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Abstract— Data-driven controller tuning for model reference  introduction of lIterative Feedback Tuning (IFT) [2], [3].
control problem is investigated. A new controller tuning sheme  |FT is a model-free approach that iteratively minimizes a
for linear time-invariant single-input single-output systems is 4 aqratic cost using several closed-loop experiments. The
proposed. The method, which is based on the correlation . . - . ) .
approach, uses a single set of input/output data from open- Main featur.e of this algorithm is that an unb|as§d estimate
loop or closed-loop operation. A specific choice of instrunteal  Of the gradient of the cost function can be obtained from a
variables makes the correlation criterion an approximation of  specific closed-loop experiment in each iteration. A simila
the model reference control criterion. The controller parameters  approach, Iterative Correlation-based Tuning (ICbT), imin
and the correlation criterion are asymptotically not affected by mizes the cross-correlation function between the closeg-|

noise. In addition, based on the small gain theorem, a suffient d th f . | 141. Thi th troll
condition for the stability of the closed-loop system is gign in error an e reference signal [4]. IS way, the controller

terms of the infinity norm of a transfer function. An unbiased ~ Parameters are asymptotically not affected by noise. &frtu
estimate of this infinity norm can be obtained as the solution Reference Feedback Tuning (VRFT) converts the model
to a convex optimization problem using an infinite number of  reference control problem to an identification problem [6].
noise-free data. It is also shown that, for noisy data, the wsof g shown that with a specific data filter an approximation of
the correlation approach can improve significantly the estinate. th del ref trol criteri b inimized 16
The effectiveness of the proposed method is illustrated via e mo el relerence con r-o. Cr_' erion can .e mlnlmlge ) [6].
simulation example. Iterative Controller Unfalsification (ICU) tries to minime
the infinity norm of the model reference control criterion

|. INTRODUCTION [7]. In each iteration, a controller is designed that cariveot

Suppose that a set of input/output data from open-loop (ngllsified_by the datg from the same and pre_vious iterations.
closed-loop process operation is available and the olgectiThe main problem is that the approach considers only norm-
is to design a low-order controller that minimizes the twobounded disturbances and stochastic properties of the nois
norm of the difference between a given reference model af€ NOt taken into account. This leads to underestimation of
the closed-loop system. The classical model-based aﬁproa{ee control criterion and therefore to unfalsification oé th
suggests a three-step procedure : (1) identify a plant modgntrollers that do not meet the specifications.
and validate it using the data, (2) compute a high-oder In model-pased approaf:hes,. .the_ stochastlc.d|s.turbances
controller that minimizes the criterion and stabilizes thé@re treated in the model identification and validation step
plant model, (3) reduce the controller order by standarBY SOme asymptotic analyses, while the problem of robust
controller order reduction techniques. These three steps Stability is considered in the second and third step. Thexmai
clude essentially some optimization algorithms and iteeat Challenges in data-driven approaches consists of comsger
methods for model identification and validation procedured? One step the problem of robust stability and the effect of
Data-driven controller tuning approaches try to lump theséfochastic disturbances on the controller parameterseMor
three steps and present a direct “data-to-control” algorit OVer, investigation of controller robustqess typicallyatves
They typically use parameter estimation algorithms to e nominal plant model and uncertainties that cannot be
timate the controller parameters by minimizing a controfffectively considered in model-free algorithms.
criterion. These approaches are particularly interesthgn [N this paper, a new algorithm for controller tuning based
a mathematical model of the plant is not available and/or tH¥ the correlation approach is proposed. A tuning scheme
nonlinear behavior of the plant cannot be identified easilip introduced that convexifies the data-driven optimizatio
and considered for controller design. related to the model reference control problem and uses

Data-driven approaches for controller tuning have bee# Single set of data to evaluate the control criterion. A
an attracting research subject for a long time. The firdiorrelation approach based on the extended instrumental
publications appeared in the 60s in the context of dual cbntrVariable technique is used to estimate the controller param
and adaptive control. A survey of these approaches can BgS- Furthermore, a data-driven stability test is intrtl
found in [1]. In recent years, a revival of interest in thisthat falsifies the destabilizing controllers before apmdyi

subject has been observed in the control community by tfiBem to the real plant. This test takes advantage of the
correlation technique and can also be used for other data-
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Fig. 2. Approximation of model reference control probleradmg to a
convex criterion

Fig. 1. Model reference control problem

which are common problems in all data-driven approaches,
is no need to introduce virtual signals nor to compute ththe model reference control problem has two additional
inverse of the reference model. For noisy data, a single sgifficulties :
of data is sufficient thanks to the correlation approach.éMor , The criterion (2) is not convex with respect to the con-
over, with a finite number of data, the presented approach is  yg|ier parameters. Therefore, only a local minimum
less sensitive to noise and leads to more robust controllers ¢ the criterion can be obtained.
It should be mentioned that the VRFT approach can be , gach evaluation of the criterion requires an experiment
applied to nonlinear systems [8], which is not the case for o, the real system, which leads to an iterative algorithm.
the proposed approach because the controller and plant e ce problems are present in IFT [2] and ICbT [4] that

swapped in the tuning scheme. are both iterative and guarantee only local convergence of

The paper is organized as follows. Section Il introduces fhe criterion. In order to fix the first problem, the differenc

new controller tuning scheme that can be used for open-lo : . )
) tween the desired loop transfer function and the achieved
shaping and for model reference control problems. The use 0 e 1 .
one can be minimized. Le¥ (¢~") be expressed as :

the correlation approach and the choice of instrument& var

ables are discussed in Section Ill. A controller (in)vatidia 1 K*(¢hHG(e™) 3

test based on a convex optimization algorithm is given ()= 1+ K*(¢gH)G(g™1) )

in Section IV. Section V compares the proposed method vl 1y . :

with VRFT via a simulation example. It is also shown thatWhereK (4 _) IS thei ideal 7controller. The desired loop-
transfer functionk*(¢—!)G(¢~') becomes :

destabilizing controllers can effectively be detected bg t

proposed approach. The paper ends with some concluding . 1 . M(q™Y)
remarks. K™ (¢7)G™) = T 70y M) 4)
I[I. CONTROLLERTUNING SCHEME which gives :
Suppose that a set of input/output noisy data from open- 1 1
loop or closed-loop operation of a single-input singlepait [+ K (g DG 1—M(q™) (5)

linear time-invariant discrete-time system is availaklet

the output of the system be generated by the model : '€ term1/(1 + K(p)G) in (2) can be approximated by

1/(1 + K*G) = 1 — M, which allows defining a new
y(t) = Gg~ u(t) +o(t) (1) criterion :

where y(t) is the_ pIar_1t outputu(t) the plant input,v(t) J(p) = ||[W[M - K(p)G(1 — M)] ||; (6)

a zero-mean noise signal arél¢~') the unknown plant _ _ o _ _
model with g~ the backward shift operator. The objectiveWhere W is an appropriate weighting filter which will be
is to compute the parametefs of a linear discrete-time Ccomputed subsequently such that criterid(y) becomes
controller K (p,q~!) for G(g~!) such that the closed-loop & good appro>_<|m_at|on of. the model_reference criterion
output follows the output of a reference LTI model(g~1)  /mr(p). The criterion.J(p) is convex with respect to the
as well as possible. This can be achieved by minimizingontroller parameters ik (p) is parameterized linearly ip.
the two-norm of the difference between the reference modejoreover, if K is in the set of parameterized controllers,
and the achieved closed-loop system. Fig. 1 shows the blokWill be the minimizer of J(p). This criterion can be
diagram of the model reference control problem. The contr&inimized by minimizing the two-norm of the noise-free

criterion is defined as : part of W(g~")Za(p, t) where
K(p)G | Ealp,t) = [M — K(p)G(1 — M)]r(t) — (1 - M)u(t) (7)
S e e @ 0=l }
P 2 with r(¢) being the reference signal (see Fig. 2). However,

Minimizing this criterion is a standard control problem whe as mentioned before, several experiments on the real system
the plant modelz is known. In a data-driven approach, theare needed to evaluate this criterion. This difficulty can be
two-norm of the closed-loop errar;(t) is minimized for a eliminated by changing the place of the controller and potti
random white noise reference signal. Apart from the effedt after the filter 1 — M as shown in Fig. 3. The main

of noise and possible instability of the closed-loop systemadvantage of this scheme is that an estimate of the control



The correlation criterion can be represented in the frequen

-y e(t) domain by applying Parseval’s theorem whertends to
,_T infinity :
: . 1-M — K(p) 1 T
. 2
open-loop experiment llggo Je(p) = %/ |Per,, (W)]"dw
Fig. 3. Approximation of model reference control problemking use of 1 ™ "

a single open-loop experiment

== | WM -G -k ‘Q(Df(w)dw (13)

jvhere®., (w) is the cross-spectral density betwedp, t)

criterion (6) can be minimized with a single experiment o k
andr,,(t) and ®,.(w) the spectrum of the reference signal.

the system. Suppose that the syst&rns excited in open loop
with u(t) = r(¢) and the noisy outpuf(¢) is measured. From

this experiment, the error signalp, t) can be expressed asB' Filter design

a function of the controller parameteps: The weighting filterI/ can be designed such that the
correlation criterion (13) is equal to the model reference
e(p,t) = Mr(t) — (1 — M)K(p)y(t) criterion (2). Replacing (3) in (2) and (13) gives :
= [M - G(1 - M)K(p)]r(t) - (1 = M)K(p)u(t) (8) K- K()]G 2
Itis clear that, in absence of nois&({) = 0), =(p, t) is equal Imr(p) = (14)
- . : (1+ K(p)G)(1+ K*G)
to . (p,t). In presence of noise, the correlation approach can 2

be used to reduce the effect of noise on the criterion and the

T WPIGPIE* - K(p)]? .o
controller parameters. lim J, P d
P Jm Jelp) = 27r/ 1+ KGP? r(w)de
IIl. CONTROLLER TUNING USING THE CORRELATION (15)
APPROACH Comparing these two criteria, the following relation shbul

It is clear from the criterion (6) that the ideal controllerN0ld for the weighting filter :

K* = K(p*) leads toM = K(p*)G(1 — M) and the error 1
. . . . Jwy|2 — 16)
signale(p*,t) in (8) becomes filtered noise : (W(e )" = . 2 (

1+ K(p, e=32)G(e3%)|"®2(w)
e(p7,1) = =(L= M)K(p)u(2). This filter depends on the controller to be desigiagh) and
Sincew(t) is not correlated with the reference signél), the  the unknown plan& and can therefore not be implemented.
error signal for the ideal controller will not be correlateith  However, as proposed in [6]f (p) can be approximated by
the reference signal either. Therefore, the main idea isrte t K* to give :
the controller parameters such thats(p, t) is uncorrelated
with the reference signal. W(e ¥ =

1— M(e7%)
P, (w)
This will lead to a very good approximation of the model

reference criterion if the controlldi (p) is not under param-
f(p) = E{Cuw(®)e(p,t)} (9) eterized and the difference betweati and K (p) is small.

where E{-} is the mathematical expectation aqd(¢) a
vector of instrumental variables correlated witf¢) and

17)
A. Correlation Approach
To proceed, let the correlation function be defined as :

C. Tuning algorithm

uncorrelated with(t) given by : Let the controller be linearly parameterizedgn
Cot) = [ro(t+1), 1ot +1—1),...10(t), K(p)=p8"(¢")p (18)
rw(t—1),...,re(t —=1)]" (10) where 8(¢~') is a vector of linear discrete-time transfer

with r,(t) = W (g~ 1)r(t) and! a sufiiciently large integer. OPErators :

The (_)ptlma[ controller parameters minimize th_e corre@tm BlgY) = [Bi(g™Y), Balg ), . ..  Bn, (@ ]* (19)
criterion defined as the two-norm of the correlation functio
with n, the number of controller parameters. Then, the error
p=argmin J.(p) = fL(p)f(p) = Z RZ. (t) (11) signale(p,t) can be obtained by linear regression :
14

T==1

_ -1 -1
whereR... () is the cross-correlation function between the (P ) = M(a™)r(t) = K(p) (1 = M(q™")y(?)
filtered reference signat, (t) ande(p, t) defined by : =ya(t) — ¢ (t)p (20)

Rer, (7) = E{e(p, t)ru(t — 7)} wherey,(t) = M(q~")r(t) and
= B{[M - G0 - MK(p|r@OWrt-7} (12) 6(t) = Blg1) (1 — M(g~))y(h). (21)



M the error signak(p, t) can be expressed as :

" u(t) »g(t) : I e(p,t) = Mu(t) — (1 — M)K(p)y(t)

i X ] K GKo

— Ko G 5 1—M —~ K(p) —[1+GKOJV[—1+GKO(1—JV[)K(p)]r(t)
B R Y S Y L OIS

14+ GKy 1+ GK,y

. o . As for the open-loop case, the correlation approach can be
Fig. 4. Approximation of model reference control problemking use of . L
a single closed-loop experiment used to reduce the effect of noise on the criterion and the
controller parameters. The error signgp*, t) for the ideal
controller K* = K (p*) becomes the filtered noise signal,
For a finite number of dat&/, the correlation function can Which will not be correlated with the reference signéi)
be estimated as : sincew(t) is not correlated with-(t).
N N Using the vector of instrumental variablés, (¢) given
A 1 1 T by (10), the correlation criterion defined in (11) can be
Fp) =+ ;Cw (et p) =+ ;Cw(t) [ya(t) — ¢ (t)p] represented in the frequency domain as :
(22) Lo
Thus, the optimal controller parameters minimizing the-cor  lim J.(p) / | e, (w)]?dw

relation criterionJ.(p) = f7(p)f(p) can be obtained by the '~ 21 J_r F
standard-least squares algorithm : _ 1 Ky
W[———M
2m J_, 1+ GK
p=Q"Q)Q"Z (23) Ky

~ e O - MK () ‘szf(w)dw (26)

Again, the filteri can be designed such that the correlation
criterion (26) is equal to the model reference criterion:(2)

where

1 1 o
Q=N;@wﬂw,2:ﬁg@mww

‘ 2

5 1+ GK,
|W| = 2 N 25
and Q7@ is nonsingular. |Ko|“|1 + K(p)G| ®2(w)

~ Note that J.(p) converges toJ.(p) when N goes to This optimal filter depends on the unknown plant and the
infinity. However, for a finite number of dat& (p) is biased. controller to be designed. It is now also dependent on the

(27)

It can be shown that : controller K, used in the experiment. Note that the power
. ST\ 2 cross-spectral density function between the measured inpu
E{Je(p)} = E{f" (p)f(p)} = Je(p) (24 4(t) andr(t) is :
by considering the fact that{ f(p)} = f(p) and developing Ky
N A D, =———0&,.(w). 28
E { [f(p) — f(p)}T[f(p) — f(p)] ¢ = 0. It will be shown in ) 14+ GKy @) (28)

Section V that the positive bias of the correlation critario Replacing®,.(w) in (27) by the expression obtained from
for a finite number of data helps improve the robustness @$8) and using the same approximation as in the open-loop

the controller. case (approximatingd<(p) by K*), the filter is now given
by :
- , _ —jw
D. Closed-loop data W (i) = 1 (I)M(e ) (29)
The controller tuning scheme presented above can also be ur(W)

used when the data is collected in closed-loop operatidm wiThe spectrum®,,,.(w) can be estimated from the data by
a stabilizing controlletky. The set of data now consists of classical spectral analysis methods. Using the error kigna
three signals, the reference signdt) that is uncorrelated defined in (25) and the filter (29), the algorithm presented in
with the noisev(t), and the measured input signalt) and 11I-C can also be used when the data is collected in closed-
output signaly(t) that are affected by(t). In the tuning loop operation and both the plant inpuft) and the plant
scheme of Fig. 3, the plant is replaced by the closed-loagutputy(t) are affected by noise.

system, as shown in Fig. 4. Noting that :

u(t) = Lr(t) - Lv(t) The main difficulty with data-driven controller tuning
1+ GKy 1+ GKy methods is the stability of the resulting system. Dataseiriv
and methods as Virtual Reference Feedback Tuning (VRFT), It-
GK, 1 erative Feedback Tuning (IFT) and Correlation based Tuning
y(t) = mr(t) + m“(t)’ (CbT) do not explicitly address this issue, and the stahilft

IV. CONTROLLER VALIDATION



K(p) — K~ has been used for time-domain validation in the context of

robust identification [13] and controller unfalsificatiori [In

this paper, the results of this approach are improved in the
presence of noise by introducing some new constraints based

K* G . on the decorrelation of the noise and the reference signal.
) To proceed, consider thgV +m — 1, m) Toeplitz matrix
() 0 .. 0
r(2) r(1) .. 0
. N . r(2) 0
Fig. 5. Stability Condition T, (T) _ T(N) : . T(l) (32)
0 r(N) .. r?2
the system after implementation of the controller cannot be O 0 - 7’(}\7)

guaranteed. Some attempts to improve the robustness of the L
tuned controller have been reported for the IFT method in [9Then asN andm go to infinity andm /N goes to zero :
[10]. A model-based approach is used to check the stability 1
before implementation of the controller in [11] for VRFT )\max(NTm(r)TTm(r)) /" sup @, (w) (33)
and in [4] for CbT. However, this needs the identification of ¢
a reliable plant model which is not always an easy task. WhereAmax(-) denotes the maximum eigenvalue andthe

In Iterative Controller Unfalsification (ICU), a data-denw  convergence from below [14]. Now, suppose that noise-free
test is proposed to check the performance objective in terrfigta are collected, that is :
of t_he infinity norm _of a cIosed—Ipop transfer functu_Jn. The c(p,t) = [M ~ K(p)G(1 - ]V[)]r(t)
main problem in this approach is the effect of noise. The
noise is characterized as a two-norm bounded sequenéé#) estimate ofd can be obtained as the solution to the
i.e. without stochastic properties. Hence, there is no rdollowing convex optimization problem :
striction preventing correlation between noise and inmat a

. . o e 5 =mind
this typically leads to underestimation of the infinity norm s
To improve the results, [12] introduced a low-correlated subject to : (34)
bounded noise set by using a constraint on the mean value TT(s(A))Tm(s(A)) — 2TT (P T (r) < 0

of the noise sequence.

In this section, a new validation test based on the coFor largeN andm, and smallm/N, one has :
relation approach is introduced to evaluate the stability o . d.(w)
the closed-loop system. This test can be applied to any ~ {w‘gﬁfﬂ} D, (w)
controller designed for model reference control problem

before applying it to the real plant and requires a single sétcan be shown thai converges t& when N andm go to
of data. infinity, m/N goes to zero an@,.(w) > 0, Vw € R [14].

In the presence of noise, the error signal is :

£(pt) = [M — K(H)G( — M)]r(t) — K(p)(1 — M)o(t)

(35)

A. Data-driven stability test
The objective is to evaluate the stability of controllé(p)

. . X 36)
in closed loop with the real plaigt. This closed-loop system (
can be represented by interconnection of the referencelmoéfe's sugg?\s[ted in 7] to mtrorc]iuceﬁa ne¥v varlahﬁ]t) for
and the difference between the ideal controliér and the © ~ _t p to ctc))lmpenstite the e bect ol noise. The convex
computed one (see Fig. 5). Based on the small gain theorefi? imization problem in this case becomes :
a sufficient condition for the stability of this closed-loop A
system is : 0= 1(1511115
§=|(-K(p)+ K*)G(1 = M)||so < 1 (30) subject to :
ReplacingK*G(1 — M) by M gives : Ty (2w(p)) Ton (2w (p) — 8° T, () Tin(r) <0 (37)
N
§=|M—-K(@G(1 - M) <1 (31) izwz(t) <

This transfer function is exactly the transfer function be-
tweenr(t) ande(p,t) in the tuning scheme of Fig. 3. The where
infinity norm § of this transfer function can be computed . . R
by idgntification of an input-output model in the tin?e or cu(pt) = e(p,1) + K(p)(1 — M)w(?)

frequency domains. Here, a direct data-driven approach &mdo? is the variance ob(t) that is supposed to be known. It
estimate the infinity norm of a transfer function is used sincshould be mentioned thatin this case does not converge to
it does not require any modeling of the system. This approagheven for an infinite number of data. The main reason is that



there is an infinite number of sequenceg) that satisfy the given input/output sequences, once using the optimization
norm bound in (37) but do not meet the stochastic propertiggoblem (37) and a second time adding the correlation-based
of v(t), in particular the fact that () like v(¢) should not be constraints (42) and (43). The varianeé of w(t) is fixed
correlated with the reference signalt). Here, we suggest to the same value as the real noise signa). The results

to add two convex constraints to the optimization problemsing an increasing number of data are shown in Fig. 6. The
(37) that take into account the fact thett) and w(t) are ratio N/m is fixed to 40 and to 15 for ana-level of 0.95.
uncorrelated. This will significantly improve the estinuati

of the infinity norm from noisy data.

1.2F : B

B. Correlation-based stability test
Let the instrumental variable vectq(t) be defined as : gl ]
Y R R e -
T [
C(t) = [T(t+l)7 ,’f‘(t),--- ,’f‘(t—l)] (38) %0.6* 1
(@]
and the decorrelation criteriofiy (w) as : 04r 1
) N T ) N 0.2 1
In(w) = lﬁ Z w(ﬂ((ﬂ] [N Z w(ﬂ((ﬂ] 200 200 600 800 1000 1200
t=1 t=1 Number of samples N, m = N/40
l
- Z Ry (7) (39) Fig. 6. & found assuming|v(t)||2 < o2 (thick dashed line)§ found using
T=-1 the correlation constraints (thick line) and the, norm of the system (grey
where line)
N
Zw r(t—7) (40) Without the correlation constraint$,is highly underesti-
N mated and increasing the number of data does not affect this

If w(t) is considered as a realization of a random variabldnderestimation. When adding the correlation constraints
independent of (), thenyv/N R.,,-(7) tends in distribution to the underestimation of for small data lengths is about
a normal distribution with zero-mean and variafeegiven 9% Increasing the number of data improves the result, for

by [15] : N = 1200 the underestimation is less thafo.
Z Ry (T)R.(T) (41) V. SIMULATION EXAMPLE
T=T Consider the flexible transmission system proposed in [16]

whereR,,(7) andR,.(7) are the auto-correlation functions of as a benchmark for digital control design. This example
w(t) andr(t), respectively. When(t) is white, the variance was used by Campet al. in [6] to demonstrate the VRFT
reduces taP? = 02 R,.(0). Moreover,J (w) has a chi-square approach and also by Sala and Esparza in [11]. In this
distribution with varianceP. The confidence intervals for comparative simulation example, the same pléffy—!),
Ru»(7) and Jy (w) are thus given by : reference model (¢~!) and basis functiom(¢~!) as in

[6] are used; furthermore, similar data length, input signa

\/7N forr=—1,...,1 (42) characteristics and signal-to-noise ratio are used.
The plant is described by the discrete-time modéj—*)
with the sampling timel; = 0.05s

In(w) < Nxa(zz +1) (43)

Glo-1) — 0.28261¢2 + 0.50666¢
where N/, denotes thex-level of the unit variance normal ()= A(g )
distribution andy? (2/+1) the a-level chi-square distribution
with 2/ + 1 degree of freedom. These convex constraints cat
be added to the optimization problem in (37) to improve A(g™') =1 —1.41833¢™ ' + 1.58939¢ 2
the estimate ob. This will be illustrated with the following —1.31608¢2 + 0.88642¢*

simulation example. o .
Example: Consider a discrete-time oscillatory system with The control objective is defined by the closed-loop refer-
the pair of complex pole8.1 +0.3j and0.1 —0.3j, a steady €nce model
state gain ofl and the sampling timd, = 0.05 s. This —3(1 — )?
: M@ hy=L "2 o= 5 =10
system has arf{,, norm of 1.167. A set of input/output (¢7) = 1-ag 1) a=c o Ww=1Y
data is generated using a PRBS input signal of several
periods, each of lengthl1 with amplitude0.1. The output wherew is the desired bandwidth. The controller structure
is disturbed by a white noise with a standard deviatiof defined as
of ¢ = 0.0315. The estimate$ of the infinity norm of K(p) = po+ p1q 4 p2q 2 + p3q 3 + pagTt + psq
the system is calculated for different data lengthof the P)= 1—qg !




The performance and the characteristics of the proposedoposed method are stabilizing the closed-loop system.
method will be illustrated using the above plant and refeeen Among the remaining 90 VRFT controller§3 achieve a
model. A comparison with the VRFT approach will be given/,,,, < 0.15. For 7 stabilizing controllers, the achievet},,,
in terms of performance and and sensitivity to noise. is greater thard).5. For the 100 controllers computed by the

o . proposed method, the mean.§f,,. is 0.1101 and the sample
A. Control Performance and Sensitivity to Noise variance is about0—2.

In order to compute a controller using the VRFT method, Although, the variance of the controllers designed using
two sets of data are required. The data are generated usthg proposed method is low, the finite data length estimates
a 511-sample PRBS signal with amplitud. The output are biased. This can be seen in Fig. 8. The high-frequency
is disturbed by zero-mean white noise such that the signajain achieved by all controllers is lower than the estimate
to-noise ratio at the output of the plant is about 10 in term®und using noise-free data. The bias decreases the dentrol
of variance. Since the proposed method uses a single setgafin at frequencies where the sensitivity— M is high,
input/output data, another set of open-loop input/out@tad which improves the stability of the controlled system. The
is generated using two periods of the PRBS signal used fetabilizing effect of the bias in this simulation examplenca
the VRFT, i.e. withV = 1022. The output is disturbed by be expected in the general case as a bias analysis of the
the same noise realization as the output for the VRFT. Theorrelation criterion/..(p) for finite data length would show.
length of the instrumental variable vector (10)/is= 35,
which corresponds to the length of the impulse response
M. 10+ : : L s

Using the data sets as explained above, two controllers &
calculated. The estimated controller parameter vectothier
proposed approach is :

Magnitude [dB]

p=1[0.2315 —0.3286 0.3192 —0.261
0.2107 —0.03225]"

The achieved performance of this controller in terms of th 10° 161
original model reference criterion (2) i%,, = 0.1083. The Frequency [rad/sec]
parameters of the VRFT controller are :

Fig. 8. Magnitude Bode plots oM (thick line), achieved closed-loop

OVRFT = [0,2383 —0.3387 0.3261 —0.2547 systems in the Monte Carlo simulation (grey lines) and in ribése-free
T case (dashed line) for the proposed method
0.1991 — 0.02382]

and the achieved performanceJs,. = 0.1077. The mag-
nitude bode plots of the controlled systems are shown i
Fig.7.

Magnitude [dB]

-10+

20+

Magnitude [dB]

10 10
Frequency [rad/sec]

-30+

-40 = Fig. 9. Magnitude Bode plots oM (thick line), achieved closed-loop
10 10 systems in the Monte Carlo simulation (grey lines) and in rbése-free
Frequency [rad/sec] case (dashed line) for the VRFT method (for only 90 stabitjztontrollers)

Fig. 7. Magnitude Bode plots\/ (thick line), System controlled by VRFT B Stability test with the various controllers
controller (thin line) and System controlled by proposedtaaler (dashed . ) ]
line) In the simulation example discussed above, 200 controllers

for the flexible transmission system are computed, 100 using
The performance of the proposed method is comparabiee VRFT approach and 100 using the proposed approach.
to that of the VRFT method. However, the effect of noisdBoth methods are data-driven and do not guarantee stability
is different as is shown by a Monte Carlo simulation withof the closed-loop system. All 200 controllers are subjcte
100 experiments. Out of 100 VRFT controllers, 10 aréo the data-driven controller validation test presented in
destabilizing, whereas all the controllers calculated hy t Section IV.



The same data as used to compute the controllers ig]
available for controller validationN = 511 samples are
used in the testyn and! are taken equal to 5@; equal to
the standard deviation of the noise in the data and 0.9.

The proposed tuning method leads to 100 stabilizing[s]
controllers out of 100 which are all have & less than
1. All controllers are thus validated with the estimated
value of the infinity norm by the optimization problem (37) 6]
with or without using the correlation constraints (42) and
(43). This was expected because the optimization problem
underestimates the infinity norm of the transfer functidhs. [7]
no noise vector is considered in the optimization problem, a (g
upper bound fow will be estimated. The use of this upper
bound for controller validation reduces significantly tlekr
of validation of destabilizing controllers. This test, hover,
invalidates 10 stabilizing controllers.

The VRFT approach gives 90 stabilizing controllers! 9]
among which 16 havé > 1. The infinity-norm estimates
by the optimization problem (37) without the correlation
constraints invalidate only 6 out of the 10 destabilizing'!!
controllers. The correlation-based stability test indates 9
out of the 10 destabilizing VRFT controllers. Using the uppel12]
bound of the infinity norm leads to invalidation 68 of the
VRFT controllers, among which8 stabilize the true system |13
and 32 have) < 1.

(4

El

VI. CONCLUSIONS 14l

A noniterative correlation-based data-driven algorittun f 15
tuning fixed-order controllers is proposed. A correlation ¢
terion is defined that is convex with respect to linearly para [16]
eterized controllers and approximates the model reference
control criterion. An estimate of the correlation criterics
minimized by the standard least-squares algorithm. Algiou
this estimate converges asymptotically to the correlation
criterion, it is biased for a finite number of data. A simubati
example shows that the biasedness of the criterion estimate
improves the robustness of the tuned controller. However,
for the general case, a non-asymptotic bias analysis of the
estimate could be performed in the frequency-domain.

A new data-driven stability test is proposed that can be
applied to any controller designed for the model reference
control problem. The closed-loop stability is guarantefed i
the infinity norm of a transfer function is less than 1. An
estimate of this infinity norm is obtained as the solution to
a convex optimization problem. It is shown that the estimate
of the infinity norm is improved by adding to the opti-
mization problem some convex constraints representing the
independence of noise and reference signal. The conditions
for asymptotic convergence of the estimate in the presence
of noise need to be investigated.
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