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Abstract. By considering thc role of non-linear approximatioris in lin- 
ear cryptanalysis we obtain a generalization of Matsui's linear cryptan- 
alytic techniques. This approach allows Ihe cryptanalyst greater flexibil- 
ity i n  mounting a linear cryptanalytic attack and we demonstrate the 
effectiveness of our non-linear techniques with some simple attacks on 
LOK191. Thew att,acks potentially allow for the recovery of seven addi- 
tional bits of key information with less than 1/4 of the plaintext that is 
requircd using current linear cryptanalytic methods. 

1 Introduction 

The technique of linear cryptanalysis [7] is now wel l  known. Most dramatically 
it has provided the first experimental (t,hough barely practical) compromise [8] 
of the  Data  Encryption Standard DES [9]. 

In  addition t,o some theoretical and pract,ical enhancements or extcnsions t'o 
linear cryptanalysis [4, 6,  111 it is natural to consider whether the linear approx- 
imations on which linear cryptanalysis relics can be replaced with' rwn-linear 
approximations. Since there are fa.r more non-linear approximations than  lin- 
ear approximations, it  seeins fair to say tha t  by opening ourselves to their use, 
we might obtain a much improved attack on some cipher. As a motivational 
example, thc best linear approximation to a DES S-box is t o  S5, and this ap- 
proxiniation holds with an  absolute valued bias of 20/64, yet there is a relatively 
simple non-linear approximation to  S8 involving four input bits3, which holds 
with absolute bias 28/64. While previous work [3] has already demonstrated in- 
surmountable problems in the general use of non-linear approximations, we will 
show tha t  they should not be abandoncd and that, non-linear approximations 
can offer effective additions to  the  basic techniques in use today. 

In the following sections we describe the essential issues in linear cryptanal- 
ysis and the USE of non-linear approximations within such an at,tack. We show 
tha t  current linear c,ryptarialytic techniques are essentially special instances of 

Labeling t,he input bits to DES S-box S8 as z:, . . .IO and t,he output bits as y3 . . .yo 
t h :  approximation 1 @ z3 @ z4 H, I223 @ z3z4 @ z1z2z4 @ z 2 z 3 z 4  = yo @ y1 CD yz @ y3 
holds with probabilit,y 60/64. 

U. Maurer (Ed.): Advances in Cryptology - EUROCRYPT '96, LNCS 1070, pp. 224-236, 1996. 
0 Springer-Verlag Berlin Heidelberg 1996 
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our more general approach and we demonstrat>e that our techniques have irn- 
plications for both the design and cryptanalysis of block ciphers. In particular, 
our techniques pose a threat even when Matsui’s advanced linear cryptanalytic 
at,tacks (in which the cryptanalyst guesses the key bit,s used to evaluate some 
S-box) are rendered impractical due to  the use of large S-boxes. While we will 
motivate our discussion with examples tha t  involve DES (since this is the cipher 
with which most people are familiar) we note tha t  our current, techniques do  not 
seem to offer any significant advaiit,age over existing attacks on DES. There arc 
however some open questions in this regard and fut,ure research alone will de- 
termine if this is indeed the  case. Instcad, our techniques have been most useful 
in improving existing attacks [16] on LOKlS1 [l] where it is straightforward to 
recover seven additional bits of the  user-defined key while using less than 1/4 
of the plaintext that  is current,ly required. We also expect our techniques t,o be 
applicable to many other block ciphers. 

2 Linear Cryptanalysis 

In a linear cryptanalytic attack the cryptanalyst, identifies a linear relation be- 
tween some bits of the plaintext, some hits of the ciphertext and some bits of 
the  user-provided key. While a relation between single bitas of information which 
holds all t,he time (or none of the time) would be especially useful to a crypt- 
analyst, Matsui [7] showed tha t  provided the relation does not hold exactly half 
the  time, there are ways to extract key iiiforniat,ion by analyzing a large enough 
set of known plaintext and  ciphertext pairs. 

There are two basic approaches. ‘I’he first is to use an approximation which 
relates bits of the user-defined key and the plaintPxt/ciphertext da t a  in a linear 
way thereby providing one bit of key information when sufficient da t a  is available. 
The  second is t o  identify, by analysis of the block cipher, some bits of a linear 
approximation that depend for their value on a small subset of bits in the user- 
defined key. It is then assumed tha t  only by making a correct guess for these 
key bits will t he  anticipated bias in certain bits of the plaint,ext/ciphertext da t a  
be detectable. Matsui showed how to  use these key-bit guessing techniques in 
what are sometimes referred to as the 1R- and 2R-methods. The  block ciphers 
we are concerned with are iterative and repeatedly use a round transformation 
during encryption. Wit,h the  lR-metlhod the  cryptanalyst guesses the  value of 
part of the user-provided key in either the  first or the last rounds, while in t8he 
2R-method the guess is for part  of the user-provided key from both the first and 
the  last rounds simultaneously. 

3 Linear and Non-Linear Approximations 

Linear approximations are built up by analyzing individual rounds of the block 
ciphcr. For ease of exposition, we will consider a Feistel cipher [2]  where at 
round i of the cipher we denote the partially encrypted da ta  input t o  the round 
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as Ck-' and C;-'; t,he high-order half of the data  and the low-order half of the 
data respectively. We shall deriot8e t,he action of the round function with subkey 
Ic; by f(., ki) and thc output from the it'' round of the cipher will be written 
as C; = Clip' and C; = Ck-' @ f(C;-', k i ) .  Note that  in this notation Cf, CP 
constitutes the plaintext and C [ ,  Ci constitutes the ciphertext produced by the 
r-round cipher (since there is no swap in the last round). 

3.1 Joining Approximations 

The notation C~-'[Q] (and later 8, y arid 6) is used to denote a general and 
unspecified linear sum of bits of the data block Ci-'. An approximation to the 
action of a single round of the cipher might be written as 

where ki[6] is a linear conihinat,ion of subkey bits ( the exact form of which will 
depend on the block cipher in question). By writ,ing the approximation in this 
way, we are t,acitly approximatling the action of t8he round function by 

C;-' [p @ y] fli ki [6] = Cft-'[a] @ C&] 
= (ck-' @ c;)[cr]. 

(2) 

Suppose now that, we have some partially encrypted data Ck-' and Cf-' and 
let, us consider an approximat,iori which involves a non-linear function of bits in 
CiL-'. We shall use the notation C:i-'[p(cr)] where Q is used to  identify some set 
of bits and p ( . )  is, in this case, a non-linear polyiiomial involving t,hese bits. Now 
forming a one round approximation as we had in (1) is difficult because, as we 
can see from (a), it requires that 

and for non-linear y ( . )  t,his will not, in general, hold. But, while one-round ap- 
proximations that, are non-linear in the output bits from f(Cf-', ki) cannot be 
joined together (when bitwise exclusive-or is used t o  c.ombirie this output with 
Ci- ')  non-linear approximations can still be used in a variety of ways. 

First note t,hat the input tmo an approximation to  the first a,nd last rounds of 
some cipher need not, be combined with any other approximations. Consequently 
approximations to these rounds can equally be linear or non-linear expressions 
in bits of the data input. Second, and more interestingly, we note that the 1R.- 
and 2R-met,hods of linear crypt,analysis inake certain bits of the input to the 
second (or penultiniate) round available t,o the cryptanalysis. We can use this 
to our advantage and non-linear approximations can potentially be used in the 
second and the pennltirnatc rounds of an attack on some block cipher. We will 
demonstrate this practically with an improved attack on LOKIS1. 

There is however one major problem that  we have yet t o  overcome, and that  
is t o  identify and use non-linear approximations to a single round of a cipher. 
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3.2 Non-Linear Approximations to a Single Round

To illustrate our approach to using non-linear approximations in a single round
of a cipher, we shall use as our example the round function used in DES. Consider
the input to the i round which we have denoted as C"h~

l and Cj~ . The data
C'l~

i used as input to the round function / (• , k,) is expanded from 32 to 48 bits
and combined using exclusivc-or with the subkey ki for the round. The resultant
48 bits are then used as input to the non-linear transformation affected by eight
S-boxes. The 32 bits produced as output are permuted and the result is combined
using bitwise exclusive-or with C^"1. The two data halves are then swapped.

Let us suppose that analysis of the S-boxes has revealed that an approxi-
mation consisting of a non-linear combination of some input bits to an S-box
and a linear combination of the output bits is strongly biased. To exploit this in
an attack, we need to transform the approximation across a DES S-box into an
approximation across the entire round function. The output of the S-boxes can
be easily related via the bit-wise permutation into an expression in the data bits
output from the round function. For the non-linear combination of bits that are
used as input to the S-boxes, it is harder to get an expression in terms of the bits
that are used as input to the round function. This is because the key ki is com-
bined with the expanded C]~l using bitwise exclusive-or. Denote the expansion
of the data block C]~~x by 247 . . . ZQ. Combined with the key A47 . . . k$ this forms
the input to the S-boxes xA7 . .. x0 where x{ — z{ © k{ for 0 < i < 47. Let us sup-
pose, by way of illustration, that a non-linear approximation to the eighth S-box
S8 involves XoX\. Then depending on the actual values of ko and ki we can ex-
press ZQXI in terms of z$ and z\. More explicitly, when (k{i, kx) — (0, 0) it is clear
that XQX\ = zozi and when (&o, k\) = (1,1) we have x'oX'i = z$z\ © ZQ © zy © 1-
For (£0,^1) = (0,1) we have that xoxi = zozx © z0 and when (&o,&i) = (1,0)
it follows that .Bo î — zazi 6) Z\- Note that the key is fixed for all the data we
collect. When a non-linear approximation is used in the first and/or last round
of the cipher, the input to the round function can be directly observed in the
plaintext or the ciphertext respectively. We might then assume that the value of
the key bits involved in the non-linear terms of the approximation are fixed to
some value and with a certain proportion of the keys, we will be correct in our
analysis. We illustrate this phenomenon with a simple example using DES.

Example with DES. The following approximations to S-boxes S5 and SI
(A, C and D appear in [7, 8]) will be useful in attacking five-round DES. The
input to an S-box will be denoted £ 5 . . . x0 and the output 2/3 . . . yo-

A
D
C

A'

D'

box

S5
S5
SI
S5

S5

input
x4

x4

X'l

4 5 *i' *̂  O*̂  1 ̂  5 ^ 0 **̂ 4 ̂ -' 5

^i © X3 ffi x'oX'3 © XQXS ffi a;i^3©

*1«5 © X0XiX3 © X'QX-IX'5

output
J/o ffi 2/1 © 2/2 © 2/3

2/1 © 2/2 © 2/3

2/2

2/o © 2/i © 2/2 © 2/3

2/i © 2/2 © 2/3

|6ms|
20/64
10/64
10/64
2 / 6 4

18/64
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p l a  z ni e xt s 

success rute 

Using the five-round linear approximation DCA-A, which holds with proba- 
bility p where ( p  - 1/2)-2 = 68,720, WP can recover one bit of key information 
with the following success rates over 50 trials: 

17,180 34,360 68,720 
74% 88% 98% 

Alternatively, one bit of key information can be recovered using the  non-linear 
approximation D’CA-A’ which holds with probability p’ where (p’ - 1/2)-2 = 
14,728. Note the reduced d a h  requiremmts. Again, success r a k s  are quoted for 
50 trials. 

I DhinteXts n 3.682 1 7.364 1 14.728 1 

For this experiment, the key bits directly involved in ehe non-linear approxima- 
tion in the outer rounds were fixed and known. 

3.3 Recovering More Key Bits 

In certain circiimst,arices non-linear approximations can be used t.0 give a mech- 
anism which allows t,he recovery of more bits of key information with less plain- 
text.  As might already be  apparent, specific instances of our general approach 
are equivalerit to Mat,sui’s IR- and 2R-metlhods. 

So far we have dealt with the non-linearity in t,he input bits to some S-box 
by assuming tha t  t he  key biis involved have a certain value and that for some 
proportion of the user-defined keys we are correct. There is however anollier ap- 
proach. Whenever a product appears i n  a nonlinear approximation, the possible 
values for the  key bits involved force us t,o consider alternative approximations. 
For instance, let us suppose that the product of the two least significant inpnt 
bits 20 and 21 to S-box S8 in DES is equal t,o the linear sum of all the output 
bits from S-box S8 wit,h some probability p. Define the  absolute value of the  
bias of this approximation to be E where c = 1p - 1/21. Suppose in our attack, 
t ha t  we know the corresponding bits d o  and z1 before transformation with the. 
user-defined key ko and 81 which gives 20 = zo @ ko and x1 = z1 @ 121. Since 
k g  and k l  are fixed, we can try each guess for k~ and 121 in turn with the data 
we have. When we make the correct key guess, we correctly reconstruct 20 and 
2 1  the actual inpiits to the  S-box and hence the correct product, 20x1. Suppose 
we guess incorrectly arid choose t o  @ 1 and k l .  Then we erroneously construct, 
the values 2 0  @ 1 and 2 1  instead of .zo and 2 1 .  Now ( 2 0  @ 1)xI = 20x1 @ 2 1  

and t,his expression in the input bits will equal the sum of the output bits with 
probability p l  say. Define €1 = Ipl - 1/21, If t l  < 6 then by taking sufficient da t a  
the c.orrect guess k o ,  k.1 can be distinguished from ko @ 1, k l .  If 61 > c then the 
incorrect key guess will dominate, though in a pract(ica1 attack we would use the  
approximation with the greater bias anyway (and in so doing we would recover 
the correct key guess). If €1 = e then the  t,wo guesses cannot be distinguished. 

Example with DES. We ca.n use t.he approximation D ’CA-A’  as defined 
previously to recover key bit,s used in the non-linear approximation.. Denote the  
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p In zn t ext s 
.success rate 

key bits used in S5 in round one a? k i  . . . kh and the key bits used in S5 in round 
five as kz . . . k ; .  Analysis of A ’ and D reveals tha t  with A we can reliably recover 
kg ,  k: @ k: and k z  and with D’ we can recover k : ,  k :  and k i  C-p k t .  We obtained 
the  following success rate over 50 trials when using the non-linear approximation 
D’CA-A’ (which holds with probability p where ( p -  1/2)-’ = 14,728) to  recover 
six bits of key material. 

14,728 29,456 58,912 117,824 
18% 38%) 60% 82% 

A Special Case. The  1R- and 2R-methods of Matsui, arid even the basic 
technique of linear cryptanalysis which recovers one bit, of key informat,ion, are 
all special instances of this more general t,echiiique. 

With DES we might imagine using non-linear expressions of an S-box using all 
six input bits, see e.g. [15]. These ‘approximations’ would hold wi th  probability 
1 and we would expect to recover six bits of user-defined key. Of course, we could 
simply represent, the action of these polynomials by means of the look-up t,able 
for the  S-box. This gives us precisely the 1R- and 2R-methods. By choosing an 
incorrect key guess we are in effect deriving a different approximation t,o the S- 
box which holds wit,h a reduced bias. With sufficient da ta  the correct kcy guess 
can be distinguished. Note tha t  when we have the polynomial expressions at our 
disposal we can actually evaluate which of the incorrect guesses are most likely 
to occur. In this way we can improve our basic att,acks by allowing for certain, 
predicted incorrect answers and adjusting them accordingly. In experiments on 
DES this gives us an improvement in our attacks, but not by asignificant margin. 

4 Implications 

4.1 Greater Cryptanalytic Flexibility 

In practice, we recover key bits using non-linear techniques by first counting 
the number of plaintext,/ciphertext pairs that, fall into a variety of classes. These 
classes are defined according t,o the text involved in the nonlinear approxiinatmion 
(the eflectiwe text bits). We t,hen process this da t a  by guessing each possible value 
for the key bits involved in the  non-linear approximation (the efleclizre key bits) 
and combine this guess with the effective text. In this way scores can be kept for 
the  number of t,imes the bit identified by the  linear approximation t80 the rest of 
the  cipher is either 0 or 1. A guess can be made for the value of t,he effective key 
bits depending on these final scores. Thus the basic work effort in processing the 
da ta  once it has been initially sorted is 2k+t  where k is the number of effective 
key bits and t is the number of effective text bits. 

I t  is now clear that  our more general approa,ch to  the use of non-linear approx- 
imations has numerous practical implications beyond the  use of approximations 
wit,h greater absolute biases. Using Matsui’s 1R- and 2R-methods, the crypt- 
analyst is unnecessarily reshicted t o  using a number of effective key and t#c.xt> 
bits tha t  is a multiple of the number of bit,s involved in the  input to some S- 
box. When larger S-boxes are used, and this is a common recommendation [13],  
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Matsui’s 2R- and even the lR-methods can become impractical just  because the 
number of effective tjext and key bits beconies excessive. Existing examples of 
ciphers where the 2R-method is impractical include FEAL [14] and LOKI91 [16]. 
When the  S-boxes are so large that, the 1R-method itself becomes impractical 
then it might previously have been argued tha t  the cryptanalyst would be re- 
duced to recovering just  a single bit of user-defined key. Instead the cryptanalyst 
can use non-linear approximations, in the fashion we have described here, to re- 
cover additional bits from t,he user-defined key. These techniques can be used 
to  supplenient the %R-rriethod, they can be used to  supplement t he  1R-method 
when the 2R-method is irnpractical and t#hey can be used even if both the 2R- 
and 1R-methods are infeasible. 

Example. In [ 121 “almost perfect, non-linear functions” were studied. For 
ciphers constructed using these functions, linear approximations will have low 
absolute biases. Examples of such funct,ions are f ( x )  = x2‘t1 in G‘F(2n) for 
odd 71 [12]. T h e  output bits o f f  are quadratic in the input bits and any linear 
approxiniation for f will have an absolute bias at, most, 2 /2n, where s = 
g c d ( k ,  n) [lo]. For a Feistel cipher with round function F ( z ,  k )  = f ( x  @ k )  with 
n = 33,  k = s = 1 (given as an example in [la]) t,his yields a maximum bias 
for one round of 2-17. Clearly, the ‘LR-method is iiripossible for this cipher, and 
the IR-method requires many effective text and key bits. However the  functions 
f are only quadratic, so non-linear approxirriations which involve only a few 
input bits might provide improved opportunities for attack. Experiments on the 
funct>ions f defined above for srriall values of 71 confirm this. For n = 7, k = s = 1, 
the absolute value of the bias of a linear approximation is at most 8/128. With 
just  two input bits, t,here exist non-linear approxiniat$ions with absolute biases 
16/128. For R = 9 and A: = s = 1, the bias of a linear approximatmion is at most 
16/512 yet with three input b k s  there exist non-linear approximations with 
biases 32/512. I t  is immediat,ely clear t ha t  by using our non-linear techniques 
in the  outer rounds of the cipher, t,he basic linear crypt,analytic attack can be 
readily improved. 

+ - 1  

4.2 The Non-Linear Approximation of Inner Rounds 

While we might be familiar with the  use of non-linear techniques in the outer 
rounds of a cipher it is interesting to observe tha t  non-linear approximat>ions can 
also be used in the second and penultiinat,e round of a cipher. To illustrate this, 
suppose for some cipher tha t  71 bits from an S-box in round one are mapped to the  
same S-box in round t w o  and tha t  by using t effectrive text bits we can replicate 
the output from the S-box in round one. When this ou tput  is correct, n input 
bits to a single S-box in round two will be correct and we can iise a non-linear 
function of these input bits in an approximation of the second round instead 
of t he  linear function that techniques currently demand. In pract,ice we would 
increase the number of effective text bits t o  t + n by additionally considering 
certain bits of C:: t o  be effective. There would also be an increase in the number 
of effective key bits, t o  acconimodat,e those used in the  second round, but these 



231 

might well be recoverable during the attack anyway. We provide experimental 
verification of this approach in our attack on LOKI91. 

While it might appear t,hat, we are only able to  improve attacks on a round 
by round basis, such improvements should not, be overlooked. The  plaintext 
requirements in a linear cryptanalytic attack are considered to  be proportional 
to t - 2  where 6 is the bias of the approximation [8] and increases in the bias of 
just, t8wo rounds of a cipher by a factor of will give a reduction in plaintext 
requirements by a factor of 4.  

5 LOKI91 

LOKI91 is a DES-like block cipher that, operat,es on 64-bit blocks and uses 
a 64-bit key [l]. The most interesting feature of LOKIYl for our purposes is 
that  the cipher uses four identical S-boxes which map 12 bits to 8. Evidence 
for the  resistance of 1,OKTS 1 t,o 1inca.r crypt,analysis was recent,ly provided by 
‘Ibkit,a et  al. [16]. In this section we provide experimental verification of our new 
techniques. While we mount,ed our attacks on four-round LOKI91 (for reasons 
of practicality) the approximation we chose matched the outer rounds of the 
best linear approximation [16] that would be used to attack (4 + 3r)-round 
LOKI91 for r > 0. Clearly the plaintext requirements iV for a linear cryptanalytic 
attack increase substantially as we add more rounds and we note tha t  1Bround 
LOKI91 (when r = 4) remains immune to  these attacks4. We will show that, 
it  is straightforward to use non-linear approximations in the first two rounds 
and in the  last round of LOKIS1 sirriullarieously, thereby improving Ihe basic 
linear cryptanalyt,ic attack. The  polynomials we will use in our attack are given 
in Table 1, where we denote t,he input, t,o the  12-bit) S-box by 2 1 1  . . . 2 0  and the  

Tokita et  al. [I61 point out tha t  the S-boxes in LOKI91 are too large to 
allow the cryptanalyst to use the 2H;method and they restrict themselves t o  
considering only the 1R-method as ari alternative. This allows the recovery of 
13 bits of user-defined key (wit,h a work-effort proportional to 224 operations). 
By reversing the  role of the plaintext arid ciphertext, potentially another 13 bits 
can be recovered leaving 38 bits t80 be discovered by exhaustive search (with a 
238 work effort). 

With the  non-linear approximations we have identified however, we can 
mount a range of attacks tha t  are quite different from the typical approach 
of ?X-Y where we use ? t o  denot,e Matsui’s 1R-method in the first round. These 
attacks have different work efforts and recover different numbers of key bits. By 
allowing for more work during the analysis of the  da ta ,  more key bits might be 
recovered or alternatively less plaintext might be required for a successful attack. 

The  result,s of a series of experiments can be found in the attached Appendix. 
While we have obtained direct empirical evidence for the effectiveness of some 

output by ~ 7 . .  .yo. 

For 4-, 7 -  and 10-round LOKISI the known plaintext requirements are 223,  240 and 
258 respectively. For 13- and 1 &round LOKI91~ linear crypt.analytic techniqucs are 
infeasi tde. 
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Table 1. Some linear and non-linear approximations for LOKI91.

X

Y

X'
Y.I

Y.2

Y.3

box
S2

S2

S2

S2

S2

S2

input
X2 ©x 6 e x10

X2 © X3 © Xt ffi Z7 ffi £g

X-2 ffi ̂ 10 © ^10^6
X2 © X3 ffi Z5 © £5^7 © X3X8©

Zs^S ffi XsXsXis ffi X3X7Xn ffi Z*XbX7

T2 ffi 13 © X5 ffi Xg © 15X7 ffi Z7Z«ffi
12^3^5 ffi XbX7X8 © £8*5Z2

£2 © 13 ffi £5 CD X7 ffi ^3^8 ffi £3 £7 ffi

Z3Z5Z7 © r-bXT'lK © ^3X.5^8

output
2/4 ffi 3/5 ffi 3/6

2/4 ffi J/5 ffi J/6

3/4 ffi 2/5 ffi 2/6

2/4 ffi J/5 ffi 2/6

3/4 ffi 3/5 ffi 2/6

2/8 ffi 3/5 ffi 2/6

|fcms|

88/4096
108/4096
116/4096
136/4096

130/4096

110/4096

Table 2. The complexity of conventional and various new linear cryptanalytic attacks
on LOKI91.

| Attacks on (4 + 3r)-round LOKT91 ||
approximation

?X-Y
current methods [16]

?X'-Y

?X'-Y.l

?X'-Y.l

?X'-Y.l

?X'-Y.2 and
?X'-Y.3

simultaneously

# plaintexts

6,232,416 (r = 0)
JV (r > =

3,586,800 (r = 0)
0.58 x N (T = 0)
2,261,912 (r = 0)
0.36 x JV (r > 0)
2,261,912 (r = 0)
0.36 x W (r > 0)
2,261,912 [r - 0)
0.36 x N (r > 0)
1,442,632 (r = 0)
0.23 x W (r > 0)

rate
94%

90%

84%*

74%+

68%+

86%+

# A:ey bits
recovered

13

15

15

18

19

20

work
effort

22 4

2*.

2;3'

2 J |

2 3 «

this applies to 1/16 keys but is an empirical result
+ a prediction derived from results presented in the Appendix

of our attacks, we have used experimental evidence to predict the success rate
of others.

The results of our work have been summarized in Table 2. The number of key
bits recovered refers to this single phase of the attack alone and further gains by
reversing the role of plaintext and ciphertext have not been considered. When
considering the work effort involved, recall that, current methods already require
a work effort proportional to 2'i8 encryptions in exhaustive search for the key
bits not recovered via linear cryptanalysis.

We have also used multiple non-linear approximations in much the same
way we might use multiple linear approximations [5]. The use of multiple non-
linear approximations is much more complicated than the use of multiple linear
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approximations and considerable care ha.s t o  be taken in deciding which non- 
linear approximations should be used together arid exactly which bits of key 
information can be reliably recovered. Results given in  t he  Appendix and in Table 
2 demonstrate that  additional substantial savings in the  plaintext requirements 
c.an be expected in this way. 

We see tha t  ~iumeroiis trade-offs are possible between the  number of key bits 
recovered, tlhe a.niourit of plaint,ext, required and the work effort the cryptanalyst 
might wish to invest in attacking some cipher. In short ,  the  use of non-linear 
approximations offers greatly improved flexibility t o  the  cryptanalyst. 

6 Conclusions 

We have presented a general approach to linear cryptanalysis which allows us t'o 
consider within the same framework all linear cryptanalyt,ic t,echniques currently 
used. While t,his has opened numerous avenues for research it is already evident 
tha t  there are several new developnient,s. 

When trying to accurately gauge the  resistance of a block cipher to linear 
cryptanalysis, it is no longer sufficient to restrict attention to Matsui's 1 R- and 
2R-methods of linear cryptanalysis. There may well be circumstances where non- 
linear approximations, involving far fewer text and key bits t,han are required t o  
describe an  S-box, can be used to  recover additional bits of the  user-defined key 
with less plaintext than current linear techniques might suggest. Consequently 
our techniques offer the  cryptanalyst much more flexibility in attacking a ci- 
pher than was previously appreciated. By adjust,ing the various requirements in 
an  attack, the  cryptanalyst can decide on the  approach tha.t is best suited tjo 
t he  resources available be they the amount of available da t a  or  the amount of 
computing power possessed by the  cryptanalyst. These techniques will be a par- 
ticular concern for ciphers that depend for their security on t,he fact t ha t  t he  1R- 
and/or the 2R-methods are impractical diie t,o i-cmons of work-efforl rather than 
the amount of da ta  required. We have also noted t,hat some block cipher designs 
allow the  use of non-linear approximations in the second and penultimate rounds 
of a cipher. 

We have confirmed our techniques with attacks on reduced-round LOKI91 
and we expect that  seven additional bits of key information can be recovered 
with lcss than  1/4 of the  plaintext than current techniques require. Furt>her 
improvement may well be possible. In short ,  the additional flexibility available 
t o  a cryptanalyst, has been denionstrated and linear cryptanalytic attacks on 
a wide variety of block ciphers may well be much improved with these new 
met hods. 
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Appendix

Experimental verification of the attack by Tokita et al. [16] on L0KI91 is pro-
vided in the following table with our experiments being carried out on a four-
round version of the cipher. The results were obtained after 50 trials using Mat-
sui's lR-method and the approximation ?X-Y as described previously. The ap-
proximation holds with probability p where (p — l/2)~2 = 779,052 and 13 bits
of key information can be recovered.

plaintexts
success rate

1,558,104
20%

3,116,208
64%

6,232,416
94%

By substituting the non-linear approximation X' for the linear approximation
X used in round two of the approximation, we can obtain improved attacks. First
we provide the success rate over 50 trials in recovering 15 bits of key information;
we use Matsui's lR-method and the approximation ?X'-Y which holds with
probability p where (p - l /2)~2 = 448,350.

plaintexts
success rate

896,700
6%

1,793,400
38%

3,586,800
90%

To help in our later analysis, we will compare these success rates with those
obtained over 50 trials when using the same approximation to recover just three
bits of key information. Here we assume that the 12 bits of effective key used in
S-box S2 in the first round remain fixed and known. This allows us to estimate
how the success rate might degrade when we have to recover these additional 12
bits of key.

plaintexts
success rate

896,700
76%

1,793,400
92%

3,586,800
100%

Now consider using non-linear approximations in the last round by replacing
Y with a non-linear approximation Y.I described previously. For one in 16 keys
we obtain the following success rates over 50 trials when using Matsui's 1R-
method and the approximation ?X'-Y.l which holds with probability p where
(p — l /2)~ a = 282,739. For one in 16 keys, 15 bits of key information can be
recovered with the following success rates:

plaintexts
success rate

565,478
8%>

1,130,956
22%

2,261,912
84%

Instead of assuming the value of four key bits in the last round and being
correct some proportion of the time we can recover these four key bits. To esti-
mate the success rate of this approach, we will use Matsui's IR-method with the
correct guess to S2 in round one and the approximation ?X'-Y.l (which holds
with probability p where (p — l/2)~2 = 282, 739). In this way seven bits of key
information can be recovered with the following success rates (over 50 trials):

plaintexts
success rate

565,478

40% "1
1,130,956

50%
2,261,912

76%
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Alternatively, since recovery of one of the seven bits is somewhat unreliable we
might recover just six bits. Then the success rates over 50 trials become:

plaintexts
success rate

565,478
565,

1,130,956
62%

2,261,912
82%

Using this information, we can now make predictions for the expected success
rate in attacking LOKI91. We saw earlier that by deriving the 12 key bits of S-
box 2 in the first round instead of fixing them as correct, our success rate with
3,586,800 plaintexts fell from 100% to 90%. From this we might estimate that
by using 7X'-Y.l we can recover 19 bits of key information (instead of 13)
with a little more than one third the plaintext (2,261,912 instead of 6,232,416
plaintexts) with a slightly reduced success rate of 68%. = 76% x 90% (from 94%
previously). We could of course, suffice with recovering 18 bits of key information,
in which case we might expect a success rate of 74%.

We might also consider the use of multiple non-linear approximations. De-
spite the additional complications of using multiple non-linear approximations,
we note that more bits of user-defined key might be recovered with less plaintext.
In the following table we give the success rates achieved in 50 trials with two
non-linear approximations ?X'-Y.2 and ?X'-Y.3 defined previously. In these ex-
periments we assume the correct key bits used in S2 in round one and we recover
eight bits of key information.

plaintexts
success rate

360,658
26%

721,316
66%

1,442,632
96%

Using these results we might predict that we can use the two approximations
?X'-Y.l and ?X'-Y.2 to recover 20 bits of key information instead of ?X-Y to
recover 13 bits of key information with essentially the same success rate (86%
instead of 94%) but with much less than one quarter the plaintext (1,442,632
plaintexts instead of 6,232,416).
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