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Abstract

In the standard contact (2n + 1)-space when n > 1, we con-
struct infinite families of pairwise non-Legendrian isotopic, Leg-
endrian n-spheres, n-tori and surfaces which are indistinguishable
using classically known invariants. When n is even, these are the
first known examples of non-Legendrian isotopic, Legendrian sub-
manifolds of (2n + 1)-space. Such constructions indicate a rich
theory of Legendrian submanifolds. To distinguish our examples,
we compute their contact homology which was rigorously defined
in this situation in [7].

1. Introduction

A contact manifold is a (2n + 1)-manifold N equipped with a com-
pletely non-integrable field of hyperplanes ξ. An immersion of an n-
manifold into N is Legendrian if it is everywhere tangent to the hy-
perplane field ξ and the image of a Legendrian embedding is called a
Legendrian submanifold. Standard contact (2n + 1)-space is Euclidean
space R

2n+1 equipped with the hyperplane field ξ = Ker(α), where α
is the contact 1-form α = dz − ∑n

i=1 yi dxi in Euclidean coordinates
(x1, y1, . . . , xn, yn, z).

Any closed n-manifold M embeds in R
2n+1, and it is a consequence of

the h-principle for Legendrian immersions [20] that, provided M meets
certain homotopy theoretic conditions (which is the case e.g. if M is
stably parallelizable), any embedding of M into R

2n+1 may be arbitrar-
ily well C0-approximated by Legendrian embeddings. Thus, Legendrian
submanifolds of standard contact (2n + 1)-space exist in abundance.

Any contact manifold of dimension 2n+ 1 is locally contactomorphic
(diffeomorphic through a map which takes contact hyperplanes to con-
tact hyperplanes) to standard contact (2n + 1)-space. In this paper,
we study local Legendrian knotting phenomena or, in other words, the
question: When are two Legendrian submanifolds of standard contact
(2n + 1)-space isotopic through Legendrian submanifolds?
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For n = 1, the question above has been extensively studied, [5, 9,
13, 14, 15]. Here, the classical invariants of a Legendrian knot are its
topological knot type, its rotation number (the tangential degree of the
curve which arises as the projection of the knot into the xy-plane), and
its Thurston–Bennequin invariant (the linking number of the knot and
a copy of the knot shifted slightly in the z-direction). Many examples
of Legendrian non-isotopic knots with the same classical invariants are
known. Also, in higher dimensions, when the ambient contact manifold
has more topology (for example, Legendrian knots in 1-jet spaces of Sn)
there are interesting examples of non-trivial Legendrian knots [11].

When n > 1, we define in Section 3 two classical invariants of an ori-
ented Legendrian submanifold given by an embedding f : L → R

2n+1.
Following [32], we first define its Thurston–Bennequin invariant (in the
same way as in R

3). Second, we note that the h-principle for Legen-
drian immersions implies that f is determined, up to regular homotopy
through Legendrian immersions, by certain homotopy theoretic invari-
ants, associated to its differential df. We define its rotation class as
its Legendrian regular homotopy class, which is determined by an ele-
ment of [L, U(n)]. In Sections 3.4 and 3.3, we show that for n = 2k, the
Thurston–Bennequin invariant is a topological invariant, and if L = S2k,
the rotation class vanishes. The topological embedding invariant in the
3-dimensional case disappears in higher dimensions since, for n ≥ 2, any
two embeddings of an n-manifold into R

2n+1 are isotopic [21].
Although the classical invariants often provide no help, our results

indicate that the theory of Legendrian submanifolds of standard contact
(2n+1)-space is very rich. For example, we show the following theorem.

Theorem 1.1. For any n > 1, there is an infinite family of Legen-
drian embeddings of the n-sphere into R

2n+1 that are not Legendrian
isotopic even though they have the same classical invariants.

While this theorem, in some sense, generalizes the situation discussed
above in dimension 3, there is an important distinction with the three
dimensional case. Colin, Giroux and Honda [6] have announced the
following result: in dimension 3, if you fix a Thurston–Bennequin in-
variant, a rotation number, and a knot type, there are only finitely
many Legendrian knot types realizing this data. If one considers this
question in higher dimensions, Theorem 1.1 provides counterexamples
to the corresponding assertion.

In Section 4, we prove Theorem 1.1 and a similar theorem for Legen-
drian surfaces and n-tori by explicitly constructing such infinite families.
We show that for any N > 0, there exist Legendrian isotopy classes of
n-spheres and n-tori with fixed Thurston–Bennequin invariants and ro-
tation classes which do not admit a representative having projection
into R

2n with less than N double points.
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For an example of two non-isotopic 2-spheres, see Figure 3, Section 3.2
and Figure 4, Section 4.2. We construct the infinite families taking the
cusp connected sum (defined in Lemma 4.4) of copies of the example
from Figure 9. Other examples are constructed using stabilizations de-
scribed in Sections 4.3.

Our construction of cusp connected sum raises an interesting ques-
tion. In dimension 3, the connected sum of Legendrian knots is well
defined [14], but in higher dimensions, there are several ways to make
a Legendrian version of the connected sum. Lemma 4.4 discusses one
such way that is helpful in proving Theorem 1.1; however, there are
other direct generalizations of the 3 dimensional connected sum. Thus
the correct definition of connected sum is not clear. Even if we just con-
sider the “cusp connected sum” (from Lemma 4.4), it is still not clear
if it is well defined. So we ask: Is the connected sum well defined? And
more specifically: Does the cusp connected sum depend on the cusps
chosen in the construction?

To show that Legendrian submanifolds are not Legendrian isotopic,
we compute the contact homology of a Legendrian submanifold in stan-
dard contact (2n + 1)-space. The contact homology is invariant under
Legendrian isotopy; hence, Legendrian submanifolds with different ho-
mologies could not be isotopic. In Section 2, we define contact homol-
ogy using punctured holomorphic disks in C

n ≈ R
2n with boundary

on the projection of the Legendrian submanifold, and which limit to
double points of the projection at the punctures. More concretely, if
L ⊂ R

2n+1 = C
n × R is a Legendrian submanifold, we associate to

L a differential graded algebra (A, ∂), freely generated by the double
points of the projection of L into C

n. The differential ∂ is defined by
counting rigid holomorphic disks with properties as described above.
This is analogous to the approach taken by Chekanov [5] in dimen-
sion 3; however, in that dimension, the entire theory can be reduced
to combinatorics [15]. Our contact homology realizes, in the language
of Symplectic Field Theory [12], Relative Contact Homology of stan-
dard contact (2n + 1)-space. In [7], we rigorously prove that contact
homology is a well-defined invariant.
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2. Contact Homology and Differential Graded Algebras

In this section, we describe how to associate to a Legendrian sub-
manifold L in standard contact (2n + 1)-space a differential graded
algebra (DGA), denoted (A, ∂). In Section 2.1, we recall the notion
of Lagrangian projection and define the algebra A. The grading on
A is described in Section 2.3 after a review of the Maslov index in
Section 2.2. Sections 2.4 and 2.5 are devoted to the definition of ∂.
Section 2.6 sketches a proof of the invariance of the homology, under
Legendrian isotopy, of (A, ∂). We call this the contact homology. The
full proof requires much analysis which may be found in [7]. Finally,
in Section 2.7, we compare contact homology as defined here with the
contact homology sketched in [12].

2.1. The algebra A. Throughout this paper, we consider the standard
contact structure ξ on R

2n+1 = C
n × R which is the hyperplane field

given as the kernel of the contact 1-form

(2.1) α = dz −
n∑

j=1

yjdxj,

where x1, y1, . . . , xn, yn, z are Euclidean coordinates on R
2n+1. A Legen-

drian submanifold of R
2n+1 is an n-dimensional submanifold L ⊂ R

2n+1

everywhere tangent to ξ. We also recall that the standard symplectic
structure on C

n is given by

ω =
n∑

j=1

dxj ∧ dyj,

and that an immersion f : L → C
n of an n-dimensional manifold is

Lagrangian if f∗ω = 0.
The Lagrangian projection projects out the z coordinate:

(2.2) ΠC : R
2n+1 → C

n; (x1, y1, . . . , xn, yn, z) �→ (x1, y1, . . . , xn, yn).

If L ⊂ C
n × R is a Legendrian submanifold, then ΠC : L → C

n is a
Lagrangian immersion. Moreover, for L in an open dense subset of all
Legendrian submanifolds (with C∞ topology), the self-intersection of
ΠC(L) consists of a finite number of transverse double points. We call
Legendrian submanifolds with this property chord generic.

The Reeb vector field X of a contact form α is uniquely defined by
the two equations α(X) = 1 and dα(X, ·) = 0. The Reeb chords of a
Legendrian submanifold L are segments of flow lines of X starting and
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ending at points of L. We see from (2.1) that in R
2n+1, X = ∂

∂z and
thus ΠC defines a bijection between Reeb chords of L and double points
of ΠC(L). If c is a Reeb chord, we write c∗ = ΠC(c).

Let C = {c1, . . . , cm} be the set of Reeb chords of a chord generic
Legendrian submanifold L ⊂ R

2n+1. To such an L, we associate an
algebra A = A(L) which is the free associative unital algebra over the
group ring Z2[H1(L)] generated by C. We write elements in A as

(2.3)
∑

i

t
n1,i

1 . . . t
nk,i

k ci,

where the tj ’s are formal variables corresponding to a basis for H1(L)
thought of multiplicatively and ci = ci1 . . . cir is a word in the gener-
ators. It is also useful to consider the corresponding algebra AZ2 over
Z2. The natural map Z2[H1(L)] → Z2 induces a reduction of A to AZ2

(set tj = 1, for all j).

2.2. The Maslov index. Let Λn be the Grassmann manifold of La-
grangian subspaces in the symplectic vector space (Cn, ω) and recall
that H1(Λn) = π1(Λn) ∼= Z. There is a standard isomorphism

µ : H1(Λn) → Z,

given by intersecting a loop in Λn with the Maslov cycle Σ. To describe
µ more fully, we follow [25] and refer the reader to this paper for proofs
of the statements below.

Fix a Lagrangian subspace Λ in C
n and let Σk(Λ) ⊂ Λn be the subset

of Lagrangian spaces that intersects Λ in a subspace of k dimensions.
The Maslov cycle is

Σ = Σ1(Λ) = Σ1(Λ) ∪ Σ2(Λ) ∪ · · · ∪ Σn(Λ).

This is an algebraic variety of codimension one in Λn. If Γ : [0, 1] →
Λn is a loop, then µ(Γ) is the intersection number of Γ and Σ. The
contribution of an intersection point Γ(t′) with Σ to µ(Γ) is calculated as
follows. Fix a Lagrangian complement W of Λ. Then for each v ∈ Γ(t′)∩
Λ, there exists a vector w(t) ∈ W such that v + w(t) ∈ Γ(t) for t near
t′. Define the quadratic form Q(v) = d

dt |t=t′ω(v, w(t)) on Γ(t′) ∩ Λ and
observe that it is independent of the complement W chosen. Without
loss of generality, Q can be assumed non-singular and the contribution
of the intersection point to µ(Γ) is the signature of Q. Given any loop
Γ in Λn, we say µ(Γ) is the Maslov index of the loop.

If f : L → C
n is a Lagrangian immersion, then the tangent planes

of f(L) along any loop γ in L give a loop Γ in Λn. We define the
Maslov index µ(γ) of γ as µ(γ) = µ(Γ) and note that we may view
the Maslov index as a map µ : H1(L) → Z. Let m(f) be the smallest
positive number that is the Maslov index of some non-trivial loop in L.
If all loops have Maslov index equal to zero, then set m(L) = 0. We
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call m(f) the Maslov number of f. When L ⊂ C
n × R is a Legendrian

submanifold, we write m(L) for the Maslov number of ΠC : L → C
n.

2.3. The Conley–Zehnder index of a Reeb chord and the grad-
ing on A. Let L ⊂ R

2n+1 be a chord generic Legendrian submanifold
and let c be one of its Reeb chords with end points a, b ∈ L, z(a) > z(b).
Choose a path γ : [0, 1] → L with γ(0) = a and γ(1) = b. (We call
such path a capping path of c.) Then ΠC ◦ γ is a loop in C

n and
Γ(t) = dΠC(Tγ(t)L), 0 ≤ t ≤ 1 is a path of Lagrangian subspaces of
C

n. Since c∗ = ΠC(c) is a transverse double point of ΠC(L), Γ is not a
closed loop.

We close Γ in the following way. Let V0 = Γ(0) and V1 = Γ(1).
Choose any complex structure I on C

n which is compatible with ω
(ω(v, Iv) > 0 for all v) and with I(V1) = V0. (Such an I exists since the
Lagrangian planes are transverse.) Define the path λ(V1, V0)(t) = etIV1,
0 ≤ t ≤ π

2 . The concatenation, Γ ∗ λ(V1, V0), of Γ and λ(V1, V0) forms
a loop in Λn and we define the Conley–Zehnder index, νγ(c), of c to be
the Maslov index µ(Γ ∗ λ(V0, V1)) of this loop. It is easy to check that
νγ(c) is independent of the choice of I. However, νγ(c) might depend
on the choice of homotopy class of the path γ. More precisely, if γ1 and
γ2 are two paths with properties as γ above, then

νγ1(c) − νγ2(c) = µ(γ1 ∗ (−γ2)),

where (−γ2) is the path γ2 traversed in the opposite direction. Thus
νγ(c) is well defined modulo the Maslov number m(L).

Let C = {c1, . . . , cm} be the set of Reeb chords of L. Choose a capping
path γj for each cj and define the grading of cj to be

|cj| = νγj (cj) − 1,

and for any t ∈ H1(L), define its grading to be |t| = −µ(t). This makes
A(L) into a graded ring. Note that the grading depends on the choice
of capping paths, but as we will see below, this choice will be irrelevant.

The above grading on Reeb chords cj taken modulo m(L) makes AZ2

a graded algebra with grading in Zm(L). (Note that this grading does
not depend on the choice of capping paths.) In addition, the map from
A to AZ2 preserves gradings modulo m(L).

2.4. The moduli spaces. As mentioned in the introduction, the dif-
ferential of the algebra associated to a Legendrian submanifold is defined
using spaces of holomorphic disks. To describe these spaces, we need a
few preliminary definitions.

Let Dm+1 be the unit disk in C with m + 1 punctures at the points
p0, . . . pm on the boundary. The orientation of the boundary of the
unit disk induces a cyclic ordering of the punctures. Let ∂D̂m+1 =
∂Dm+1 \ {p0, . . . , pm}.
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Let L ⊂ C
n × R be a Legendrian submanifold with isolated Reeb

chords. If c is a Reeb chord of L with end points a, b ∈ L, z(a) > z(b),
then there are small neighborhoods Sa ⊂ L of a and Sb ⊂ L of b that
are mapped injectively to C

n by ΠC. We call ΠC(Sa) the upper sheet
of ΠC(L) at c∗ and ΠC(Sb) the lower sheet. If u : (Dm+1, ∂Dm+1) →
(Cn, ΠC(L)) is a continuous map with u(pj) = c∗, then we say pj is pos-
itive (respectively negative) if u maps points clockwise of pj on ∂Dm+1

to the lower (upper) sheet of ΠC(L) and points anti-clockwise of pi on
∂Dm+1 to the upper (lower) sheet of ΠC(L) (see Figure 1).

S a

S b

c k

Figure 1. Positive puncture lifted to R
2n+1. The gray

region is the holomorphic disk and the arrows indicate
the orientation on the disk and the Reeb chord.

If a is a Reeb chord of L and if b = b1 . . . bm is an ordered collection (a
word) of Reeb chords, then let MA(a;b) be the space, modulo conformal
reparameterization, of maps u : (Dm+1, ∂Dm+1) → (Cn, ΠC(L)) which
are continuous on Dm+1, holomorphic in the interior of Dm+1, and which
have the following properties

• p0 is a positive puncture, u(p0) = a∗,
• pj are negative punctures for j > 0, u(pj) = b∗j ,
• the restriction u|∂D̂m+1 has a continuous lift ũ : ∂D̂m+1 → L ⊂

C
n × R, and

• the homology class of ũ(∂D̂m+1) ∪ (∪jγj) equals A ∈ H1(L),

where γj is the capping path chosen for cj, j = 1, . . . , m. Elements
in MA(a;b) will be called holomorphic disks with boundary on L or
sometimes simply holomorphic disks.

There is a useful fact relating heights of Reeb chords and the area
of a holomorphic disk with punctures mapping to the corresponding
double points. The action (or height) Z(c) of a Reeb chord c is simply
its length and the action of a word of Reeb chords is the sum of the
actions of the chords making up the word.
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Lemma 2.1. If u ∈ MA(a;b), then

(2.4) Z(a) −Z(b) =
∫

Dm

u∗ω = Area(u) ≥ 0.

Proof. By Stokes theorem,
∫
Dm

u∗ ω =
∫
∂ Dm

u∗ (− ∑
j yj dxj) =∫

ũ∗(−dz) = Z(a) − Z(b). The second equality follows since u is holo-
morphic and ω =

∑n
j=1 dxj ∧ dyj . q.e.d.

Note that the proof of Lemma 2.1 implies that any holomorphic disk
with boundary on L must have at least one positive puncture. (In
contact homology, only disks with exactly one positive puncture are
considered.)

We now proceed to describe the properties of moduli spaces MA(a;b)
that are needed to define the differential. We prove in [7] that the moduli
spaces of holomorphic disks with boundary on a Legendrian subman-
ifold L have these properties provided L is generic among admissible
Legendrian submanifolds. L is admissible if it is chord generic and it
is real analytic in a neighborhood of all Reeb chord end points. More
precise definitions of these concepts appears in [7] where it is shown
that admissible Legendrian submanifolds are dense in the space of all
Legendrian submanifolds. The moduli spaces MA(a;b) can be seen
as the 0-sets of certain “∂̄-type” C1-maps, between infinite-dimensional
Banach manifolds. We say a moduli space is transversely cut out if 0 is
a regular value of the corresponding map.

Proposition 2.2 ([7]). For a generic admissible Legendrian subman-
ifold L ⊂ C

n × R, the moduli space MA(a;b) is a transversely cut out
manifold of dimension

(2.5) d = µ(A) + |a| − |b| − 1,

provided d ≤ 1. (In particular, if d < 0, then the moduli space is empty.)

If u ∈ MA(a;b), we say that d = µ(A) + |a| − |b| − 1 is the formal
dimension of u, and if v is a transversely cut out disk of formal dimension
0, we say that v is a rigid disk.

We mention here two transversality results which will prove useful for
our computations in Section 4.

Proposition 2.3 ([7]). Assume n > 1 and S is a finite set of points
on L containing all end points of Reeb chords and possibly other points
as well. For L in a Baire subset of the space of admissible Legendrian
submanifolds, no rigid holomorphic disk passes through the points in S.

It is useful to have a criterion for a holomorphic disk lying in a coor-
dinate plane to be transversally cut out. To this end, let πi : C

n → C,
i = 1, . . . , n, denote the complex projections.
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Proposition 2.4 ([7]). Assume n > 1. Consider a holomorphic
disk u with no (or one) negative punctures and of formal dimension of
0. Assume that πi ◦ u = 0 for i = 2, . . . n and that the tangent space
of the Lagrangian immersion splits along the boundary of u. That is,
the one path component of Tu(∂D1)ΠC(L) (or two path components of
Tu(∂D2)ΠC(L)) is of the form γ × V where γ(t) ⊂ C × {0} is a real
line and V (t) ⊂ {0} × C

n−1. If the path(s) V(t) are sufficiently close
to a constant path(s) of Lagrangian subspaces (see [7] for the precise
conditions), then u is cut out transversely.

The moduli spaces we consider might not be compact, but their lack
of compactness can be understood. It is analogous to “convergence to
broken trajectories” in Morse/Floer homology and gives rise to natural
compactifications of the moduli spaces, known as Gromov compactness.

A broken holomorphic curve, u = (u1, . . . , uN ), is a union of holomor-
phic disks, uj : (Dmj , ∂Dmj ) → (Cn, ΠC(L)), where each uj has exactly
one positive puncture pj , with the following property. To each pj with
j ≥ 2 is associated a negative puncture qk

j ∈ Dmk
for some k �= j such

that uj(pj) = uk(qk
j ) and qk′

j′ �= qk
j if j �= j′, and such that the quo-

tient space obtained from Dm1 ∪ · · · ∪DmN by identifying pj and qk
j for

each j ≥ 2 is contractible. The broken curve can be parameterized by
a single smooth map v : (Dm, ∂D) → (Cn, ΠC(L)). A sequence uα of
holomorphic disks converges to a broken curve u = (u1, . . . , uN ) if the
following holds:

• For every j ≤ N , there exists a sequence φj
α : Dm → Dm of

fractional linear transformations and a finite set Xj ⊂ Dm such
that uα ◦ φj

α converges to uj uniformly with all derivatives on
compact subsets of Dm \ Xj

• There exists a sequence of orientation-preserving diffeomorphisms
fα : Dm → Dm such that uα ◦ fα converges in the C0-topology to
a parameterization of u.

Proposition 2.5 ([7]). Any sequence uα in MA(a;b) has a sub-
sequence converging to a broken holomorphic curve u = (u1, . . . , uN ).
Moreover, uj ∈ MAj (a

j ;bj) with A =
∑N

j=1 Aj and

(2.6) µ(A) + |a| − |b| =
N∑

j=1

(
µ(Aj) + |aj | − |bj|) .

Heuristically, this is the only type of non-compactness we expect to
see in MA(a;b): since π2(Cn) = 0, no holomorphic spheres can “bubble
off” at an interior point of the sequence uα, and since ΠC(L) is exact,
no disks without positive punctures can form either. Moreover, since
ΠC(L) is compact, and since C

n has “finite geometry at infinity”, or
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is “tame at infinity” [3, 7, 10, 30, 31], all holomorphic curves with a
uniform bound on area must map to a compact set.

2.5. The differential and contact homology. Let L ⊂ C
n × R be

a generic admissible Legendrian submanifold, let C be its set of Reeb
chords, and let A denote its algebra. For any generator a ∈ C of A, we
set

(2.7) ∂a =
∑

dim MA(a;b)=0

(#MA(a;b))Ab,

where #M is the number of points in M modulo 2, and where the sum
ranges over all words b in the alphabet C and A ∈ H1(L) for which
the above moduli space has dimension 0. We then extend ∂ to a map
∂ : A → A by linearity and the Leibniz rule.

Since L is generic admissible, it follows from Proposition 2.5 that the
moduli spaces considered in the definition of ∂ are compact 0-manifolds
and hence consist of a finite number of points. Thus ∂ is well defined.
Moreover,

Proposition 2.6 ([7]). The map ∂ : A → A is a differential of degree
−1. That is, ∂ ◦ ∂ = 0 and |∂(a)| = |a| − 1 for any generator a of A.

The fact that ∂ lowers degree by 1 follows from (2.5). After Propo-
sitions 2.5 (and a gluing result from [7]), the standard proof in Morse
(or Floer) homology [28] applies to prove ∂ ◦ ∂ = 0.

The contact homology of L is

HC∗(R2n+1, L) = Ker ∂/Im ∂.

It is essential to notice that since ∂ respects the grading on A, the
contact homology is a graded algebra.

We note that ∂ also defines a differential of degree −1 on AZ2(L).

2.6. The invariance of contact homology under Legendrian iso-
topy. Given a graded algebra A = Z2[G]〈a1, . . . , an〉, where G is a
finitely generated abelian group, a graded automorphism φ : A → A
is called elementary if there is some 1 ≤ j ≤ n such that

φ(ai) =

{
Aiai, i �= j

±Ajaj + u, u ∈ Z2[G]〈a1, . . . , aj−1, aj+1, . . . , an〉, i = j,

where the Ai are units in Z2[G]. The composition of elementary auto-
morphisms is called a tame automorphism. An isomorphism from A
to A′ is tame if it is the composition of a tame automorphism with an
isomorphism sending the generators of A to the generators of A′. An iso-
morphism of DGA’s is called tame if the isomorphism of the underlying
algebras is tame.

Let (Ei, ∂i) be a DGA with generators {ei
1, e

i
2}, where |ei

1| = i, |ei
2| =

i − 1 and ∂ie
i
1 = ei

2, ∂ie
i
2 = 0. Define the degree i stabilization Si(A, ∂)
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of (A, ∂) to be the graded algebra generated by {a1, . . . , an, ei
1, e

i
2} with

grading and differential induced from A and Ei. Two differential graded
algebras are called stable tame isomorphic if they become tame isomor-
phic after each is stabilized a suitable number of times.

Proposition 2.7 ([7]). If Lt ⊂ R
2n+1, 0 ≤ t ≤ 1 is a Legendrian

isotopy between generic admissible Legendrian submanifolds, then the
DGA’s (A(L0), ∂) and (A(L1), ∂) are stable tame isomorphic. In partic-
ular, the contact homologies HC∗(R2n+1, L0) and HC∗(R2n+1, L1) are
isomorphic.

It is unknown to the authors if the first statement is strictly stronger
than the second. For a proof that the first statement implies the second,
see [5]. The proof of the first statement, sketched below is, in outline, the
same as the proof of invariance of the stable tame isomorphism class of
the DGA of a Legendrian 1-knot in [5]. However, the details in our case
require considerably more work and are presented in [7]. In particular,
we must substitute analytic arguments for the purely combinatorial ones
that suffice in dimension three.

Note that Proposition 2.7 allows us to associate the stable tame iso-
morphism class of a DGA to a Legendrian isotopy class of Legendrian
submanifolds: any Legendrian isotopy class has a generic admissible
representative and by Proposition 2.7, the DGA’s of any two generic
admissible representatives agree.

Sketch of proof. Our proof is similar in spirit to Floer’s original ap-
proach [16, 17] in the following way. We analyze bifurcations of moduli
spaces of rigid holomorphic disks under variations of the Legendrian
submanifold in a generic 1-parameter family of Legendrian submani-
folds and how these bifurcations affect the differential graded algebra.
Similar bifurcation analysis is also done in [22, 24, 30, 31]. Our set-up
does not seem well suited to the more popular proof of Floer theory
invariance which uses an elegant “homotopy of homotopies” argument
(see, for example, [18, 29]).

A Legendrian isotopy φt : L → C
n × R, 0 ≤ t ≤ 1, is admissible if

φ0(L) and φ1(L) are admissible Legendrian submanifolds and if there
exist a finite number of instants 0 < t1 < t2 < · · · < tm < 1 and a δ > 0
such that the intervals [tj − δ, tj + δ] are disjoint subsets of (0, 1) with
the following properties.

(A) For t ∈ [0, t1 − δ] ∪
(⋃m

j=1[tj + δ, tj+1 − δ]
)
∪ [tm + δ, 1], φt(L) is

an isotopy through admissible Legendrian submanifolds.
(B) For t ∈ [tj − δ, tj + δ], j = 1, . . . , m, φt(L) undergoes a stan-

dard self-tangency move. That is, there exists a point q ∈ C
n

and neighborhoods N ⊂ N ′ of q with the following properties.
The intersection N ∩ ΠC(φt(L)) equals P1 ∪ P2(t) which, up to
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biholomorphism looks like P1 = γ1 × P ′
1 and P2 = γ2(t) × P ′

2.
Here, γ1 and γ2(t) are subarcs around 0 of the curves y1 = 0 and
x2

1+(y1−1±(t−tj))2 = 1 in the z1-plane, respectively, and P ′
1 and

P ′
2 are real analytic Lagrangian (n − 1)-disks in C

n−1 = {z1 = 0}
intersecting transversely at 0. Outside N ′ ×R, the isotopy is con-
stant. See Figure 2. (The full definition of a standard self tangency
move appears in [7]. For simplicity, one technical condition there
has been omitted at this point.)

t  > 0 t  = 0     t  < 0

Figure 2. Type B double point move.

Lemma 2.8 ([7]). Any two admissible Legendrian submanifolds of
dimension n > 1 which are Legendrian isotopic are isotopic through an
admissible Legendrian isotopy.

This result does not hold when n = 1; one must allow also a “triple
point move” see [5, 15].

We need to check that the differential graded algebra changes only by
stable tame isomorphisms under Legendrian isotopies of type (A) and
(B).

Lemma 2.9 ([7]). Let Lt, t ∈ [0, 1] be a type (A) isotopy between
generic admissible Legendrian submanifolds. Then the DGA’s associ-
ated to L0 and L1 are tame isomorphic.

Let Lt, t ∈ I = [−δ, δ] be an isotopy of type (B) where two Reeb
chords {a, b} are born as t passes through 0. Let o be the degenerate
Reeb chord (double point) at t = 0 and let C′ = {a1, . . . , al, b1, . . . , bm}
be the other Reeb chords. We note that ci ∈ C′ unambiguously defines
a Reeb chord for all Lt and a and b unambiguously define two Reeb
chords for all Lt when t > 0. It is easy to see that (with the appropriate
choice of capping paths) the grading on a and b differ by 1, so let |a| = j
and |b| = j − 1. Let (A−, ∂−) and (A+, ∂+) be the DGA’s associated to
L−δ and Lδ, respectively.

Lemma 2.10 ([7]). The stabilized algebra Sj(A−, ∂−) is tame iso-
morphic to (A+, ∂+).

This ends the sketch of the proof of Proposition 2.7. For more details,
see [7]. q.e.d.
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The above proof relies on studying the moduli space of curves for a
moving Legendrian boundary condition. We mention two of the results
here as we use them again in Section 4. Let Lt, t ∈ I = [0, 1] be a
Legendrian isotopy. Let Mt

A(a;b) denote the moduli space MA(a;b)
for Lt and define

(2.8) MI
A(a;b) = {(u, t)|u ∈ Mt

A(a;b)}.
As above, “generic” refers to a member of a Baire subset, see [7] for a
more precise formulation of this term for 1-parameter families.

Proposition 2.11 ([7]). For a generic type (A) isotopy Lt, t ∈ I =
[0, 1], the following holds. If a,b, A are such that µ(A)+|a|−|b| = d ≤ 1,
then the moduli space MI

A(a;b) is a transversely cut out d-manifold. If
X is the union of all these transversely cut out manifolds which are 0-
dimensional, then the components of X are of the form Mtj

Aj
(aj ,bj),

where µ(Aj) + |aj | − |bj | = 0, for a finite number of distinct instances
t1, . . . , tr ∈ [0, 1]. Furthermore, t1, . . . , tr are such that Mtj

B(c;d) is a
transversely cut out 0-manifold for every c,d, B with µ(B)+|c|−|d| = 1.

At an instant t = tj in the above proposition, we say a handle slide
occurs, and an element in Mtj

Aj
(aj ,bj) will be called a handle slide

disk. (The term handle slide comes from the analogous situation in
Morse theory.)

We also list a parameterized Gromov compactness result whose proof
is identical to that of Proposition 2.5.

Proposition 2.12. Any sequence uα in MI
A(a;b) has a subsequence

that converges to a broken holomorphic curve with the same properties
as in Proposition 2.5.

2.7. Relations with the relative contact homology of [12]. Our
description of contact homology is a direct generalization of Chekanov’s
ideas in [5]. We now show how the above theory fits into the more
general, though still developing, relative contact homology of [12].

We start with a Legendrian submanifold L in a contact manifold
(M, ξ) and try to build an invariant for L. To this end, let α be a
contact form for ξ and Xα its Reeb vector field. We let C be the set
of all Reeb chords, which under certain non-degeneracy assumptions is
discrete. Let A be the free associative non-commutative unital algebra
over Z2[H1(L)] generated by C. The algebra A can be given a grading
using the Conley–Zehnder index (see [12]). To do this, we must choose
capping paths γ in L for each c ∈ C which connects its end points. Note
that c ∈ C, being a piece of a flow line of a vector field, comes equipped
with a parameterization c : [0, T ] → M . For later convenience, we
reparameterize c by precomposing it with ×T : [0, 1] → [0, T ].
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We next wish to define a differential on A. This is done by counting
holomorphic curves in the symplectization of (M, ξ). Recall the symplec-
tization of (M, ξ) is the manifold W = M ×R with the symplectic form
ω = d(ewα) where w is the coordinate in R. Now, choose an almost com-
plex structure J on W that is compatible with ω (ω(v, Jv) > 0 if v �= 0),
leaves ξ invariant and exchanges Xα and ∂

∂w . Note that L = L × R is
a Lagrangian (and hence totally real) submanifold of (W, ω). Thus we
may study holomorphic curves in (W, ω, J) with boundary on L. Such
curves must have punctures. When the Reeb field has no periodic orbits
(as in our case), there can be no internal punctures, so all the punctures
occur on the boundary. To describe the behavior near the punctures,
let u : (Dm, ∂Dm) → (W, L) be a holomorphic curve where Dm is as
before. Each boundary puncture has a neighborhood that is conformal
to a strip (0,∞) × [0, 1] with coordinates (s, t) such that approaching
∞ in the strip is the same as approaching pi in the disk. If we write
u using these conformal strip coordinates near pi, then we say u tends
asymptotically to a Reeb chord c(t) at ±∞ if the component of u(s, t)
lying in M limits to c(t) as s → ∞ and the component of u(s, t) lying
in R limits to ±∞ as s → ∞. The map u must tend asymptotically to
a Reeb chord at each boundary puncture. Some cases of this asymp-
totic analysis were done in [1]. For {a, b1, . . . , bm} ⊂ C, we consider the
moduli spaces Ms

A(a; b1, . . . bm) of holomorphic maps u as above such
that: (1) at p0, u tends asymptotically to a at +∞; (2) at pi, u tends
asymptotically to bi at −∞; and (3) ΠM (u(∂D∗)) ∪i γi represents the
homology class A. Here, the map ΠM : W → M is projection onto the
M factor of W. We may now define a boundary map ∂ on the generators
ci of A (and hence on all of A) by

∂ci =
∑

#(Ms
A(ci; b1, . . . , bm))Ab1 . . . bm,

where the sum is taken over all one dimensional moduli spaces and #
means the modulo two count of the points in Ms

A/R. Here, the R-action
is induced by a translation in the w-direction.

Though this picture of contact homology has been known for some
time now, the analysis needed to rigorously define it has yet to appear.
Moreover, there have been no attempts to make computations in di-
mensions above three. By specializing to a nice – though still rich –
situation, we gave a rigorous definition of contact homology for Legen-
drian submanifolds in R

2n+1, in [7].
Recall that in our setting (M, α) = (R2n+1, dz−∑n

j=1 yjdxj), the set
of Reeb chords is naturally bijective with the double points of ΠC(L).
Thus, clearly the algebra of this subsection is identical to the one de-
scribed in Section 2.1.

We now compare the differentials. We pick the complex structure on
the symplectization of R

2n+1 as follows. The projection ΠC : R
2n+1 →
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C
n gives an isomorphism dΠC from ξx ⊂ TxR

2n+1 to TΠC(x)C
n and

thus, via ΠC, the standard complex structure on C
n induces a complex

structure E : ξ → ξ on ξ. Define the complex structure J on the
symplectization R

2n+1 × R by J(v) = E(v) if v ∈ ξ and J( ∂
∂w ) = X.

Then J is compatible with ω = d(ewα). Our moduli spaces and the
ones used in the standard definition of contact homology are related as
follows. If u in Ms

A(a; b1, . . . , bm), then define p(u) to be the map in
MA(a; b1, . . . , bm) as p(u) = ΠC◦ΠM◦u, where ΠM : R

2n+1×R → R
2n+1

is the projection from the symplectization back to the original contact
manifold.

Lemma 2.13. The map p : Ms(a; b1, . . . , bm)/R → M(a; b1, . . . , bm)
is a homeomorphism.

Sketch of Proof. This was proven in the three dimensional case in [15]
and the proof here is similar. (For details, we refer the reader to that
paper, but we outline the main steps.) It is clear from the definitions
that p is a map between the appropriate spaces (we mod out by the R

in Ms since the complex structure on the symplectization is R-invariant
and any two curves that differ by translation in R will clearly project
to the same curve in C

n). The only non-trivial part of this lemma is
that p is invertible. To see this, let u ∈ Ms be written u = (u′, z, τ) :
Dm → C

n × R × R. The fact that u is holomorphic for our chosen
complex structure implies that z is harmonic and hence determined by
its boundary data. Moreover, the holomorphicity of u also implies that
τ is determined, up to translation in w-direction, by u′ and z. Thus if
we are given a map u′ ∈ M, then we can construct a z and τ for which
u = (u′, z, τ) will be a holomorphic map u : Dm → R

2n+1 × R. If it
has the appropriate behavior near the punctures, then u ∈ Ms. The
asymptotic behavior near punctures was studied in [26]. q.e.d.

3. Legendrian submanifolds

In this section, we review the Lagrangian projection and introduce
the front projection, both of which are useful for the calculations of
Section 4. In Sections 3.3 and 3.4, we discuss the Thurston–Bennequin
invariant and the rotation class. Finally, in Section 3.5, we give a useful
technique for calculating the Conley–Zehnder index of Reeb chords.

3.1. The Lagrangian projection. Recall that for a Legendrian sub-
manifold L ⊂ C

n × R, ΠC : L → C
n is a Lagrangian immersion. Note

that L ⊂ C
n×R can be recovered, up to rigid translation in the z direc-

tion, from ΠC(L): pick a point p ∈ ΠC(L) and choose any z coordinate
for p; the z coordinate of any other point p′ ∈ L is then determined by

(3.1)
n∑

j=1

∫
γ
yjdxj,
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where γ = ΠC ◦ Γ and Γ is any path in L from p to p′. Furthermore,
given any Lagrangian immersion f into C

n with isolated double points,
if the integral in (3.1) is independent of the path γ = f ◦ Γ, then we
obtain a Legendrian immersion f̃ into R

2n+1 which is an embedding
provided the integral is not zero for paths connecting double points.

A Lagrangian immersion f : L → C
n is exact if f∗(

∑n
j=1 yjdxj)

is exact and, in this case, (3.1) is independent of γ. In particular, if
H1(L) = 0, then all Lagrangian immersions of L are exact. Also note
that any Lagrangian regular homotopy ft : L → C

n of exact Lagrangian
immersions will lift to a Legendrian regular homotopy f̃t : L → C

n ×R.

Example 3.1. Consider Sn = {(x, y) ∈ R
n × R : |x|2 + y2 = 1} and

define f : Sn → C
n as

f(x, y) : Sn → C
n : (x, y) �→ ((1 + iy)x).

Then f is an exact Lagrangian immersion, with one transverse double
point, which lifts to a Legendrian embedding into R

2n+1. (When n =
1, the image of f is a figure eight in the plane with a double point
at the origin.) See Figure 3 in the next subsection for an alternative
description.
3.2. The front projection. The front projection projects out the yj ’s:

ΠF : R
2n+1 → R

n+1 : (x1, y1, . . . , xn, yn, z) �→ (x1, . . . , xn, z).

If L ⊂ R
2n+1 is a Legendrian submanifold, then ΠF (L) ⊂ R

n+1 is its
front which is a codimension one subvariety of R

n+1. The front has
certain singularities. More precisely, for generic L, the set of singular
points of ΠF (L) is a hypersurface Σ ⊂ L which is smooth outside a set of
codimension 3 in L, and which contains a subset Σ′ ⊂ Σ of codimension
2 in L with the following property. If p is a smooth point in Σ\Σ′, then
there are local coordinates (x1, . . . , xn) around p in L, (ξ1, . . . , ξn, z)
around ΠF (p) in R

n+1, and constants δ = ±1, β, α2, . . . , αn such that

(3.2) ΠF (x1, . . . , xn) = (x2
1, x2, . . . , xn, δx3

1 +βx2
1 +α2x2 + · · ·+αnxn).

For a reference, see [2] page 115. The image under ΠF of the set of
smooth points in Σ \Σ′ will be called the cusp edge of the front ΠF (L).
See Figure 3.

Any map L → R
n+1 with singularities of a generic front can be lifted

(in a unique way) to a Legendrian immersion. (The singularities of
such a map allow us to solve for the yi-coordinates from the equation
dz =

∑n
i=1 yidxi and the solutions give an immersion.) In particular,

at a smooth point of the front the yi-coordinate equals the slope of the
tangent plane to the front in the xiz-plane.

A double point of a Legendrian immersion correspond to a double
point of the front with parallel tangent planes. Also note that ΠF (L)
cannot have tangent planes containing the z-direction. For a more thor-
ough discussion of singularities occurring in front projections, see [2].
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Figure 3. Front projection of Example 3.1 in dimension
3, on the left, and 5, on the right.

3.3. The rotation class. Let (M, ξ) be a contact (2n + 1)-manifold
with a contact form α. That is, α is a 1-form on M with ξ = Ker(α).
The complete non-integrability condition on ξ implies α ∧ (dα)n �= 0
which in turn implies that for any p ∈ M , dαp|ξp is a symplectic form
on ξp ⊂ TpM .

Let f : L → (M, ξ), be a Legendrian immersion. Then the image of
dfx : TxL → Tf(x)M is a Lagrangian plane in ξf(x). Pick any complex
structure J on ξ which is compatible with its symplectic structure. Then
the complexification of df , dfC : TL ⊗ C → ξ is a fiberwise bundle
isomorphism. The homotopy class of (f, dfC) in the space of complex
fiberwise isomorphisms TL ⊗ C → ξ is called the rotation class of f
and is denoted r(f) (or r(L) if L ⊂ M is a Legendrian submanifold
embedded into M by the inclusion). The h-principle for Legendrian
immersions [20] implies that r(f) is a complete invariant for f up to
regular homotopy through Legendrian immersions.

When the contact manifold under consideration is R
2n+1 with the

standard contact structure, we may further illuminate the definition
of r(f). Let (x, y, z) ∈ R

n × R
n × R be coordinates on R

2n+1 as in
Section 2.1. If J : ξ(x,y,z) → ξ(x,y,z) is the complex structure defined by
J(∂xj + yj∂z) = ∂yj , J(∂yj ) = −(∂xj + yj∂z), for j = 1, . . . , n then the
Lagrangian projection ΠC : R

2n+1 → C
n gives a complex isomorphism

from (ξ, J) to the trivial bundle with fiber C
n. Thus we may think of

dfC as a trivialization TL⊗C → C
n. Moreover, we can choose Hermitian

metrics on TL ⊗ C and on C
n so that dfC is a unitary map. Then f

gives rise to an element in U(TL⊗C, Cn). One may check that the group
of continuous maps C(L, U(n)) acts freely and transitively on U(TL ⊗
C, Cn) and thus π0(U(TL⊗C, Cn)) is in one-to-one correspondence with
[L, U(n)]. Thus we may think of r(f) as an element in [L, U(n)].

We note that when L = Sn, then

r(f) ∈ πn(U(n)) ≈
{

Z, n odd,
0, n even.

Thus for spheres, we will refer to r(f) as the rotation number.

3.4. The Thurston–Bennequin invariant. Given an orientable con-
nected Legendrian submanifold L in an oriented contact (2n+1)-mani-
fold (M, ξ), we present an invariant, called the Thurston–Bennequin
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invariant of L, describing how the contact structure “twists about L.”
The invariant was originally defined by Bennequin [4] and, indepen-
dently, by Thurston when n = 1 and generalized to higher dimensions by
Tabachnikov [32]. Here, we only recall the definition of the Thurston–
Bennequin invariant when L is homologically trivial in M (which for
M = R

2n+1 poses no additional constraints).
Pick an orientation on L. Let X be a Reeb vector field for ξ and push

L slightly off of itself along X to get another oriented submanifold L′
disjoint from L. The Thurston–Bennequin invariant of L is the linking
number

(3.3) tb(L) = lk(L, L′).

Note that tb(L) is independent of the choice of orientation on L since
changing it changes also the orientation of L′. The linking number is
computed as follows. Pick any (n+1)-chain C in M such that ∂C = L,
then lk(L, L′) equals the algebraic intersection number of C with L′.

For a chord generic Legendrian submanifold L ⊂ R
2n+1, tb(L) can

be computed as follows. Let c be a Reeb chord of L with end points a
and b, z(a) > z(b). Let Va = dΠC(TaL) and Vb = dΠC(TbL). Given an
orientation on L, these are oriented n-dimensional transverse subspaces
in C

n. If the orientation of Va ⊕ Vb agrees with that of C
n, then we say

the sign, sign(c), of c is +1, otherwise we say it is −1. Then

(3.4) tb(L) =
∑

c

sign(c),

where the sum is taken over all Reeb chords c of L. To verify this
formula, use the Reeb-vector field ∂z to shift L off itself and pick the
cycle C as the cone over L through some point with a very large negative
z-coordinate.

Note that the parity of the number of double points of any generic im-
mersion of an n-manifold into C

n depends only on its regular homotopy
class [33]. Thus the parity of tb(L) is determined by the rotation class
r(L). Some interesting facts [8] concerning the Thurston–Bennequin in-
variant are summarized in the following proposition.

Proposition 3.2. Let L be a Legendrian submanifold in standard
contact (2n + 1)-space.

1) If n > 1 is odd, then for any k ∈ Z, we can find, C0 close to
L, a Legendrian submanifold L′ smoothly isotopic and Legendrian
regularly homotopic to L with tb(L′) = 2k.

2) If n is even, then tb(L) = (−1)
n
2
+1 1

2χ(L).

The ideas associated with (1) are discussed below in Proposition 4.5.
For (2), note that if n = 2k is even, then the sign of a double point c
is independent of the ordering of the subspaces Va and Vb and in this
case, tb(L) equals Whitney’s invariant [33] for immersions of orientable
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2k-manifolds into oriented R
4k which in turn equals −1

2χ(ν), where ν is
the oriented normal bundle of the immersion [23]. Since the immersion
is Lagrangian into C

n, its normal bundle is isomorphic to the tangent
bundle TL of L (via multiplication with i) and as an oriented bundle,
it is isomorphic to TL with orientation multiplied by (−1)

n
2 .

If n = 1, the situation is much more interesting. In this case, there are
two types of contact structures: tight and overtwisted. If the contact
structure is overtwisted, then the above proposition is still true, but
if the contact structure is tight (as is standard contact 3-space), then
tb(L) ≤ χ(L) − |r(L)|. There are other interesting bounds on tb(L) in
a tight contact structure, see [19, 27].

The Thurston–Bennequin invariant of a chord generic Legendrian
submanifold can also be calculated in terms of Conley–Zehnder indices
of Reeb chords. Recall that C is the set of Reeb chords of L.

Proposition 3.3. If L ⊂ R
2n+1 is an orientable chord generic Leg-

endrian submanifold, then

tb(L) = (−1)
(n−2)(n−1)

2

∑
c∈C

(−1)|c|.

The proof of this proposition requires some notational setup in the
next section. The proof is given after the proof of Lemma 3.4.

3.5. Index computations in the front projection. Though it was
easier to define contact homology using the Lagrangian projection of a
Legendrian submanifold, it is frequently easier to construct Legendrian
submanifolds using the front projection. In preparation for our examples
below, we discuss Reeb chords and their Conley–Zehnder indices in the
front projection.

If L ⊂ R
2n+1 is a Legendrian submanifold, then the Reeb chords

of L appears in the front projection as vertical line segment (i.e. a line
segment in the z-direction) connecting two points of ΠF (L) with parallel
tangent planes. (See Section 3.2 and note that L may be perturbed so
that the Reeb chords as seen in ΠF (L) do not have end points lying on
singularities of ΠF (L).)

A generic arc γ in ΠF (L) connecting two such points a, b intersects
the cusp edges of ΠF (L) transversely and meets no other singularities
of ΠF (L) (it might also meet double points of the front projection,
but “singularities” refers to non-immersion parts of ΠF (L)). Let p be
a point on a cusp edge where γ intersects it. Note that ΠF (L) has
a well defined tangent space at p. Choose a line l orthogonal to this
tangent space. Then, since the tangent space does not contain the
vertical direction, orthogonal projection to the vertical direction at p
gives a linear isomorphism from l to the z-axis through p. Thus the z-
axis induces an orientation on l. Let γp be a small part of γ around p and
let hp : γp → l be orthogonal projection. The orientation of γ induces
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one on γp and we say that the intersection point is an up- (down-) cusp
if hp is increasing (decreasing) around p.

Let c be a Reeb chord of L with end points a and b, z(a) > z(b). Let
q be the intersection point of the vertical line containing c ⊂ R

n+1 and
{z = 0} ⊂ R

n+1. Small parts of ΠF (L) around a and b, respectively,
can be viewed as the graphs of functions ha and hb from a neighborhood
of q in R

n to R (the z-axis). Let hab = ha−hb. Since the tangent planes
of ΠF (L) at a and b are parallel, the differential of hab vanishes at q. If
the double point c∗ of ΠC(L) corresponding to c is transverse, then the
Hessian d2hab is a non-degenerate quadratic form (see the proof below).
Let Index(d2hab) denote its number of negative eigenvalues.

Lemma 3.4. If γ is a generic path in ΠF (L) connecting a to b, then

νγ(c) = D(γ) − U(γ) + Index(d2hab),

where D(γ) and U(γ) is the number of down- and up-cusps of γ, respec-
tively.

Proof. To compute the Maslov index as described in Section 2.3, we
use the Lagrangian reference space x = 0 in R

2n (that is, the subspace
Span(∂y1, . . . , ∂yn)) with Lagrangian complement y = 0 (Span(∂x1 , . . . ,
∂xn)).

We must compute the Maslov index of the loop Γ∗λ(Vb, Va) where Vb

and Va are the Lagrangian subspaces dΠC(TbL) and dΠC(TaL) and Γ(t)
is the path of Lagrangian subspaces induced from γ. We first note that
Γ(t) intersects our reference space transversely (in 0) if γ(t) is a smooth
point of ΠF (L), since near such points, ΠF (L) can be thought of as a
graph of a function over some open set in x-space (i.e. {z = 0} ⊂ R

n+1).
Thus, for generic γ, the only contributions to the Maslov index come
from cusp-edge intersections and the path λ(Vb, Va).

We first consider the contribution from λ(Vb, Va). There exist or-
thonormal coordinates u = (u1, . . . , un) in x-space so that in these co-
ordinates

d2hab = Diag(λ1, . . . , λn).
We use coordinates (u, v) on R

2n = C
n where u is as above, ∂j = ∂uj ,

and ∂vj = i∂j (i =
√−1). In these coordinates, our symplectic form is

simply ω =
∑n

j=1 duj ∧ dvj , and our two Lagrangian spaces are given
by Va = Spann

j=1(∂j + id2ha∂j), Vb = Spann
j=1(∂j + id2hb∂j). One easily

computes

ω(∂j + id2hb∂j, ∂j + id2ha∂j) = ω(∂j, id
2hab∂j) = λj .

Moreover, let

Wj = Span(∂j + id2ha∂j , ∂j + id2hb∂j)

= Span(∂j + id2ha∂j , i∂j) = Span(∂j + id2hb∂j, i∂j),
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then Wj and Wk are symplectically orthogonal, ω(Wj, Wk) = 0, for
j �= k.

Let va(j) be a unit vector in direction ∂j + id2ha∂j and similarly for
vb(j). Define the almost complex structure I as follows

I(vb(j)) = Sign(λj)va(j),

and note that it is compatible with ω. Then esIvb(j), 0 ≤ s ≤ π
2 ,

intersects the line in direction i∂j if and only if λj < 0 and does so in
the positive direction.

It follows that the contribution of esIVb, 0 ≤ s ≤ π
2 (i.e. λ(Vb, Va)) to

the Conley–Zehnder index is Index(d2hab).
Second, we consider cusp-edge intersections: at a cusp-edge inter-

section p (which we take to be the origin), there are coordinates u =
(u1, . . . , un) such that the front locally around p = 0 is given by u �→
(x(u), z(u)), where

x(u) = (u2
1, u2, . . . , un), z(u) = δu3

1 + βu2
1 + α2u2 + · · · + αnun,

where δ is ±1, and β and αj are real constants. We can assume the
oriented curve γ is given by u(t) = (εt, 0, . . . , 0), where ε = ±1. If we
take the coorienting line l to be in the direction of the vector

v(p) = (−β,−α2, . . . ,−αn, 1),

then the function hp is
hp(t) = δε3t3,

and we have an up-cusp if δε > 0 and a down-cusp if δε < 0.
The curve Γ(t) of Lagrangian tangent planes of ΠC(Ln) along γ is

given by

Γ(t) = Span
(

2εt∂1 + i
3δ

2
∂1, ∂2, . . . , ∂n

)
.

The plane Γ(0) intersects our reference plane at t = 0 along the line in
direction i∂1. As described in Section 2.2, the sign of the intersection is
given by the sign of

d

dt
ω

(
i
3δ

2σ
∂1, 2σε∂1

)
= −3δε

Thus, we get negative signs at up-cusps and positive at down-cusps.
The lemma follows. q.e.d.

Proof of Proposition 3.3. Recall from (3.4) that tb(L) can be computed
by summing sign(c) over all Reeb chords c, where sign(c) is the ori-
ented intersection between the upper and lower sheets of ΠC(L) at
c∗. So to prove the proposition, we only need to check that sign(c) =
(−1)

1
2
(n2+n+2)(−1)|c|.

We say the orientations on two hyperplanes transverse to the z-axis
in R

n+1 agree if their projection to {z = 0} ⊂ R
n+1 induce the same
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orientation on this n-dimensional subspace. Let c be a Reeb chord of
L and let a and b denote its end points on ΠF (L). If the orientations
on TaΠF (L) and TbΠF (L) agree, then the above proof shows that the
bases(

∂1 + id2ha∂1, . . . , ∂n + id2ha∂n, ∂1 + id2hb∂1, . . . , ∂n + id2hb∂n

)

�
(
id2hab∂1, . . . , id

2hab∂n, ∂1, . . . , ∂n

)
,

(3.5)

provide oriented bases for dΠC(TaL) ⊕ dΠC(TbL). Note that the stan-
dard orientation of C

n is given by the positive basis (∂1, i∂1, . . . , ∂n, i∂n)
which after multiplication with (−1)

n(n+1)
2 agrees with the orientation

given by the basis (i∂1, . . . , i∂n, ∂1, . . . , ∂n). Thus

sign c = (−1)
n(n+1)

2 (−1)Index(d2(hab)).

However, the orientations of Ta ΠF (L) and Tb ΠF (L) do not always
agree. Let γ be the path in L connecting a to b. The orientations on
Tγ(t)(ΠF (L)) do not change as long as γ does not pass a cusp edge. It
follows from the local model for a cusp edge that each time γ transversely
crosses a cusp edge, the orientation on Tγ(t)(ΠF (L)) changes. Thus

sign c = (−1)
n(n+1)

2 (−1)D(γ)+U(γ)(−1)Index(d2hab)

= (−1)
1
2
(n2+n+2)(−1)|c|

as we needed to show. q.e.d.

4. Examples and constructions

Before describing our examples, we discuss the linearized contact ho-
mology in Section 4.1. This is an invariant of Legendrian submanifolds
derived from the DGA. Its main advantage over contact homology is that
it is easier to compute. In Section 4.2, we do several simple computations
of contact homology. In Sections 4.3 and 4.4, we describe two construc-
tions: stabilization and front spinning. In these subsections, we con-
struct infinite families of pairwise non-isotopic Legendrian n-spheres, n-
tori and surfaces which are indistinguishable by the classical invariants.

4.1. Linearized homology. To distinguish Legendrian submanifolds
using contact homology, one must find computable invariants of sta-
ble tame isomorphism classes of DGA’s. We use an idea of Chekanov
[5] to “linearize” the homology of such algebras. To keep the discus-
sion simple, we will only consider algebras generated over Z2 and not
Z2[H1(L)].

Let A be an algebra generated by {c1, . . . , cm}. For j = 0, 1, 2, . . .
let Aj denote the ideal of A generated by all words c in the generators
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with l(c) ≥ j, where l(c) denotes the length of the word c. A differential
∂ : A → A is called augmented if ∂(A1) ⊂ A1 (in other words, if ∂cj

does not contain 1 for any j). If (A, ∂) is augmented, then ∂(Aj) ⊂ Aj

for all j. A DGA (A, ∂) is called good if its differential is augmented.
Let (A, ∂) be a DGA with generators {c1, . . . , cm} and consider the

vector space V = A1/A2 over Z2. If (A, ∂) is good, then ∂ : A → A
induces a differential ∂1 : V → V. Note that {c1, . . . , cm} gives a basis
in V and that in this basis ∂1cj equals the part of ∂cj which is linear in
the generators. We define the linearized homology of a (A, ∂) as

Ker(∂1)/ Im(∂1),

which is a graded vector space over Z2.
We want to apply this construction to DGA’s associated to Legen-

drian isotopy classes. Let L ⊂ R
2n+1 be an admissible Legendrian

submanifold with algebra (A(L), ∂) generated by {c1, . . . , cm}. Let G
be the set of tame isomorphisms of A(L) and for g ∈ G, let ∂g : A(L) →
A(L) be ∂g = g∂g−1. We define the linearized contact homology of L,
HLC∗(R2n+1, L) to be the set of isomorphism classes of linearized ho-
mologies of (A, ∂g), where g ∈ G is such that (A, ∂g) is good. (Note
that this set may be empty.) Define G0 ⊂ G to be the subgroup of tame
isomorphisms g0 such that g0(cj) = cj + aj for all j, where aj = 0 or
aj = 1. Note that aj = 0 if |cj| �= 0 since g0 is graded and that G0 ≈ Z

k
2,

where k is the number of generators of A of degree 0.

Lemma 4.1. If Lt ⊂ R
2n+1 is a Legendrian isotopy between admis-

sible Legendrian submanifolds, then HLC∗(R2n+1, L0) is isomorphic to
HLC∗(R2n+1, L1). Moreover, if L ⊂ R

2n+1 is an admissible Legendrian
submanifold, then HLC∗(R2n+1, L) is equal to the set of isomorphism
classes of linearized homologies of (A, ∂g0), where g0 ∈ G0 is such that
(A, ∂g0) is good.

Proof. The first statement follows from the observation that the sta-
bilization (Sj(A), ∂) of a good DGA (A, ∂) is good and that the lin-
earized homologies of (Sj(A), ∂) and (A, ∂) are isomorphic. The second
statement is proved in [5]. q.e.d.

Let L ⊂ R
2n+1 be an admissible Legendrian submanifold. Note that

if A(L) has no generator of degree 1, then (A, ∂) is automatically good
and if A has no generator of degree 0, then G0 contains only the identity
element. If the set HLC∗(R2n+1, L) contains only one element, we will
sometimes below identify this set with its only element.
4.2. Examples. In this subsection, we describe several relatively sim-
ple examples in which the contact homology is easy to compute and
defer more complicated computations to the following subsections.

Example 4.2. The simplest example in all dimensions is L0 de-
scribed in Example 3.1, with a single Reeb chord c. Using Lemma 3.4
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and the fact that the difference of the z-coordinates at the end points
of c is a local maximum, we find |c| = n. So A(L0) = 〈c〉 and the
differential is ∂c = 0, showing (if n > 1) the contact homology is

HCk(R2n+1, L0) =

{
0, k �≡ 0 mod n, or k < 0,

Z2, otherwise.

If n = 1, this is still true, but M(c; ∅) is not empty (it contains two
elements [5]).

Example 4.3. Generalizing Example 4.2 above, we can consider the
Legendrian sphere L′ in R

2n+1 with 3 cusp edges in its front projection.
See Figure 4.

Figure 4. The sphere L′ with 3 cusps.

If one draws the pictures with an SO(n) symmetry about the z-axis,
then there will be one Reeb chord running from the top of the sphere
to the bottom, call it c and a (n − 1)-spheres worth of Reeb chords.
Perturbing the symmetric picture slightly yields two Reeb chords a, b in
place of the spheres worth in the symmetric picture. The gradings are

|c| = n + 2, |a| = 1, |b| = n.

The grading on c is computed using Lemma 3.4 by noting that the dif-
ference of the z-coordinates at the end points of c (is a local maximum)
and any path in L′ connecting the end points of c intersects the cusp
edge three times and each intersection is a down-cusp. It is clear that
whatever the DGA of L′ is, it is different from that in the example
above. In particular, if ∂a = 1, then the differential is not augmented
(and cannot be augmented using a tame isomorphism) and hence dif-
ferent from the DGA of L. If ∂a = 0, then the DGA is good and its
linearization distinguishes it from the DGA of L. Thus for n even, we
have the first examples of non-isotopic Legendrian spheres. More gen-
erally, for any n, we have examples of non-isotopic Legendrian spheres
with the same classical invariants.

Given two Legendrian submanifolds K and K ′, we describe their
“(cusp) connected sum”, an idea we use later to construct our infinite
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family of examples. Isotop K and K ′ so that their fronts are separated
by a hyperplane in R

n+1 containing the z-direction and let c be an
arc beginning at a cusp edge of K and ending at a cusp edge of K ′ and
parameterized by s ∈ [−1, 1]. Take a neighborhood N of c whose vertical
cross sections consist of round balls whose radii vary with s and have
exactly one minimum at s = 0 and no other critical points. Introduce
cusps along N as indicated in Figure 5. Define the “connected sum”

c

Figure 5. The neighborhood of c, on the left, drawn
so that there would be a unique Reeb chord if it were
the front projection of a Legendrian tube. On the right,
cusps are added to the neighborhood so that it is the
front projection of a Legendrian tube.

K#K ′ to be the Legendrian submanifold obtained from the joining of
K \ (K ∩N), K ′ \ (K ′ ∩N) and ∂N. Note this operation might depend
on the cusp edges one chooses on K and K ′, but we will make this
choice explicit in our examples. In dimension 3, it can be shown that
the connected sum of two knots is well defined [5, 14]. It would be
interesting to understand this operation better in higher dimensions.

Lemma 4.4. Let C and C′ be the sets of Reeb chords of K and K ′,
respectively, and let | · |K , | · |K′, and | · | denote grading in A(K), A(K ′),
and A(K#K ′), respectively. It is possible to perform the connected sum
so that the set of Reeb chords of K#K ′ is C ∪ C′ ∪ {h} and so that the
following holds.

1) If c ∈ C, then |c|K = |c|, if c′ ∈ C′, then |c|K′ = |c|, and |h| = n−1.
2) ∂h = 0.
3) If AK and AK′ denote the subalgebras of A(K#K ′) generated by

C∪{h} and C′∪{h}, respectively, then ∂(AK) ⊂ AK and ∂(AK′) ⊂
AK′ .

4) If c ∈ C, then ∂c ∈ A(K#K ′)1 if and only if ∂Kc ∈ A(K)1 and
similarly for c′ ∈ C′. (In other words, the constant part of ∂c (∂c′)
does not change after the connected summation.)

Proof. We may assume that K and K ′ are on opposite sides of the
hyperplane {x1 = 0} and there is a unique point p, respectively p′, on
a cusp edge of K, respectively K ′, that is closest to K ′, respectively K.
We may further assume that all the coordinates, but the x1 coordinate
of p and p′ agree. Define K#K ′ using c, the obvious horizontal arc
connecting p and p. It is now clear that all the Reeb chords in K and
K ′ are in K#K ′ and there is exactly one extra chord h, coming from the
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minimum in the neighborhood N of c. It is also clear that the gradings
of the inherited chords are unchanged and that |h| = n − 1.

Denote zj = xj + iyj. The image of a holomorphic disk u : D →
C

n with positive puncture at h∗ must lie in the complex hyperplane
{z1 = 0}. To see this, notice that the projection of K#K ′ onto the
z1-plane is as shown in Figure 6. Let u1 be the composition of u with

K K’

Figure 6. The projection onto the z1-plane (left). The
intersection with the z2-plane (right).

this projection. If u1 is not constant, then u(∂D) must lie in the shaded
region in Figure 6. Thus the corner at h∗ (note h∗ projects to 0 in this
figure) must be a negative puncture. Since any holomorphic disk with
positive puncture at h∗ must lie entirely in the hyperplane {z1 = 0}, it
cannot have any negative punctures. Thus ∂h has only a constant part.
For n > 2, this implies ∂h = 0 immediately. If n = 2, then ∂h = 0 since
in this case, there are exactly two holomorphic disks in the z2-plane,
see Figure 6. Proposition 2.4 implies both these disks contribute to the
boundary map.

To see (3), consider the projection of K#K ′ onto the z1-plane, see
Figure 6. If a holomorphic disk D intersected the projection of K and
K ′, then it would intersect the y1-axis in a closed interval, with non-
trivial interior, containing the origin. This contradicts the maximum
principle since the intersection of the boundary of D with the y1-axis
can contain only the origin.

For the last statement, consider Reeb chords in K, those in K ′ can
be handled in exactly the same way. Proposition 2.3 implies that we
may choose the point p so that no rigid holomorphic disk u : D → C

n

with boundary on K maps any point in ∂D to p. Since the space of
rigid disks is a compact 0 manifold, there are only finitely many rigid
disks, u1, . . . , ur, say. Since each uk is continuous on the boundary ∂D
we find that u1(∂D)∪· · ·∪ur(∂D) stays a positive distance d away from
p. Consider the ball B(p, 1

2d) and use a tube attached inside B(p, 1
4d)

for the connected sum. If c ∈ C and v is a rigid holomorphic disk with
boundary on K#K ′, with positive puncture at c, no other punctures,
and such that the image v(∂D) is disjoint from ∂B(p, 1

2d), then v is also
a disk with boundary on K and hence v = uj for some j.

Since no holomorphic disk with boundary on K#K ′ which touches
a point in K can pass the hyperplane {x1 = 0} ⊂ C

n, it will also
represent a disk on the connected sum K#L0, where L0 is a small
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standard sphere. Pick a generic Legendrian isotopy Kt, 0 ≤ t ≤ 1 of
K#L0 to K which is supported in (K ∩ B(p, 1

4d))#L0. Then, either
there exists t < 1 such that all rigid disks v on Kt for t > 0 satisfies
v(∂D) ∩ (B(p, 1

2d) \ B(p, 1
4d)) = ∅ or there exists a sequence of rigid

disks vj with boundary on Ltj , tj → 1 as j → ∞ such that vj(∂D) ∩
(B(p, 1

2d) \ B(p, 1
4d)) �= ∅. In the first case, the lemma follows from the

observation above. We show the second case cannot appear: by Gromov
compactness, the sequence vj has a subsequence which converges to
a broken disk (v1, . . . , vN ) with boundary on K. Since K is generic,
there are no disks with negative formal dimension and all components
of (v1, . . . , vN ) must be rigid. But since vj is rigid, the broken disk must
in fact be unbroken by (2.6). Thus we find a rigid disk v1 with boundary
on K such that v1(∂D)∩B(p, d) �= ∅ contradicting our choice of p. The
lemma follows. q.e.d.

4.3. Stabilization and the proof of Theorem 1.1. In this subsec-
tion, we describe a general construction that can be applied to Legen-
drian submanifolds called stabilization. The basic idea of stabilization
is to take a part of the front of a Legendrian submanifold and pull it
up past another part of the front. Using the stabilization technique, we
prove Theorem 1.1. For those familiar with Legendrian knots in dimen-
sion 3, we compare our version of stabilization with the knot version in
Figure 7.

We begin with a model situation. In R
n+1, consider two unit balls F

and E in the hyperplanes {z = 0} and {z = 1}, respectively, and such
that their centers lie on a line parallel to the z-axis. Let M be a k-
manifold embedded in F. Let N be a regular ε-neighborhood of M in F
for some positive ε � 1. Deform F to F ′ by pushing M up to z = ε and
deform N so that the z-coordinate of p ∈ N is ε−dist(p, M). Note that
there are many Reeb chords of F ′∪E, one for each point in M and F \N.
To deform this into a generic picture, choose a Morse function f : M →
[0, 1] and g : (F \ N) → [0, 1] such that g−1(1) = ∂F and g−1(0) = ∂N.
(It is important to notice that we may, if we wish, modify the boundary
conditions on g|∂F depending on our circumstances.) Take a positive
δ � ε and further deform F ′ by adding δf(p) to the z coordinate of
points in M and subtracting δg(p) from the z coordinate of points in
F \N. The result is a generic pair of Lagrangian disks F ′ and E with one
Reeb chord for each critical point of f and g. Define F ′′ as we defined
F ′, but begin by dragging M up to z = 1 + ε (instead of z = ε as we
did for F ′).

Now, if ΠF (L) is the front projection of a Legendrian submanifold L
and there are two horizontal disks in ΠF (L), we can identify them with
F and E above. (Note we can always assume there are horizontal disks
by either looking near a cusp and flattening out a region, or letting F
and E be the disks obtained by flattening out the regions around the top
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and bottom of a Reeb chord.) Legendrian isotop L so that F becomes
F ′. Replacing F ′ in ΠF (L) by F ′′ will result in the front of a Legendrian
submanifolds L′ which is called the stabilization of L along M .

Proposition 4.5. If L′ is the stabilization of L with notation as
above, then

1) The rotation class of L′ is the same as that of L.
2) The invariant tb is given by

tb(L′) =

{
tb(L), for n even,

tb(L) + (−1)(D−U)2χ(M), for n odd,

where D, U, is the number of down-, up-cusps along a generic path
from E to F in ΠF (L).

3) The Reeb chords of L and L′ are naturally identified. The grading
of any chord not associated with M, F and E is the same for both
L and L′. Let c be a chord associated to M, F and E and let |c|L
be its grading in L and |c|L′ its grading in L′. Then

|c|L′ = n − 2 − |c|L.

This theorem may seem a little strange if one is used to Legendrian
knots in R

3. In particular, it is well known that in 3 dimensions, there are
two different stabilizations and both change the rotation number. What
is called a stabilization in dimension 3 is really a “half stabilization,” as
defined here. (Recall such a “half stabilization” corresponds to adding
zig-zags to the front projection and looks like a “Reidemeister Type
1” move in the Lagrangian projection [13].) In particular, if one does
the above described stabilization near a cusp in dimension 3, it will be
equivalent to doing both types of half stabilizations. See Figure 7.

Figure 7. Our stabilization in dimension 3 is equivalent
to two normal 3 dimensional stabilizations [13].

Remark 4.6. The stabilization procedure will typically produce non-
topologically isotopic knots when done in dimension 3. In particular,
stabilization changes under-crossings to over-crossings in the Lagrangian
projection.
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Proof. Recall the rotation class is defined as the Legendrian regular
homotopy class. Now, (1) is easy to see since the straight line homo-
topy from ΠF (L) to ΠF (L′) will give a regular Legendrian homotopy
between L and L′. Statement (2) follows from (3). As for (3), let c be
a chord corresponding to a critical point of the Morse function f , then
Lemma 3.4 implies that |c|L = (k − Morse Indexc(f)) + D − U − 1 and
|c|L′ = Morse Indexc(f)+ (n− k)−D +U − 1 where k is the dimension
of M. q.e.d.

We now consider some examples to see what effect stabilization has
on contact homology.

Example 4.7. Let L be a Legendrian submanifold in R
2n+1 and p a

point on a cusp of ΠF (L). Consider a small ball B around p in R
n+1. We

can isotop the front projection so as to create two new Reeb chords c1

and c2 in B, see Figure 7, such that |c1| = 0 and |c2| = 1. Let F ′ be the
front obtained by pushing the lower end point of c1 past the upper sheet
of ΠF (L) in B and let L′ be the corresponding Legendrian submanifold.

Proposition 4.8. The contact homology of L′ is

HCk(R2n+1, L′) = 0.

Proof. We can assume that p is at the origin in R
n+1. For any ε, define

Bε to be the product of the ball of radius ε about p in the x1z-plane times
[−ε, ε]n−1 (in x2 . . . xn-space). We may now assume that ΠF (L) ∩ Bε is
the cusp shown in Figure 7 times [−ε, ε]n−1 and that the stabilization
is done in B ε

2
. A “monotonicity” argument shows that any disk with a

positive puncture at c2 (or c1) and leaving Bε has area bounded below.
(See for example, [7].) However, the action of c2 can be made arbitrarily
small. Therefore, any disk with a positive corner at c2 must stay in the
ball Bε. The projection of ΠC(L′) ∩ Bε to a zj-plane j �= 1 is shown on
the left-hand side of Figure 8. (The reason for the appearance of this
picture is that we can choose the front so that ∂z

∂xj
·xj ≤ 0, for all j > 1.)

The boundary of a projection of a holomorphic curve must lie in the

Figure 8. ΠC(L′) projected onto a zj-line, j �= 1 (left)
and intersected with the z1-plane (right).

shaded region of the figure; moreover, the corner at c2 of such a disk
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is negative. Thus, any holomorphic curve with positive puncture at c2

must lie entirely in the z1-plane. The right-hand side of Figure 8 shows
ΠC(L′)∩Bε ∩{z1 − plane}. We see there one disk which by Proposition
2.4 contributes to the boundary of c2. Thus ∂c2 = 1, and one may easily
check this implies HCk(R2n+1, L′) = 0. q.e.d.

This last example is not particularly surprising given the analogous
theorem, long known in dimension 3 [5], that stabilizations (or actu-
ally “half stabilizations” even) kill the contact homology. With this in
mind, the following examples might be a little surprising. They show
that in higher dimensions, stabilization does not always kill the contact
homology. The main difference with dimension 3 is the stabilizations
we do below would, in dimension 3, change the knot type.

Example 4.9. When n = 2, we define the sphere L1 via its front
projection, which is described in Figure 9. For n > 2, there is an
analogous front projection: take two copies, L0, L

′
0, of the Legendrian

sphere L0 from Example 4.2 and arrange them as shown in the figure.
Deform L0 as shown in Figure 9. Take a curve c, parameterized by
s ∈ [−1, 1], from the cusp edge on L0 to the cusp edge on L′

0. By taking
this curve to be very large, we can assume the rate of change in its z-
coordinate is very small. Moreover, we will assume that by the time it
passes under L0, its z-coordinate is less than the z-coordinates of L′

0 and
thus has to “slope up” to connect with L′

0. (These choices will minimize
the number of Reeb chords.) Take a neighborhood N of c whose vertical
cross sections consist of round balls whose radii vary with s and have
exactly one minimum at s = 0 and no other critical points. Introducing
cusps along N as indicated in Figure 5, we can join L0, L

′
0 and ∂N

L0

L0

L’0

L’0

c

z

x1 x1

x2

Figure 9. On the left-hand side, the x1z-slice of part
of L1 is shown. To see this portion in R

3, rotate the
figure about its center axis. On the right-hand side, we
indicate the arc c connecting the two copies of L0.

together to form a front projection for a Legendrian sphere in R
2n+1.

Note that this is not the same cusp connect sum construction of Figure
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6 since L0 and L′
0 are not separated by a hyperplane. In particular,

Lemma 4.4 does not apply to this case.
There are exactly six Reeb chords involving only L0 and L′

0 which we
label a1, . . . , a6. The chord a1 is the unique chord involving only L0 and
similarly for a2 and L′

0. The longest chord is a4; the shortest chord is
a5. Finally a3, respectively a6, runs from the top, respectively bottom,
of L′

0 to the top, respectively bottom, of L0. There is also a Reeb chord
b that occurs in N where the radii of the cross sectional balls have a
minimum. Using Lemma 3.4, we compute:

|a1| = |a2| = |a5| = n,

|b| = n − 1,

|a4| = 0,

|a3| = |a6| = −1.

Proposition 4.10. The following are true
1) L1 is a stabilization of L0.
2) For all n, the rotation classes of L1 and L0 agree.
3) When n is even tb(L1) = tb(L0) and when n is odd tb(L1) =

tb(L0) − 2.
4) The linearized contact homology of L1 in homology grading −1 is

HLC−1(R2n+1, L1) = Z2.

5) L0 and L1 are not Legendrian isotopic.

Proof. Let L′
1 be the Legendrian sphere whose front is the same as the

front of L1 except that L′
0 has been moved down so as to make L0 and

L′
0 disjoint. Then L′

1 is clearly Legendrian isotopic to L0 and stabilizing
L′

1 (using M a point) results in L1. Thus Statement (1) holds. State-
ments (2) and (3) follow from (1) and Proposition 4.5. Statement (5)
follows from (4).

The Reeb chords for L′
1 and L1 are easily identified and their gradings

are the same except for |a5|L′
1

= −2. At this point, it is clear that
HLC−1(R2n+1, L1) = Z2 or Z2⊕Z2. (This is good enough to distinguish
L0 and L1.) Since L′

1 and L0 are Legendrian isotopic, their linearized
contact homologies must agree. Furthermore, the linearized contact
homology of L0 is a one element set,

HLCn = HLCn(R2n+1, L0) = Z2,

HLCj = HLCj(R2n+1, L0) = 0, j �= n.

Thus, if ∂′
1 denotes the (linearized) differential on A(L′

1)1/A(L′
1)2, we

conclude the following.
(a) ∂′

1a5 = 0 since a5 is the generator of lowest grading.
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(b) Im (∂′
1| Span (a3, a6)) = Span (a5) since HCL−2 = 0 and thus

Ker(∂′
1| Span(a3, a6)) is 1-dimensional.

(c) ∂′
1a4 spans Ker(∂′

1| Span(a3, a6)) since HLC−1 = 0,
(d) If n > 2, then ∂′

1b = 0. Also, Im(∂′
1| Span(a1, a2)) is spanned by b.

Let L̂1 be the Legendrian immersion “between” L′
1 and L1 with one

double point which arises as the length of the Reeb chord a5 shrinks to
0. Take L̂1 to be generic admissible. Moreover, by Proposition 2.3, we
may assume that no rigid holomorphic disk with boundary on L̂1 and
without puncture at a∗5 maps any boundary point to a∗5. As in the proof
of Lemma 4.4, we find a ball B(a∗5, d) such that no rigid disk without
puncture at a∗5 maps a boundary point into B(a∗5, d).

Let Kt, t ∈ [−δ, δ] be a small Legendrian regular homotopy such that
K0 = L̂1, Kδ is Legendrian isotopic to L′

1 and K−δ is Legendrian isotopic
to L1. Moreover, we take Kt supported inside a small neighborhood of
a5 which maps into B(a∗5,

1
4d) by ΠC. Now, if u : D → K0 is a disk on

K0 which maps no boundary point into B(a∗5,
1
2d), then u can be viewed

as a disk with boundary on Kt and vice versa.
We show that there exists ε > 0 such that for |t| < ε, there exist

no rigid disks with boundary on Kt and without puncture at a5 which
map a boundary point to B(a∗5,

1
2d). If this is not the case, we extract a

subsequence vj of such maps which, by Gromov compactness, converges
to a broken disk (v1, . . . , vN ) with boundary on K0. If N > 1, then by
(2.6), at least one of the disks vj must have negative formal dimension,
but since K0 is generic admissible, no such disks exists and the limiting
disk v1 is unbroken. Now, v1 is a rigid disk with boundary on K0 and
without puncture at a∗5 which maps boundary points to B(a∗5, d). This
contradicts the choice of K0 and hence proves the existence of ε > 0
with properties as claimed. Thus for n > 2, (c) above implies, with ∂1

the differential on A(L1)1/A(L1)2, that ∂1(Span(a4)) is 1-dimensional
and hence (4) holds. When n = 2, we have the same conclusion once
we observe that ∂ is an augmented differential. This also follows from
the above argument. q.e.d.

Let L2 be the Legendrian sphere obtained by connect summing two
copies of L1. Note L1 only has one cusp edge so there is no ambiguity
in the construction; thus, we choose any arc which is disjoint from the
fronts of the two spheres that are being connect summed. We similarly
define Lk by connect summing Lk−1 with L1.

Theorem 4.11. The Legendrian spheres Lk are all non-Legendrian
isotopic and, for n even, have the same classical invariants.

Proof. This follows since HLC−1(R2n+1, Lk) equals Z
k
2 . q.e.d.

In order to construct examples in dimensions 2n + 1 where n is odd,
we consider a variant of this example.
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Example 4.12. Let L′
1 be constructed as L1 is in Example 4.9 except

start with L0 and L′
0 as shown in Figure 10. Like L1, L′

1 will have seven

L0

L’0

Figure 10. The position of L0 and L′
0 to construct L′

1.

Reeb chords which we label in a similar manner. Here, the gradings on
the Reeb chords are

|a1| = |a2| = |a5| = n,

|a3| = |a6| = |b| = n − 1,

|a4| = 0.

Proposition 4.13. The following are true

1) L′
1 is a stabilization of L0.

2) For all n, the rotation class of L′
1 and L0 agree.

3) When n is even, tb(L′
1) = tb(L0) and when n is odd tb(L′

1) =
tb(L0) + 2.

4) The linearized contact homology of L′
1 has only one element and

in homology grading 0 is

HLC0(R2n+1, L′
1) = Z2.

5) L0 and L′
1 are not Legendrian isotopic.

The proof of this proposition is identical to the proof of Proposi-
tion 4.10. To obtain interesting examples when n is odd, we let K1 be
the connected sum of L1 and L′

1 and let Kk be the connected sum of
Kk−1 with K1.

Theorem 4.14. The classical invariants of Kk agree with those of
L0, but Kk and Kj are not Legendrian isotopic if k �= j.

This follows from Propositions 3.3, 4.10, 4.13, Lemma 4.4, and the
computations of the linearized contact homology for L1 and L′

1.

Thus far, we have only considered Legendrian spheres. In the next
example, we exhibit infinite families of Legendrian surfaces of non-zero
genus in R

5.
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^

1a
2a g+1a

1â 2â
g+1â

c1 c2 cg+1

1
b

1
b

Figure 11. Top view of Fg.

Example 4.15. Let Fg be the Legendrian surface of genus g with
front obtained by “connect summing” several standard 2-spheres as
shown in Figure 11. Then A(Fg) is generated by

{aj , âj, bk, b̂k, cj}1≤j≤1+g, 1≤k≤g,

where |aj | = |âj | = 2 and |bk| = |b̂k| = |cj| = 1. Using projection to and
slicing with the z1- and z2-planes as above, we find

∂a1 = b1 + c1,

∂â1 = b̂1 + c1,

∂aj = bj−1 + bj + cj, for j �= 1, 1 + g,

∂âj = b̂j−1 + b̂j + cj, for 1 < j < 1 + g,

∂a1+g = bg + c1+g,

∂â1+g = b̂g + c1+g,

∂bk = ∂b̂k = ∂cj = 0, for all j, k.

We find HC∗(R5, Fg) = Z2〈a, b1, . . . , bg〉 where |a| = 2 and |bi| = 1.
Let L1 be as in Example 4.9 and define F 0

g = Fg and F k
g = F k−1

g #L1.
Then the subspace of elements of grading −1 in HLC∗(R5, F k

g ) is k-
dimensional. Thus, F k

g and F j
g are not Legendrian isotopic if j �= k.

Clearly, tb(F k
g ) = tb(F j

g ). To see that r(F k
g ) = r(F j

g ), it suffices to
check, via front projections, that the Maslov classes are the same on the
generators of H1(F

j
g ) = H1(F

j
g ).

4.4. Front spinning. Given a Legendrian manifold L ⊂ R
2n+1, we

construct the suspension of L, denoted ΣL as follows: let f : L → R
2n+1

be a parameterization of L, and write

f(p) = (x1(p), y1(p), . . . , xn(p), yn(p), z(p)),
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for p ∈ L. The front projection ΠF (L) of L is the subvariety of R
n+1

parameterized by ΠF ◦ f(p) = (x1(p), . . . , xn(p), z(p)). We may assume
that L has been translated so that ΠF (L) ⊂ {x1 > 0}. If we em-
bed R

n+1 into R
n+2 via (x1, . . . , xn, z) �→ (x0 = 0, x1, . . . xn, z), then

ΠF (ΣL) is obtained from ΠF (L) ⊂ R
n+1 by rotating it around the sub-

space {x0 = x1 = 0}. See Figure 12. We can parameterize ΠF (ΣL) by

z

x

x0

1

Figure 12. The front of ΣL.

(sin θx1(p), cos θx1(p), x2(p), . . . , xn(p)), θ ∈ S1. Thus, ΠF (ΣL) is the
front for a Legendrian embedding L× S1 → R

2n+3. We denote the cor-
responding Legendrian submanifold ΣL. We have the following simple
lemma.

Lemma 4.16. The Legendrian submanifold ΣL ⊂ R2n+3 has
1) the topological type of L × S1,
2) the Thurston–Bennequin invariant tb(ΣL) = 0,
3) Maslov class determined by

µΣL(g) =

⎧⎪⎨
⎪⎩

µL(h), if g = ιh where ι : π1(L) → π1(ΣL)
is the natural inclusion,

0, if g = [point × S1],

4) the same Maslov number as L, m(ΣL) = m(L), and
5) the rotation class of ΣL is determined by the rotation class of L.

Though it seems difficult to compute the full contact homology of
ΣL, we can extract useful information about its linear part. To this end,
we introduce the following notation. Let L ⊂ R

2n+1 be a Legendrian
submanifold and let A = A(L) = Z2[H1(L)]〈c1, . . . , cm〉 be the graded
algebra generated by its Reeb chords. We associate auxiliary algebras
to L which are free unital algebras over Z2[H1(ΣL)]. For any integer
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N , let Z
0
2N ⊂ Z2N denote the subgroup of even elements and let Z

1
2N =

Z2N \ Z
0
2N .

• Let

AN
Σ (L) = Z2[H1(ΣL)]

〈
cj [α], ĉj[β]

〉
1≤j≤m, α∈Z0

2N , β∈Z1
2N

,

where |cj[α]| = |cj|, α ∈ Z
0
2N and |ĉj[β]| = |cj| + 1, β ∈ Z

1
2N .

• For β ∈ Z2N , define the subalgebra AN
Σ [β] ⊂ AN

Σ = AN
Σ (L) as

AN
Σ [β] = Z2[H1(ΣL)]〈cj[β − 1], cj[β + 1], ĉj[β]〉1≤j≤m.

• Define the algebra

Aσ(L) = Z2[H1(ΣL)]〈cj, ĉj〉1≤j≤m,

where |ĉj| = |cj| + 1.
We note that there is a natural homomorphism π : AN

Σ → Aσ defined
on generators by π(cj[α]) = cj , and π(ĉj[β]) = ĉj . Also note that for
each α ∈ Z

0
2N , there is a natural inclusion ∆[α] : A → AN

Σ defined on
generators by ∆[α](ci) = ci[α], and using the natural inclusion H1(L) →
H1(ΣL) on coefficients.

Viewing A(L) and Aσ(L) as a vector space over Z2, see (2.3), and
again using H1(L) → H1(ΣL), we define the linear map Γ: A(L) →
Aσ(L) by

Γ(1) = 0, Γ(tn1
1 . . . tns

s ci1 . . . cir)

= tn1
1 . . . tnr

r

⎛
⎝ r∑

j=1

ci1 . . . cij−1 ĉijcij+1 . . . cir

⎞
⎠ .

Proposition 4.17. Let c1, . . . , cm be the Reeb chords of L and let
(A, ∂) denote its DGA. Then there exists an even integer N and a rep-
resentative X of the Legendrian isotopy class of ΣL with associated
DGA (A(X), ∂Σ) satisfying

A(X) = AN
Σ ,(4.1)

∂Σci[α] = ∆[α](∂ci), for all α ∈ Z
0
2N ,(4.2)

∂Σĉi[β] = ci[β − 1] + ci[β + 1] + γ1
i [β] + γ2

i [β], for all β ∈ Z
1
2N ,(4.3)

where γ2
i [β] lies in the ideal of AN

Σ [β] generated by all monomials which
are quadratic in the variables ĉ1[β], . . . , ĉm[β], and γ1

i [β] ∈ AN
Σ [β] is

linear in the generators ĉi[β] and satisfies

(4.4) π(γ1
i [β]) = Γ(∂ci).

Moreover, (A(X), ∂Σ) is stable tame isomorphic to (A2
Σ, ∂Σ).

We will prove this proposition in the next subsection, but first we
consider its consequences. To simplify notation, we consider the algebra
generated over Z2 instead of Z2[H1(ΣL)].
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Example 4.18. Let Tk be the Legendrian torus knot in Figure 13
with rotation number r(Tk) = 0. The algebra for Tk is A(Tk) =

a1 a2

c1

c2
c3

c2k+1

c2k

Figure 13. The knots Tk.

Z2〈a1, a2, c1, . . . , c2k+1〉 with |a1| = |a2| = 1 and |cj| = 0 for all j.
We have

∂a1 = 1 +
∑
α

cα +
∑

α>β>γ

cαcβcγ + · · · + c2k+1c2k . . . c1,

∂a2 = 1 +
∑
α

cα +
∑

α<β<γ

cαcβcγ + · · · + c1c2 . . . c2k+1,

∂cj = 0, all j,

where α and γ run over all odd integers in [1, 2k + 1] and β runs over
all even integers in the interval.

We note that ∂g, where g is the elementary automorphism with
g(c1) = c1+1 and which fixes all other generators, is augmented and that
the linearized homology of (A, ∂g) is (as a vector space without grading)
Z

2k+1
2 . Applying the suspension operation n times, we get Legendrian

n-tori ΣnTk with tb(ΣnTk) = 0 for all n > 0, with rotation classes in-
dependent of k (see Lemma 4.16), and with Maslov number equal to
0. The algebras of ΣnTk admit an elementary isomorphism (add 1 to
each c1[α1][α2] . . . [αn] with |c1[α1][α2] . . . [αn]| = 0) making them good
and such that the corresponding linearized homology is isomorphic to
Z

2n(2k+1)
2 . This implies that every chord generic Legendrian representa-

tive of ΣnTk has at least 2n(2k + 1) Reeb chords. Moreover, since ΣnTj

has a representative with 2n(2j + 3) Reeb chords, it is easy to extract
an infinite family of pairwise distinct Legendrian n-tori from the above.

Using Example 4.18, we find
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Theorem 4.19. There are infinitely many Legendrian n-tori in
R

2n+1 that are pairwise not Legendrian isotopic even though their clas-
sical invariants agree.

Example 4.20. As a final family of examples, we consider the White-
head doubles of the unknot Ws shown in Figure 14. Note that r(Ws) =
0.

s

c
c

c

c

c

c

a

a

a

a

a

a

a

a

1

2

3

4

5

s

s+1

s+2

0
1

2

3

s-1

s

Figure 14. The front projection (left) and Lagrangian
projection (right) of the knots Ws.

The algebra for Ws is

A(R3, Ws) = Z2〈c0, . . . , cs, a1, . . . , as+2〉
with |ci| = 1, |a1| = −|a2| = s − 2 and |ai| = 0 for i > 2. Moreover,

∂c0 = 1 + a1a2 + as+2,

∂c1 = 1 + a3 + a2a1a3,

∂ci = 1 + ai+1ai+2 for i > 1,

∂ai = 0 for all i.

The differential is clearly not augmented. However, the automorphism
that is the identity on all generators except

φ(ai) = ai + 1, i ≥ 3,

is the unique, when s > 2, tame graded automorphism making the dif-
ferential augmented. The only feature of the linearization we use is that

HLC2−s(R5, ΣWs) = Z2,

HLCi(R5, ΣWs) = 0 for i < 2 − s.

Thus, all the ΣWs’s, s > 2, are distinct. Similarly, considering the
linearized contact homology groups for ΣnWs, we get another proof of
Theorem 4.19.
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4.5. Proof of the front spinning proposition. To prove Proposi-
tion 4.17, we first analyze another Legendrian submanifold. Let ψ :
R → R≥0 be a smooth small perturbation of the constant function 1
that is 2-periodic and has non-degenerate local maxima at even inte-
gers and local minima at odd integers. Given a Legendrian submanifold
L ⊂ R

2n+1 parameterized as at the beginning of this section, we define
the front ΠF (L × R) in R

n+2 by

(4.5) G(p, t) = (ψ(t)z(p), t, x1(p), . . . , xn(p)).

Denote the resulting Legendrian submanifold of R
2(n+1)+1 by L × R.

Heuristically, L×R is a kind of “cover” of ΣL and the contact homology
boundary map of ΣL shall be determined by studying the boundary
map of L × R. Recall, we are using coordinates (x0, y0, . . . xn, yn, z) on
R

2(n+1)+1, and set zj = xj + iyj . We begin with a simple lemma.

Lemma 4.21. For each Reeb chord cj of L, there are Z Reeb chords,
cj [n], for L × R; moreover, |cj[2n]| = |cj| + 1 and |cj[2n + 1]| = |cj |.

Lemma 4.22. A holomorphic disk in C
n+1 with boundary on ΠC(L×

R) cannot intersect the hyperplane z0 = k, k ∈ Z. In addition, any
holomorphic disk with a negative corner at cj[2k] or a positive corner at
cj [2k+1] must lie entirely in the plane z0 = 2k, z0 = 2k+1, respectively.

The proof of this lemma is identical to the proof of Lemma 4.4 once
one has drawn the projection of ΠC(L × R) onto the z0-plane. Also,
an argument similar to that in the proof of Lemma 4.4 in combination
with Proposition 2.4 shows:

Lemma 4.23. There is a unique holomorphic disk with positive cor-
ner at cj [2n] and negative corner at cj [2n±1] and this disk is transversely
cut out.

We now discuss perturbations of L necessary to ensure the appropri-
ate moduli spaces are manifolds. To ensure all our moduli spaces are cut
out transversely, we might have to perturb our Legendrian near positive
corners of non-transversely cut out holomorphic disks. Note that due
to Lemma 4.22, we see disks with positive corners at a Reeb chord in
x0 = 2k + 1 lie in z0 = 2k + 1. Thus the linear problem splits for these
disks and an argument similar to the proof of Proposition 2.3 shows
they are all transversely cut out. In perturbing L × R to be generic,
we can assume the perturbation is near the hyperplanes x0 = 2k, k ∈ Z

and none of the Reeb chords move.
Now, let B2k = Z2[H1(L)]〈cj[2k−1], cj[2k], cj[2k+1]〉mj=1 and B2k+1 =

Z2[H1(L)]〈cj[2k + 1]〉mj=1. These are all sub-algebras of the algebra B
generated by all the Reeb chords for L × R. Let ∂R be the boundary
map for L × R. From the above Lemmas, we clearly have

∂R(B2k+1) ⊂ B2k+1
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and
∂R(B2k) ⊂ B2k.

Moreover, Lemma 4.22 and our discussion of the generic perturbation
above give

Lemma 4.24. Let Γ±1 : A → B±1 be given by Γ±1(cj) = cj [±1].
Then

∂Rcj [±1] = Γ±1(∂cj).

To understand ∂R on B0, we begin with

Lemma 4.25. ∂2
R

= 0.

Proof. Let F be the part of the front of L×R between x0 = −(2k+ 3
2)

and x0 = 2k + 3
2 , say. Let F ′ be F translated 4k + 10 units in the x1-

direction. For sufficiently large k, F ∩F ′ = ∅. For such a k, let G∪G′ be
F ∪ F ′ rotated by π

2 around the affine subspace {x0 = 0, x1 = 2k + 5}.
Now, make F ∪F ′ ∪G∪G′ into a closed Legendrian submanifold L′ by
adding “round corners.”

Using the lemmas above and a monotonicity argument as in the proof
of Lemma 4.8, it is easy to see that the boundary map for L′ agrees with
∂R on B0 and B1. Since we know the square of the boundary map for a
closed compact Legendrian is 0, the lemma follows. q.e.d.

Lemma 4.26. We can choose L×R so that the part of ∂R(cj [0]) that
is constant in the generators c0[0], . . . , cm[0], is

cj [−1] + cj[1].

Proof. This term is present in ∂R(cj[0]) by Lemma 4.23.
To see there are no disks D with just one corner (which of course

is positive at cj [0]), assume we have such a disk D. Then consider
ψs : R → R where ψ0 = ψ and ψ1(s) = 1 and the corresponding
Legendrian submanifolds (L×R)s whose fronts are defined using ψs just
as the front of L×R used ψ in (4.5). As we isotop L×R = (L×R)0 to
(L×R)1 we see that D will have to converge to a (possibly broken) disk
for (L×R)1. But arguing as in the lemmas above, we see that any such
disk will have to have z0 constant and thus corresponds to a disk for L.
However, there can be no rigid holomorphic disk for L with corner at
cj since |cj | = |cj[0]| − 1 = 1 − 1 = 0. Moreover, if we have a broken
holomorphic disk, one can similarly see that one of the pieces of the
broken disk will have negative formal dimension and thus cannot exist
since we took L to be generic.

One may similarly argue that there are no holomorphic disks with one
positive corner at cj[0] and all negative corners at Reeb chords ck[±1],
where k �= j for some j. q.e.d.
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Lemma 4.26 implies

∂R(cj[0]) = cj [−1] + cj [1] + ηj + rj ,

where ηj is the part of ∂R(cj[0]) linear in c1[0], . . . , cm[0] and rj is the
remainder (terms which are at least quadratic in the cj [0]’s). Since
∂2

R
= 0, we see that

(4.6) ∂R(cj [−1] + cj [1]) = σ(ηj),

where σ is the algebra homomorphism defined by σcj[0] = cj [−1]+cj[1]
and σcj[±1] = cj [±1]. A straightforward calculation shows that

ηj = Γ0(∂cj)

is a solution to (4.6) where Γ0 : A → B0 is the linear map defined on
monomials by

Γ0(cj1 . . . cjr) = cj1 [0]cj2[−1] . . . cjr [−1] + cj1 [1]cj2[0]cj3[−1] . . . cjr [−1]

+ · · · + cj1 [1] . . . cjr−1 [1]cjr [0].

While this is not the only solution to (4.6), it is unique in the following
sense: let B′ = Z2[H1(L)]〈c1, . . . , cm, c1[0], . . . , cm[0]〉 and define π :
B0 → B′ by π(cj[±1]) = cj and π(cj[0]) = cj [0].

Lemma 4.27. If α is linear in the cj [0]’s and σ(α)=0, then π(α)=0.

Proof. To simplify the proof, we set dj = cj [−1] + cj [1] and write
elements of B0 in terms of cj [−1], dj and cj [0]. In these terms, π is
defined by π(cj[−1]) = cj , π(dj) = 0 and π(cj[0]) = cj[0]. We now
suppose α is linear in the cj[0]’s and π(α) �= 0. Thus α contains a term
of the form

cj1 [−1] . . . cjk
[−1]cj[0]cjk+1

[−1] . . . cjl
[−1].

The map σ sends this term to

cj1 [−1] . . . cjk
[−1]djcjk+1

[−1] . . . cjl
[−1]

which cannot pair with any other monomial in σ(α) and thus σ(α) �= 0.
(We thank the referee for pointing out this proof.) q.e.d.

We are now ready to prove our main result of this subsection.

Proof of Proposition 4.17. Consider ΣL represented by rotating the
front of L around a circle C with radius 1

πN for some even integer N.
Perturb this non-generic front with a function φ on C similar to (4.5)
so that φ approximates the constant function 1, has local maxima at
angles 2m · π

N and local minima at (2m + 1) · π
N , m = 0, . . . , N − 1.

Let XN denote the corresponding Legendrian submanifold. Then there
is a natural 1−1 correspondence between the generators of the algebra
A(XN ) and the generators of AN

Σ (L).
Considering the projections of XN to the complex lines in C

n+1 which
intersect R

n+1 in lines through antipodal local minima of φ, we see that
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the differential ∂Σ of A(XN ) = AN
Σ preserves the subalgebras AN

Σ [β] for
every β ∈ Z

1
2N . Moreover, a finite part of the front of XN over an arc

on C between two minima is for N sufficiently large an arbitrarily good
approximation of the part of the front of L × R between −1 and 1. In
fact, since all spaces of rigid disks on L × R are transversely cut out,
there is a neighborhood of L × R in the space of (admissible) Legen-
drian submanifolds such that the moduli spaces of rigid disks on any
Legendrian submanifold in this neighborhood is canonically isomorphic
to those of L×R. This can be seen as follows: by Gromov compactness,
there exists a neighborhood of L × R in the space of admissible Leg-
endrian submanifolds such that for any Y in this neighborhood, there
are no holomorphic disks with boundary on Y and with negative formal
dimension, pick a generic type (A) isotopy from L × R to Y and apply
Lemma 2.9. Thus, for sufficiently large N , the subalgebras (AN

Σ [β], ∂Σ)
are all isomorphic to the algebras (B0, ∂). The first part of the proposi-
tion now follows from Lemmas 4.26 and 4.27.

For the statement of stable tame isomorphism class, note that the
subalgebras of AN

Σ generated by all Reeb chords corresponding to max-
ima and minima over the circle in the closed upper (lower) half planes
are both isomorphic to the subalgebra of A(L × R) generated by Reeb
chords between 1 and N + 1. Change the front of L × R by shrinking
the minima of ψ over 1 and N + 1 until the corresponding Reeb chords
are shorter than all other Reeb chords. We can then find a Legendrian
isotopy which cancels pairs of maxima and minima of ψ between 1 and
N + 1, leaving one maximum. Thus the subalgebra generated by Reeb
chords between 1 and N + 1 is stable tame isomorphic to B0. We claim
that the subalgebras of B1 and BN+1 are left unchanged by the sequence
of stabilizations and tame isomorphisms arising from this cancelation of
pairs of Reeb chords. Our proof of the claim is modeled on the proofs
of Lemmas 2.9 and 2.10 in [7]. Consider the chords a, b1, . . . , bn ∈ B1

and homology class A such that µ(A)+ |a|− |b| = 1 where b = b1 · · · bn.
Assume the isotopy occurs for t ∈ [0, 1]. Proposition 2.11 is stated only
for type (A) isotopies; however, given that the type (B) isotopies do
not cancel the chords in B1 (or BN+1), the proposition applies to our
situation as well. In fact, because Z(a) is small, a vanishing chord can
never be part of a monomial in ∂(a). The action argument also prevents
a or bi from being the positive corner of any handle-slide disks which
might appear. Thus Proposition 2.11 implies the claim, and thus the
sequence of stabilizations connects A2

Σ(L) to AN
Σ (L). q.e.d.
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