermal spreading: evolution of the drop shapes for 

isothermal (M = 0) conditions and for a heated plate (M- 0.2) 

with eA = 0.25 and G - 0. 

Nonisothermal spreading: evolution of the stream function with 

M - 0.2, 9A 0.25 and G = 0. Given are instantaneous 

streamlines in steps ö~ = 0.01. 



Figure 9: 

Figure 10. 

Figure 11. 

Figure 12: 

Figure 13: 

Table I: 
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Nonisothermal spreading: evolution of the drop shapes for a 

slightly (M = -0.05) and a more intensely (M = -0.10) cooled 

plate with eA = 0.25 and G = 0. 

Nonisothermal spreading: evolution of the stream function with 

M = -0.1, 8A = 0.25 and G = 0. Given are instantaneous 

streamlines in steps ß~ 0.01. 

Nonisothermal spreading: effect of the Marangoni number on 

spreading with 8A = 0, G = 0, m = 1 and various M. 

Critical spreading: positions of the contact lines as functions 

of time with eA = 0.25, G = 0 and various M. 

Critical spreading: final drop widths a as functions of 
CXl 

Marangoni number M for G = 0 and for two different advancing 

contact angles (a) 8A = 0, and (b) eA = 0.5. 

Table caption 

Isothermal spreading results. The symbols ST and G denote 

surface-tension and gravity dominance, r.espectively. The 

asterisk indicates that error bars were not given. 
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