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Abstract— Data-driven controller tuning for model reference
control problem is investigated. A new controller tuning scheme
for linear time-invariant single-input single-output systems is
proposed. The method, which is based on the correlation
approach, uses a single set of input/output data from open-
loop or closed-loop operation. A specific choice of instrumental
variables makes the correlation criterion an approximation of
the model reference control criterion. The controller parameters
and the correlation criterion are asymptotically not affected by
noise. In addition, based on the small gain theorem, a sufficient
condition for the stability of the closed-loop system is given in
terms of the infinity norm of a transfer function. An unbiased
estimate of this infinity norm can be obtained as the solution
to a convex optimization problem using an infinite number of
noise-free data. It is also shown that, for noisy data, the use of
the correlation approach can improve significantly the estimate.
The effectiveness of the proposed method is illustrated viaa
simulation example.

I. I NTRODUCTION

Suppose that a set of input/output data from open-loop or
closed-loop process operation is available and the objective
is to design a low-order controller that minimizes the two-
norm of the difference between a given reference model and
the closed-loop system. The classical model-based approach
suggests a three-step procedure : (1) identify a plant model
and validate it using the data, (2) compute a high-oder
controller that minimizes the criterion and stabilizes the
plant model, (3) reduce the controller order by standard
controller order reduction techniques. These three steps in-
clude essentially some optimization algorithms and iterative
methods for model identification and validation procedures.
Data-driven controller tuning approaches try to lump these
three steps and present a direct “data-to-control” algorithm.
They typically use parameter estimation algorithms to es-
timate the controller parameters by minimizing a control
criterion. These approaches are particularly interestingwhen
a mathematical model of the plant is not available and/or the
nonlinear behavior of the plant cannot be identified easily
and considered for controller design.

Data-driven approaches for controller tuning have been
an attracting research subject for a long time. The first
publications appeared in the 60s in the context of dual control
and adaptive control. A survey of these approaches can be
found in [1]. In recent years, a revival of interest in this
subject has been observed in the control community by the
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introduction of Iterative Feedback Tuning (IFT) [2], [3].
IFT is a model-free approach that iteratively minimizes a
quadratic cost using several closed-loop experiments. The
main feature of this algorithm is that an unbiased estimate
of the gradient of the cost function can be obtained from a
specific closed-loop experiment in each iteration. A similar
approach, Iterative Correlation-based Tuning (ICbT), mini-
mizes the cross-correlation function between the closed-loop
error and the reference signal [4]. This way, the controller
parameters are asymptotically not affected by noise. Virtual
Reference Feedback Tuning (VRFT) converts the model
reference control problem to an identification problem [5].It
is shown that with a specific data filter an approximation of
the model reference control criterion can be minimized [6].
Iterative Controller Unfalsification (ICU) tries to minimize
the infinity norm of the model reference control criterion
[7]. In each iteration, a controller is designed that cannotbe
falsified by the data from the same and previous iterations.
The main problem is that the approach considers only norm-
bounded disturbances and stochastic properties of the noise
are not taken into account. This leads to underestimation of
the control criterion and therefore to unfalsification of the
controllers that do not meet the specifications.

In model-based approaches, the stochastic disturbances
are treated in the model identification and validation step
by some asymptotic analyses, while the problem of robust
stability is considered in the second and third step. The main
challenges in data-driven approaches consists of considering
in one step the problem of robust stability and the effect of
stochastic disturbances on the controller parameters. More-
over, investigation of controller robustness typically involves
a nominal plant model and uncertainties that cannot be
effectively considered in model-free algorithms.

In this paper, a new algorithm for controller tuning based
on the correlation approach is proposed. A tuning scheme
is introduced that convexifies the data-driven optimization
related to the model reference control problem and uses
a single set of data to evaluate the control criterion. A
correlation approach based on the extended instrumental
variable technique is used to estimate the controller parame-
ters. Furthermore, a data-driven stability test is introduced
that falsifies the destabilizing controllers before applying
them to the real plant. This test takes advantage of the
correlation technique and can also be used for other data-
driven controller tuning methods with a model reference
criterion.

The proposed approach has the same asymptotic properties
as the VRFT technique for linear systems. However, there
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Fig. 1. Model reference control problem

is no need to introduce virtual signals nor to compute the
inverse of the reference model. For noisy data, a single set
of data is sufficient thanks to the correlation approach. More-
over, with a finite number of data, the presented approach is
less sensitive to noise and leads to more robust controllers.
It should be mentioned that the VRFT approach can be
applied to nonlinear systems [8], which is not the case for
the proposed approach because the controller and plant are
swapped in the tuning scheme.

The paper is organized as follows. Section II introduces a
new controller tuning scheme that can be used for open-loop
shaping and for model reference control problems. The use of
the correlation approach and the choice of instrumental vari-
ables are discussed in Section III. A controller (in)validation
test based on a convex optimization algorithm is given
in Section IV. Section V compares the proposed method
with VRFT via a simulation example. It is also shown that
destabilizing controllers can effectively be detected by the
proposed approach. The paper ends with some concluding
remarks.

II. CONTROLLER TUNING SCHEME

Suppose that a set of input/output noisy data from open-
loop or closed-loop operation of a single-input single-output
linear time-invariant discrete-time system is available.Let
the output of the system be generated by the model :

y(t) = G(q−1)u(t) + v(t) (1)

where y(t) is the plant output,u(t) the plant input,v(t)
a zero-mean noise signal andG(q−1) the unknown plant
model with q−1 the backward shift operator. The objective
is to compute the parametersρ of a linear discrete-time
controller K(ρ, q−1) for G(q−1) such that the closed-loop
output follows the output of a reference LTI modelM(q−1)
as well as possible. This can be achieved by minimizing
the two-norm of the difference between the reference model
and the achieved closed-loop system. Fig. 1 shows the block
diagram of the model reference control problem. The control
criterion is defined as :

Jmr(ρ) =

∥

∥

∥

∥

M − K(ρ)G

1 + K(ρ)G

∥

∥

∥

∥

2

2

(2)

Minimizing this criterion is a standard control problem when
the plant modelG is known. In a data-driven approach, the
two-norm of the closed-loop errorεcl(t) is minimized for a
random white noise reference signal. Apart from the effect
of noise and possible instability of the closed-loop system,
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Fig. 2. Approximation of model reference control problem leading to a
convex criterion

which are common problems in all data-driven approaches,
the model reference control problem has two additional
difficulties :

• The criterion (2) is not convex with respect to the con-
troller parametersρ. Therefore, only a local minimum
of the criterion can be obtained.

• Each evaluation of the criterion requires an experiment
on the real system, which leads to an iterative algorithm.

These problems are present in IFT [2] and ICbT [4] that
are both iterative and guarantee only local convergence of
the criterion. In order to fix the first problem, the difference
between the desired loop transfer function and the achieved
one can be minimized. LetM(q−1) be expressed as :

M(q−1) =
K∗(q−1)G(q−1)

1 + K∗(q−1)G(q−1)
(3)

where K∗(q−1) is the ideal controller. The desired loop-
transfer functionK∗(q−1)G(q−1) becomes :

K∗(q−1)G(q−1) =
M(q−1)

1 − M(q−1)
(4)

which gives :

1

1 + K∗(q−1)G(q−1)
= 1 − M(q−1) (5)

The term1/(1 + K(ρ)G) in (2) can be approximated by
1/(1 + K∗G) = 1 − M , which allows defining a new
criterion :

J(ρ) =
∥

∥W
[

M − K(ρ)G(1 − M)
]
∥

∥

2

2
(6)

where W is an appropriate weighting filter which will be
computed subsequently such that criterionJ(ρ) becomes
a good approximation of the model reference criterion
Jmr(ρ). The criterionJ(ρ) is convex with respect to the
controller parameters ifK(ρ) is parameterized linearly inρ.
Moreover, if K∗ is in the set of parameterized controllers,
it will be the minimizer of J(ρ). This criterion can be
minimized by minimizing the two-norm of the noise-free
part of W (q−1)ε̃cl(ρ, t) where

ε̃cl(ρ, t) =
[

M − K(ρ)G(1 − M)
]

r(t) − (1 − M)v(t) (7)

with r(t) being the reference signal (see Fig. 2). However,
as mentioned before, several experiments on the real system
are needed to evaluate this criterion. This difficulty can be
eliminated by changing the place of the controller and putting
it after the filter 1 − M as shown in Fig. 3. The main
advantage of this scheme is that an estimate of the control
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Fig. 3. Approximation of model reference control problem making use of
a single open-loop experiment

criterion (6) can be minimized with a single experiment on
the system. Suppose that the systemG is excited in open loop
with u(t) = r(t) and the noisy outputy(t) is measured. From
this experiment, the error signalε(ρ, t) can be expressed as
a function of the controller parametersρ :

ε(ρ, t) = Mr(t) − (1 − M)K(ρ)y(t)

=
[

M − G(1 − M)K(ρ)
]

r(t) − (1 − M)K(ρ)v(t) (8)

It is clear that, in absence of noise (v(t) ≡ 0), ε(ρ, t) is equal
to ε̃cl(ρ, t). In presence of noise, the correlation approach can
be used to reduce the effect of noise on the criterion and the
controller parameters.

III. C ONTROLLER TUNING USING THE CORRELATION

APPROACH

It is clear from the criterion (6) that the ideal controller
K∗ = K(ρ∗) leads toM = K(ρ∗)G(1 − M) and the error
signalε(ρ∗, t) in (8) becomes filtered noise :

ε(ρ∗, t) = −(1 − M)K(ρ∗)v(t).

Sincev(t) is not correlated with the reference signalr(t), the
error signal for the ideal controller will not be correlatedwith
the reference signal either. Therefore, the main idea is to tune
the controller parametersρ such thatε(ρ, t) is uncorrelated
with the reference signal.

A. Correlation Approach

To proceed, let the correlation function be defined as :

f(ρ) = E{ζw(t)ε(ρ, t)} (9)

where E{·} is the mathematical expectation andζw(t) a
vector of instrumental variables correlated withr(t) and
uncorrelated withv(t) given by :

ζw(t) = [rw(t + l), rw(t + l − 1), . . . rw(t),

rw(t − 1), . . . , rw(t − l)]T (10)

with rw(t) = W (q−1)r(t) and l a sufficiently large integer.
The optimal controller parameters minimize the correlation
criterion defined as the two-norm of the correlation function :

ρ̂ = argmin
ρ

Jc(ρ) = fT (ρ)f(ρ) =

l
∑

τ=−l

R2
εrw

(τ) (11)

whereRεrw
(τ) is the cross-correlation function between the

filtered reference signalrw(t) andε(ρ, t) defined by :

Rεrw
(τ) = E{ε(ρ, t)rw(t − τ)}
= E

{[

M − G(1 − M)K(ρ)
]

r(t)Wr(t − τ)
}

(12)

The correlation criterion can be represented in the frequency
domain by applying Parseval’s theorem whenl tends to
infinity :

lim
l→∞

Jc(ρ) =
1

2π

∫ π

−π

|Φεrw
(ω)|2dω

=
1

2π

∫ π

−π

∣

∣

∣
W

[

M − G(1 − M)K(ρ)
]

∣

∣

∣

2

Φ2
r(ω)dω (13)

whereΦεrw
(ω) is the cross-spectral density betweenε(ρ, t)

andrw(t) andΦr(ω) the spectrum of the reference signal.

B. Filter design

The weighting filterW can be designed such that the
correlation criterion (13) is equal to the model reference
criterion (2). Replacing (3) in (2) and (13) gives :

Jmr(ρ) =

∥

∥

∥

∥

∥

[

K∗ − K(ρ)
]

G
(

1 + K(ρ)G
)(

1 + K∗G
)

∥

∥

∥

∥

∥

2

2

(14)

lim
l→∞

Jc(ρ) =
1

2π

∫ π

−π

|W |2|G|2|K∗ − K(ρ)|2
|1 + K∗G|2 Φ2

r(ω)dω

(15)
Comparing these two criteria, the following relation should
hold for the weighting filter :

|W (e−jω)|2 =
1

∣

∣1 + K(ρ̂, e−jω)G(e−jω)
∣

∣

2
Φ2

r(ω)
(16)

This filter depends on the controller to be designedK(ρ̂) and
the unknown plantG and can therefore not be implemented.
However, as proposed in [6],K(ρ) can be approximated by
K∗ to give :

W (e−jω) =
1 − M(e−jω)

Φr(ω)
(17)

This will lead to a very good approximation of the model
reference criterion if the controllerK(ρ) is not under param-
eterized and the difference betweenK∗ andK(ρ̂) is small.

C. Tuning algorithm

Let the controller be linearly parameterized inρ :

K(ρ) = βT (q−1)ρ (18)

where β(q−1) is a vector of linear discrete-time transfer
operators :

β(q−1) = [β1(q
−1), β2(q

−1), . . . , βnρ
(q−1)]T (19)

with nρ the number of controller parameters. Then, the error
signalε(ρ, t) can be obtained by linear regression :

ε(ρ, t) = M(q−1)r(t) − K(ρ)
(

1 − M(q−1)
)

y(t)

= yd(t) − φT (t)ρ (20)

whereyd(t) = M(q−1)r(t) and

φ(t) = β(q−1)(1 − M(q−1))y(t). (21)
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Fig. 4. Approximation of model reference control problem making use of
a single closed-loop experiment

For a finite number of dataN , the correlation function can
be estimated as :

f̂(ρ) =
1

N

N
∑

t=1

ζw(t)ε(t, ρ) =
1

N

N
∑

t=1

ζw(t)
[

yd(t) − φT (t)ρ
]

(22)
Thus, the optimal controller parameters minimizing the cor-
relation criterionĴc(ρ) = f̂T (ρ)f̂(ρ) can be obtained by the
standard-least squares algorithm :

ρ̂ = (QT Q)−1QT Z (23)

where

Q =
1

N

N
∑

t=1

ζw(t)φT (t) , Z =
1

N

N
∑

t=1

ζw(t)yd(t)

andQT Q is nonsingular.
Note that Ĵc(ρ) converges toJc(ρ) when N goes to

infinity. However, for a finite number of datâJc(ρ) is biased.
It can be shown that :

E{Ĵc(ρ)} = E{f̂T (ρ)f̂(ρ)} > Jc(ρ) (24)

by considering the fact thatE{f̂(ρ)} = f(ρ) and developing

E
{

[

f̂(ρ) − f(ρ)
]T [

f̂(ρ) − f(ρ)
]

}

> 0. It will be shown in
Section V that the positive bias of the correlation criterion
for a finite number of data helps improve the robustness of
the controller.

D. Closed-loop data

The controller tuning scheme presented above can also be
used when the data is collected in closed-loop operation with
a stabilizing controllerK0. The set of data now consists of
three signals, the reference signalr(t) that is uncorrelated
with the noisev(t), and the measured input signalu(t) and
output signaly(t) that are affected byv(t). In the tuning
scheme of Fig. 3, the plant is replaced by the closed-loop
system, as shown in Fig. 4. Noting that :

u(t) =
K0

1 + GK0
r(t) − K0

1 + GK0
v(t)

and

y(t) =
GK0

1 + GK0
r(t) +

1

1 + GK0
v(t),

the error signalε(ρ, t) can be expressed as :

ε(ρ, t) = Mu(t) − (1 − M)K(ρ)y(t)

=
[ K0

1 + GK0
M − GK0

1 + GK0
(1 − M)K(ρ)

]

r(t)

−
[ K0

1 + GK0
M +

1

1 + GK0
(1 − M)K(ρ)

]

v(t) (25)

As for the open-loop case, the correlation approach can be
used to reduce the effect of noise on the criterion and the
controller parameters. The error signalε(ρ∗, t) for the ideal
controller K∗ = K(ρ∗) becomes the filtered noise signal,
which will not be correlated with the reference signalr(t)
sincev(t) is not correlated withr(t).

Using the vector of instrumental variablesζw(t) given
by (10), the correlation criterion defined in (11) can be
represented in the frequency domain as :

lim
l→∞

Jc(ρ) =
1

2π

∫ π

−π

|Φεrw
(ω)|2dω

=
1

2π

∫ π

−π

∣

∣

∣
W

[ K0

1 + GK0
M

− K0

1 + GK0
G(1 − M)K(ρ)

]

∣

∣

∣

2

Φ2
r(ω)dω (26)

Again, the filterW can be designed such that the correlation
criterion (26) is equal to the model reference criterion (2):

|W |2 =

∣

∣1 + GK0

∣

∣

2

∣

∣K0

∣

∣

2∣
∣1 + K(ρ̂)G

∣

∣

2
Φ2

r(ω)
(27)

This optimal filter depends on the unknown plant and the
controller to be designed. It is now also dependent on the
controller K0 used in the experiment. Note that the power
cross-spectral density function between the measured input
u(t) andr(t) is :

Φur(ω) =
K0

1 + GK0
Φr(ω). (28)

ReplacingΦr(ω) in (27) by the expression obtained from
(28) and using the same approximation as in the open-loop
case (approximatingK(ρ) by K∗), the filter is now given
by :

W (e−jω) =
1 − M(e−jω)

Φur(ω)
(29)

The spectrumΦur(ω) can be estimated from the data by
classical spectral analysis methods. Using the error signal
defined in (25) and the filter (29), the algorithm presented in
III-C can also be used when the data is collected in closed-
loop operation and both the plant inputu(t) and the plant
outputy(t) are affected by noise.

IV. CONTROLLER VALIDATION

The main difficulty with data-driven controller tuning
methods is the stability of the resulting system. Data-driven
methods as Virtual Reference Feedback Tuning (VRFT), It-
erative Feedback Tuning (IFT) and Correlation based Tuning
(CbT) do not explicitly address this issue, and the stability of
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Fig. 5. Stability Condition

the system after implementation of the controller cannot be
guaranteed. Some attempts to improve the robustness of the
tuned controller have been reported for the IFT method in [9],
[10]. A model-based approach is used to check the stability
before implementation of the controller in [11] for VRFT
and in [4] for CbT. However, this needs the identification of
a reliable plant model which is not always an easy task.

In Iterative Controller Unfalsification (ICU), a data-driven
test is proposed to check the performance objective in terms
of the infinity norm of a closed-loop transfer function. The
main problem in this approach is the effect of noise. The
noise is characterized as a two-norm bounded sequence,
i.e. without stochastic properties. Hence, there is no re-
striction preventing correlation between noise and input and
this typically leads to underestimation of the infinity norm.
To improve the results, [12] introduced a low-correlated
bounded noise set by using a constraint on the mean value
of the noise sequence.

In this section, a new validation test based on the cor-
relation approach is introduced to evaluate the stability of
the closed-loop system. This test can be applied to any
controller designed for model reference control problem
before applying it to the real plant and requires a single set
of data.

A. Data-driven stability test

The objective is to evaluate the stability of controllerK(ρ̂)
in closed loop with the real plantG. This closed-loop system
can be represented by interconnection of the reference model
and the difference between the ideal controllerK∗ and the
computed one (see Fig. 5). Based on the small gain theorem,
a sufficient condition for the stability of this closed-loop
system is :

δ = ‖(−K(ρ̂) + K∗)G(1 − M)‖∞ < 1 (30)

ReplacingK∗G(1 − M) by M gives :

δ = ‖M − K(ρ̂)G(1 − M)‖∞ < 1 (31)

This transfer function is exactly the transfer function be-
tweenr(t) and ε(ρ̂, t) in the tuning scheme of Fig. 3. The
infinity norm δ of this transfer function can be computed
by identification of an input-output model in the time or
frequency domains. Here, a direct data-driven approach to
estimate the infinity norm of a transfer function is used since
it does not require any modeling of the system. This approach

has been used for time-domain validation in the context of
robust identification [13] and controller unfalsification [7]. In
this paper, the results of this approach are improved in the
presence of noise by introducing some new constraints based
on the decorrelation of the noise and the reference signal.

To proceed, consider the(N + m− 1, m) Toeplitz matrix

Tm(r) =





















r(1) 0 .. 0
r(2) r(1) .. 0

: r(2) .. 0
r(N) : .. r(1)

0 r(N) .. r(2)
: 0 .. :
0 : .. r(N)





















(32)

Then asN andm go to infinity andm/N goes to zero :

λmax(
1

N
Tm(r)T Tm(r)) ր sup

ω
Φr(ω) (33)

whereλmax(·) denotes the maximum eigenvalue andր the
convergence from below [14]. Now, suppose that noise-free
data are collected, that is :

ε(ρ̂, t) =
[

M − K(ρ̂)G(1 − M)
]

r(t)

An estimate ofδ can be obtained as the solution to the
following convex optimization problem :

δ̂ = min
δ

δ

subject to :

T T
m

(

ε(ρ̂)
)

Tm

(

ε(ρ̂)
)

− δ2T T
m(r)Tm(r) 6 0

(34)

For largeN andm, and smallm/N , one has :

δ̂2 ≈ max
{ω|Φr(ω) 6=0}

Φε(ω)

Φr(ω)
(35)

It can be shown that̂δ converges toδ whenN andm go to
infinity, m/N goes to zero andΦr(ω) > 0, ∀ω ∈ R [14].

In the presence of noise, the error signal is :

ε(ρ̂, t) =
[

M − K(ρ̂)G(1 − M)
]

r(t) − K(ρ̂)(1 − M)v(t)
(36)

It is suggested in [7] to introduce a new variablew(t) for
t = 1, . . . , N to compensate the effect of noise. The convex
optimization problem in this case becomes :

δ̂ = min
δ,w

δ

subject to :

T T
m

(

εw(ρ̂)
)

Tm

(

εw(ρ̂)
)

− δ2T T
m(r)Tm(r) 6 0

1

N

N
∑

t=1

w2(t) 6 σ2

(37)

where

εw(ρ̂, t) = ε(ρ̂, t) + K(ρ̂)(1 − M)w(t)

andσ2 is the variance ofv(t) that is supposed to be known. It
should be mentioned that̂δ in this case does not converge to
δ even for an infinite number of data. The main reason is that



there is an infinite number of sequencesw(t) that satisfy the
norm bound in (37) but do not meet the stochastic properties
of v(t), in particular the fact thatw(t) like v(t) should not be
correlated with the reference signalr(t). Here, we suggest
to add two convex constraints to the optimization problem
(37) that take into account the fact thatr(t) and w(t) are
uncorrelated. This will significantly improve the estimation
of the infinity norm from noisy data.

B. Correlation-based stability test

Let the instrumental variable vectorζ(t) be defined as :

ζ(t) = [r(t + l), · · · , r(t), · · · , r(t − l)]
T (38)

and the decorrelation criterionJN (w) as :

JN (w) =

[

1

N

N
∑

t=1

w(t)ζ(t)

]T [

1

N

N
∑

t=1

w(t)ζ(t)

]

=

l
∑

τ=−l

R̂2
wr(τ) (39)

where

R̂wr(τ) =
1

N

N
∑

t=1

w(t)r(t − τ) (40)

If w(t) is considered as a realization of a random variable
independent ofr(t), then

√
NR̂wr(τ) tends in distribution to

a normal distribution with zero-mean and varianceP given
by [15] :

P =

∞
∑

τ=−∞

Rw(τ)Rr(τ) (41)

whereRw(τ) andRr(τ) are the auto-correlation functions of
w(t) andr(t), respectively. Whenr(t) is white, the variance
reduces toP = σ2Rr(0). Moreover,JN (w) has a chi-square
distribution with varianceP . The confidence intervals for
R̂wr(τ) andJN (w) are thus given by :

∣

∣R̂wr(τ)
∣

∣ 6

√

P

N
Nα for τ = −l, . . . , l (42)

JN (w) 6
P

N
χ2

α(2l + 1) (43)

whereNα denotes theα-level of the unit variance normal
distribution andχ2

α(2l+1) theα-level chi-square distribution
with 2l+1 degree of freedom. These convex constraints can
be added to the optimization problem in (37) to improve
the estimate ofδ. This will be illustrated with the following
simulation example.

Example:Consider a discrete-time oscillatory system with
the pair of complex poles0.1+0.3j and0.1−0.3j, a steady
state gain of1 and the sampling timeTs = 0.05 s. This
system has anH∞ norm of 1.167. A set of input/output
data is generated using a PRBS input signal of several
periods, each of length511 with amplitude0.1. The output
is disturbed by a white noise with a standard deviation
of σ = 0.0315. The estimateδ̂ of the infinity norm of
the system is calculated for different data lengthN of the

given input/output sequences, once using the optimization
problem (37) and a second time adding the correlation-based
constraints (42) and (43). The varianceσ2 of w(t) is fixed
to the same value as the real noise signalv(t). The results
using an increasing number of data are shown in Fig. 6. The
ratio N/m is fixed to 40 andl to 15 for anα-level of 0.95.
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line)

Without the correlation constraints,δ is highly underesti-
mated and increasing the number of data does not affect this
underestimation. When adding the correlation constraints,
the underestimation ofδ for small data lengths is about
9%. Increasing the number of data improves the result, for
N = 1200 the underestimation is less than5%.

V. SIMULATION EXAMPLE

Consider the flexible transmission system proposed in [16]
as a benchmark for digital control design. This example
was used by Campiet al. in [6] to demonstrate the VRFT
approach and also by Sala and Esparza in [11]. In this
comparative simulation example, the same plantG(q−1),
reference modelM(q−1) and basis functionβ(q−1) as in
[6] are used; furthermore, similar data length, input signal
characteristics and signal-to-noise ratio are used.

The plant is described by the discrete-time modelG(q−1)
with the sampling timeTs = 0.05s

G(q−1) =
0.28261q−3 + 0.50666q−4

A(q−1)

with

A(q−1) = 1 − 1.41833q−1 + 1.58939q−2

−1.31608q−3 + 0.88642q−4

The control objective is defined by the closed-loop refer-
ence model

M(q−1) =
q−3(1 − α)2

(1 − αq−1)2
, α = e−Tsω̄, ω̄ = 10,

where ω̄ is the desired bandwidth. The controller structure
is defined as

K(ρ) =
ρ0 + ρ1q

−1 + ρ2q
−2 + ρ3q

−3 + ρ4q
−4 + ρ5q

−5

1 − q−1



The performance and the characteristics of the proposed
method will be illustrated using the above plant and reference
model. A comparison with the VRFT approach will be given
in terms of performance and and sensitivity to noise.

A. Control Performance and Sensitivity to Noise

In order to compute a controller using the VRFT method,
two sets of data are required. The data are generated using
a 511-sample PRBS signal with amplitude0.1. The output
is disturbed by zero-mean white noise such that the signal-
to-noise ratio at the output of the plant is about 10 in terms
of variance. Since the proposed method uses a single set of
input/output data, another set of open-loop input/output data
is generated using two periods of the PRBS signal used for
the VRFT, i.e. withN = 1022. The output is disturbed by
the same noise realization as the output for the VRFT. The
length of the instrumental variable vector (10) isl = 35,
which corresponds to the length of the impulse response of
M .

Using the data sets as explained above, two controllers are
calculated. The estimated controller parameter vector forthe
proposed approach is :

ρ̂ = [0.2315 − 0.3286 0.3192 − 0.261

0.2107 − 0.03225]T

The achieved performance of this controller in terms of the
original model reference criterion (2) isJmr = 0.1083. The
parameters of the VRFT controller are :

ρ̂V RFT = [0.2383 − 0.3387 0.3261 − 0.2547

0.1991 − 0.02382]T

and the achieved performance isJmr = 0.1077. The mag-
nitude bode plots of the controlled systems are shown in
Fig.7.
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Fig. 7. Magnitude Bode plots,M (thick line), System controlled by VRFT
controller (thin line) and System controlled by proposed controller (dashed
line)

The performance of the proposed method is comparable
to that of the VRFT method. However, the effect of noise
is different as is shown by a Monte Carlo simulation with
100 experiments. Out of 100 VRFT controllers, 10 are
destabilizing, whereas all the controllers calculated by the

proposed method are stabilizing the closed-loop system.
Among the remaining 90 VRFT controllers,58 achieve a
Jmr < 0.15. For 7 stabilizing controllers, the achievedJmr

is greater than0.5. For the 100 controllers computed by the
proposed method, the mean ofJmr is 0.1101 and the sample
variance is about10−4.

Although, the variance of the controllers designed using
the proposed method is low, the finite data length estimates
are biased. This can be seen in Fig. 8. The high-frequency
gain achieved by all controllers is lower than the estimate
found using noise-free data. The bias decreases the controller
gain at frequencies where the sensitivity1 − M is high,
which improves the stability of the controlled system. The
stabilizing effect of the bias in this simulation example can
be expected in the general case as a bias analysis of the
correlation criterionĴc(ρ) for finite data length would show.
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Fig. 8. Magnitude Bode plots ofM (thick line), achieved closed-loop
systems in the Monte Carlo simulation (grey lines) and in thenoise-free
case (dashed line) for the proposed method
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Fig. 9. Magnitude Bode plots ofM (thick line), achieved closed-loop
systems in the Monte Carlo simulation (grey lines) and in thenoise-free
case (dashed line) for the VRFT method (for only 90 stabilizing controllers)

B. Stability test with the various controllers

In the simulation example discussed above, 200 controllers
for the flexible transmission system are computed, 100 using
the VRFT approach and 100 using the proposed approach.
Both methods are data-driven and do not guarantee stability
of the closed-loop system. All 200 controllers are subjected
to the data-driven controller validation test presented in
Section IV.



The same data as used to compute the controllers is
available for controller validation.N = 511 samples are
used in the test,m and l are taken equal to 50,σ equal to
the standard deviation of the noise in the data andα = 0.9.

The proposed tuning method leads to 100 stabilizing
controllers out of 100 which are all have aδ less than
1. All controllers are thus validated with the estimated
value of the infinity norm by the optimization problem (37)
with or without using the correlation constraints (42) and
(43). This was expected because the optimization problem
underestimates the infinity norm of the transfer functions.If
no noise vector is considered in the optimization problem, an
upper bound forδ will be estimated. The use of this upper
bound for controller validation reduces significantly the risk
of validation of destabilizing controllers. This test, however,
invalidates 10 stabilizing controllers.

The VRFT approach gives 90 stabilizing controllers,
among which 16 haveδ > 1. The infinity-norm estimates
by the optimization problem (37) without the correlation
constraints invalidate only 6 out of the 10 destabilizing
controllers. The correlation-based stability test invalidates 9
out of the 10 destabilizing VRFT controllers. Using the upper
bound of the infinity norm leads to invalidation of58 of the
VRFT controllers, among which48 stabilize the true system
and 32 haveδ < 1.

VI. CONCLUSIONS

A noniterative correlation-based data-driven algorithm for
tuning fixed-order controllers is proposed. A correlation cri-
terion is defined that is convex with respect to linearly param-
eterized controllers and approximates the model reference
control criterion. An estimate of the correlation criterion is
minimized by the standard least-squares algorithm. Although
this estimate converges asymptotically to the correlation
criterion, it is biased for a finite number of data. A simulation
example shows that the biasedness of the criterion estimate
improves the robustness of the tuned controller. However,
for the general case, a non-asymptotic bias analysis of the
estimate could be performed in the frequency-domain.

A new data-driven stability test is proposed that can be
applied to any controller designed for the model reference
control problem. The closed-loop stability is guaranteed if
the infinity norm of a transfer function is less than 1. An
estimate of this infinity norm is obtained as the solution to
a convex optimization problem. It is shown that the estimate
of the infinity norm is improved by adding to the opti-
mization problem some convex constraints representing the
independence of noise and reference signal. The conditions
for asymptotic convergence of the estimate in the presence
of noise need to be investigated.
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[4] A. Karimi, L. Mišković, and D. Bonvin, “Iterative correlation-based
controller tuning,” International Journal of Adaptive Control and
Signal Processing, vol. 18, no. 8, pp. 645–664, 2004.

[5] G. O. Guardabbassi and S. M. Savaresi, “Virtual reference direct
design method: an off-line approach to data-based control system
design,” IEEE Transactions on Automatic Control, vol. 45, no. 5, pp.
954–959, 2000.

[6] M. C. Campi, A. Lecchini, and S. M. Savaresi, “Virtual reference feed-
back tuning: a direct method for the design of feedback controllers,”
Automatica, vol. 38, pp. 1337–1346, 2002.

[7] R. L. Kosut, “Uncertainty model unfalsification for robust adaptive
control,” Annual Reviews in Control, vol. 25, pp. 65–76, 2001.

[8] M. C. Campi and S. M. Savaresi, “Direct nonlinear controldesign: The
virtual reference feedback tuning (VRFT) approach,”IEEE Transac-
tions on Automatic Control, vol. 51, no. 1, pp. 14–27, 2006.

[9] H. Hjalmarsson and S. M. Veres, “Robust loopshaping using iterative
feedback tuning,” inEuropean Control Conference, Porto, Portugal,
September 2001, pp. 2046–2051.

[10] H. Prochazka, M. Gevers, B. Anderson, and C. Ferrera, “Iterative
feedback tuning for robust controller design and optimization,” in
44th IEEE Conference on Decision and Control and European Control
Conference, 2005, pp. 3602–3607.

[11] A. Sala and A. Esparza, “Extensions to"virtual reference feedback
tuning: A direct method for the design of feedback controllers",”
Automatica, vol. 41, no. 8, pp. 1473–1476, 2005.

[12] H. Fukushimai and T. Sugie, “Identification of unfalsified plant model
sets based on low-correlated bounded noise model,” in38th IEEE
Conference on Decision and Control, vol. 5, 1999, pp. 5088–5093.

[13] K. Poolla, P. Khargonekar, A. Tikku, J. Krause, and K. Nagpal, “A
time-domain approach to model validation,”IEEE Transactions on
Automatic Control, vol. 39, no. 5, pp. 951–959, May 1994.

[14] M. Massoumnia and R. L. Kosut, “A family of norms for system
identification problems,”IEEE Transactions on Automatic Control,
vol. 39, no. 5, pp. 1027–1031, 1994.

[15] L. Ljung, System Identification - Theory for the User. NJ, USA:
Prentice Hall, 1999.

[16] I. D. Landau, D. Rey, A. Karimi, A. Voda, and A. Franco, “A
flexible transmission system as a benchmark for robust digital control,”
European Journal of Control, vol. 1, no. 2, pp. 77–96, 1995.


