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1. Introduction 

The simplest model of population dynamics is based on the Malthusian law 

i '  = 5P (5 = constant), (1.1) 

where P( t )  is the total population at time t and 5 is the growth modulus. This 
law is clearly inapplicable to situations in which the population competes for 
resources (e.g., space and food), for in these situations 5 should depend on the 
size of the population: the larger the population, the slower should be its rate 
of growth. 

To overcome this deficiency in the Malthusian law, VERHULST [1845, 1847] 
assumed that 

f i= (6o-co0  P ) P  (5o, COo=constant). (1.2) 

For  5 o and COo positive this differential equation has a stable equilibrium point 
P =  r  6o/COo, and populations with P ( 0 ) < ~  grow monotonically to ~ as t--* oo. 
The solution of (1.2), 

P ( t ) =  , (1.3) 

1+ ( p ~ 0 ) - 1  ) e -a~ 

has been applied, with remarkable success, to fit the growth curves of various 
types of populations, t 

The chief disadvantage of the Malthus and Verhulst models is that they yield 
no information whatsoever concerning the age distribution of the population, 
and, in fact, are based on the tacit assumption that the birth and death processes 
are age-independent. A model applicable to age-dependent population dynamics 
was first proposed by LOTKA and YON FO~RSTER. 2 This model is based on the 
assumption that 

o o  

P(t)  = I p(a, t) da,  (1.4) 
0 

1 See, e.g., LOTKA [1925], pp. 66-76. 
2 The basic ideas behind this model are contained in the work of LOTKA [1925], where (1.7) 

and (1.8) are implicit. The partial differential equation (1.6) is due to YON FOERSTER [1959], 
although with d=0 it appears earlier in the work of SCt-mRBAUM & RASCH [1957]. See also 
FISHER [1958], LOPEZ [1961], TRUCCO [1965], KEYFITZ [1968], CROW & KIMURA [1970], LANG- 
IaA/m [1972]. 
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where p(a, t) is the population at time t in the age-interval (a, a+da). Consider 
the group of individuals who are of age a at time t. If t is increased by h units, 
these individuals age by h units; thus 

Op(a, t )=l im p(a+h, t+h) -p (a ,  t) (1.5) 
h-~0 h 

is the rate at which the population of this group is changing in time. This rate 
plus the number d(a, t) of individuals (per unit age and time) of age a who die 
at time t must equal zero: 

Dp+d=O. (1.6) 
One then assumes that 

d (a, t) = 2 (a) p (a, t), (1.7) 

and that the birth process is described by the "renewal equation" 

o'3 

p(0, t )= S fl(a)p(a, t)da. (1.8) 
0 

Here fl(a), called the birth-modulus, is the average number of offsprings (per unit 
time) produced by an individual of age a; 2(a), called the death-modulus, is the 
death-rate at age a per unit population of age a. 1 The system (1.6)-(1.8), supple- 
mented by the initial condition 

p (a, 0) = ~0 (a), (1.9) 

constitute the Lotka-von Foerster model. As we shall see later, p will generally 
not be differentiable everywhere; of course, when it is, 

Dp=pa+pr (1.10) 

The same objection can be raised to the Lotka-von Foerster model as was 
raised previously to the Malthusian law: the birth and death moduli are independ- 
ent of the population P. To rectify this we allow fl and 2 to depend on P. Our 
theory is therefore based on the following system of equations: 

Dp+2(a, P ) p = 0 ,  
oo 

P ( t ) =  S p(a, t) da, (1.11) 
0 

oo 

p(0, t )=  ~ fl(a, P) p(a, t) d a, 
0 

supplemented, of course, by the initial condition (1.9). 

The problem (1.9), (1.11) is studied in detail in Section 2. There we lay down 
our basic hypotheses: that 2, fl, and q~ be non-negative and sufficiently smooth 

1 See, e.g., ANDREWARTHA (~ BIRCH [1954], where curves of fl(a) and 

~(a )=exp  ( -  i 2 ( ~ ) d ~  ) 

are given for the vole mouse (microtus agrestis) and for the rice weevil (calandra oryzae). 
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(in a certain precise sense). We then establish the existence of a unique solution 
on a sufficiently small time-interval, and we prove that if (in addition to the 
above hypotheses) fl is uniformly bounded, then existence and uniqueness hold 
for all time. We show further, by example, that some such additional hypothesis 
is necessary for global existence. Our solutions are all in the sense of (1.11)1: 
p is not required to possess partial derivatives with respect to a and t, but only 
the directional derivative (1.5). We discuss conditions which guarantee that the 
solution actually be of class C1; these turn out to be compatibility conditions 
on the initial data ~0. 

All of our results are based on the reduction of the problem (1.9), (1.11) to a 
pair of non-linear functional equations for the total population P(t) and the 
birth-rate B(t)=p(O, t). These equations are natural extensions of the linear 
Volterra integral equation for B(t) which occurs in the Lotka-von Foerster 
theory. ~ We study these functional equations by means of a fixed point argument. 

In Section 3 we study equilibrium age distributions; that is, solutions p of 
(1.1 l) which are independent of time. We show that in our non-linear theory a 
greater variety of such solutions is available than in the linear theory of LOTKA 
and VON FOERSTER. We also study the stability of these equilibrium age distribu- 
tions. In particular, we give conditions under which such distributions are ex- 
ponentially asymtotically stable. 

Section 4 contains a discussion of some special cases, corresponding to partic- 
ular choices of 2 and fl, in which our model reduces to a pair of nonqinear 
ordinary differential equations for P(t) and B(t). In particular, we show that 
the models of MALTHUS and VERHULST can be obtained in this manner. We 
emphasize, however, that even in these simple cases our study provides new in- 
formation: it enables us to determine the evolution in time of an initial age 
distribution p (a, 0). 

The theory described above can clearly be extended to include several inter- 
acting species, and we intend to pursue this problem in the near future. A second 
interesting generalization of our theory occurs when we take spatial diffusion 
into account. 2 The analogs of our present theory in the diffusion problem present 
several very challenging questions, and these too we hope to pursue. 

2. Existence and Uniqueness 

In this section we shall establish an alternative formulation of the population 
problem (1.9), (1.11) in terms of a pair of coupled integral equations for the 
birth-rate B(t) and the total population P(t), and we shall use these equations 
to prove existence and uniqueness. It  is dear  that our problem is physically 
meaningful only if r 2(a, P),  and fl(a, P) are non-negative. Also, since we 
want the initial total population to be finite, r should belong to LI(IR+). We 
collect these assumptions, together with some others of a more technical nature, 
in the following hypotheses: a 

1 See, e.g., KEvrrrz [1968], Eq. (5.1.1). 
2 Simple linear models for diffusion of a single species have already been proposed by SKELLAM 

[1951], K~RNER [1959], and GURTI~ [1973]. 
3 We use the following notation throughout: ~.=(--o0, oo); IR+= [0, oo); CO:B) is the 

set of all continuous functions from ,4 to B; C(.4)---- C(A: ~). 



284 M.E. GURTIN • R. C. MACCAMY 

(H0 ~0~L1 (1R +) is piecewise continuous; 

(H2) 2, f l~C(IR+xlR+);  )~v(a,P) and fle(a,P) exist for all a > 0  and 
P > 0 ;  2(. ,  P), 2p(., P), fl(-, P), and fie(-, P), as functions of P, belong to 
c ( ~ + :  L~o(~.+)); 

(H3) (p>_-0, 2>__0,/~_->0. 

For convenience, we assume, once and for all, that (Hx)-(H3) are satisfied. 

By a solution of  the population problem up to time T >0  we mean a non-negative 
function p on IR + x [0, T] with the following properties: Dp exists on N + x [0, T]; 
p(. ,  t )eL 1 (IR +) and 

00 

P( t )=  ~ p(a, t)da (2.1) 
0 

is continuous for 0 < t < T; 

Dp(a, t)+2(a, P(t))p(a, t )=0  (a>0,  0 < t <  T), 
oo 

p(0, t)= ~B(a,P(t))p(a,t)da ( 0 < t <  T), (2.2) 
0 

p (a, 0) = ~o (a) (a __> 0). 

It is important to note that (2.2)2 is not required to hold at t=  0. Indeed, by 
(2.2)3 this relation will be satisfied at t = 0 if and only if q) satisfies the compati- 
bility condition 

oo oo 

qg(0)= ~ fl(a, cb)(p(a)da, cb= ~r (2.3) 
0 0 

which is simply the requirement that the initial data be consistent with the birth 
process. We do not impose the restriction (2.3), because we envisage situations 
in which the initial age distribution (p is completely arbitrary. 

Let p be a solution up to time T, let (ao, to)~lR + x [0, T], and let 

p(h)=p(ao+h, to+h), 2(h)=2(ao+h,P(to+h)). (2.4) 

Then (1.5) and (2.2)~ imply that 

d~ q- 2-(h) fi=0, (2.5) 
dh 

and this equation has the unique solution 
h_  

- - J  A(q)  dr/ 

p( ao + h, to + h )=p(  ao, to) e , (2.6) 

giving the values of p at all points on the characteristic through (ao, to) in terms 
of the value of p at (ao, to). In particular, if in (2.6) we take (ao, to)= ( a - t ,  0) 
and h = t, we conclude, with the aid of (2.2)3, that 

t 
- o  5 2 ( a - t  + ~:, P(r))  dr  

p(a, t)=q~(a-t)e for a>t. (2.7) 
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On the other hand, the substitutions (a0, to)=(0, t - a )  and h=a in (2.6) lead to 
the conclusion that 

a 
- J  ).(~, P ( t - a + a t ) )  dot 

p(a, t ) = B ( t - a ) e  for t>a, (2.8) 
where 

B(t)=p(O, t) (2.9) 

is the birth-rate. Finally, if we substitute (2.7) and (2.8) into (2.1) and (2.2)2, we 
arrive at the following pair of coupled integral equations for P and B: 

t oo 

e(t) = ~ K ( t -  a, t; P) B(a) da + I L(a, t; P) ~o(a) da, 
0 0 

t 

B(t)= S f l ( t -a ,  P ( t ) )K( t -a ,  t; P) B(a)da (2.10) 
0 

oo 

+ I fl(a + t, P(t))L(a, t; P) ~p(a) da, 
0 

where 

-- ~ 2 ( o ~ + ~ - t , P ( r  

K(g, t; P)=e 
(0_<~=< t), (2.11) t 

- - J  2(T+~,  P(r dr 

L(~, t; P) = e 

The integral equations (2.10) form the basis for the discussion in this section. 
Note that K and L are functionals of P. When 2 and fl are independent of P, 
(2.10)2 is the classical linear integral equation of LOTKA 1 for the birth-rate B, 
while (2.10)i is simply a formula for P. 

From (2.7) it follows that discontinuities in ~p propagate along characteristics. 
Further, even when ~p is continuous, (2.7) and (2.8) imply that p will be dis- 
continuous across the characteristic t=a unless B(0+)=cp(0). By (2.10)2, B(0 +) 
is equal to the right-hand side of (2.3). Thus (when ~p is continuous) a necessary 
and sufficient condition that p be continuous across t = a is that (2.3) hold. When 
(2.3) is not satisfied, B, defined by (2.9), will exhibit a discontinuity at t=O, and 
therefore B defined at t = 0 by (2.9) will not agree with B defined at t = 0 by (2.10)2. 
To avoid this (technical) difficulty we define B by (2.9) for t > 0  and take B(O)= 
B(0+). 

Theorem 1. Let p be a solution of  the population problem up to time T > O. 
Then the total population P and the birth-rate B satisfy the integral equations 
(2.10) on [0, T]. Conversely, i f  P and B are non-negative continuous functions that 
satisfy (2.10) on [0, T], and if p is defined on lR+x [0, T] by (2.7), (2.8), then p 
is a solution of the population problem up to time T. 

Proof. We have already established the first portion of the theorem. To 
prove the converse assertion, let P > 0  and B > 0  be continuous functions on 
[0, T] consistent with (2.10), and let p be defined on IR + x [0, T] by (2.7), (2.8). 
Then p > 0  (since (o and fl are non-negative), (2.3)3 holds, p(0, t )=B(t)  for t >0,  
and p(.,  t)eL1 (]R +) (since 2, B, and P are continuous and ~P~L1 0R+)). It there- 

1 See, e.g., KEY~aTZ [1968], Eq. (5.1.1). 

20 Arch. Rat.  Mech. Anal. ,  Vol. 54 
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fore follows from (2.7), (2.8), (2.10), and (2.11) that (2.1) and (2.2)2 hold. Finally, 
(1.5), (2.6), and (2.7) imply that Dp exists on ]R + x [0, T] and that (2.2)1 is satis- 
fied. This completes the proof. 

Theorem 2. There exists a T > 0 such that the population problem has a unique 
solution up to time T. 

Proof. Let 
C + [0, T] = {fe C[0, T] If_>-0}. (2.12) 

In view of Theorem 1 it suffices to find functions P, Be C § [0, T] that satisfy the 
integral equations (2.10). We shall solve these equations in the following manner. 
Consider first (2.10)2. For fixed P e C  § [0, T] this is a linear Volterra integral 
equation for B, and hence it has a unique solution on [0, T] which we denote by 

B (t) = ~ r  (P) (t). (2.13) 

Using this solution, we can define an operator ~T on C + [0, T] by the right-hand 
side of (2.10)1 with B replaced by ~T(P) :  

t 

t~r(P) (t)= S K ( a - t ,  t; P ) ~ T ( P ) ( a ) d a +  SL(a, t; P)q~(a)da. (2.14) 
0 0 

Clearly, our hypotheses (H1)-(H3) imply that 

g~T, ~r:  C+ [0, T] ~ C + [0, T]. (2.15) 

Thus the population problem reduces to finding a fixed point P of the operator 
~r, and hence Theorem 2 is a direct consequence of the following: 

Lemma. There exists a T > 0 such that the operator ~r : C + [t3, T] ~ C + [0, T] 
defined by (2.14) has a unique f ixed  point. 

We postpone, until Section 4, our proof of this lemma. We remark here, 
however, that our proof, in principle, is constructive, since it is based on the 
contractive mapping theorem. Indeed, one starts with pO equal to the constant 

oo 

function ~ =  S tp(a)da, and then iterates by taking pn+l =~(pn) .  This method, 
o 

however, requires the a priori solution of (2.10)2 at each step. One is tempted to 
use the seemingly more straightforward procedure of iterating on both of (2.10) 

co 

jointly. Here one should start with p O = ~  and B~  ~ fl(a, q~)q~(a)da and then 
0 

iterate by taking p , + l  and B n+l as the left-hand side of (2.10) with P~ and B ~ 
substituted on the right-hand side. We were able to prove convergence of this 
process only for those situations in which the initial total population q~ is suffi- 
ciently small. In contrast, our process is convergent for arbitrary 4~. 

Theorem 2 is a local existence theorem. Indeed, as is clear from the last 
example of Section 4, this is all that can be expected in the absence of any further 
hypotheses concerning fl or 2. What is needed to obtain global existence is some 
type of a priori estimate. With this in mind we now consider fl and ~. more care- 
fully. Recall that fl(a, P) is the average number of offsprings (per unit time) 
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produced by an individual of age a when the total population is P. It therefore 
seems reasonable to expect that this quantity will be uniformly bounded for all a 
and P; that is, 

f l=supfl(a,  P)<  oo. (2.16) 
a_0 
P_->0 

On the other hand, by (Ha) 
_2= inf2(a,  P) (2.17) 

a_~0 
/'_~0 

is not only finite but non-negative. When (2.16) is satisfied we call 

6=fl-_2 (2.18) 

the bounding growth rate. This terminology is justified by our next result, which 
shows that P and B can grow at most like e 6t; that is, at most like a Malthusian 
population with growth rate 6. 

Theorem 3. Assume that (2.16) holds. Let p be a solution o f  the population 
problem up to time T. Then for 0 < t < T 

P ( t ) < ~ e  ~t, 

B ( t ) < ~ e ~ t  ' (2.19) 

and 
p(a, t )<f l~e-~-ae ~t (a<t) ,  p(a,t)<llgollte -aa (a>t) ,  (2.20) 

where �9 is the initial total population (2.3)2, while II go II, = sup go. 
[0, t] 

Proof. From (2.11) 

K(~, t; P )<e  -~-=, L(~, t; P ) < e  -aJ. (2.21) 

Thus (2.10)2 and (2.16) yield 
t 

B( t) < fl S e-  ~-(t-~ B (a) d a + flq) e -a-t, (2.22) 
0 

and, by virtue of Gronwall's inequality, this clearly implies (2.19)2. If we sub- 
stitute this result into (2.10)1 and use (2.21), we are led, at once, to (2.19)1. Finally, 
(2.20) is an obvious consequence of (2.7), (2.8), and (2.19). 

Note that if go is uniformly bounded, so that (/)max = sup go < ~ ,  then (2.20) 
implies that 

p (a, t) < C e ~t (2.23) 

for a > 0  and O<t<T,  where C is the largest of go . . . .  fl~. 
As we shall now see, assumption (2.16) leads, via the a priori estimate (2.19)1, 

to global existence. 

Theorem 4. Assume that (2.16) holds. Then the population problem has a unique 
solution for  all time. 

The proof of this theorem will be given in Section 5. In Section 4 we shall 
give an example in which (2.16) is not satisfied and for which P(t)--}oo in a 
finite time. 

20* 
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As we have mentioned previously, a necessary and sufficient condition for/9 
to be continuous is that go be continuous and satisfy the compatibility condition 
(2.3). The next theorem, the proof of which we postpone until Section 5, gives 
an additional compatibility condition that must be satisfied if p is to be of class C 1. 

Theorem 5. Assume that go ~ C 1 (IR +) with (o ~L 1 (JR +). Assume, in addition, that 
2, f l~CI( ]R+x]R +) and that the mappings carrying (t ,P) into the functions 
a~fla(a+t,  P) and a ~  flp(a+t, P) belong to C(]R+ x ]R+:L~ (]R+)). Let p be 
a solution of the population problem up to time T. Then p ~ C 1 (jR + x [0, T]) i f  and 
only if  go satisfies the compatibility conditions (2.3) and 

(0) = [~(0, ~)- /~(0,  ~)] go (0) 
(2.24) oo 

- ~ [ft.(a, ~)+flv(a, O)~- f l (a ,  cb)2(a, ~/,)] go(a)da, 
0 

where 
oo 

6 = go(0)- ~ 2(a, #) go(a) da. (2.25) 
0 

3. Equilibrium Age Distributions. Stability 
In this section we study solutions of (1.12) in which p(a, t)=p(a) is independ- 

ent of the time t. Clearly, a density field of this type will satisfy (2.2)1,2 if and 
only if 

pa+A(a,P)p=O, 
oo 

P= S p(a)da, (3.1) 
0 

oo 

p(0)= S fl(a, P)p(a)da. 
0 

It  is important to note that in this case both P and the birth-rate B =  p(0) are 
constants. A solution peCI(]R § of (3.1) will be referred to as an equilibrium 
age distribution. In the study of such age distributions the following quantities 
are of prime importance: 

a 

--  ~ o ~ ( ~ , P )  d ~  

lr (a, P) = e , (3.2) 

the probability that a person will survive to age a if the population is held con- 
stant at P, and 

oo 

R(P) = ~ fl(a, P) n(a, P) da, (3.3) 
0 

the number of children expected to be born to an individual when the population 
is P. 

Theorem6.1 Let P > 0  and assume that fl(.,P)Tr(.,P)~Li(IR+). Then a 
necessary and sufficient condition that an equilibrium age distribution exist with 

1 As is clear from the proof, hypotheses (Ha)-(H3) are not needed for the validity of these 
theorems. 
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total population P is that 
R (P) = 1. (3.4) 

When this is the case the (unique) equilibrium age distribution corresponding to P 
is given by 

p(a) =Bz(a, P) (3.5) 
with 

P 
B - (3.6) 

oo 

~n(a,P)da 
o 

Proof. The unique solution of (3.1)1,2 (with initial condition p (0)=B)  is (3.5), 
(3.6). Thus to complete the proof it suffices to show that, granted (3.5), (3.4) is 
equivalent to (3.1)3. But this is obvious. 

In the classical (linear) theory R is independent of P, and it would be fortui- 
tous for R to equal one; here, however, R(P)  is a function of P, and in most 
problems of interest there will exist at least one value of P for which R ( P ) =  1. 

Our next step is to study the stability of a given equilibrium age distribution 
po(a) with birth-rate B0 and total population Po. Thus we consider "perturba- 
t ions" ~ (a, t) of Po (a) and write 

p (a, t) = Po (a) + ~ (a, t), 

P (t) = Po + P (t). (3.7) 

A simple computation then shows that p and P obey the basic equations (2.1) 
and (2.2)1, 2 if and only if ~ and p satisfy 

D~(a, t )+2o(a)~(a ,  t)+co(a) p ( t )=~(a ,  t), 

oo 

p(t) = ~ ~(a, t) da, (3.8) 
0 
oo 

(0, t) = ~ flo (a) ~ (a, t) d a + ~c p (t) + ~k (t), 
0 

where 
;~o (a )=  ~.(a, Po), ]~o (a) = p(a, Po), no(a) = re(a, Po), 

2'o(a)=2v(a, Po), p'o(a)=[3v(a, Po), co(a)=Bofgo(a)no(a), 

co  

tc = B o S/fro (a) n o (a) d a, 
0 

(a, t) = -- 2~ (a) p(t) r (a, t)-- A (a, p (t)) [B o Z~o (a) + ~ (a, t)], 
OO O0 

r =p(t) S P'o(a) ~(a, t) da + S O(a, p(t)) [Bo no(a)+ ~(a, t)] da, 
0 0 

A (a, p) = 2 (a, Po + P) - 20 (a) - 2~ (a) p, 

s p) =/~ (a, Vo + P) -,8o (a) - ~ (a) p. 

(3.9) 
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In the presence of sufficient smoothness, the terms a~ and ~ are of "second- 
order" in the quantities ~ and p. It therefore seems reasonable to expect that the 
linear equations which result when these terms are neglected would determine 
the behavior of the population in a neighborhood of the equilibrium distribution 
Po. With this in mind, we now consider the linear system 

D~+Ao~+cop=0,  

oo 

p(t)= [ r t) da, (3.10) 
0 

co 

4(0, t )= ~ flo(a)~(a, t )da+xp( t ) ,  
0 

which represents an interesting generalization of the classical linear Lotka-von 
Foerster equations. 

To study the stability of the equilibrium distribution Po, we consider solutions 
of (3.10) of the form 

~(a, t) =~(a) e ~  ̀ (3.11) 

with ~(a) and ~ complex. Clearly, ~ satisfies (3.10) if and only if 

+(40 +r) ( + , @  = o, 
ao 

~= ~ ~(a)da, (3.12) 
0 

co 

~(0)= I flo(a)-~(a)da+Kp. 
0 

It is a simple matter to verify that (3.12)1, 2 are equivalent to the equation 

(a) = ~ (0) n o (a) [e -~ ~ - g~ fr (a)], (3.13) 
where 

co 

B o S e -  r a no (a)  d a a 

f , ( a ) =  I e-'("-~)2;(a) dot, g , -  o co (3.14) 
o 1 + B o I no (a) f ,  (a) d a 

0 

Further, (3.12)a will be satisfied if and only if 

l = S r ( a ) e - ~ a d a + g r  x _ r(a) fr(a)da , r=noflo. (3.15) 
0 

Thus a solution of the form (3.11) will exist if and only if ~ satisfies the tran- 
scendental equation (3.15). If all ~'s that satisfy (3.17) have negative real parts, 
then all solutions of the form (3.11) will tend to zero as t tends to infinity. This 
is a standard test for the stability of an equilibrium point. Our next theorem 
shows that in the present situation this is, indeed, a valid test. 

In addition to (H1)-(H3), we need the following hypotheses concerning the 
equilibrium distribution Po: 
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(H4) ~ 2(a, Po) and ~ fl(a, Po) exist for k = 1, 2, and, as functions of a, 

belong to L~ (JR+). 

(Hs) A(a, p____~) and ~(a,  p______~) tend to zero as p-~O uniformly for a ~ 0 .  
P P 

(H6) 2* = inf 2(a, Po)>0.  
a>O 

Theorem 7. Assume that (3.15) has no solution y with Re(~,)>0. Then there 
exist numbers 3 > 0  and l~ > O such that given any initial data ~o with 1[9-poIIr.t<6, 
the corresponding solution of  the population problem, i f  it exists for all time, satisfies 

P( t ) -Po=O(e  -~t) 

p(a, t ) -po(a)=O(e -~t) (for each a) (3.16) 
as t ~ oo. 

4. Some Simple Examples 

Our theory is greatly simplified if we assume that 

2(a, P) = 2(P), fl(a, P)=fl(P) e -~a (4.1) 

for all a and P, with 
2(P)>O, fl(P)>O, u__>O. (4.2) 

When this is the case (3.2) and (3.3) imply that 

n(a, P)=e -'~(e)a, 

R(P)= fl(P) (4.3) 
2 ( P ) + a '  

and we conclude from the first theorem in Section 3 that there exists an equilib- 
rium age distribution Po (a) with total population Po 4=0 if and only if 

fl(Po) = 2(Po) + a, (4.4) 
in which case 

po ( a) = 2(Po) Po e - a ( P ~  

Bo = 2(Po) Po- (4.5) 

Here, of course, B o = Po (0) is the equilibrium birth-rate. 
To investigate the stability of the equilibrium distribution Po we could study 

the transcendental equation (3.17). However it is far more instructive to postpone 
until later our discussion of stability and to study now the form our basic equa- 
tions take in the present circumstances. 

In view of the assumptions (4.1), equations (2.11) imply that 

d K ( t - a ,  t; P)= - ) . (P ( t ) )K( t -a ,  t; P), 
St 

(4.6) 
f-f  L(a, t; P)=  -2(P(t))L(a,  t; P). 
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In addition, 

~-~fl(t+_a,P(t))= fi(t)fl(t+_a,P(t))-~fl(t+a,P(t)). (4.7) 
fl'(P(t)) 
fl(P(t)) 

If we differentiate (2.10) with respect to t, we conclude, with the aid of (4.6) and 
(4.7), that 

i' + ,~(P)P-B=O 

if(P) _- (4.8) - - ~  BI" + [2(P)+~-fl(P)] B=0.  

On the other hand, if we let t--, 0 in (2.10) we arrive at 
o0 co 

P(0 )=  ~q~(a)da, B(O)=fl(P(O))~e-~atp(a)da. (4.9) 
0 0 

Thus our problem reduces to finding a solution of the differential equations (4.8) 
subject to the initial conditions (4.9). Of course, once (4.8), (4.9) is solved, p is 
computed using (2.6) and (2.7). 

Note that, as would be expected, the (non-trivial) equilibrium points of (4.8) 
occur when P and B have values consistent with (4.4) and (4.5)2. To investigate 
the stability of such an equilibrium point (Po, Bo), we let 

P=Po+P, B=Bo+b (4.10) 

and linearize (4.8) with respect to p and b in a neighborhood of (Po, Bo); the 
result is 

[9+ Al p-b=O, 
~+A2~+AaP=O, (4.11) 

where 

AI=2(Po)+2'(Po)Po, A2 = - B o  fl'(Po) A3=Bo[2'(Po)-fl'(Po) ]. (4.12) 
fl ( Po) ' 

Combining these equations we find that 

p+ (AI + A2) [7+ Aa p=O. (4.13) 

All solutions of this equation will tend to zero as t - ,  oo if and only if 

A t + A 2 > 0 ,  A3>0,  (4.14) 

or equivalently, by (4.12) and (4.5)2, if and only if 

2' (Po) > fl'(Po) 1 2' (Po)> fl' (Po). (4.15) 
~(Po) = #(Po) Po' 

But, by (4.2) and (4.4), (4.15)2 implies (4.15)1; thus a necessary and sufficient 
condition that the equilibrium point (Bo, Po) (and hence also the equilibrium age 
distribution Po) be asymptotically exponentially stable is that 

2'(Po) > fl'(Po). (4.16) 
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In view of (4.3)2 and (4.4), 
1 

R' (Po) = ~ [fl' (Po) - 2' (Po)]- (4.17) 

We therefore conclude from (4.2)2 that (4.15) is equivalent to the requirement 
that 

R'(Po)<O. (4.18) 
Note that if we let 

B 
A = - -  (4.19) 

/ ~ ( P )  ' 

then the system (4.8), (4.9) has the form 

P + 2(P) P- f l (P)  A=O, 

~i + 2(P) A - [fl(P) + cr A = 0, (4.20) 
oo oo 

P (0) = S ~p (a) d a, A (0) = ~ e- ~" ~p (a) d a, 
0 0 

which, in applications, may be more amenable to solution. 

Now let 
=0. (4.21) 

Then (4.20) implies that i p = , 4  = B/~(P) with 

P=5(P)P,  
(4.22) 

6(P)=~8(P)- 2(P). 

When 6 (P) is independent of P, (4.22)1 reduces to the Malthusian equation (1. l). 
On the other hand, when cS(P)=6o-o)oP with r co0>0, (4.22)1 yields the 
Verhulst equation (1.2). It should be noted that even in these simple cases our 
study provides new information: it enables us to determine the manner in which 
an initial age distribution p (a, 0) evolves in time. 

Finally, if we take f l(P)=P, 2(P)=0 ,  so that r then (4.22)2 reduces 
to p = p 2 .  Solutions of this equation become infinite in a finite time. Thus, since 
this choice of fl and 2 conforms to (H1)-(H3), this example confirms our state- 
ment in Section 2 that one cannot expect global existence without additional 
hypotheses concerning fl or 2. 

5. Proofs of Theorems 

Proof of the Lemma. Consider the Banach space C[0, T] with supremum 
norm I1" II r. Choose r > 0, let 

oo 

q~= S q~(a)da, (5.1) 
0 

and let 
Zr= { f l f ~ C  + [0, Z], I l f - ~ l l r < r } .  (5.2) 

1 This, of course, is consistent with (2.1), (2.2) 2, and (4.1). 
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Since E r is closed, to complete the proof it suffices to show that 9~r maps E r 
into itself and is contractive. 

Let 
I2= {(a, P)I a >0,  P > 0 ,  I P - ~ I  <r ) .  (5.3) 

Assumption (H2) implies that the quantities 

2o= sup 2(a,P),  21= sup 2p(a,P),  
(a, P)~ D (a, P)~fJ 

fio = sup fi(a, P), fil = sup fie(a, P) (5.4) 
(a, P)~f~ (a, P ) E ~  

are all finite For P ~ r  we have then, by (2.10)2, (2.11), (2.13), and (5.1), 

t 

~T(P) (t)-< ]3 o S 5~r(P) (a) d a + fio ~, (5.5) 
0 

and hence Gronwall's inequality implies that 

&r(P)  ( t) < fio ~ e a~ (5.6) 

Next, we use (2.14), (2.11), (5.1), (5.4), and (5.6) to obtain 

t o0 

I ~T(P) ( t ) - ' P  ] _-<fio r176 ~lL(a, t; P ) -  ll~o(a) da, 
0 0 

< ~(e B~ 1) + �9 sup I L(a, z; P ) -  1 I, (5.7) 
a_>_0 

0 ~ _ < T  

for O<t<T and P e E  r. Since 
l e~ - l l< l z l e  Izl, (5.8) 

we conclude, from (2.11)2 and (5.4), that 

sup IL(a, T; P ) -  11<2o Te x~ (5.9) 
a > 0  

O < r ~ T  

The inequalities (5.7) and (5.9) show that ~r(P)eEr provided T is sufficiently 
small. 

We show next that 9~r is contractive for small T. Thus choose P, /3~E r. By 
(2.14), 

[I ~r(P)  - ~r  (/3)It r < I + II +I I I ,  (5.10) 

where I, II, and III are, respectively, the suprema (over O<_t<T) of 

t 

[. IK( t -a ,  t; P ) - K ( t - a ,  t;/3)] ~r(P)(a)da, 
0 

t 

K ( t -  a, t;/3) I&r (P) ( a ) -  ~ r  (/3) (a) l d a, (5.11) 
0 

co 

I L(a, t; P)-L(a,  t;/3)t ~p(a)da. 
0 
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We now estimate each of the above. By (2.11), (5.4), and (5.8), 

I L(a, t; P) -L(a ,  t;/31 <l l - e ~  l, 

<21 Te2~~ IIP--/311 r. 
Similarly, 

[ K ( t -a ,  t; P ) -  K ( t -a ,  t;/3l <21 Te2a~ llP- ffllr. 

(5.12) 

(5.13) 

From (5.6), (5.12), and (5.13) it follows that for T sufficiently small I and II 
are each less than k IIP-Pllr with ke [0, 4) a constant (independent of P and P). 
Thus to complete the proof we have only to show that 

for sufficiently small T. 
Let 

II~IIP--/311T (5.14) 

(t) = .~r  (P) (t) - ~ r  (13) (t). (5.15) 

We then conclude from (2.10)2 and the definition of Nr that 

t t 

(( t )= I fl(t--a, P( t ) )K( t -a ,  t; P)((a)da + I [f l( t-a,  P ( t ) )g ( t -a ,  t; P) 
0 0 

I --fl(t--a, P( t ) )K( t -a ,  t; 13)] ~r(P)(a)da (5.16) 
oo 

-t- ~ [fl(a+ t, P(t)) L(a, t; P)- f l (a  + t, /3(t)) L(a, t; 13)] (p(a) da. 
0 

Letf( t )  denote the last two integrals in (5.16). Then (2.11) and (5.4) imply that 

and hence 

t 

((t) < flo S ((a) da + If(t) I, (5.17) 
0 

t 

I ( ( t )< If(t) l+flo S If(a) l e#~ da. (5.18) 
0 

Proceeding as before, we easily verify, with the aid of (2.11), (5.1), (5.4), and 
(5.6), that 

llfllr<xo IIP--/311T, (5.19) 

where Xo is a constant depending only on flo, ill, 2o, 2~, and T. In view of the 
definition of II, (2.11)1, (5.18), and (5.19) imply (5.14) for sufficiently small T. 
This completes the proof. 

Proof of Theorem 4. By hypothesis (Hi) the quantities 2 o, 21, flo, and ill, 
defined in (5.3), (5.4) are continuous functions of ~. It is therefore clear from 
the proof of the lemma that the time-interval T (of that lemma) can be chosen 
as a continuous function T(~) of ~. It therefore follows that given any two 
numbers 0-<~o<~1 existence is assured for O<<_t<_T(~o, ~1)= rain T(~) as 
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long as the initial total population �9 lies in the interval ( ~ 0 ~ ( ~ _ ~ 1  . Choose 
T>0 .  To prove existence for all time, it clearly suffices to establish existence 
up to time T. By Theorem 3, as long as it exists in 0_<t< Tthe  solution must 
satisfy O<P(t)<~e ~. We proceed then on intervals of length T(0, ~e6r), 
taking as initial data on each interval the terminal value of p on the preceding 
interval. This obviously leads, in a finite number of steps, to a solution up to 
time T. 

To prove uniqueness assume that Pl and P2 are solutions for all time. Then 
(B1, P1) and (B2, P2) are solutions of (2.10) for all time. By the lemma and the 
remarks preceding it, we have local uniqueness for the system (2.10). Thus the 
set of points t such that (B1, P 0 = ( B 2 ,  P2) on [0, t] must be an interval of the 
form [0, T), and, since Bk and Pk are continuous, T =  oo. We therefore conclude 
from (2.7) and (2.8) that p~ =P2. This completes the proof. 

Proof of Theorem 5. As we have stated in Section 2, when (#~CI(]R.+),  (2.3) 
is necessary and sufficient for p to be continuous. It therefore suffices to show 
that, granted (2.3), (2.24) is necessary and sufficient for p to be of class C A. It 
follows from our hypotheses and (2.10) that B, PeC 1 (~+).  Thus it is clear from 
(2.7) and (2.8) that p will be of class C 1 if and only if it has this property across 
the characteristic t = a, or equivalently, if and only if 

where 
h (o) = - 4, (o) - x (o, ~ )  q, (o), (5.20) 

The proof of this assertion is greatly facilitated by the change in variable z = t -  a + 0t 
in (2.8). Further, in the derivation of (5.20) we used the relation 

q~(0)-.= B (0), (5.22) 

which is a direct consequence of (2.3) and (2.10)2. Next, by (2.10), (5.21), and 
(5.22), 

P(0) = ~'  oo (5.23) 

13 (0)= fl(O, ~)q~ (0)+ ~ [fla(a, ~)+ fie (a, ~)~- f l (a ,  ~)2(a, ~)] q~ (a)d a, 
0 

where 4~ is defined in (2.25). Finally, in view of (5.23)2, (5.20) is equivalent to 
(2.24), and the proof is complete. 

Proof of Theorem 7. Let p be a solution of the population problem for all 
time, and let ~ and p be defined by (3.7), so that (3.8) holds. It then follows from 
(2.2)a that ~ satisfies the initial condition 

where 
(a, 0) = r/(a) (a _--> 0), (5.24) 

t/(a) = ~p (a) -- Po (a). (5.25) 

oo 

q~ = P(0) = S q~ (a) d a. (5.21) 
0 
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We begin by obtaining an expression for the "solution" ~ of (3.8) and (5.24) 
in terms of ~v, ~,, and r/. First of all, proceeding exactly as in the derivation of 
(2.7) and (2.8), we conclude from (3.8)1 that ~ must satisfy the relations 

t 

~(a, t)=q(a--t)ZCo(a--t , a)+ ~ lro(-c + a --t, a) [~z,(z + a --t, -c) 
0 

-og(-c+a-t)p(z)]d-c for a>t,  
(5.26) t 

~(a, t)= b(t-a)zco(a)+ S 7ro(z + a - t ,  a ) [~ ( -c+a- t ,  z) 
t - - a  

-og(z+a-t)p(-c)]d-c for a<t,  
where 

for t > 0 and 
b(t) = 4(0, t) (5.27) 

a 

-1o~~ no(a) lro(a)=e , Iro(a', a ) = - - .  (5.28) 
no(a') 

Further, (5.26)-(5.28) and ( 3 . 8 ) 2  , 3 imply that 

satisfies the matrix equation 
t 

where 

(5.29) 

K=JK2, K22y 

{ Kxl( t ) )  ~- 

K22(T)~=lro(t)J _flo(t) ~, (5.31) 

i { 1 }  f ( t )=o t_~a~(z+a - t , - c ) r co (z+a - t , a )  flo(a) dad-c 

~o ){fl 1 )} {00()} + S ~/(T) no(~:, -c + t d'c+ . 
o o(-c+t t 

It is clear that the properties of the solution x of (5.30) are intimately con- 
nected with the properties of the Laplace transform/~ of K. By (H6), (3.9)3, and 
(5.28), 

no(a)<e -~*~ rco(a', a)<e -~*(*-~ (a' <a), (5.32) 

and therefore (3.9)2.6. (H2), (H4), (5.28), and (5.31)2_ 4 yield the estimate 

- - ~ K ( t )  <Co e-a' ' ,  k=0 ,1 ,2 .  (5.33) 

A x(t) + S K ( t -  z) x(z) d-c =f(t), (5.30) 
0 
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(Here and in what follows Co, C~, C 2 . . . .  denote positive constants.) Thus the 
Laplace transform /((s) of K exists for R e ( s ) > - 2 , .  Let A(s) denote the deter- 
minant of the matrix A +/((s) ,  so that 

A(s)=(l+g~(s))(l+g22(s))-g~2(s)(s (5.34) 

A tedious calculation based on (5.31)3.4 and (3.14) shows that the condition 
A(s )=0  is equivalent to the requirement that (3.15) hold with ~=s.  But our 
primary hypothesis in Theorem 7 is that (3.15) have no solution y with Re (~)> 0. 
Thus A (s) has no zeros with Re(s)>__0. Further, it follows from (5.33) and (5.34) 
that A(s)-, l as s ~  with R e ( s ) > - 2 . .  Thus there exists a positive constant 

< 2,  such that d (s) has no zeros with Re(s )>  - ~ ,  and this, in turn, implies that 
the matrix A+K(s) has an analytic inverse in R e ( s ) > - ~ .  Since g(s)~O as 
s ~ o v ,  this inverse will have the form A-~+3(s), where J(s)  is analytic in 
R e ( s ) > - ~  and f ( s ) ~ 0  as s ~  ~ .  In view of (5.33), two integrations by parts 
yield the estimate 

g(s)=s -~ K(O)+s-2ic(O)+o(s -2) as s--,oo. (5.35) 

It follows from (5.35) and the definition of J(s)  that 

J ( s ) = s  - 1 J o + O ( s  -2) as s--*oo in Re(s)> -/2, (5.36) 

where Jo is constant, and therefore J is the Laplace transform of the function 

oo 

J(t)=~l-~e -r" ~ e'~'](-ft+i~)d(. 
ZTZ - o o  

It follows from (5.37) that 
I J(t)  l <= C1 e -r't. 

(5.37) 

(5.38) 

The Laplace transform considerations above indicate that the solution of (5.30) 
is given by 

t 

x(t) = A- if(t) + ~ g ( t -  z)f('r) dz. (5.39) 
0 

(It can be shown that (5.39) does indeed yield the solution of (5.30) whether or 
n o t f ( t )  actually has a Laplace transform.) 

Our next step will be to obtain estimates for Ixl=(p2+b2) �89 and Ill(o, t)llL ,. 
By the last of (5.31), (5.32), and the fact that II/~ollL <oo ,  

If(t)l _-< C2 e-X*('-~) Ila'( ", T)IIL1 dr+ II'/[ILI e -a* '+  t•(t)l , (5.40) 

and (5.38)-(5.40) imply that 

{ t Ix(t) l < C3 IlnllL, e-'nt+ I~b(t) l+ I e-~('-~) [I ~b (z)[+ [l~(.,  x)IIL,] dz . (5.41) 
O 

In deriving (5.41) we have used the following lemma: if 2*>fi ,  lu(t)[<e -~', 
I v (t) I < e -  x* ', and w (t) >_ 0, then 

lu*vl<C4u, lu*v*wl<Cslu*wl, (5.42) 



Non-linear Age-dependent Population Dynamics 299 

where u ,  v denotes the convolution of u and v. Next, since 

t t r t t 00 

S ~ f(a,z)dzda+S~f(a,~)dTda=~ ~ f(a,z)dadz, (5.43) 
0 t -a  t 0 0 t--~ 

we conclude from (5.26), (5.32), (5.41), (5.42), and the inequality 2 ,  > p  that 

t 
I/i( ' ,  t)llL, < ~e-a*"lb(t  -a) lda+ lit/ilL, e -a*' 

0 
t 

+ ~e -~*"-') { liar( �9 , z)IIL, + [IcOI[L, I p(~) I} dr, (5.44) 
0 

=<C6 { HrlIILI e - ~ t +  o i e - M r - o  [' ~b ('c)I + 1 [~ ("  T)HLI] d,} .  

Let e be a fixed positive number, to be chosen later. By (Hs) there exists a 
6=6(e)  such that for IPl < 3  we have 

Ih(a,p)l<elp], IO(a,p)l<elPl, (5.45) 

and, without loss in generality, we can assume that 6<e .  Then, since II;~GIIL~, 
II/~bll,~, and IlPollz, are finite, the last two relations in (3.9) imply that 

I1~( ", t)[lL1, [r JIG(', t)[IL,+~lp(t)l} (5.46) 

with C7 independent of e provided we require that e < l .  Since IP I<~<e ,  (5.46) 
yields the inequalities 

fla~(',t)llL,, I~(t)l<~CT~r(t), a(t)=ll~(',t)lrL,+lp(t)l, (5.47) 

and (5.41), (5.44), and (5.47) imply that 

cr(t)< Cs {llrlll~, e-r" + ect(t)+ 2~ i e-U('-~ a(z)dz }. (5.48) 

1 
If we require that 8 <-~--s-s ' then (5.48) implies that 

{ ' } a(t)<=K II~IIL, e-r" + 28Se-r'('-~) ~(~)dT (5.49) 
0 

with K =  2Cs, and Gronwalrs inequality yields 

a(t) < gllqllL, e (-~+2tc")t. (5.50) 

We emphasize that this result holds for 0 < t < T as long as I P (t) l<  6 for 0 < t < T. 

1 
Now choose 8>0  such that # = ~ - 2 K e > 0 ,  e < l ,  and e<TC-~- a, and then 

choose 6 such that 6 <min  (3(~), 3(e)/K). Assume that the initial data cp satisfies 
oo 

tlq~-pollL, = lit/lit,<& Then, since p(0)--  ~ ~l(a)da, it follows that I p ( 0 ) l < 6 < 3 ,  
0 

and we therefore conclude from (5.47)2, (5.50), and the continuity of p that 
p ( t ) < 3  for all t=>0. Thus (5.50) is satisfied for all t ~ 0 ,  and, in view of (3.7)2 
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and (5.47)2, (3.16)1 holds. Further, (5.29), (5.41), (5.47), and (5.50) imply that 
liar( ", t)llLl, ~O(t), and b(t) are all O(e-U'), and therefore, since llco[IL <oo, 
(5.26)2, (5.32), and (3.7)1 yield (3.16)2. This completes the proof. 

It is clear from the above proof that, in addition to (3.16), we also have 

lip(', t)-pollL, =0(e-ut) (5.51) 
as t - ~  c~. 
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