

NASA (R-2313

ASA

NON-LINEAR BEHAVIOR OF FIBER COMPOSITE LAMINATES

by Zvi Hashin, Debal Bagchi, and B. Walter Rosen

Prepared by MATERIALS SCIENCES CORPORATION Blue Bell, Pa. 19422 for Langley Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • APRIL 1974

1. Report No. NASA CR-2313	2. Government Access	sion No.	3. Recipient's Catalog	No.
4. Title and Subtitle			5. Report Date At	PRIL 1974
NON-LINEAR BEHAVIOR OF FIBE	MINATES	6. Performing Organiz		
7. Author(s)			8. Performing Organiz	ation Report No.
ZVI HASHIN, DEBAL BAGCHI, A	ND R WALTER R	OSEN	TFR/7309	
			10. Work Unit No.	
9. Performing Organization Name and Address			501-22-03-02	2
Material Sciences Corporati Blue Bell, pennsylvania	ON		11. Contract or Grant NAS1-11284	No.
			13. Type of Report an	d Period Covered
12. Sponsoring Agency Name and Address			CONTRACTOR A	REPORT
NATIONAL AERONAUTICS AND SP Washington, D.C. 20546	ATION	14. Sponsoring Agency	Code	
15. Supplementary Notes				
FINAL REPORT				
16. Abstract	· · · · ·			
The non-linear behavior of fiber composite laminates which results from Lamina non-linear characteristics was examined. The analysis uses a Ramberg-Osgood representation of the lamina transverse and shear stress strain curves in conjunction with deformation theory to describe the resultant laminate non-linear behavior. A laminate having an arbitrary number of oriented layers and subjected to a general state of membrane stress was treated. Parametric results and comparison with experimental data and prior theoretical results are presented.				
17. Key Words (Suggested by Author(s))		18. Distribution Statement		
		Unclassified -		Cat. 32
19. Security Classif. (of this report)	20. Security Classif. (c	of this page)	21. No. of Pages	22. Price*
UNCLASSIFIED	UNCLASSIFI	ED	İ30	\$4.75
•			4	LJ

*For sale by the National Technical Information Service, Springfield, Virginia 22151

Page Intentionally Left Blank

TABLE OF CONTENTS

Page

LIST	OF	SYMBOLS	v
SUMM	ARY		1
1.	INTE	RODUCTION	2
2.	NON-	-LINEAR STRESS-STRAIN RELATIONS OF AXIAL FIBER REINFORCED MATERIALS	7
	2.1	General Form of Stress-Strain Relations	7
	2.2	Plane Stress-Strain Relations in Ramberg-Osgood Form	12
	2.3	Axial Shear Stress-Strain Relation	15
3.	ANAL	LYSIS OF NON-LINEAR LAMINATES	21
	3.1	Formulation	
	3.2	Method of Solution	30
	3.3	Numerical Results	34
4. (CONC	LUDING REMARKS	40
APPE	NDIC	ES:	
i	A -	Symmetry Simplification of Non-Linear Stress-Strain Relations	43
1	в -	Plane Stress-Strain Relations of Fiber Reinforced Material in Generalized Ramberg- Osgood Form	4 5
	~		45
(с –	 Extremum Principles of Deformation Theory of Plasticity 	49
		2. Lower Bound for Axial Shear Modulus	
1	D -	Failure of Non-Linear Laminates	62
]	Е -	MSC-NOLIN Computer Program	67
REFEI	RENC	ES	72
FIGUI	RES		74
PROG	RAM	LISTINGS	.00

.

-

LIST OF SYMBOLS

2a, 2b	- Laminate dimension;
с	- Fiber volume fraction;
C * ijkl	- Stiffness. matrix;
El	- Elastic Young's modulus;
EA	- Young's modulus in fiber direction;
ET	- Young's modulus in transverse direction;
F	- Function of stress σ_{ij} ;
G ₁ ,G	- Elastic shear modulus of matrix;
с _А	- Axial shear modulus;
G ^S A ijkl	- Effective secant shear modulus of composite; - Subscripts ranging from 1 to 3;
k,m,n	- Ramberg-Osgood parameters for the matrix;
I1,2,3,4,5	- Stress invariants;
J ₂	- s _{ij} s _{ij} /2;
K	- Number of laminae in a laminate;
L, <u>L</u>	- Matrices, also quadratic function of stresses;
M,N	- Ramberg-Osgood parameters for the composite;
r,θ, z	- Cylindrical coordinate system;
^s ij	- Stress deviator;
s_{ij}	- Compliance matrix;
s: ij	- Elastic compliance matrix;
s" ij	- Inelastic compliance matrix;
t	- Laminate thickness;
Ti	- Surface tractions;
$\mathbf{T}_{\alpha\beta}$	- Constant edge forces per unit length;
^u 1,2,3	- Displacements in x _{1,2,3} directions, respectively;
ũ _i	- Admissible displacement field;
υ _ε	- Strain energy;
U _c	- Complimentary energy;
Up	- Potential energy;
· ·	v

SYMBOLS CONTINUED

v	- Volume;
w ^ε	- Strain energy density;
w ^σ	- Complimentary energy density;
×1,2,3	- Fixed coordinate directions;
x ^(k) 1,2,3	- Local coordinate system for the kth lamina;
α,β	- Subscripts ranging from 1 to 2;
Ŷ	- Shear strain;
ε	- Strain;
Ē ij	- Average strain tensor;
εαβ	- Elastic strains;
Ξ " εαβ	- Inelastic strains;
σ	- Stress;
σy	- Nominal composite yield stress;
. σ'	- Nominal matrix yield stress;
<u>σ</u> °	- Stress $\sigma^{\circ}_{\alpha\beta}$ at the edges;
<u>σ</u> ° σ _{ij}	- Average stress tensor;
σij	- Applied stress;
τ	- Shear stress;
τy	- Nominal composite yield shear stress;
το	- Average shear stress in composite;
τ ' Υ	- Nominal matrix yield shear stress;
ν _A	- Poisson's ratio; and
θ _k	- Reinforcement angle.

NON-LINEAR BEHAVIOR OF FIBER COMPOSITE LAMINATES

by Zvi Hashin, Debal Bagchi and B. Walter Rosen Materials Sciences Corporation

SUMMARY

The non-linear stress-strain behavior of fiber composite laminates has been analyzed to define the relationship between laminate behavior and the non-linear stress-strain characteristics of unidirectional composites. The resulting analysis has been programmed to yield an efficient computerized design and analysis tool.

The approach utilized herein was to adopt a Ramberg-Osgood representation of the non-linear stress-strain behavior and to utilize deformation theory as an adequate representation of the material nonlinearities. The problem was viewed on two levels. First, the relationship between the constituent properties and the stress-strain response of a unidirectional fiber composite material was studied. For this problem, the primary attention was directed toward axial shear behavior, and an expression was established relating the composite average-stress/ average-strain curve to the fiber moduli and the matrix nonlinear stress-strain curve. Second level of approach is to treat the interelationship between the properties of the unidirectional layers and those of the laminate. For this case, the starting point is a non-linear stress-strain curve for transverse stress and for axial shear and a linear stress-strain relation for stress in the fiber direction. The non-linear lamina stress-strain curves can be modeled by proper selection of the Ramberg-Osgood parameters. In the present study, with this as a starting point, an interaction expression was formulated to account for simultaneous application of axial shear and transverse stress.

A laminate having an arbitrary number of oriented layers and subjected to a general state of membrane stress was treated. Parametric results and comparison with experimental data and prior theoretical results are presented.

1. INTRODUCTION

A basic requirement for the engineer designing with fiber composite materials is a definition of the stiffness and strength of these materials under a variety of loading conditions, including cases for which experimental materials properties data are not available. For this purpose, it is necessary that he have at his disposal reasonably accurate procedures to predict these mechanical properties. Existing analyses can predict the elastic behavior of a laminated composite quite well when the elastic properties of the unidirectional materials from which it is made are known. However, the situation has been much more complicated and much less satisfactory with regard to the inelastic stiffness and strength of a laminate. The present program was undertaken to develop a computerized analysis of the inelastic behavior of fiber composite laminates which could be used as a design tool. The results of this study and comparisons of these results with experimental data are presented in this report.

It is essential to recognize that the utilization of fiber composite materails in structural design involves the incorporation of material design into the structural design process. This is illustrated clearly by the fact that the gross material properties of a fiber composite laminate change when any change is made in the laminate ply orientations. Even when the designer considers a material formed from a particular combination of fiber and matrix materials, there remains a large number of geometric variables associated with the laminate de-Thus, in the preliminary design phase, experimental matesign. rial properties data will generally be too limited. In the case of elastic properties, sufficient capability to synthesize the necessary properties exists. This procedure generally starts with the definition of the elastic properties of unidirectional fiber composite materials. These can, of course, be determined experimentally. Also, when such data are not available, they can be estimated using a variety of analytical techniques. These

latter are generally referred to as micromechanics analyses. For example, a set of relatively simple relations for predicting the moduli of unidirectional reinforced composites are presented in [1]. Alternate micromechanics approaches are described in [2] to [4]. A review of these methods is presented in [5]. With these properties available, it is assumed that the individual laminae are homogeneous and anisotropic. A laminate analysis is carried out in a straight forward fashion following methods originally developed for such materials as plywood, and more recently extended to the more general cases associated with fiber composite laminates (e.g., [6] to [8]).

However, contemporary fiber composite materials generally consist of elastic brittle fibers such as glass, boron or graphite in relatively soft matrix materials such as epoxy or aluminum. For these matrix materials it is reasonable to anticipate that at a certain loading state the matrix will begin to exhibit inelastic effects. This results in non-linear relations between structural loads and deformations. These inelastic effects can, of course, be expected to have a significant effect upon failure of the laminate. It is quite clear that adequate definition of these failure conditions are essential to achieve structural designs of high reliability.

In the present study, a non-linear laminate analysis has been developed which can provide realistic assessments of the stresses and strains in the various laminae and of the inelastic stiffnesses of the laminate at any stress level. This information can be used for assessment of such effects as structural stability or structural stress distributions. The stress distributions in the laminae and the laminates can also be utilized for the development of more realistic failure criteria.

Inelastic matrix behavior can be classified broadly as either time dependent or time independent. Time dependent behavior is called viscoelastic if linear and creep if non-linear. Polymeric matrices such as epoxy do exhibit such behavior. In

し

the case of metallic matrix materials, such as aluminum, time dependent effects are generally negligible unless elevated temperature conditions are considered. The present study is concerned with time independent non-linear matrix behavior which is of significance for both polymeric and metallic matrices. Throughout this paper the expression "inelastic" is used to describe this time independent mechanical behavior. The method of approach to these problems is similar to that of the elastic analysis. Thus, it is necessary to determine, first, the inelastic properties of the unidirectional fiber composite materials. This can be done experimentally or by micromechanics methods. Given this information, a method to determine stresses and strains in an inelastic laminate is then devised. The problem is complicated by the fact that the inelastic stress-strain relations are non-linear.

A limited number of pertinent investigations can be found in the literature. Hill [4] considered, in approximate fashion, a limited aspect of inelastic behavior of a uniaxially reinforced material: the case of stress in fiber direction combined with isotropic transverse stress. Petit and Waddoups [6] devised an incremental method for laminate analysis in which it was assumed that in single laminae there is no interaction of stress components in different directions as far as lamina deformation is concerned. This assumption is restrictive, and also their incremental laminate analysis scheme is unduly complicated. Adams [7] used a finite element technique for numerical analysis of unidirectional materials in the form of periodic fiber arrays under conditions of plane strain. Huang [8] gave an approximate analysis for transverse inelastic behavior for a unidirectional material in plane strain, but it is diffucult to assess the validity of the approximations introduced.

A detailed analysis of the inelastic laminate problem has been given by Foye and Baker [9]. Using finite element methods, they computed the inelastic effective properties of unidirectional rectangular and square arrays of elastic fibers 4. in inelastic matrix. These properties were then used in an inelastic laminate analysis. The analysis is based on incremental plasticity theory and is, unfortunately, very complicated and requires a great deal of computer time. The results obtained are, however, of great importance for comparison with results predicted by more simplified theories, such as the one which will be given in the present work.

The body of this report is divided into four major sections. In the first, consideration is given to the behavior of unidirectional fiber composite materials. This requires: a definition of the appropriate form of the inelastic stressstrain relations; some consideration of the relationship between composite properties and constituent properties; and a definition of the appropriate form of the interaction between various stress components. The basic objective in this phase of the report was to define appropriate constitutive relations for the individual lamina which can be used in the non-linear laminate analysis. Further, there is a desire to gain some insight into the influence of the particular constituent properties upon the lamina stress-strain relations. In this phase of the study, it is found useful to characterize the unidirectional material with the aid of Ramberg-Osgood stressstrain relations.

In the next section of the report, the analysis of the inelastic behavior of laminates is described. Here, a procedure for incorporating the non-linear constitutive relations into an analysis which defines the state of stress in the individual laminae under an arbitrary set of external loads, is defined. Analyses are developed for the case of symetric laminates subjected to membrane loading. The equations which are developed uniquely define the desired laminate internal average stress distribution under a given set of membrane loads. Governing equations, however, are non-linear and require numerical solution procedures. An efficient algorithm has been defined which enables computer solution to be achieved for arbitrary

laminates at minimal cost. The solution is obtained by application of the Newton-Raphson method.

In the final section, the computerized analysis which has been developed is applied to series of problems. The first group presents comparisons with various analytical results from the more complex analyses of Ref. [6] and [9]. The second group of numerical results presents comparisons between theoretical results from the present model and available experimental data. The third group of results provides several parametric studies to gain insight into those factors which contribute significantly to the non-linear behavior of fiber composite laminates. Also, computations have been made to provide a preliminary assessment of combined load effects including comparisons with limited experimental data.

Details of the various analytical developements, as well as descriptions of the computer program, are presented in appendices to the report.

The principal result of the present program is a computer program which provides a simple engineering tool which can be used for the parametric study of the influence of material properties upon laminate performance. This laminate analysis capability can be used by the structural designer to define design allowable stresses and to aid in the selection of fiber composite materials for structural applications. A comparison of the present results with the limited amount of available experimental data shows good agreement. There are, however certain cases in which the agreement is not good, par ticularly as the laminate loading approaches failure. The results of the present analytical method agree well with the results for those problems for which more exact and more complex analytical results exist.

2. NON-LINEAR STRESS-STRAIN RELATIONS OF UNIAXIAL FIBER REINFORCED MATERIALS

2.1 General Form of Stress-Strain Relations

An effective stress-strain relation of a composite material is defined as a relation between average stress $\bar{\sigma}_{ij}$ and average strain $\bar{\epsilon}_{ij}$. Here and in the following latin indices range over 1, 2, and 3. If the composite is <u>elastic</u> the general effective stress-strain relation takes the form

$$\overline{\sigma}_{ij} = C^*_{ijkl} \quad \overline{\epsilon}_{kl} \tag{2.1.1}$$

where C_{ijkl}^* are the effective elastic moduli which are material constants and are thus independent of stress or strain. Thus, (2.1.1) is a <u>linear</u> relation between average stress and strain.

If the composite is subject to symmetries the form of (2.1.1) simplifies. For a uniaxial FRM the most important cases of symmetry are transverse isotropy, around fiber direction, and square array (square symmetry). In these cases the stress-strain relations (2.1.1) for transverse isotropy assume the form:

 $\overline{\sigma}_{11} = C_{11}^* \overline{\epsilon}_{11} + C_{12}^* \overline{\epsilon}_{22} + C_{12}^* \overline{\epsilon}_{33}$ $\overline{\sigma}_{22} = C_{12}^* \overline{\epsilon}_{11} + C_{22}^* \overline{\epsilon}_{22} + C_{23}^* \overline{\epsilon}_{33}$ $\overline{\sigma}_{33} = C_{12}^* \overline{\epsilon}_{11} + C_{23}^* \overline{\epsilon}_{22} + C_{22}^* \overline{\epsilon}_{33}$ $\overline{\sigma}_{12} = 2C_{44}^* \overline{\epsilon}_{12}$ $\overline{\sigma}_{23} = 2C_{55}^* \overline{\epsilon}_{23}$ $\overline{\sigma}_{31} = 2C_{44}^* \overline{\epsilon}_{31}$ (2.1.2)

and

(2.1.3)

 $C_{55}^{*} = (C_{22}^{*} - C_{23}^{*})/2$

In (2.1.2-3) 1 indicates direction and 2, 3 perpendicular directions transverse to 1.

In the event of inelastic matrix and elastic fibers, the situation is much more complicated since the stress-strain

relation are nonlinearity and history dependent. In no case is stress proportional to strain so that superposition of effects is not valid, and in order to determine current strain it is not sufficient to know current stress but it is necessary to know precisely the variation of stress which preceded its current value. Thus, for a material in a known state of combined shear and uniaxial tension, the state of strain is different if: (a) tension is first applied and then the shear, (b) shear is first applied and then the tension- (c) tension and shear are applied simultaneously. For this reason stress-strain relations must be presented in incremental form. That is, strain increment is related to stress and stress increment. This complicates matters enormously. However, it is known that in the case of proportional loading, that is, all stresses at a point grow simultaneously in a fixed ratio to one another, incremental theory can be integrated into the much simpler total or deformation theory for which current strain is completely determined by current stress.

Deformation theories have a wider range of validity than proportional loading. Comparison of numerous detailed solutions carried out both incrementally and by much simpler deformation theory show surprising agreement in many cases, and Budiansky [10] has shown that deformation theory can also be valid for "neighboring" loading paths.

In the present work, we are concerned with composites which are subjected to some external load. If it is supposed that the various external load components grow proportionally, this does not necessarily imply that the components of stress at a typical internal point also grow proportionally. It is, however, felt that the manner of growth of these internal stress components cannot deviate severely from proportional loading if external loading is proportional. Consequently, deformation type stress-strain relations are assumed for the matrix.

This assumption results in considerable simplification. It will be seen that it yields results which are extremely 8. close to the ones obtained in [9] on the basis of the much more complicated incremental theory.

It is shown in Appendix A that for elastic fibers and an inelastic matrix described by deformation type theory, the effective stress-strain relations for a transversely isotropic or square symmetric FRM are:

 $\overline{\varepsilon}_{11} = S_{11} \overline{\sigma}_{11} + S_{12} \overline{\sigma}_{22} + S_{12} \overline{\sigma}_{33}$ $\overline{\varepsilon}_{22} = S_{12} \overline{\sigma}_{11} + S_{22} \overline{\sigma}_{22} + S_{23} \overline{\sigma}_{33}$ $\overline{\varepsilon}_{33} = S_{12} \overline{\sigma}_{11} + S_{23} \overline{\sigma}_{22} + S_{22} \overline{\sigma}_{33}$ (2.1.4) $\overline{\varepsilon}_{12} = 2S_{44} \overline{\sigma}_{12}$ $\overline{\varepsilon}_{23} = 2S_{55} \overline{\sigma}_{23}$ $\overline{\varepsilon}_{13} = 2S_{44} \overline{\sigma}_{13}$

and

 $S_{55} = (S_{22} - S_{23})/2$

(2.1.5)

The coefficients S_{11} , S_{12} , etc. are the effective inelastic compliances of the material and are <u>functions of the aver-</u> <u>age stresses</u>, or rather of certain invariants of the average stress tensor.

We are here primarily concerned with thin uniaxially reinforced laminae which are in a state of plane stress. Let x_1 denote fiber direction, x_2 direction transverse to fibers in lamina plane, and x_3 direction perpendicular to lamina, Figure 1. Then the plane stress condition is expressed by:

$$\overline{\sigma}_{13} = \overline{\sigma}_{23} = \overline{\sigma}_{33} = 0$$
 (2.1.6)

Equs. (2.1.4) then assume the form:

$$\overline{\varepsilon}_{11} = S_{11} \ \overline{\sigma}_{11} + S_{12} \ \overline{\sigma}_{22}$$

$$\overline{\varepsilon}_{22} = S_{12} \ \overline{\sigma}_{11} + S_{22} \ \overline{\sigma}_{22}$$

$$\overline{\varepsilon}_{12} = 2S_{44} \ \overline{\sigma}_{12}$$
(2.1.7)

Note that $\bar{\epsilon}_{33}$ does not vanish. It is however of no interest for present purposes.

The inelastic compliances in (2.1.7) are functions of the stresses $\overline{\sigma}_{11}$, $\overline{\sigma}_{22}$, $\overline{\sigma}_{12}$.

It is convenient to split the strains in (2.1.7) into elastic strains $\overline{\epsilon}'_{\alpha\beta}$, and inelastic strains $\overline{\epsilon}'_{\alpha\beta}$. Thus:

$$\overline{\varepsilon}_{\alpha\beta} = \overline{\varepsilon}'_{\alpha\beta} + \overline{\varepsilon}''_{\alpha\beta}$$
(2.1.8)

where here and in the following greek indices range over 1, 2. The elastic strains are recovered after unloading of the composite and are related to the stresses by elastic stress-strain relations. Thus:

$$\bar{\varepsilon}_{11} = S_{11} \bar{\sigma}_{11} + S_{12} \bar{\sigma}_{22}
\bar{\varepsilon}_{22} = S_{12} \bar{\sigma}_{11} + S_{22} \bar{\sigma}_{22}
\bar{\varepsilon}_{12} = 2S_{44} \bar{\sigma}_{12}$$
(2.1.9)

where

$$S_{11} = \frac{1}{E_A}$$
 $S_{12} = -\frac{V_A}{E_A}$
 $S_{22} = \frac{1}{E_T}$ $S_{44} = -\frac{1}{4G_A}$ (2.1.10)

Here E_A is the effective Young's modulus in fiber direction, v_A - the associated effective Poisson's ration, E_T - the effective Young's modulus transverse to fibers and G_A - axial effective shear modulus, related to 1-2 shear.

The inelastic, permanent, strains then have the form:

Ξ" ε ₁₁	=	$S_{11}^{"}$	<u></u> $\bar{\sigma}_{11}$ +	". S ₁₂	σ ₂₂	
Ξ" ε ₂₂	=	" S ₁₂	σ ₁₁ +	" S ₂₂	<u></u> 	(2.1.11)
ε "	=	2S4	$\overline{\sigma}_{12}$			

where

$$s''_{2\beta} = s''_{2\beta} (\bar{\sigma}_{11}, \bar{\sigma}_{22}, \bar{\sigma}_{12})$$

(2.1.12)

In order to further simplify the stress-strain relations (2.1.11-.12), some specific features of FRM will be taken into account. In such materials, the fibers are by an order of magnitude stiffer than the matrix (for the case of boron and/or graphite fiber in an epoxy matrix the ratio of fiber to matrix Young's modulus can be in excess of 100). The stiffness ratio becomes larger in the inelastic range since the matrix loses stiffness (i.e., flows) while the fibers retain their stiffness. It is, therefore, clear that the stress $\bar{\sigma}_{11}$ in fiber direction is practically carried by the fibers alone, with insignificant matrix contribution.

On the other hand, the transverse stress $\bar{\sigma}_{22}$ and the shear stress $\bar{\sigma}_{12}$ are primarily carried by the matrix with little fiber contribution.

It follows that inelastic behavior of the FRM is produced primarily by $\bar{\sigma}_{22}$ and $\bar{\sigma}_{12}$ while inelastic behavior for $\bar{\sigma}_{11}$ load can be neglected.

The foregoing comments are summarized into two basic assumptions:

- (a) the inelastic strains $\bar{\varepsilon}_{22}^{"}$ and $\bar{\varepsilon}_{12}^{"}$ are not functions of $\bar{\sigma}_{11}$
- (b) the inelastic strain $\bar{\epsilon}_{11}^{"}$ always vanishes.

On the basis of these assumptions, the stress-strain relations (2.1.11-.12) simplify to:

 $\bar{\varepsilon}_{11}^{"} = 0$ $\bar{\varepsilon}_{22}^{"} = S_{22}^{"} (\bar{\sigma}_{22}, \bar{\sigma}_{12}) \bar{\sigma}_{22}$ $\bar{\varepsilon}_{12}^{"} = 2S_{44}^{"} (\bar{\sigma}_{22}, \bar{\sigma}_{12}) \bar{\sigma}_{12}$ (2.1.13)

2.2 Plane Stress-Strain Relations in Ramberg-Osgood Form

A convenient representation of non-linear one dimensional stress-strain relations has been given by Ramberg and Osgood [11]. For uniaxial stress, for example:

$$\varepsilon = \frac{\sigma}{E_1} \left[1 + k \left(\frac{\sigma}{\sigma} \right)^{m-1} \right]$$
(2.2.1)

where E_1 represents the elastic Young's modulus, and k, σ' , and m are three parameters to be obtained by curve fitting. The parameter σ' is sometimes called nominal yield stress. Equation (2.2.1) represents a family of curves with initial slope E_1 , and monotonically decreasing slope with increasing σ . The curves flatten out with increasing m (Fig. 2). Without loss of generality (2.2.1) can be written in the form:

$$\varepsilon = \frac{\sigma}{E_1} \left[1 + \left(\frac{\sigma}{\sigma_v} \right)^{m-1} \right]$$
 (2.2.2)

which will be used from now on. Similarly, a stress-strain curve in shear can be represented in the form:

$$\gamma = \frac{\tau}{G_1} \left[1 + \left(\frac{\tau}{\tau_v} \right)^{n-1} \right]$$
(2.2.3)

where G_1 is the elastic shear modulus.

It should be emphasized that (2.2.2-.3) are valid only for one dimensional cases. The question of the generalization to general states of stress and strain has no unique answer. One common used form is isotropic J_2 deformation theory [12].

Next, we consider the case of effective or macroscopic stress-strain relations for the special case of a uniaxially reinforced material in which the matrix in non-linear, with stress-strain relations in Ramberg-Osgood form.

Consider, for example, the case of uniaxial average stress $\bar{\sigma}_{22}$ in direction transverse to fibers, all other average stresses vanish. It then follows from (2.1.7) that:

$$\bar{s}_{22} = S_{22} (\bar{\sigma}_{22}) \bar{\sigma}_{22}$$
 (2.2.4)

Similarly, if the only nonvanishing average stress is $\overline{\sigma}_{12}$, the shear stress-strain relation of the composite is:

$$\bar{\varepsilon}_{12} = 2S_{44} \ (\bar{\sigma}_{12}) \ \bar{\sigma}_{12}$$
 (2.2.5)

Evidently the inelastic effective compliances $S_{22}^{}$ and $S_{44}^{}$ are functions of the parameters of the inelastic Ramberg-Osgood stress-strain relations of the matrix, of the elastic properties of the fibers and of the internal geometry of the composite. Actual prediction is a very difficult problem. Such problems will be ensidered in limited fashion in the next paragraph.

Just as matrix stress-strain relations are represented in Ramberg-Osgood form, the same type of curve fitting can also be applied for the effective stress-strain relation of the composite. Thus (2.2.2-.3) are written in the form:

$$\bar{\varepsilon}_{22} = \frac{\bar{\sigma}_{22}}{E_{T}} \left[1 + (\frac{\bar{\sigma}_{22}}{\sigma_{y}})^{M-1}\right]$$
(a)
$$\bar{\varepsilon}_{12} = \frac{\bar{\sigma}_{12}}{2G_{A}} \left[1 + (\frac{\bar{\sigma}_{12}}{\tau_{y}})^{N-1}\right]$$
(b)

Where E_T is the effective transverse elastic Young's modulus G_A - effective axial elastic shear modulus and σ_y , τ_y , M and N are curve fitting parameters which are in general quite different from the corresponding Ramberg-Osgood matrix parameters.

A question of fundamental and of practical importance is the form of the stress-strain relations for the case of plane stress, taking into account interaction among the various stress components. It should be noted in this repsect that (2.2.6) are special stress-strain relations when $\bar{\sigma}_{22}$ or $\bar{\sigma}_{12}$ act only by themselves.

It is recalled that equations (2.1.13) represent the inelastic parts of the strains for plane stress-strain relations for FRM with stiff fibers. It is shown in Appendix B

that the Ramberg-Osgood form of such plane stress-strain relations is as follows:

$$\bar{\varepsilon}_{11}^{n} = 0$$

$$\bar{\varepsilon}_{22}^{n} = \frac{\bar{\sigma}_{22}}{E_{T}} \left[\left(\frac{\bar{\sigma}_{22}}{\sigma_{y}} \right)^{2} + \left(\frac{\bar{\sigma}_{12}}{\tau_{y}} \right)^{2} \right] \frac{M-1}{2}$$

$$\bar{\varepsilon}_{12}^{n} = \frac{\bar{\sigma}_{12}}{2G_{p}} \left[\left(\frac{\bar{\sigma}_{22}}{\sigma_{y}} \right)^{2} + \left(\frac{\bar{\sigma}_{12}}{\tau_{y}} \right)^{2} \right] \frac{N-1}{2}$$
(2.2.7)

The parameters E_{T}^{A} , G_{A} , σ_{y} , τ_{y} , M, N in (2.2.7) are those of the one dimensional stress-strain relations (2.2.6) which may be regarded as experimentally (or perhaps theoretically) known.

The inelastic parts of the strains are given by (2.1.9-.10), and the total strains are then given by adding equations (2.2.7) and (2.1.9).

Equations (2.2.7) have been compared with computed numerical results given in [9]. Reasonable agreement was obtained. Comparisons for the interaction cases of transverse stress, $\bar{\sigma}_{22}$, versus transverse strain, $\bar{\epsilon}_{22}$, in the presence of axial shear stress, $\bar{\sigma}_{12}$, and axial shear stress, $\bar{\sigma}_{12}$, versus axial shear strain, $\bar{\gamma}_{12}$, are shown in Figures 3 and 4 respectively (in both cases $\bar{\sigma}_{22}/\bar{\sigma}_{12} = 8/3$). It is seen that the agreement is fair for transverse stress-strain relations (Fig. 3) and very good for the shear stress-strain relations (Fig. 4).

Figures 3 and 4 also show the stress-strain relations obtained from Eqs. (2.2.7) for one dimensional transverse tension $\bar{\sigma}_{22}$, and axial shear, $\bar{\sigma}_{12}$, respectively.

2.3 Axial Shear Stress-Strain Relation

This paragraph is concerned with the problem of prediction of a one dimensional effective axial shear stress-strain relation of a uniaxial FRM in terms of matrix and fiber properties and the internal geometry of the composite.

The main reason for concentrating on the axial shear problem is that the inelastic effect is predominant in axial shear for which significant nonlinearity of the stress-strain response is obtained (e.g., Figure 4). The effect in fiber direction is practically non-existent as has indeed been assumed above, and is relatively small in transverse stress which is shown by the small curvature of the stress-strain relation in this case (e.g., Figure 3).

On the basis of all this, it can indeed be assumed as first approximation that the nonlinearity of the uniaxial FRM is limited to axial shear alone.

Consider a uniaxially reinforced lamina which is subjected to pure axial shear, Figure 5, on its surface. The boundary conditions are:

 $x_{3} = \pm t/2 \qquad \sigma_{31} = \sigma_{32} = \sigma_{33} = 0 \qquad (2.3.1)$ $x_{2} = \pm b \qquad \sigma_{12} = \tau_{o} \qquad \sigma_{22} = \sigma_{23} = 0 \qquad (2.3.1)$ $x_{1} = \pm a \qquad \sigma_{12} = \tau_{o} \qquad \sigma_{11} = \sigma_{13} = 0$

It may be shown that under such load the only nonvanishing average stress in the composite is:

$$\bar{\sigma}_{12} = \tau_0 \tag{2.3.2}$$

It would seem at first that, given the complexity of the internal geometry of the composite, the state of stress at any interior matrix or fiber point is generally three dimensional. Surprisingly enough, however, this is not so and the only nonvanishing stress components in the interior of the composites

are the shear stresses σ_{12} and σ_{13} , which are moreover functions of x_2 and x_3 only. Thus, the interior state of stress is:

$$\sigma_{12} = \sigma_{12} (x_2, x_3)$$

$$\sigma_{13} = \sigma_{13} (x_2, x_3)$$

$$\sigma_{11} = \sigma_{22} = \sigma_{33} = \sigma_{23} = 0$$
(2.3.3)

(2.3.4)

The validity of equations (2.3.3) for the case of an elastic composite has been proved in [5]. Their validity for the present much more general inelastic case will be shown elsewhere.

The effective stress-strain relation of the composite in axial shear is defined by:

$$\overline{\varepsilon}_{12} = \frac{\sigma_{12}}{2G_A^S} = \frac{\tau_o}{2G_A^S}$$
$$G_A^S = G_A^S(\overline{\sigma}_{12}) = G_A^S(\tau_o)$$

where G_A^S is the <u>effective secant shear modulus</u> of the material. The nonlinearity of the stress-strain relation is expressed by the fact that G_A^S function of the applied stress.

It is seen that in order to determine G_A^s it is necessary to compute the average shear strain $\overline{\epsilon}_{12}$ for given applied shear stress. This is a formidable problem even with the simplification (2.3.3) and we shall content ourselves with a brief outline of its formulation. To simplify matters, the fibers shall be assumed to be ideally rigid relative to the matrix. This is a very accurate assumption for the case of Boron and Graphite Fibers. There is no difficulty to extend the formulation to the case of non-rigid elastic fibers.

In view of (2.3.3) the problem is two dimensional and need only be considered in a typical x_2 , x_3 section. In the matrix domain:

$$\frac{\partial \sigma_{12}}{\partial \mathbf{x}_2} + \frac{\partial \sigma_{13}}{\partial \mathbf{x}_3} = 0 \qquad (2.3.5a)$$

$$\varepsilon_{12} = \frac{\sigma_{12}}{2G} \left[1 + \left(\frac{\tau}{\tau_y} \right)^{n-1} \right] \qquad (2.3.5b)$$

$$\varepsilon_{13} = \frac{\sigma_{13}}{2G} \left[1 + \left(\frac{\tau}{\tau_{y}}\right)^{n-1}\right]$$
(2.3.5c)

$$\tau = \sqrt{\sigma_{12}^2 + \sigma_{13}^2}$$
(2.3.6)

$$\varepsilon_{12} = \frac{1}{2} \quad \frac{\partial u_1}{\partial x_2} \tag{2.3.7a}$$

$$\varepsilon_{13} = \frac{1}{2} \quad \frac{\partial u_1}{\partial x_3} \tag{2.3.7b}$$

$$u_1 = u_1 (x_2, x_3)$$
 (2.3.8)

and, u₁ = 0 at fiber/matrix interface.

Here equ. (2.3.5) is the only surviving equilibrium equation, (2.3.6) are Ramberg-Osgood stress-strain relations for isotropic J_2 theory (2.3.7) are usual strain-displacement relations in which u_2 and u_3 do not enter since it may be shown that they are not functions of x_1 and (2.3.8) expresses the ideal rigidity of the fibers.

Equs. (2.3.5-.8) must be solved subject to boundary condition (2.3.1). If this is done the strain ε_{12} is known everywhere and can be averaged to obtain G_A^S from (2.3.4).

The problem is exceedingly difficult because of the nonlinearity introduced by the stress-strain relations (2.3.6). There is very little hope to solve it analytically for any kind of fiber geometry. It should therefore be handled by numerical methods for fiber arrangements and fiber shapes of engineering interest.

Another way to approach an analytically intractable problem such as the present one is by variational techniques.

In this fashion, approximations or bounds for quantities of interest are obtained by methods which are much simpler than bonafide solution of the problem. Such variational methods have been extensively used for determination of effective elastic moduli of FRM (e.g., [5]).

In the course of the present work, it has been found that variational methods can also be used for inelastic problems such as the present one to obtain bounds on effective secant moduli. The main ingredients of the method are:

- (a) Construction of an extremum principle in terms of an energy integral such that the true energy is the minimum of the integral.
- (b) Expression of the true energy in terms of effective secant modulus.
- (c) Establishment of admissible fields to obtain a value of the energy integral which is larger than the true energy, thus obtaining a bound for G_A^S .

The work involves complicated developments and derivations which are given in Appendix C. Here only the end result for a lower bound on G_A^S will be given for a special geometry of FRM which is known as composite cylinder assemblage. This geometry has been described in detail in [1, 5] and consists of an assemblage of composite cylinders of variable sizes which are joined together so as to fill the whole volume of the composite. In order to fill the whole volume, composite cylinders vary from finite to infinitesimal size. This geometry has been used to advantage for elastic FRM to obtain simple expressions for effective elastic moduli which are well verified by experiment [1, 5]. In the present case only a lower bound on G_A^S has been obtained for the case in which the exponent n in matrix stress-strain relations is n=3.

It has been found that with this exponent and proper choice of τ_y , epoxy shear stress-strain relations can be well described. The result for the lower bound is:

$$G_{A}^{S} \ge G_{A(-)}^{S} = \frac{G \frac{1+c}{1-c}}{1+(\frac{\tau_{\phi}}{\tau_{y}})^{2} \frac{3+13c+c^{2}+c^{3}}{3(1+c)^{3}}}$$

(2.3.9)

where

- c volume fraction of fibers
- G elastic (initial) matrix shear modulus
- $\tau_{\rm V}^{\,\prime}$ Ramberg-Osgood matrix stress parameter, and

 τ_{0} - applied shear stress.

It follows from (2.3.4) that:

$$\overline{\varepsilon}_{12} \leq \frac{\tau_{\circ}}{2G_{A}^{S}(-)}$$
(2.3.10)

In other words, with the lower bound on G_A^s an upper bound on $\overline{\epsilon}_{12}$ variation with τ_O is obtained.

If (2.3.10) is explicitly written in terms of (2.3.9) it assumes the form:

$$\bar{\epsilon}_{12} \leq \frac{\tau_{o}}{2G\frac{1+c}{1-c}} \begin{bmatrix} 1 + (\frac{\tau_{o}}{2})^{2} & \frac{3+13c+c^{2}+c^{3}}{3(1+c)^{3}} \end{bmatrix}$$
(2.3.11)

Recalling that for the composite cylinder assemblage with rigid fibers the axial elastic shear modulus G_A is given in [1, 5] as:

$$G_{A} = G \frac{1+c}{1-c}$$
 (2.3.12)

and comparing (2,3.11) with (2.2.6) with choice of exponent N=3 (which is the same as matrix exponent), it is seen that:

$$\tau_{y}^{2} \ge \tau_{y}^{\prime 2} \frac{3(1+c)^{3}}{3+13c+c^{2}+c^{3}}$$

The prediction of (2.3.11) has been compared with numerical results obtained in [9]. Figure 6 shows the variation of the right side of (2.3.11) in comparison with the results obtained in [9] for a fiber volume fraction, c=0.5. Since results of [9] were for boron fibers in epoxy matrix, the rigid fiber approximation is accurately valid. It is seen that the results are reasonably close. It should be noted that the geometry of [9] is a rectangular fiber array which is quite different from the composite cylinder assemblage geometry.

The results defined by (2.3.12) and (2.3.13) used in equation (2.2.6) yield the result plotted in non-dimensional form in Fig. 7. The shear strains are normalized with respect to the matrix elastic strain, γ_{ve} , at the yield stress, τ_{v} :

 $\gamma_{ye} = \frac{\tau_y}{G}$

It is natural to also consider the establishment of an upper bound on G_A^S . Unfortunately, however, this is a matter of formidable difficulty for the reason that inversion of (2.3.6) to express stresses in terms of strains leads very complicated expressions. Further discussion of this difficulty is given in Appendix C.

(2.3.13)

(2.3.14)

3. ANALYSIS OF NON-LINEAR LAMINATES

3.1 Formulation

The general problem to be investigated in the present chapter is as follows: given the inelastic stress-strain relations of uniaxially reinforced laminae determined theoretically or experimentally, and a laminate composed of such laminae and loaded on its edges by uniformly distributed loads in the plate of the laminate:

- (a) What are the stresses in the various laminae?
- (b) What is the macroscopic strain response of the laminate to the loads?

This problem has been extensively investigated for elastic laminates, and the results obtained will serve as important guidelines for the present much more complicated problem. It is therefore very helpful to first briefly review the theory of elastic laminates.

Let the laminate be referred to a fixed system of coordinates x_1 , x_2 , x_3 as shown in Figure 8. This will henceforth be referred to as the <u>laminate coordinate system</u>.

Any lamina, kth say, in the laminate will be referred to its <u>material system of coordinates</u> $x_1^{(k)}$, $x_2^{(k)}$, $x_3^{(k)}$ where $x_1^{(k)}$ is in fiber direction, $x_2^{(k)}$ perpendicular to fiber direction and x_3 is the same as the laminate x_3 , Figure 8. The reinforcement angle θ_k is defined by:

$$\theta = \neq (x_1, x_1^{(k)}) = \neq (x_2, x_2^{(k)})$$
 (3.1.1)

Let it be assumed that the laminae are in states of plane stress. It will be later explained under what conditions this is true. Then the stress-strain relations of a single lamina referred to its material coordinate system are written in the forms:

$$\varepsilon_{\alpha\beta}^{(k)} = S_{\alpha\beta\gamma\delta}^{(k)} \sigma_{\gamma\delta}^{(k)} \qquad (a)$$

$$\varepsilon_{\alpha\beta}^{(k)} = S_{\alpha\beta\gamma\delta}^{(k)} \sigma_{\gamma\delta}^{(k)} \qquad (b) \qquad 21.$$

where (3.1.2a) is in tensor notation with range of subscripts 1, 2 and (3.1.2b) is in matrix notation. It should be noted that (3.1.2) represent the stress-strain relations (2.1.9 - .10), i.e.,

٠

$$\varepsilon_{11}^{(k)} = \frac{\sigma_{11}^{(k)}}{E_A^{(k)}} - \frac{\nu_A^{(k)}}{E_A^{(k)}} \sigma_{22}^{(k)}$$

$$\varepsilon_{22}^{(k)} = -\frac{\nu_A^{(k)}}{E_A^{(k)}} \sigma_{11}^{(k)} + \frac{\sigma_{22}^{(k)}}{E_T^{(k)}}$$

$$\varepsilon_{12}^{(k)} = \frac{\sigma_{12}^{(k)}}{2G_A^{(k)}}$$
(3.1.3)

Let a laminate of rectangular form, Figure 8, be loaded by a uniform edge stress:

$$\sigma_{11}(\underline{+}a, x_{2}) = \sigma_{11}$$

$$\sigma_{12}(\underline{+}a, x_{2}) = \sigma_{12}$$

$$\sigma_{12}(x_{1}, \underline{+}b) = \sigma_{12}$$

$$\sigma_{22}(x_{1}, \underline{+}b) = \sigma_{22}$$
(3.1.4)

The elasticity solution of the laminate must satisfy the following requirements:

- (a) Equilibrium of stresses,
- (b) Traction continuity at laminae interfaces,
- (c) Boundary conditions (3.1.4), and
- (d) Displacement continuity at laminae interfaces.

It is assumed that the stresses in any lamina are constant, but different in the different laminae. The condition (a) is satisfied within any lamina. Since the assumed lamina stresses are plane there are no traction components on laminae interfaces. Therefore (b) is satisfied.

The boundary conditions (3.1.4) cannot be strictly satisfied in each lamina but only in an average sense. To do this lamina stresses $\sigma_{\alpha\beta}^{(k)}$ referred to lamina material coordinates

are transformed to laminate axes. The stresses in the kth lamina referred to laminate axes are denoted ${}^{(k)}\sigma_{\alpha\beta}$. The transformation is given by:

$${}^{(k)}\sigma_{11} = \sigma_{11}^{(k)} \cos^{2}\theta_{k} + \sigma_{22}^{(k)} \sin^{2}\theta_{k} - 2\sigma_{12}^{(k)} \cos\theta_{k} \sin\theta_{k}$$

$${}^{(k)}\sigma_{22} = \sigma_{22}^{(k)} \sin^{2}\theta_{k} + \sigma_{22}^{(k)} \cos^{2}\theta_{k} + 2\sigma_{12}^{(k)} \cos\theta_{k} \sin\theta_{k} \quad (3.1.5)$$

$${}^{(k)}\sigma_{12} = (\sigma_{11}^{(k)}\sigma_{22}^{(k)}) \sin\theta_{k} \cos\theta_{k} + \sigma_{12}^{(k)} (\cos^{2}\theta_{k} - \sin^{2}\theta_{k})$$

or in matrix notation:

.

.

Let the edges of the laminate be loaded by constant forces per unit length T_{11} , T_{22} , T_{12} and define the stresses (3.1.4) as edge averages over the laminate thickness h:

$$\sigma_{11}^{\circ} = T_{11}/h$$

$$\sigma_{22}^{\circ} = T_{22}/h$$

$$\sigma_{12}^{\circ} = T_{12}/h$$

(3.1.7)

Equilibrium requires that:

i \

$$\begin{array}{l}
\mathbf{K} \\
\Sigma \\
\mathbf{k}=1
\end{array} \quad \sigma_{11}^{(\mathbf{k})} = \sigma_{11}^{\circ} \\
\begin{array}{l}
\mathbf{K} \\
\Sigma \\
\mathbf{k}=1
\end{array} \quad \sigma_{22}^{(\mathbf{k})} = \sigma_{22}^{\circ} \\
\begin{array}{l}
\mathbf{K} \\
\Sigma \\
\mathbf{k}=1
\end{array} \quad \sigma_{12}^{(\mathbf{k})} = \sigma_{12}^{\circ} \\
\end{array}$$
(3.1.8)

where K is the number of laminae. Written in terms of stresses $\sigma_{\alpha\beta}^{(k)}$ using (3.1.6), we have:

$$\sum_{k=1}^{K} \underline{\theta}^{(k)} \underline{\sigma}^{(k)} = \underline{\sigma}^{\circ}$$
(3.1.9)

where $\underline{\sigma}^{\circ}$ denotes the stresses $\sigma_{\alpha\beta}^{\circ}$ at the edges. 23.

Replacement of the boundary conditions (3.1.4) by (3.1.6) is an approximation of Saint Venant type. Thus, there must be expected edge perturbations (among them interlaminar shear) on the stresses predicted by laminate theory.

Equations (3.1.8) are three equations for the 3K stresses $\sigma_{\alpha\beta}^{(1)}$, $\sigma_{\alpha\beta}^{(2)} \dots \sigma_{\alpha\beta}^{(K)}$ in the laminae. There are needed an additional 3(K-1) equations which are provided by displacement continuity at lamina interfaces, requirement (d).

Since the stresses in each laminae are by hypothesis uniform, so are the strains. Therefore, displacement continuity is ensured if the lamine strains in adjacent laminae, referred to laminae coordinate system are the same. Thus:

$${}^{(k)} \varepsilon_{11} = {}^{(k+1)} \varepsilon_{11}$$

$${}^{(k)} \varepsilon_{22} = {}^{(k+1)} \varepsilon_{22}$$

$${}^{(k)} \varepsilon_{12} = {}^{(k+1)} \varepsilon_{12}$$

Equations (3.1.10) are the additional required 3(K-1) equations. They will be written in terms of laminae stresses $\sigma_{\alpha\beta}^{(k)}$ referred to laminae material axes. To do this it is noted that:

$$(k)_{\underline{\varepsilon}} = \underline{\theta}^{(k)} \underline{\varepsilon}^{(k)}$$

which is just a transformation of (3.1.6). From (3.1.2b):

$${}^{(k)}\underline{\varepsilon} = \underline{\theta}{}^{(k)} \underline{S}{}^{(k)} \underline{\sigma}{}^{(k)}$$
(3.1.11)

and inserting the last result in (3.1.10):

$$\underline{\theta}^{(k)} \underline{S}^{(k)} \underline{\sigma}^{(k)} = \underline{\theta}^{(k+1)} \underline{S}^{(k+1)} \underline{\sigma}^{(k+1)} \quad k=1,2...k \quad (3.1.12)$$

Equations (3.1.9) and (3.1.12) are 3K linear equations for the 3K stresses in an elastic laminate, with K layers.

It should be carefully noted that the analysis given above is based on plane stress conditions in individual laminae. This 24. is a valid assumption if:

- (a) The loads on the laminate are statically equivalent to in-plane forces (membrane forces) and produce neither bending nor twisting moments, and
- (b) The laminate has a certain stacking sequence of laminae which defines a so called balanced or symmetric laminate.

This stacking sequence is an arrangement in which the laminate has a middle plane of geometrical and of material symmetry. The laminae are arranged in paris with respect to the plane of symmetry. The laminae of such pair have equal thicknesses, same distances from middle plane, and are of the same material with same angles of reinforcement.

In a non-symmetric laminate application of membrane forces will in general produce bending and twisting of laminae and thus a plane state of stress will not be realized. The symmetric laminate is, however, sufficiently versatile to cover most cases of practical interest.

Let it now be assumed that the laminate is inelastic but still fulfills the conditions of symmetry and pure membrane loading. In this case the only equations which necessarily change in the preceding development are the stress-strain relations of the laminae, (3.1.2), which must be replaced by inelastic laminae stress-strain relations are given by (2.1.7) where the compliances are now functions of the stresses. These compliances now replace the elastic compliances in (3.1.2) which thus become non-linear.

It is convenient for later purposes to rewrite (3.1.2) in the inelastic case in different form. To do this the strains $\varepsilon_{\alpha\beta}^{(k)}$ are first split into elastic strains (2.1.9) and inelastic strains (2.1.11). Preceeding to (3.1.12) this equation assumes the form:

$$\underline{\theta}^{(k+1)} \underline{s}^{1(k+1)} \underline{\sigma}^{(k+1)} - \underline{\theta}^{(k)} \underline{s}^{1(k)} \underline{\sigma}^{(k)} = - \underline{\theta}^{(k+1)} \underline{s}^{11(k+1)} \underline{\sigma}^{(k+1)} + \underline{\theta}^{(k)} \underline{s}^{11(k)} \underline{\sigma}^{(k)}$$
(3.1.13)
 $k = 1, 2 \dots k$ (3.1.13)

where

 $\underline{s}^{l(k)}$ - elastic compliance matrix of kth layer $\underline{s}^{ll(k)}$ - inelastic part of compliance matrix of kth layer $\underline{s}^{(k)} = \underline{s}^{l(k)} + \underline{s}^{ll(k)}$ (3.1.14)

Equations (3.1.13) are now written out in component form with notation (2.1.10), (2.1.12) for compliances:

$$\sigma_{11}^{(k+1)} (s_{11}^{1} {}^{(k+1)} \cos^{2}\theta_{k+1} + s_{12}^{1(k+1)} \sin^{2}\theta_{k+1}) + \sigma_{22}^{(k+1)} (s_{12}^{1(k+1)} \cos^{2}\theta_{k+1} + s_{22}^{1(k+1)} \sin^{2}\theta_{k+1}) - 4\sigma_{12}^{(k+1)} s_{44}^{1(k+1)} \cos^{2}\theta_{k+1} \sin^{2}\theta_{k+1} - \sigma_{11}^{(k)} (s_{11}^{1(k)} \cos^{2}\theta_{k} + s_{12}^{1(k)} \sin^{2}\theta_{k}) + \sigma_{22}^{(k)} (s_{12}^{1(k)} \cos^{2}\theta_{k} + s_{22}^{1} \sin^{2}\theta_{k}) = 4\sigma_{12}^{(k)} s_{44}^{1(k)} \cos^{2}\theta_{k} \sin^{2}\theta_{k} = - \sigma_{11}^{(k+1)} (s_{11}^{11(k+1)} \cos^{2}\theta_{k+1} + s_{12}^{11(k+1)} \sin^{2}\theta_{k+1}) + \sigma_{22}^{(k+1)} (s_{12}^{11(k+1)} \cos^{2}\theta_{k+1} + s_{22}^{11(k+1)} \sin^{2}\theta_{k+1} - 4\sigma_{12}^{(k+1)} s_{44}^{14(k+1)} \cos^{2}\theta_{k+1} \sin^{2}\theta_{k+1} + \sigma_{22}^{(k+1)} (s_{11}^{11(k)} \cos^{2}\theta_{k} + s_{12}^{11(k+1)} \sin^{2}\theta_{k+1} - 4\sigma_{12}^{(k+1)} s_{44}^{14(k+1)} \cos^{2}\theta_{k+1} \sin^{2}\theta_{k+1} + \sigma_{11}^{(k)} (s_{11}^{11(k)} \cos^{2}\theta_{k} + s_{12}^{11(k)} \sin^{2}\theta_{k}) + \sigma_{22}^{(k)} (s_{12}^{11(k)} \cos^{2}\theta_{k} + s_{22}^{12} \sin^{2}\theta_{k}) - 4\sigma_{12}^{(k)} s_{44}^{11(k)} \cos^{2}\theta_{k} \sin^{2}\theta_{k}$$
(3.1.15)

$$\begin{split} \sigma_{11}^{(k+1)} &(S_{11}^{1(k+1)} \sin^2 \theta_{k+1} + S_{12}^{1(k+1)} \cos^2 \theta_{k+1} \\ + \sigma_{22}^{(k+1)} &(S_{12}^{1(k+1)} \sin^2 \theta_{k+1} + S_{22}^{1(k+1)} \cos^2 \theta_{k+1}) \\ + 4 \sigma_{12}^{(k+1)} S_{44}^{1(k+1)} \cos \theta_{k+1} \sin \theta_{k+1} \\ \sigma_{11}^{(k)} &(S_{11}^{1(k)} \sin^2 \theta_k + S_{12}^{1(k)} \cos^2 \theta_k \\ + \sigma_{22}^{(k)} &(S_{12}^{1(k)} \sin^2 \theta_k + S_{22}^{1(k)} \cos^2 \theta_k \\ + 4 \sigma_{12}^{(k)} &S_{12}^{1(k)} \sin^2 \theta_k + S_{22}^{1(k)} \cos^2 \theta_k \\ &= - \sigma_{11}^{(k+1)} &(S_{11}^{11(k+1)} \sin^2 \theta_{k+1} + S_{12}^{11(k+1)} \cos^2 \theta_{k+1}) \\ + \sigma_{22}^{(k+1)} &(S_{11}^{11(k+1)} \sin^2 \theta_{k+1} + \sigma_{11}^{(k)} (S_{11}^{11(k)} \sin \theta_k + S_{12}^{11(k)} \cos^2 \theta_k) \\ &= - \sigma_{11}^{(k+1)} &(S_{11}^{11(k+1)} \sin^2 \theta_{k+1} + S_{22}^{11(k+1)} \cos^2 \theta_{k+1}) \\ + \sigma_{22}^{(k+1)} &(S_{11}^{11(k+1)} \sin^2 \theta_{k+1} + \sigma_{11}^{(k)} (S_{11}^{11(k)} \sin \theta_k + S_{12}^{11(k)} \cos^2 \theta_k) \\ &+ \sigma_{22}^{(k)} &(S_{12}^{11(k)} \sin^2 \theta_k + S_{22}^{11(k)} \cos^2 \theta_k + 4 \sigma_{12}^{(k)} S_{11}^{11(k+1)} \cos^2 \theta_k) \\ &+ \sigma_{22}^{(k)} &(S_{11}^{11(k)} \sin^2 \theta_k + S_{22}^{11(k)} \cos^2 \theta_k + 4 \sigma_{12}^{(k)} S_{11}^{11(k+1)} \cos^2 \theta_k) \\ &+ \sigma_{22}^{(k)} &(S_{11}^{11(k)} \sin^2 \theta_k + S_{22}^{11(k)} \cos^2 \theta_k + 4 \sigma_{12}^{(k)} S_{11}^{11(k+1)} \cos^2 \theta_k) \\ &+ \sigma_{22}^{(k)} &(S_{11}^{11(k)} \sin^2 \theta_k + S_{22}^{11(k)} \cos^2 \theta_k + 4 \sigma_{12}^{(k)} S_{11}^{11(k+1)} \cos^2 \theta_k) \\ &+ \sigma_{22}^{(k)} &(S_{11}^{11(k)} \sin^2 \theta_k + S_{22}^{11(k)} \cos^2 \theta_k + 4 \sigma_{12}^{(k)} S_{11}^{11(k+1)} \cos^2 \theta_k) \\ &+ \sigma_{22}^{(k)} &(S_{11}^{11(k)} \sin^2 \theta_k + S_{22}^{11(k)} \cos^2 \theta_k + 4 \sigma_{12}^{(k)} S_{11}^{11(k+1)} \cos^2 \theta_k) \\ &+ \sigma_{22}^{(k)} &(S_{11}^{11(k)} \sin^2 \theta_k + S_{22}^{11(k)} \cos^2 \theta_k + 4 \sigma_{12}^{(k)} S_{11}^{11(k+1)} \cos^2 \theta_k) \\ &+ \sigma_{22}^{(k)} &(S_{11}^{11(k)} \sin^2 \theta_k + S_{22}^{11(k)} \cos^2 \theta_k + 4 \sigma_{12}^{(k)} S_{11}^{11(k+1)} \cos^2 \theta_k) \\ &+ \sigma_{22}^{(k)} &(S_{11}^{11(k)} \sin^2 \theta_k + S_{22}^{11(k)} \cos^2 \theta_k + 4 \sigma_{12}^{(k)} S_{11}^{11(k+1)} \cos^2 \theta_k) \\ &+ \sigma_{22}^{(k)} &(S_{11}^{11(k)} \sin^2 \theta_k + S_{22}^{11(k)} \cos^2 \theta_k + 4 \sigma_{12}^{(k)} S_{11}^{11(k+1)} \cos^2 \theta_k) \\ &+ \sigma_{22}^{(k)} &(S_{11}^{11(k)} \sin^2 \theta_k + S_{22}^{11(k)} \cos^2 \theta_k) \\ &+ \sigma_{22}^{(k)} &(S_{11}^{11(k)} \sin^2 \theta_k + S_{22}^{11(k)} \cos$$

$$\begin{split} \sigma_{11}^{(k+1)} &(s_{11}^{1(k+1)} - s_{22}^{1(k+1)} \sin \theta_{k+1} \cos \theta_{k+1} \\ + \sigma_{22}^{(k+1)} &(s_{12}^{1(k+1)} - s_{22}^{1(k+1)}) \sin \theta_{k+1} \cos \theta_{k+1} \\ + 2\sigma_{12}^{(k+1)} s_{44}^{1(k+1)} &(\cos^2 \theta_{k+1} - \sin^2 \theta_{k+1}) \\ - &\sigma_{11}^{(k)} &(s_{11}^{1(k)} - s_{12}^{1(k)}) \sin \theta_k \cos \theta_k \\ + &\sigma_{22}^{(k)} &(s_{12}^{1(k)} - s_{22}^{1(k)}) \sin \theta_k \cos \theta_k + 2\sigma_{12}^{(k)} s_{44}^{1(k)} &(\cos^2 \theta_k - \sin^2 \theta_k) \\ = &- &\sigma_{11}^{(k+1)} &(s_{11}^{11(k+1)} - s_{12}^{11(k+1)}) \sin \theta_{k+1} \cos \theta_{k+1} \\ + &\sigma_{22}^{(k+1)} &(s_{12}^{11(k+1)} - s_{12}^{11(k+1)}) \sin \theta_k \cos \theta_k \\ + &2\sigma_{12}^{(k+1)} &(s_{11}^{11(k+1)} - s_{12}^{11(k+1)}) \sin \theta_k \cos \theta_k \\ + &2\sigma_{12}^{(k+1)} &(s_{11}^{11(k+1)} - s_{12}^{11(k+1)}) \sin \theta_k \cos \theta_k \\ + &\sigma_{22}^{(k)} &(s_{12}^{11(k)} - s_{12}^{11(k)}) \sin \theta_k \cos \theta_k \\ + &\sigma_{22}^{(k)} &(s_{12}^{11(k)} - s_{12}^{11(k)}) \sin \theta_k \cos \theta_k \\ + &\sigma_{22}^{(k)} &(s_{12}^{11(k)} - s_{12}^{11(k)}) \sin \theta_k \cos \theta_k \\ + &2\sigma_{12}^{(k)} &(s_{11}^{11(k)} - s_{12}^{11(k)}) \sin \theta_k \cos \theta_k \\ + &2\sigma_{12}^{(k)} &(s_{11}^{11(k)} - s_{12}^{11(k)}) \sin \theta_k \cos \theta_k \\ + &2\sigma_{12}^{(k)} &(s_{11}^{11(k)} - s_{12}^{11(k)}) \sin \theta_k \cos \theta_k \\ + &2\sigma_{12}^{(k)} &(s_{11}^{11(k)} - s_{12}^{11(k)}) \sin \theta_k \cos \theta_k \\ + &2\sigma_{12}^{(k)} &(s_{11}^{11(k)} - s_{12}^{11(k)}) \sin \theta_k \cos \theta_k \\ + &2\sigma_{12}^{(k)} &(s_{11}^{11(k)} - s_{12}^{11(k)}) \sin \theta_k \cos \theta_k \\ + &2\sigma_{12}^{(k)} &(s_{11}^{11(k)} - s_{12}^{11(k)}) \sin \theta_k \cos \theta_k \\ + &2\sigma_{12}^{(k)} &(s_{11}^{11(k)} - s_{12}^{11(k)}) \sin \theta_k \cos \theta_k \\ + &2\sigma_{12}^{(k)} &(s_{11}^{11(k)} - s_{12}^{11(k)}) \sin \theta_k \cos \theta_k \\ + &2\sigma_{12}^{(k)} &(s_{11}^{11(k)} - s_{12}^{11(k)}) \sin \theta_k \cos \theta_k \\ + &2\sigma_{12}^{(k)} &(s_{11}^{11(k)} - s_{12}^{11(k)}) \sin \theta_k \cos \theta_k \\ + &2\sigma_{12}^{(k)} &(s_{11}^{11(k)} - s_{12}^{11(k)}) \sin \theta_k \cos \theta_k \\ + &2\sigma_{12}^{(k)} &(s_{11}^{11(k)} - s_{12}^{11(k)}) \sin \theta_k \cos \theta_k \\ + &2\sigma_{12}^{(k)} &(s_{11}^{11(k)} - s_{12}^{11(k)}) \sin \theta_k \cos \theta_k \\ + &2\sigma_{12}^{(k)} &(s_{11}^{(k)} - s_{12}^{(k)}) \sin \theta_k \cos \theta_k \\ + &2\sigma_{12}^{(k)} &(s_{11}^{(k)} - s_{12}^{(k)}) \sin \theta_k \cos \theta_k \\ + &2\sigma_{12}^{(k)} &(s_{11}^{(k)} - s_{12}^{(k)}) \sin \theta_k \cos \theta_k \\ + &2\sigma_{12}^{(k)} &(s_{11}^{(k)} - s_{12}^{(k)}) \sin$$

. . .

• .

To these must be adjoined equations (3.1.9) which are written here in components:

We now consider special cases of interest. In the first case the inelastic laminae strains have the form (2.1.13). Then the right side of (3.1.15-.17) simplifies by setting:

$$s_{11}^{11(k)} = s_{11}^{11(k+1)} = s_{12}^{11(k)} = s_{12}^{11(k+1)} = 0$$

$$s_{22}^{11(k)} = s_{22}^{11(k)} (\sigma_{22}^{(k)}, \sigma_{12}^{(k)})$$

$$s_{22}^{11(k+1)} = s_{22}^{11(k+1)} (\sigma_{22}^{(k+1)}, \sigma_{12}^{(k+1)})$$

$$s_{44}^{11(k)} = s_{44}^{11(k)} (\sigma_{22}^{(k)}, \sigma_{12}^{(k)})$$

$$s_{44}^{11(k+1)} = s_{44}^{11(k+1)} (\sigma_{22}^{(k+1)}, \sigma_{12}^{(k+1)})$$

(3.1.19)

Once the stresses in the laminae have been obtained the strains in the laminae, referred to laminate axes, are determined from (3.1.11). Since the strains in all laminae are the same when referred to the laminate coordinate system, these 28. are also the average laminate strains and thus determine the inealstic response of the laminate.

In the simplest case the lamina material is assumed to be inelastic in shear only. In that event we have in addition to (3.1.19):

$$S_{22}^{"(k)} = S_{22}^{"(k+1)} = 0$$
 (3.1.20)

and for Ramberg-Osgood presentation of inelastic part of shear compliance:

$$2S_{44}^{11(k)} = \frac{1}{2G_{A}^{(k)}} \left(\frac{\sigma_{12}^{(k)}}{\tau_{y}^{(k)}}\right)^{N_{k}-1}$$

$$2S_{44}^{11(k+1)} = \frac{1}{2G_{A}^{(k+1)}} \left(\frac{\sigma_{12}^{(k+1)}}{\tau_{y}^{(k+1)}}\right)^{N_{k+1}-1}$$
(3.1.21)

In Ramberg-Osgood representation (2.2.1) the inelastic parts of the compliances assume forms such as:

$$s_{22}^{11(k)} = \frac{1}{E_{T}} \left[\left(\frac{\sigma_{22}^{(k)}}{\sigma_{y}^{(k)}} \right)^{2} + \left(\frac{\sigma_{12}^{(k)}}{\tau_{y}^{(k)}} \right)^{2} \right]^{1/2(M_{K}-1)}$$

$$2s_{44}^{11(k)} = \frac{1}{2G_{A}^{(k)}} \left[\left(\frac{\sigma_{22}^{(k)}}{\sigma_{y}^{(k)}} \right)^{2} + \left(\frac{\sigma_{12}^{(k)}}{\tau_{y}^{(k)}} \right)^{2} \right]^{1/2(N_{K}-1)}$$

$$s_{22}^{11(k+1)} = \frac{1}{E_{T}^{(k+1)}} \left[\left(\frac{\sigma_{22}}{\sigma_{y}^{(k+1)}} \right)^{2} \left(\frac{\sigma_{12}^{(k+1)}}{\tau_{y}^{(k+1)}} \right)^{2} \right]^{1/2(M_{k+1}^{-1})}$$

$$2S_{44}^{11(k+1)} = \frac{1}{2G_{A}^{(k+1)}} \left[\left(\frac{\sigma_{22}^{(k+1)}}{\sigma_{y}^{(k+1)}} \right)^{2} + \left(\frac{\sigma_{12}^{(k+1)}}{\tau_{y}^{(k+1)}} \right)^{2} \right]^{1/2(N_{k}^{-1})}$$

3.2 <u>Method of Solution</u>

The equations which define the laminae stresses are (3.1.9) and (3.1.13) in condensed form, or equivalently, (3.1.15- 3.1.17), (3.1.18) in full form. To explain the solution method it is simpler to write in terms of the condensed form.

Define the matrices:

$$\underline{L}^{l(k+1)} = \underline{\theta}^{(k+1)} \underline{S}^{l(k+1)}$$

$$\underline{L}^{ll(k+1)} = \underline{\theta}^{(k+1)} \underline{S}^{ll(k+1)}$$

$$\underline{L}^{l(k)} = \underline{\theta}^{(k)} \underline{S}^{l(k)}$$

$$\underline{L}^{ll(k)} = \underline{\theta}^{(k)} \underline{S}^{ll(k)}$$
Then equs. (3.1.13) assume the form:

$$\underline{\mathbf{L}}^{1(k+1)} \underline{\sigma}^{(k+1)} - \underline{\mathbf{L}}^{1(k)} \underline{\sigma}^{(k)} = -\underline{\mathbf{L}}^{11(k+1)} \underline{\sigma}^{(k+1)} + \underline{\mathbf{L}}^{11(k)} \underline{\sigma}^{(k)}$$
(3.2.2)

to which are adjoined equs. (3.1.9) which are here rewritten:

$$\sum_{k=1}^{K} \underline{\theta}^{(k)} \underline{\sigma}^{(k)} = \underline{\sigma}^{\circ}$$
(3.2.3)

The equations may be solved numerically by an iteration method which proceeds as follows: Consider equs. (3.2.2-3) with the right side of (3.2.2) zero. This defines a set of stresses $\underline{\sigma}_{\circ}^{(k)}$ given by:

 $\underline{L}^{l(k+1)} \underline{\sigma}^{(k+1)} - \underline{L}^{l(k)} \underline{\sigma}^{(k)}_{\circ} = 0 \qquad (a)$ $k = 1, 2 \dots k = 1 \qquad (3.2.4)$

 $\overset{K}{\underset{k=1}{\Sigma}} \underbrace{\theta}^{(k)} \underbrace{\sigma}^{(k)}_{\circ} = \underline{\sigma}^{\circ}$ (b)

Since (3.2.4a) contains only elastic compliances $S'^{(k)}$ it is seen that the equations are linear and define the stresses in an <u>elastic</u> laminate. Now insert the stresses $\underline{\sigma}_{0}^{(k)}$ into the right side of (3.2.2) and define the stresses $\underline{\sigma}_{1}^{(k)}$ by:

$$\underline{L}^{l(k+1)} \underline{\sigma}_{l}^{(k+1)} - \underline{L}^{l(k)} \underline{\sigma}_{l}^{(k)} = - \underline{L}^{ll(k+1)} [\underline{\sigma}_{\circ}^{(k+1)}] \underline{\sigma}_{\circ}^{(k+1)} (a)$$

$$+ \underline{L}^{ll(k)} [\underline{\sigma}_{\circ}^{(k)}] \underline{\sigma}_{\circ}^{(k)} \qquad (3.2.5)$$

$$\overset{K}{\underset{k=1}{\overset{\Sigma}{=}} \underline{\theta}^{(k)} \underline{\sigma}_{l}^{(k)} = \underline{\sigma}^{\circ}_{l} \qquad (b)$$

Equs. (3.2.5) defines (hopefully) a new approximation $\underline{\sigma}_1^{(k)}$ which is the solution of a set of linear equations. The stresses in square brackets in the right side of (3.2.5) are to emphasize the stress dependence of the non-linear parts of the compliances.

The procedure just initiated can be repeated indefinitely. In general:

This iteration procedure is quite easy to carry out with aid of a computer. It replaces the solution of a set of nonlinear equations by solution of a sequence of linear equations, provided of course, that convergence is obtained.

It should be noted that the first iteration step does not necessarily have to start with equs. (3.2.4a), i.e., with zero right side of (3.2.2). Any stresses $\sigma_o^{(k)}$ which fulfill (3.2.4b) can be used to start the iteration with (3.2.5) and continuing with the general iteration relation (3.2.6).

It is desired to obtain a laminate solution for only one load system $\underline{\sigma}^{\circ}$ then it would seem most logical to start with (3.2.4). But suppose there is a sequence of loadings $\underline{\Delta\sigma}^{\circ}$, $\underline{2\Delta\sigma}^{\circ}...\underline{n\Delta\sigma}_{\circ}$. Suppose that a solution for (n-1) $\underline{\Delta\sigma}^{\circ}$ has been obtained and that a solution for $\underline{n\Delta\sigma}^{\circ}$ is desired. One possibility is to multiply all stresses due to the load (n-1) $\underline{\Delta\sigma}^{\circ}$ by the factor n/(n-1). The stresses thus obtained certainly 31. also satisfy (3.2.6b) because of the linearity of these equations. They will generally be reasonable starting values $\sigma_{(k)}^{(k)}$ for the iteration.

This method of iteration to obtain a solution was found to work well for many sample problems; however, there were cases in which the solution did not converge. Attempts to modify the recurrence relations to overcome this problem met with only partial success. Thus, an alternate procedure for solution was defined. The solution was obtained by application of the Newton-Raphson method.

The set of 3K nonlinear equations represented by equs. (3.2.2-.3) may be presented in the form:

$$F_n(\sigma_{ij}^k) = 0$$
 $n = 1, 2 \dots 3K$ (3.2.7)

The function F_i is expanded in a Taylor series about an arbitrary set of initial stresses which may be taken as the solutions of the elasticity problem. Considering only two terms of the series, it is found that

$$F_{i} = F_{i}^{\circ} + \frac{\partial F_{i}}{\partial \sigma_{mn}} \Delta \sigma_{mn}^{k} = 0$$
(3.2.8)

or

$$\sigma_{ij}^{k} = \sigma_{ij}^{k} - \left[\frac{\partial F_{m}^{*}}{\partial \sigma_{ij}^{k}}\right]^{-1} F_{m}^{*}$$
(3.2.9)

where σ_{ij}^{k} is the corrected solution obtained from the assumed solution σ_{ij}^{k} . Using σ_{ij}^{k} as the initial guess, the process is repeated until the result is obtained within a desired accuracy. A recurrence form of equation (3.2.9) to obtain the stresses at t+l cycle from t cycle can be constructed as follows:

(3.2.10)

$$(\sigma_{ij}^{k})_{t+1} = (\sigma_{ij}^{k})_{t} - [\frac{\partial F_{m}}{\partial \sigma_{ij}^{k}}]^{-1} (F_{m})_{t}$$

After the stresses σ_{ij}^k are obtained for all layers of the laminate, strains for any layer k in terms of laminae axes can be computed using equs. (3.1.3). Strains in terms of the laminate axes can be obtained using the strain transformation law.

This analysis has been developed into an efficient computer program. A description of the program including a listing, is presented in Appendix E.

3.3 Numerical Results

The computer program which has been developed under the present study has been utilized in the analysis of a variety of different composite laminates. The initial studies using the computerized analysis were directed at presenting a comparison between the results of the present analysis and those of previous analyses, notably that of Ref. 9. (The present results were also compared to available experimental data, primarily those of Ref. 6 which had also been used for comparison with the analytical results in Ref. 9.) The objective of this phase of the numerical study was to determine whether the present results, which can be obtained with minimal computer usage, compare well with those of the more exact and complex analytical results in Ref. 9. The results of this comparison are highly encouraging, as will be shown below, and support the utilization of the present analysis as an efficient design tool.

In the second phase of the design numerical studies, consideration was given to examining the sensitivity of laminate results to individual properties of the layers. These parametric studies are presented for several classes of typical laminates.

A series of laminates of boron/epoxy composites for which experimental data had been obtained in Ref. 6 were examined analytically in Ref. 9. In Figures 9 to 15, results of the present analytical method are added to the comparison of experimental results of [6] and analytical results of [9]. For example, in Fig. 9, the experimental stress-strain curve for a 0-90 boron/ epoxy laminate is compared to the analytical results obtained in Ref. 9 and in the present analysis. Both analytical results coincide; both show slightly less inelastic strain than the experiment. The solid point on the curve indicates the stress level at which fiber fracture is computed to occur in one of the layers of the laminate.

The shear stress-strain curve used in the present analysis was the best fit Ramberg-Osgood curve having an exponent n=3. 34. The values of modulus and yield stress obtained from the least squares fit are shown on the figure. A similar result is shown for the unidirectional tension $\pm 45^{\circ}$ laminate in Fig. 10. Here it is seen that the two analytical curves are similar, although the agreement is not as close as in Fig. 9. Experimental data reflect a substantially higher degree of inelasticity than either analytical result. The present analysis shows a higher degree of inelastic strain at the higher stress level than that of Ref. 9. However, the reverse is true in the comparison of the two analytical results shown in Fig. 11 for a $\pm 30^{\circ}$ laminate. The present results were obtained with a linear stress-strain curve in the transverse direction within each of the layers. The computations were made in this fashion because the transverse stress-strain curve of Ref. 9 does not show a significant degree of inelasticity.

Figure 12 presents results for the case of a quasi-isotropic laminate $(0/\pm 45/90)$ of boron/epoxy. Both the present result and that of Ref. 9 show a relatively insignificant amount of inelasticity. Again, the experimental data show a greater inelastic effect. Here the predicted failure strain level is in good agreement with the experimental failure strain level; however, there is a significant difference in the failure stress level. A similar result is presented in Fig. 13 for the quasi-isotropic laminate formed from the $0/\pm 60^{\circ}$ configuration.

Computations performed for the present study for laminates having fibers in several directions, including the loading direction, for a simple unidirectional load have shown a relatively small amount of inelastic strain. Another example of this is presented in Fig. 14 for a $0/\pm45^{\circ}$ laminate. Here, however, the agreement of all the analytical methods and the experimental method is very good.

The final comparison taken from Ref. 9 is presented in Fig. 15 for a laminate having fibers in three different directions and a tensile load applied at some intermediate angle. The present analysis agrees reasonably well with the results

Ref. 9. The discrepancy between the failure load predicted on the basis of fiber failure and the experimentally observed failure stress is quite substantial. It is possible that fialure in laminate of this type caould result from shearing or transverse stresses within the individual layers, and thus, not be a result of tension in the fiber failure. This mode of failure has not been treated in the present computer program. The mode of failure observed experimentally is not known to the authors.

The experimentally measured response of a multidirectional laminate to an applied shear stress has been reported in Ref. 13. Comparison of the experimental result with the theory of Ref. 9 was presented in Ref. 14. Computations for this case, made using the present analysis and the prior analytical result (Ref. 14), are compared to the experimental result in Fig. 16. Again, correlation between the two analytical results is good, agreement between analytical and theoretical results is reasonably good with the experimental observation showing higher inelastic strains and lower tangent shear moduli at the very high stress levels.

The conclusion of these comparisons with analytical and experimental data seem to justify the adoption of the present computer program as a useful engineering tool for the design and analysis of composite laminates. However, it appears that further study of the failure region is required.

Parametric study of the influence of various laminate geometric and mechanical properties has also been explored. Fig. 17 shows the results obtained for a $0/\pm45^{\circ}$ laminate indicating that the inelastic response in the transverse direction can become significant at higher stress levels. Failure due to fiber fracture under a transverse stress applied to the laminate occurs at strain levels larger than those plotted in Fig. 17. In the quasi-isotropic laminate having four fiber directions, $(0/\pm45/90)$ the degree of inelasticity in the longitudinal and transverse directions is of course the same and is

36~

in both cases very small. It is to be anticipated, on an intuitive basis, that the maximum degree of inelastic response would be observed for a stress applied midway between two of the fiber directions on this quasi-isotropic laminate. The stress-strain curve for this latter case is also shown in Fig. 18. Although the inelastic strains for this case are not significant there is a large difference in the predicted failure stress levels based on stress in the fiber direction for the two cases. It is worthwhile to emphasize that the quasi-isotropic laminate need not be isotropic in its strength characteristics.

Because of the directional strength characteristics interesting effects may be expected for combined stress cases. Some results of the exploration of this question are presented in Fig. 19 where the four direction quasi-isotropic laminate is subjected to combined stress state with respect to a 22-1/2° axis of symmetry. This laminate shows high strength under both the unidirectional load and shear load by itself. The combined stress case for equal values of applied shear stress and axial stress results in fiber failure, and therefore, laminate failure, at a substantially lower stress. The stress-strain curve prior to failure is not affected significantly by the presence of combined stress. The quasi-isotropic laminate having fibers in three directions (0/+60) is examined in Fig. 20. The sensitivity of this laminate to the Ramberg-Osgood parameters for the individual ply had little effect upon the stress-strain result. Indeed as an extreme example of this variation all lamiates stiffnesses except the axial stiffness were equal to zero. Enforcement of the Kirchhoff-Love plate assumptions for this case results in the so-called netting analysis. The response for this netting case, which is linear, is shown by the dashed curve in Fig. 20. Even with this extreme assumption, matrix inelasticity does not introduce a significant amount of inelastic strain. Experimental data for comparison with this result are not easily available, however Ref. 17 does present a stress-strain curve for this case which shows a transverse failure stress for the 37.

quasi-isotropic 0/+60° laminate which is about 60% of the failure stress in the axial direction. Also, the inelastic strain at failure is approximately 30% larger than the elastic strain associated with the failure stress level. The netting analysis result presented here suggests that in order to obtain such a strain, one might have to consider that the axial stiffness, either in tension, compression or both; or that other effects not considered in the conventional laminate analysis, such as interlaminar or transverse shear deformations, might contribute significantly to the overall laminate deformation.

The influence of the characteristic stress levels for transverse stress and axial shear of the unidirectional layer of a boron/epoxy material is examined in Fig. 21. The measure of this effect is taken to be the influence upon the stressstrain curve for the unidirectional tension of +30° laminate. The strong sensitivity to the characteristic axial shear stress τ_v and the relative insensitivity to the transverse characteristic stress σ_v for the R-O representations is illustrated in the figure. A similar comparison made for a boron/aluminum laminate of the same geometry subjected to uniaxial applied stress is shown in Fig. 22. Similar sensitivities are observed for this case. Boron/aluminum laminate response under transverse applied stress with the same values of the Ramberg-Osgood parameters is shown in Fig. 23. Here the fiber failure criterion did not come into play and thus the computations were extended to rather large strains in matrix. It is clear, that for this case, the failure criterion based on other stress-strain components is required. The examination of the computer print-out permits one to terminate the stress-strain curves at some stress level prior to fiber fracture depending upon the choice of the failure criterion. This can be done rather readily. The choice of the failure criterion is discussed in Appendix D.

The lamina properties for boron/aluminum are used to 38.

analyze a $0^{\circ}/\pm 30^{\circ}$ laminate under combined loading. These results are shown in Fig. 24. Axial stress-strain curves are presented for varying ratios of axial shear stress to axial tensile stress.

4. CONCLUDING REMARKS

Current approaches to the definition of design allowable stress for advanced fiber composite laminates are based upon the utilization of extremely conservative criteria. These limit the laminate to stress levels below which no significant damage of any kind occurs. The utilization of overly conservative design criteria can negate much of the potential for effective design utilizing advanced composite materials. The heterogeneous nature of these materials is such that a variety of possible damage modes exist. Thus, matrix cracking or yielding, fiber fracture, debonding, and other inelastic effects can all occur in local regions at relatively low average stress levels. These nonuniform and nonlinear effects greatly complicate the problem of establishing reliable design allowables. In the present program, the problem of nonlinear laminate behavior resulting from nonlinearities in the behavior of the matrix material was studied. The objective of the program was to develop an understanding of the inelastic behavior of composite laminates and to develop a computer program which will be used as an engineering tool in the design of fiber composite laminated structures.

The method of approach utilized herein was to adopt a Ramberg-Osgood representation of the nonlinear stress-strain behavior and to utilize deformation theory as an adequate representation of the material nonlinearities. The problem was viewed on two levels. First, the relationship between the constituent properties and the stress-strain response of a unidirectional fiber composite material was studied. For this problem, the primary attention herein was directed toward the axial shear behavior, in as much as experimental data had indicated that it is this type of load which results in the most significant nonlinearities in material behavior. For this case, an expression was established relating the composite average-stress/average-strain curve to the fiber moduli and the matrix nonlinear stress-strain curve. This expression, which was developed as a lower bound, was found to give good agreement with the more exact results obtained by 40.

applying incremental plasticity theory and using a numerical finite element analysis to the assessment of the material behavior (Ref. 9).

The second level of approach treats the interelationship between the properties of the unidirectional layers and those of the laminate. For this case, one may consider that the starting point is a nonlinear stress-strain curve for transverse stress, and for axial shear stress, alone, and a linear stress-strain relation for stress in the fiber direction. The nonlinear lamina stress-strain curves can be modeled by proper selection of the Ramberg-Osgood parameters.

In the present study, unlike other formulations an interaction expression was formulated to account for simultaneous application of axial shear and transverse stress. A laminate having an arbitrary number of oriented layers, and subjected to a general state of membrane stress, was treated. The results of this analysis were programmed into an efficient computer routine for numerical evaluation of arbitrary laminates. Results obtained show good agreement with those of previous complex numerical methods utilizing incremental plasticity theory.

Certain limitations connected with this program should also be discussed. First, deformation type stress-strain relations have been used; hence, it is implicit in this result that the stress and strain values obtained for any given set of loads are functions only of those loads and not of the loading history. On the other hand, if points are computed for intermediate values of loads, following different load paths, then different intermediate conditions will be obtained. Thus, the question is raised as to what is the accuracy of the results obtained for paths which do not yield proportional loading. It is known that for local proportional loading, the deformation theory result is the same as that for the incremental theory. In the laminate, local proportional loading does not exist, in general, even when the external loading is proportional. However, the assumption is made that the deformation theory will yield an approximation which is satisfactory to generate a

rational engineering tool. This can only be assessed by comparison with an exact analysis, or since this does not exist for the case of arbitrary loading paths, perhaps by comparison with experimental data.

Comparisons of the present results with experimental data tend to show moderately good agreement. There are, however, cases in which experimental results show a higher degree of inelastic strain than predicted by the present analysis. These experimental data are quite limited and may be insufficient for drawing conclusions in this regard.

The question of failure criteria incorporated into the present analysis required further consideration. The present analysis obtains more accurate representations of the stress components in the individual layers than have been obtained from elastic analyses. Hence, the use of these stress components in any failure criteria should represent an improvement in failure prediction

In addition to a description of the methods of analysis, and of the numerical comparisons which have been carried out, the present report also presents a description of the computer program for study of nonlinear behavior of laminates in sufficient detail to permit the utilization of this program by others.

APPENDIX A

SYMMETRY SIMPLIFICATION OF NON-LINEAR STRESS-STRAIN RELATIONS

The most general inelastic stress-strain relations of the deformation type are of the form

$$\varepsilon_{ij} = S_{ijkl} \sigma_{kl} \tag{1}$$

where S_{ijkl} are functions of the stresses. Let it be assumed that the material is transversely isotropic with x_l axis of symmetry. Any rotation about x_l changes ε_{ij} and σ_{ij} into ε'_{ij} and σ'_{ij} . Then the condition of transverse isotropy demands that

 $\varepsilon'_{ij} = S_{ijkl} \sigma'_{kl}$ (2)

where S_{ijkl} in (1) and (2) are the same. To fulfill this last requirement it is necessary that S_{ijkl} be functions of stresses only through stress expressions which are invariant for rotations about the x_1 axis. There are five such invariants and they are given by, [15]

 $I_{1} = \sigma_{11} \qquad I_{2} = \sigma_{22} + \sigma_{33} \qquad I_{3} = \sigma_{12}^{2} + \sigma_{13}^{2} \qquad (3)$ $I_{4} = 1/2 (\sigma_{22} - \sigma_{33})^{2} + 2\sigma_{23}^{2} \qquad I_{5} = 1/2 (\sigma_{22} - \sigma_{33}) (\sigma_{12}^{2} - \sigma_{13}^{2}) + 2\sigma_{12} \sigma_{13} \sigma_{23}$

Thus

$$S_{ijkl} = S_{ijkl} (I_1, I_2, I_3, I_4, I_5)$$
 (4)

It follows that for rotations around the x_1 axis of symmetry the s_{ijk1} behave as constants. Consequently, the symmetry reduction of (1) to transverse isotropy is just as in elasticity.

The reduction may be performed in following fashion: For rotation of angle θ about the x₁ axis, the stress tensor σ_{ij} transforms into σ'_{ij} in the following fashion

 $\sigma'_{11} = \sigma_{11}$ $\sigma'_{22} = 1/2 (\sigma_{22} + \sigma_{33}) + 1/2 (\sigma_{22} - \sigma_{33}) \cos 2\theta + \sigma_{23} \sin 2\theta$ $\sigma'_{33} = 1/2 (\sigma_{22} + \sigma_{33}) - 1/2 (\sigma_{22} - \sigma_{33}) \cos 2\theta - \sigma_{23} \sin 2\theta$ $\sigma'_{23} = 1/2 (\sigma_{33} - \sigma_{22}) \sin 2\theta + \sigma_{23} \cos 2\theta$ $\sigma'_{12} = \sigma_{12} \cos \theta + \sigma_{13} \sin \theta$ (5) $\sigma'_{13} = -\sigma_{12} \sin \theta + \sigma_{13} \cos \theta$

The same transformation relations obviously also hold for strains. If the transformed stresses and strains are introduced into (2) then coefficients of $\cos 2\theta$, $\sin 2\theta$, $\cos \theta$ and $\sin \theta$ and remaining terms independent of θ must be equal. These equalities result in relations among the various components which reduce the stress-strain law to the form (2.1.4- 5) from Chapter 2 of this report. (Average stresses and strains appear in the latter but this obviously makes no differences in the derivation.)

APPENDIX B

PLANE STRESS-STRAIN RELATIONS OF FIBER REINFORCED MATERIAL IN GENERALIZED RAMBERG-OSGOOD FORM

The purpose of the present appendix is to arrive at equs. (2.2.7). For convenience in writing, overbars on stresses and strains will be omitted.

The present development is guided by isotropic J_2 theory for deformation type plastic stress-strain relations. The basic assumption of this theory in the isotropic case is that the plastic strains have the form

$$\varepsilon_{ij}^{n} = f(J_2) s_{ij} \tag{1}$$

where

J₂

$$s_{ij}$$
 is the stress deviator and
= 1/2 s_{ij} (2)

is its second invariant.

It is instructive to work out the form of (1) for Ramberg-Osgood type stress-strain relations. Suppose that in pure shear the stress-strain relation is

$$\varepsilon_{12}^{"} = \frac{\sigma_{12}}{2G} [1 + (\frac{\sigma_{12}}{\tau_y})^{n-1}]$$
 (3)

Now in pure shear it follows from (2) that

 $J_2 = \sigma_{12}^2$ Therefore (3) can be written in the form

$$\varepsilon_{12}^{"} = \frac{\sigma_{12}}{2G} [1 + (\frac{\sigma_{22}}{\tau_y})^{n-1}]$$
 (4)

which is in the form(1). Consequently, in the general case of three dimensional stress and strain

$$\varepsilon_{ij}^{"} = \frac{s_{ij}}{2G} \left[1 + \left(\frac{\sqrt{J_2}}{\tau_y}\right)^{n-1}\right]$$
 (5)

It should be emphasized that there is nothing fundamental about (1). It is an assumption which states that the plastic strains can be represented by the stress deviator components multiplied by a function of a quadratic expression in the stresses which is J_2 . The choice of J_2 for a quadratic expression is not arbitrary but may be arrived at by isotropy arguments.

In an anisotropic material it may be assumed by generalization that plastic strains are given by

$$\varepsilon_{ij}^{"} = s_{ij} f (L)$$
(6)

Where L is some general quadratic function of the stresses. This assumption will form the basis of the present development.

Consider the stress-strain relations (2.1.13). It is assumed that $s_{22}^{"}$ and $s_{44}^{"}$ functions of the most general quadratic form in $\overline{\sigma}_{22}$ and $\overline{\sigma}_{12}$. Thus

$$s_{22}'' = s_{22}'' (A\overline{\sigma}_{22}^{2} + B\overline{\sigma}_{22} \ \overline{\sigma}_{12} + C\overline{\sigma}_{12}^{2})$$

$$s_{44}'' = s_{44}'' (A\overline{\sigma}_{22}^{2} + B\overline{\sigma}_{22} \ \overline{\sigma}_{12} + C\overline{\sigma}_{12}^{2})$$
(7)

It should be noted that the material reacts in same fashion to positive or negative shear stress, therefore also in same fashion to some $\overline{\sigma}_{22}$ together with positive or negative shear stress. However, the middle term in the quadratic changes sign with shear stress. Therefore, this term should be omitted.

Now rewrite (7) in form

$$\mathfrak{s}_{22}^{"} = \frac{1}{E_{T}} f_{22} \left(\alpha^{2} \overline{\sigma}_{22}^{2} + \beta^{2} \overline{\sigma}_{12}^{2} \right)$$

$$\mathfrak{s}_{44}^{"} = \frac{1}{2G_{T}} f_{44} \left(\alpha^{2} \overline{\sigma}_{22}^{2} + \beta^{2} \overline{\sigma}_{12}^{2} \right)$$
(8)

where f_{22} and f_{44} are nondimensional functions and α and β have dimensions of reciprocal of stress. If $\overline{\sigma}_{12}=0$ the first of (8) assumes the form

$$s_{22}'' = \frac{1}{E_T} f_{22} (\alpha^2 \overline{\sigma}_{22}^2)$$
 (9)

For one dimensional $\overline{\sigma}_{22}$, from the Ramberg-Osgood stress-strain relation (2.2.6a)

$$s_{22}'' = \frac{1}{E_{T}} \left(\frac{\overline{\sigma}_{22}}{\sigma_{y}}\right) M-1$$

which can be written as

$$s_{22}'' = \frac{1}{E_{T}} \left[\left(\frac{\overline{\sigma}_{22}}{\sigma_{y}} \right)^{2} \right]^{\frac{M-1}{2}}$$
(10)

It follows from (8) and (10) that

$$\alpha^2 = \frac{1}{\sigma_y^2} \tag{11}$$

and the function of f_{22} is determined as (M-1)/2 power. In similar fashion, when $\overline{\sigma}_{22}=0$, the second of (8) assumes the form

$$s''_{44} = \frac{1}{2G_{T}} f_{44} (\beta^2 \overline{\sigma}_{12}^2)$$
 (12)

From the Ramberg-Osgood relation (2.2.6b) for one dimensional $\overline{\sigma}_{12}$

$$s_{44}'' = \frac{1}{2G_{T}} \left(\frac{\overline{\sigma}_{12}}{\tau_{Y}}\right)^{N-1}$$

can be written as
$$s_{44}'' = \frac{1}{2G_{T}} \left[\left(\frac{\overline{\sigma}_{12}}{\tau_{Y}}\right)^{2}\right]^{\frac{N-1}{2}}$$
(13)

It follows from (12) and (13) that

which

$$\beta^2 = \frac{1}{\tau_y^2} \tag{14}$$

and the function f_{44} is determined as (N-1)/2 power. Consequently (8) now assumes the form

$$s_{22}'' = \frac{1}{E_{T}} \left[\left(\frac{\overline{\sigma}_{22}}{\sigma_{y}} \right)^{2} + \left(\frac{\overline{\sigma}_{12}}{\tau_{y}} \right)^{2} \right] \frac{M-1}{2}$$

$$s_{44}'' = \frac{1}{2G_{T}} \left[\left(\frac{\overline{\sigma}_{22}}{\sigma_{y}} \right)^{2} + \left(\frac{\overline{\sigma}_{12}}{\tau_{y}} \right)^{2} \right] \frac{N-1}{2}$$
(15)

Then (2.2.7) follows from (15) and (2.1.13).

APPENDIX C

1. EXTREMUM PRINCIPLES OF DEFORMATION THEORY OF PLASTICITY

i. Principle of Minimum Potential Energy

Let

$$\sigma_{ij} = c_{ijkl} \epsilon_{kl} \tag{1.1}$$

where C_{ijkl} are functions of the strains. The strain energy density is defined by the path dependent integral

$$w^{\varepsilon} = \int_{\varepsilon=0}^{\varepsilon} \sigma_{ij}(\underline{\varepsilon}) d\varepsilon_{ij}$$
(1.2)

where $\underline{\varepsilon}$ is a concise notation for ε_{ij} . The strain energy U^{ε} of a body of volume V is defined by

$$U^{\varepsilon} = \int_{V} W^{\varepsilon} dV$$
 (1.3)

Let the surface of the body be subjected to the boundary conditions

 $u_i(S) = u_i^\circ \text{ on } S_u$ (1.4)

 $T_i(S) = T_i^o \text{ on } S_T$ and let the body forces vanish. The potential energy U_p is defined by

$$U_{p} = f_{V} W^{\varepsilon} dV - f_{S_{T}} T^{\circ} U_{i}$$
(1.5)

Define an admissible displacement field $\tilde{u}_{i}(x)$ by

$$\tilde{u}_i = u^\circ_i \text{ on } S_u$$

 $\tilde{u}_{i}(\underline{x})$ continuous everywhere (1.6)

Associated with \tilde{u}_i are the strains $\tilde{\epsilon}_{ij}$ derived from it by the usual relations.

Define
$$\tilde{W}^{\varepsilon}$$
 by
 $\tilde{\tilde{W}}^{\varepsilon} = \int \tilde{\sigma}_{ij} d\tilde{\varepsilon}_{ij}$
 $\tilde{\varepsilon}=0$
(1.7)

where

$$\tilde{\sigma}_{ij} = C_{ijkl}(\tilde{\epsilon}) \tilde{\epsilon}_{kl}$$
(1.8)

Define

$$\tilde{U}_{p} = \int_{V} \tilde{W}^{\varepsilon} dV - \int_{S_{T}} T^{\circ} i \tilde{u}_{i} dS$$
(1.9)

The principle of minimum potential energy for the present case then states that

$$U_{\mathbf{p}} \geq U_{\mathbf{p}} \tag{1.10}$$

equality taking place if and only if

 $\tilde{u}_i = u_i$

In the event that displacements are prescribed over the entire surface, the surface integral in (1.9) vanishes. Then the principle reduces to that of minimum strain energy

$$U^{\varepsilon} \geq U^{\varepsilon}$$
 (1.11)

ii. Principle of Minimum Complementary Energy Let

 $\varepsilon_{ij} = S_{ijkl} (\underline{\sigma}) \sigma_{kl}$ (1.12) where S_{ijkl} are stress dependent compliances Define the complementary energy density W^{σ} by the path dependent integral

$$w^{\sigma} = \int \varepsilon_{ij} d\sigma_{ij}$$
(1.13)
$$\underline{\sigma} = 0$$

Let the surface of the body be subjected to the boundary conditions (14) and let the body forces vanish. The complementary energy U_{C} is defined by

$$U_{C} = \int_{V} W^{\sigma} dV - \int_{S_{u}} T_{i} u^{\circ} i dS$$
 (1.14)

Define an admissible stress field $\tilde{\sigma}_{\mbox{ij}}$ by the following requirements

 $\tilde{\sigma}_{ij'j}^{=0}$ $\tilde{T}_{i} = \tilde{\sigma}_{ij}n_{j} \quad \text{continuous everywhere} \quad (1.15)$ $T_{i}(S) = T^{\circ}_{i} \text{ on } S_{T}$ Define the complementary energy functional U_{C} by $\tilde{U}_{C} = \int_{V} \tilde{W}^{\sigma} dV - \int_{S_{u}} \tilde{T}_{i}u^{\circ}_{i} dS \quad (1.16)$ where $\tilde{W}^{\sigma} = \int_{\tilde{\underline{\sigma}}=0}^{\tilde{\underline{\sigma}}} \tilde{\epsilon}_{ij}d\tilde{\sigma}_{ij} \quad (1.17)$ $\tilde{\epsilon}_{ij} = S_{ijkl}(\tilde{\underline{\sigma}}) \tilde{\sigma}_{kl}$ Then the principle of minimum complementary energy states that

 $U_{C} \geq U_{C}$ (1.18) equality occurring if and only if

$$\tilde{\sigma}_{ij} = \sigma_{ij}$$

If tractions are prescribed over the entire surface, $S_u=0$, the principle reduces to

 $\tilde{v}^{\sigma} \geq v^{\sigma}$ (1.19)

For proof of these principles see e.g. [16]. An interesting application to obtain approximate solutions has been given in [17].

iii. <u>Specialization of the Principles to Axial Shear with</u> Ramberg-Osgood Stress-Strain Relations

In the case of axial shear of a uniaxially fiber reinforced material the only surviving stresses are

$$\sigma_{12} = \tau_2 \qquad \sigma_{13} = \tau_3 \qquad (1.20)$$

where 1 indicates fiber direction. Denote the associated shear strains by

$$\epsilon_{12} = \epsilon_2$$
 $\epsilon_{13} = \epsilon_3$
(1.21)

Then the generalized Ramberg-Osgood stress-strain relations, Appendix B, (5) assume in the present case the form

$$\varepsilon_{2} = \frac{\tau_{2}}{2G} \left[1 + \left(\frac{\tau}{\tau_{y}}\right)^{n-1} \right]$$

$$\varepsilon_{3} = \frac{\tau_{3}}{2G} \left[1 + \left(\frac{\tau}{\tau_{y}}\right)^{n-1} \right]$$

$$\tau = \sqrt{\tau_{2}^{2} + \tau_{3}^{2}} \sqrt{J_{2}}$$
(1.22)

In the present case

$$\sigma_{ij}d\varepsilon_{ij} = 2(\tau_2d\varepsilon_2 + \tau_3d\varepsilon_3)$$
(1.23)

Inserting (1.22) into (1.23) and using the relation

$$\tau d\tau = \tau_2 d \tau_2 + \tau_3 d \tau_3$$

it is easily shown that

$$\sigma_{ij}d\epsilon_{ij} = \frac{\tau}{G} \left[1 + n \left(\frac{\tau}{\tau}\right)^{n-1}\right] d\tau \qquad (1.24)$$

To compute W^{ε} as defined by (1.2) it is necessary to integrate (1.24) from zero to some state of strain ε_2 , ε_3 . But it should be noted that (1.24) is expressed in terms of the variable τ only. Now τ can be expressed in terms of strains in following fashion. Define

$$\hat{\varepsilon} = \sqrt{\varepsilon_2^2 + \varepsilon_3^2}$$
(1.25)

It follows at once from (1.22) that

$$\hat{\varepsilon} = \frac{\tau}{2G} \left[1 + \left(\frac{\tau}{\tau_y}\right)^{n-1}\right]$$
 (1.26)

This relation defines τ as a function of $\,\hat{\epsilon}\,$. Consequently, w^ϵ assumes the form

$$w^{\varepsilon} = \frac{1}{G} \int_{0}^{\tau} \tau \left[1 + n \left(\frac{\tau}{\tau_{y}}\right)^{n-1}\right] d\tau$$

which is easily integrated to yield

$$W^{\varepsilon} = \frac{\tau^{2}}{2G} \left[1 + \frac{2n}{n+1} \left(\frac{\tau}{\tau_{y}}\right)^{n-1}\right]$$
(1.27)
$$\tau = \tau \ (\hat{\varepsilon})$$

According to (1.3) the strain energy U^{ϵ} is then given by the volume integral of (1.27). Note however that it is very difficult to express U^{ϵ} in terms of strains since this requires the solution of (1.26) for τ in terms of $\hat{\epsilon}$. In general it is not possible to do this analytically. This places a severe

limitation on the use of the principle of minimum potential energy or of minimum strain-energy with Ramberg-Osgood stressstrain relations.

Next we consider the principle of minimum complementary energy for axial shear. Since there are only shear stresses w^σ, τ_2 , τ_3 and shear strains ε_2 , ε_3 the integrand in (1.13), is given by

(1.28) $\varepsilon_{ij}d\sigma_{ij} = 2(\varepsilon_2 d\tau_2 + \varepsilon_3 d\tau_3)$

It follows from (1.22-.23) that (1.28) is given by

 $\varepsilon_{ij} d\sigma_{ij} = \frac{\tau}{G} \left[1 + \left(\frac{\tau}{\tau}\right)^{n-1}\right] d\tau$ Integration of this expression from 0 to τ

yields

$$w^{\sigma} = \frac{\tau^2}{2G} \left[1 + \frac{2}{n+1} \left(\frac{\tau}{\tau_{v}} \right)^{n-1} \right]$$
(1.29)

Expression (1.29) now enters as the integral into the volume integral of U_{C} , (1.14).

We now examine the meaning of an admissible stress field $\tilde{\tau}_2,\;\tilde{\tau}_3$ in the present case. The only surviving equilibrium equation is

(1.30)

$$\frac{\tilde{\tau}_2}{x_2} + \frac{\tilde{\sigma}_3}{\tilde{\sigma}x_3} = 0$$

The traction components are

$$T_{1} = \tilde{\tau}_{2}n_{2} + \tilde{\tau}_{3}n_{3}$$

$$\tilde{T}_{2} = \tilde{\tau}_{2}n_{1}$$

$$\tilde{T}_{3} = \tilde{\tau}_{3}n_{1}$$
(1.31)

We shall be concerned with cylindrical boundaries in fiber reinforced materials whose generator is in x_1 , direction. On such a surface $n_1=0$. Therefore the only surviving traction component on such a surface is

$$T_1 = \tilde{\tau}_n = \tilde{\tau}_2 n_2 + \tilde{\tau}_3 n_3$$
 (1.32)

Consequently an admissible stress system $\tilde{\tau}_3$, $\tilde{\tau}_3$ must satisfy (1.30) and the value τ°_n of $\tilde{\tau}_n$ wherever prescribed on the boundary.

The complementary energy functional (1.16) assumes the form

$$\tilde{U}_{C} = \int_{V} \tilde{W}^{\sigma} dV - \int_{S} \tilde{T}_{1} u^{\circ}_{1} dS \qquad (a)$$

$$\tilde{W}^{\sigma} = \frac{\tilde{\tau}^{2}}{2G} \left[1 + \frac{2}{n+1} \left(\frac{\tilde{\tau}}{\tau_{y}}\right)^{n-1}\right] \qquad (b)$$

 $\tilde{\tau} = \sqrt{\tilde{\tau}_2^2 + \tilde{\tau}_3^2}$

(c)

•

(1.33)

2. LOWER BOUND FOR AXIAL SHEAR MODULUS

Consider a uniaxially reinforced lamina which is subjected to axial shear τ_{\circ} in the 1-2 plane on its boundary, fig. 5. By the average stress theorem, of Ref. 5.

$$\overline{\sigma}_{12} = \tau_{\circ} \tag{2.1}$$

and all other average stresses vanish.

By the average theorem of virtual work, of Ref. 5,

$$\int_{V} \varepsilon_{ij} d\sigma_{ij} = \overline{\varepsilon}_{ij} d\sigma_{ij}$$
(2.2)

Since the only nonvanishing average stress in the present case is (2.1) we have

$$\overline{\varepsilon}_{ij} d\overline{\sigma}_{ij} = 2\overline{\varepsilon}_{12} d\tau_{o}$$
(2.3)

The complementary energy of the body is given by (14) of Appendix A. The surface integral vanishes however in the present case since no displacements are prescribed on the boundary. Now

$$U_{C} = \int W^{\sigma} dV = \int_{V} \int \frac{\sigma}{\varepsilon} \overline{\varepsilon}_{ij} d\overline{\sigma}_{ij} dV$$

$$= \int \sigma \overline{f} \int \overline{\varepsilon}_{ij} d\overline{\sigma}_{ij} dV \int_{\circ}^{\tau} \overline{\varepsilon}_{12} d\tau,$$

$$g=0$$
(2.4)

The last equality following from (2.2, 3).

. By definition the effective secant modulus G_{A}^{S} is given by

$$\overline{\varepsilon}_{12} = \frac{\overline{\sigma}_{12}}{\overline{G_A^s(\overline{\sigma}_{12})}} = \frac{\tau_o}{2\overline{G_A^s(\tau_o)}}$$
(2.5)

Hence (2.4) assumes the form

$$U_{\rm C} = V \int_{0}^{\tau_{\rm o}} \frac{\tau_{\rm o} d\tau_{\rm o}}{G_{\rm A}^{\rm s}(\tau_{\rm o})}$$
(2.6)

In order to find a bound on G_A^s it will be necessary to find a bound on (2.6) by use of the principle of minimum complementary energy.

It is assumed that the fibers are infinitely rigid in comparison to the matrix. Therefore at fiber/matrix interface

$$u_1 = 0$$
 (2.7)

and the only contribution to the complementary energy is from the matrix. Thus, the surface integral in (1.33a) vanishes and it can be written as

$$\tilde{U}_{C} = \int \tilde{W}_{m} \tilde{W}^{\sigma} dV \qquad (2.8)$$

where V_m is the matrix volume.

Furthermore, by (2.3.3) the actual stresses are functions of x_2 , x_3 only. It is therefore natural to also choose admissible stresses as functions of x_2 , x_3 . Thus \tilde{W}^{σ} in (1.33) becomes a function of x_2 , x_3 only and therefore without loss of generality (1.33a) can be taken over unit length in fiber direction. Thus it can be written

 $\tilde{U}_{C} = \int_{A_{m}} \tilde{W}^{\sigma} (x_{2}, x_{3}) dx_{2} dx_{3}$ (2.9)

In order to construct an admissible stress system it is necessary to devise a geometrical model for a uniaxially reinforced material. In past analyses of FRM two kinds of models have been successfully treated: Periodic arrays of identical circular fibers have been analyzed numerically with the aid of computers and the composite cylinder assemblage model has been treated analytically [1,5] yielding simple closed results. Since the present treatment is to be analytical the composite cylinder assemblage model will be used. A detailed description of the model has been given in[5]. Suffice it to say here that the model represents a cylindrical specimen of a fiber reinforced material as an assemblage of composite cylinders of different sizes which fill the space in the limit. In each composite cylinder the inner cylinder is a fiber and the outer shell is matrix material.

In all cylinders the ratios of fiber to matrix shell radius are the same, (figure 26).

It is recalled that an admissible stress system must satisfy equilibrium and boundary conditions. An obvious possibility for such an admissible field are the stresses of the elastic solution since they certainly satisfy the required conditions. These stresses are the same in any composite cylinder of the assemblage and are given in cylindrical coordinates by (see [5])

$$\tilde{\sigma}_{rz} = \tilde{\tau}_r = \frac{\tau_o}{1+c} \left(1 + \frac{a^2}{r^2}\right) \cos \theta \qquad (2.10)$$

$$\tilde{\sigma}_r = \tilde{\tau}_r = -\frac{\tau_o}{r^2} \left(1 - \frac{a^2}{r^2}\right) \sin \theta$$

 $\sigma_{\theta z} = \tau_{\theta} = -\frac{1+c}{1+c} (1 - \frac{r^2}{r^2}) \sin \theta$ where c is the volume fraction of fibers, a is the radius of any fiber and r, θ are polar coordinates, fig. 26.

Since $\tilde{\tau}$ as expressed by (1.33c) is an invariant with respect to rotations about x, = z we have also

 $\tilde{\tau}^2 = \tilde{\tau}_r^2 + \tilde{\tau}_\theta^2 \qquad (2.11)$

Substituting (2.10) into (2.11) yields

$$\tilde{\tau}^2 = p^2 (1 + \frac{1}{\rho^4} + \frac{2}{\rho^2} \cos \theta)$$
 (2.12)

where

 $p = \frac{\tau}{1+c} \qquad \rho = \frac{r}{a} \qquad (2.13)$

To simplify the analysis the exponent n in (1.22) will be assigned the value

n = 3 (2.14)

It has been found that with this value of n, experimentally obtained shear stress-strain relations of epoxy can be quite accurately represented with proper choice of τ_y . Recalling (1.33), (2.9) then assumes the form

$$\tilde{U}_{C} = \frac{1}{2G} \int_{A_{m}} \tilde{\tau}^{2} \left[1 + \frac{1}{2} \left(\frac{\tilde{\tau}^{2}}{y}\right)^{2}\right] dA \qquad (2.15)$$

where G is the matrix elastic shear modulus. Let the assemblage consist of K composite cylinder. Define \tilde{U}_C^{k} for the kth composite cylinder by

$$\tilde{U}_{C}^{k} = \frac{1}{2G} \int_{A_{mk}} \tilde{\tau}^{2} \left[1 + \frac{1}{2} \left(\frac{\tilde{\tau}}{\tau_{y}}\right)^{2}\right] dA$$
 (2.16)

where A_{mk} is the matrix area $a_k \leq r \leq b_k$ in the kth composite cylinder. Then

$$\widetilde{U}_{C} = \sum_{k=1}^{K} \widetilde{U}_{C}^{k}$$
(2.17)
$$k=1$$

Since $\tilde{\tau}^2$ has been expressed in polar coordinates, (2.12), it is convenient to also evaluate (2.16) in the same coordinates. Using the variable ρ we have

$$\tilde{U}_{C}^{k} = \frac{1}{2G} \int_{1}^{\beta} \int_{0}^{2\pi} \tilde{\tau}^{2} \left[1 + \left(\frac{\tilde{\tau}}{\tau_{Y}}\right)^{2}\right] \rho d\rho d\theta$$
(2.18)

where

$$\beta = b_k / a_k \tag{2.19}$$

which by construction has the same value in all composite cylinders. Note also that the volume fraction of fibers c is given by $a_{k}^{2} = \frac{1}{2}$ (2.20)

$$c = (\frac{\kappa}{b_k})^2 = \frac{1}{\beta^2}$$
 (2.20)

Substituting (2.12) into (2.18) and carrying out the integration we have

$$\tilde{U}_{C}^{k} = \frac{\pi b^{2} k}{2G} \tau_{o}^{2} \left[\frac{1-c}{1+c} + \left(\frac{\tau_{o}}{\tau_{y}} \right)^{2} \frac{3+10c-12c^{2}-c^{4}}{6(1+c)^{4}} \right]$$
(2.21)

where (2.20) has been used. It is seen that πb_k^2 is the area of the cross section of the kth composite cylinder and the parenthesis has the same value for all composite cylinders. Therefore, if (2.21) is inserted into (2.17) we find

$$\tilde{U}_{C} = \frac{A}{2G} \tau_{o}^{2} \left[\frac{1-c}{1+c} + \left(\frac{\tau_{o}}{\tau_{y}} \right)^{2} \frac{3+10c-12c^{2}-c}{6(1+c)^{4}} \right]$$
(2.22)

Let (2.22) be written

$$\tilde{U}_{C} = A \int_{0}^{\tau} \frac{1}{A} \frac{dU_{C}}{d\tau_{o}} d\tau_{o}$$
(2.23)

Without loss of generality (2.6) can be evaluated for unit height of cylindrical specimen. Thus

$$U_{\rm C} = A \int_{\circ}^{\tau_{\rm o}} \frac{\tau_{\rm o} d\tau_{\rm o}}{G_{\rm A}^{\rm S}(\tau_{\rm o})}$$
(2.24)

Now introduce (2.23) and (2.24) into the minimum complementary inequality (1.18). Thus

$$\int_{\circ}^{\tau} \left[\frac{1}{A} - \frac{dU_{C}}{d\tau_{\circ}} - \frac{\tau_{\circ}}{G_{\lambda}^{S}(\tau_{\circ})}\right] d\tau_{\circ} \ge 0$$
(2.25)

Since the integral is positive for all values of τ_o the integrand must also be positive for all values of τ_o . It follows that

$$G_{A}^{S}(\tau_{o}) \geq \frac{A\tau_{o}}{dU_{C}/d\tau_{o}} = G_{A}^{S}(-)$$
(2.26)

where the extreme right denotes lower bound on the secant modulus G_{A}^{S} . Substituting (2.22) into (2.26) and rearranging we find the lower bound (2.3.9) of Chapter 2.

There naturally arises the question of the establishment of an upper bound. The difficulties involved have been discussed above: It is not in general possible to solve Ramberg-Osgood relations for stresses in terms of strains. It is

therefore not possible to analytically express the potential energy functional in terms of admissible strains.

A possibility to resolve the difficulty is to write inelastic stress-strain relations of type (1.22) in the form

$$\tau_{2} = 2G\varepsilon_{2} [1 - (\frac{\hat{\varepsilon}}{\varepsilon_{y}})^{\alpha-1}]$$

$$\tau_{3} = 3G\varepsilon_{3} [1 - (\frac{\hat{\varepsilon}}{\varepsilon_{y}})^{\alpha-1}]$$

$$\hat{\varepsilon} = \sqrt{\varepsilon_{2}^{2} + \varepsilon_{3}^{2}}$$
(2.27)

where α and ε_{y} are to be determined by curve fitting. The minus sign in the parenthesis is due to the fact that the stress-strain curve is below a straight line with the initial slope.

It should be noted that (2.27) are <u>not</u> an inversion of (1.22). They are merely another form of approximation of actual stress-strain curves.

In principle the representation (2.27) can now be used in conjunction with the principle of minimum potential energy to establish an upper bound on G_A^s in same fashion as a lower bound has been established. It has however been found that in attempting to fit (2.27) to actual epoxy stress-strain curves a fractional exponent α was needed. This led to integrals of formidable difficulty in the evaluation of potential energy functionals. Therefore this approach has not been continued here.

APPENDIX D

FAILURE OF NON-LINEAR LAMINATES

It is expedient to separate the problem of the establishment of failure criteria of laminates into two separate problems:

- (a) Establishment of failure criteria for uniaxially fiber reinforced material, i.e., laminae.
- (b) Establishment of failure criteria of the laminate on the basis of laminae failure criteria.

A great deal of wrok has been done on problem (a). The problem has been approached in micro as well as macro-fashion. In micro-approach, it is attempted to predict failure on the basis of local analysis of the interior of the composite. Such an approach evidently encounters extreme difficulties. Although important work of fundamental nature has been done in this area, we shall not be concerned with it here since the work has not advanced to the stage of prediction of failure criteria under states of combined stress.

In the macro-approach, a failure criterion is heuristically postulated as some function of pertinent state variables (generally average stresses) which also contains undetermined parameters. These parameters are then to be determined in terms of experimentally accessible information.

We shall in the present discussion limit ourselves to states of plane stress. The simplest failure criterion is the so-called maximum stress criterion which states that failure occurs when either one of: stress in fiber direction, stress transverse to fibers, shear stress, reaches its critical value, these critical values being the same whether or not the stresses act simultaneously. In symbols the criterion is:

 $\sigma_{11} = \sigma_A$

or

or

$$\sigma_{22} = \sigma_{T}$$

(1)

$$\sigma_{12} = \tau_{AT}$$

where 1 is fiber direction and 2 is the transverse direction.

Generally, failure stresses σ_A and σ_T are different in tension and compression. This is known as Bauschinger effect. There is evidently no Bauschinger effect for the shear stress. The simplest generalization of (1) to account for Bauschinger effect would be to assume as failure criterion:

$$\sigma_{11} = \sigma_{A}^{+} \quad \text{if} \qquad \sigma_{11} > 0$$

$$\sigma_{11} = \sigma_{A}^{-} \quad \text{if} \qquad \sigma_{11} < 0$$

$$\sigma_{22} = \sigma_{T}^{+} \quad \text{if} \qquad \sigma_{22} > 0$$

$$\sigma_{22} = \sigma_{22}^{-} \quad \text{if} \qquad \sigma_{22} < 0$$

$$\sigma_{12} = \tau_{AT} \quad \text{all} \qquad \sigma_{12}$$
(2)

whichever occurs first, where (+) and (-) superscripts denote failure stresses in tension and compression respectively. The main drawback of these simple criteria is in that they take no account of interaction effects.

The most commonly used criterion which takes into account interaction is of quadratic form. For plane stress it has the form

$$A_{11}\sigma_{11}^{2} + A_{22}\sigma_{22}^{2} + A_{12}\sigma_{11}\sigma_{22}^{2} + A_{44}\sigma_{12}^{2} = 1$$
(3)

Here, products of shear stress with normal stress have been omitted since the material cannot distinguish between positive and negative shear stress. Therefore, odd powers (one, in this case) of shear stress cannot appear.

Applying (3) to failure for stress in fiber direction alone, stress transverse to fiber direction alone, shear stress alone, in turn, it is seen at once that

$$A_{11} = \frac{1}{\sigma_A^2}$$
$$A_{22} = \frac{1}{\sigma_T^2}$$
$$A_{44} = \frac{1}{\tau_{AT}^2}$$

The coefficient A_{12} is troublesome since its determination requires a failure experiment under combined stress. Several authors have proposed to use failure experiments on off-axis specimens under uniaxial stress for the determination of A_{12} . See e.g. [18] for discussion.

The situation becomes more complicated if it is required to take into account Bauschinger effect, that is difference of failure stresses in tension and compression. One possibility to account for this effect is to assume that A_{11} , A_{22} assume different values for tension and compression. The situation regarding A_{12} , however, becomes very awkward as it would have to assume four different values to account for four different possibilities of sign combination in biaxial stressing and

It is also possible to add linear terms to (3) in which case it would assume the form:

$$A_{11}\sigma_{11}^{2} + A_{22}\sigma_{22}^{2} + A_{12}\sigma_{11}\sigma_{22} + A_{44}\sigma_{12}^{2} +$$
(5)

$$B_1 \sigma_{11} + B_2 \sigma_{22} = 1$$

Such a device was suggested by Hoffman [19]. In this case it is possible to determine values of A_{11} , B_1 , A_{22} , B_2 to account for different tensile and compressive uniaxial failure stresses in fiber direction and transverse to it. But the difficulty of assigning four different values to A_{12} remains, unfortunately.

In summary, the status of quadratic failure criteria has to date not been finalized. However, special versions of such criteria have been successfully fitted to experimental data.

It is of importance to realize that in the fiber reinforced materials used in practice failure predictions on the 64.

(4)

basis of maximum stress criterion or quadratic failure criterion are not very different. This is due to the large ratios between strength in fiber direction and transverse and shear strengths and is easiest realized by considering the failure criteria as surfaces in σ_{11} , σ_{22} , σ_{12} stress space. The maximum stress criterion is a very elongated rectangular parallelopiped while the quadratic failure criterion is an ellipsoid. For $A_{12}=0$, Fig. 25 shows this schematically on a cut in the σ_{11} , σ_{22} plane. Thus it is seen that stress points on the two failure surfaces are close together for most parts of the surfaces.

The situation would be entirely different for a material in which σ_a , and σ_m were of comparable magnitudes.

We shall now consider problem (b) i.e., the establishment of laminate failure criteria in terms of laminae failure criteria. The most conservative laminate failure criterion is to assume that once any lamina has failed the laminate has reached its ultimate load. There are cases of laminates in which all laminae would fail simultaneously and then this criterion would be justified. For example: a $\pm \theta$ laminate in which the external load direction bisects the angle between the fibers.

In most cases, however, a certain group of laminae will fail first and failure of remaining groups would require further increase of load. Therefore a more realistic alternative is to determine the load at which the first laminae group fails. At this state, the further carrying capacity of the laminate may be assumed to be given by the remaining undamaged laminae. The increase in load which fails another group of laminae is then determined. This process is continued until failure of all laminae has taken place.

Still another possibility is to assume that when a lamina has failed, certain of its stiffnesses reduce to zero. For example: suppose that a lamina or group of laminae has failed in shear. Such a failure implies a crack through the lamina in fiber direction. In that event, it is reasonable to assume

that the shear and transverse stiffnesses of the lamina are zero, but it still retains its stiffness in fiber direction. If, however, a lamina fails because of the stress in fiber direction the damage is so widespread that all of its stiffnesses will be negligible. According to the type of failures encountered analysis is continued for the damaged laminate with the new stiffness rearrangement. This process is continued until failure of all laminae has taken place. This method of analysis seems to be the most realistic but is also the most complicated.

In almost all of the practical strength analyses of laminates in the literature, according to any of the methods outlined above, the stresses used for failure criteria have been determined on the basis of elastic laminate analysis. With the present inelastic laminate analysis, more realistic stresses are available in a better assessment of laminate failure loads.

APPENDIX E

MSC-NOLIN COMPUTER PROGRAM

1. General Description of the Program

This is a computer program developed for the inelastic analysis of a laminate subject to any constant, arbitrary combination of in-plane loading. Details of the method of analysis and of the numerical solution, using the Newton-Raphson method, have been described in the body of this report. The essential features of the program are summarized below.

The primary capability of MSC-NOLIN is to compute laminae properties when the laminate loads are defined. There is also a limited capability to work with constituent properties, rather than laminae properties, as the input. Details of the input options are discussed subsequently. Basically, the inputs required are the stress-strain characteristics of the individual laminae for each of the three in-plane stress components applied separately. The stress-strain curves for transverse stress and for stress and for axial shear stress are defined by Ramberg-Osgood stress-strain curves. The parameters for these curves along with the laminae elastic constants are the required material property inputs.

It has been observed that axial shear stresses in individual laminae are a major, perhaps the major, source of nonlinearities in laminate response. Therefore, several additional options have been included in the MSC-NOLIN to accomodate more detailed characterization of shear response. First, the laminae shear stress-strain response may be input in tabular form and a least squares fit to the data is automatically obtained for the R-O yield stress (limited to the use of an exponent, n=3). Secondly, the matrix shear stress-strain curve can be input along with fiber elastic properties and the laminae shear stress-strain curve will be computed. In this latter case, the laminae elastic constants are also computed.

The input specifies one of two options for the determination of the initial set of stresses to be used in the iteration at each value of applied load on the laminate. In one case the stresses found at one load are increased to the load for which the stresses were evaluated. In the other, and generally used option, the increment between the initial stresses used at the nth laminate load value and the actual stresses found for the (n-1)st load value bears the same relation to the ratio of those two load values as the similar relation computed at the previous load cycle, that is,

$$\frac{\binom{(n)}{\sigma_{ij} - \sigma_{ij}}}{\binom{r_n}{F_{n-1}}} = \frac{\binom{(n-1)}{\sigma_{ij} - \sigma_{ij}}}{\frac{r_{n-1}}{F_{n-2}}}$$

The program contains a number of controls to define: the size and number of steps of loading at which computations are made; the maximum number of iterations to be permitted in the numerical solution; the desired accuracy to be obtained in convergence; the criteria for divergence of the solution in the iterative process to avoid the use of unnecessary execution time in the case of breakdown of the solution procedure. The program defines the failure of the laminate in a limited fashion, either on the basis of the maximum allowable stress in the fiber in tension or compression, or on the basis that the tangent modulus of the stress-strain curve of the laminate becomes less than a specified value. Failure due to shear or transverse stress are not included at this stage in the development of the program.

2. Input

The main features of input in this program are the following:

(a) Specify the number of laminates or problems to be solved;

- (b) Define the geometrical properties of each layer;
- (c) Define either the material properties of each layer or the properties of its constituents;
- (d) Define either of the following for each layer:
 - (i) yield stress in transverse direction and yield stress in shear;
 - (ii) yield stress in transverse direction and a table of values defining shear stress-strain curve for the matrix plus a set of values of stresses to be used for the computation of yield stress in shear;
- (e) Specify the type of Ramberg-Osgood relation to be used;
- (f) Define the loadings; and
- (g) Define the control parameters.

A guide to the preparation of input data for this program is given in section 4 below.

3. Details of Output

The output can be divided basically into two steps:

(a) Output of Input Data:

The first section of the output deals with the output of the input data. If the input is in the form of properties of constituents of the layer, it gives an output of the properties of the constituents first and then the computed value of the properties of the layer; otherwise, it gives output directly the properties of the layer.

- (b) Output of Stresses and Strains: For each set of loading, the computer prints the following:
 - (1) value of the load applied;
 - (2) number of iterations for convergence;
 - (3) stresses for individual laminae with respect to principal elastic axes of the laminae; and
 - (4) strains for individual laminae in terms of both
 laminae and laminate axes.
 69.

- 4. Input Details for MSC-NOLIN
 - (1)Read (I5) NSETS NSETS: number of problems
 - (2) Read (15) LAY

LAY: number of layers in this laminate analysis

- Read (15) INP (3)
 - INP: Option for reading in material properties
 - INP = 1; read in material properties of individual laminae;
 - INP = 2; compute properties of laminae from the properties of constituents.
- (a) If INP = 1(4)
 - Read (5D15.5) $E_{11}, E_{22}, \mu_{12}, \mu_{21}$ (i)
 - Read (5D15.5) G₁₂, SY, TY (ii)
 - (iii) Read (D15.5,I5) T, IANG
 - (b) If INP = 2
 - (i) Read (4D15.5) EF, MUF, GF, VF
 - (ii) Read (3D15.5) EM, MUM, GM
 - (iii) Read (I5) I2

If I 2 = 0; read in SY and TY (i) Read (2D15.5) SY, TY

- If I = 1; TY is to be computed
- Read (5,1002) SYCE Read (2 I 5) NUMT (i)
- (ii)
- NUMT = number of values in the table
- Read (5D15.5) TAU (J), J=1, NUMT (iii) (Table of shear stress values of matrix read in)
 - (iv) Read (5D15.5) GAM (J), J=1, NUMT (Table of shear strain values of matrix read in)
 - (v) Read (5D15.5) SG12 (J), J=2,11(Table of shear stress values of laminae read in)

(5) Read (5D15.5) XN, XM

XN: exponent in nonlinear transverse stressstrain law;

XM: exponent in nonlinear shear stress-strain law.

(6) Read (5D15.5) SO11, SO22, SO12

Soll: applied stress in X-direction So22: applied stress in Y-direction Sol2: shear stress in XY

(7) Read (15, D15.5) KSGM, SMLT

KSGM: total number of loading increments

SMLT: ratio of load increment to the initial load.

- (8) Read (D15.5) STIFF
 - STIFF: tangent modulus of stress-strain curve in terms of the laminate axes; specify a value of STIFF below which the program will not run.

Read (D15.5) SGR

SGR: maximum allowable stress in the fiber in tension or compression

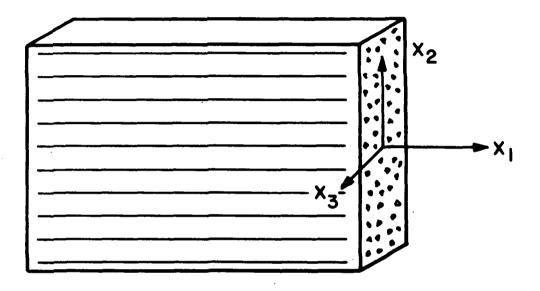
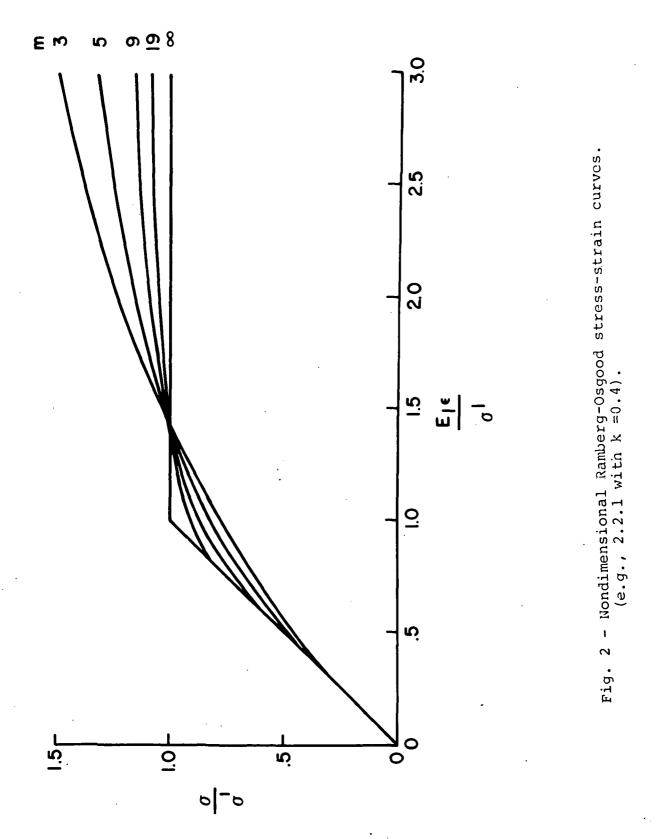
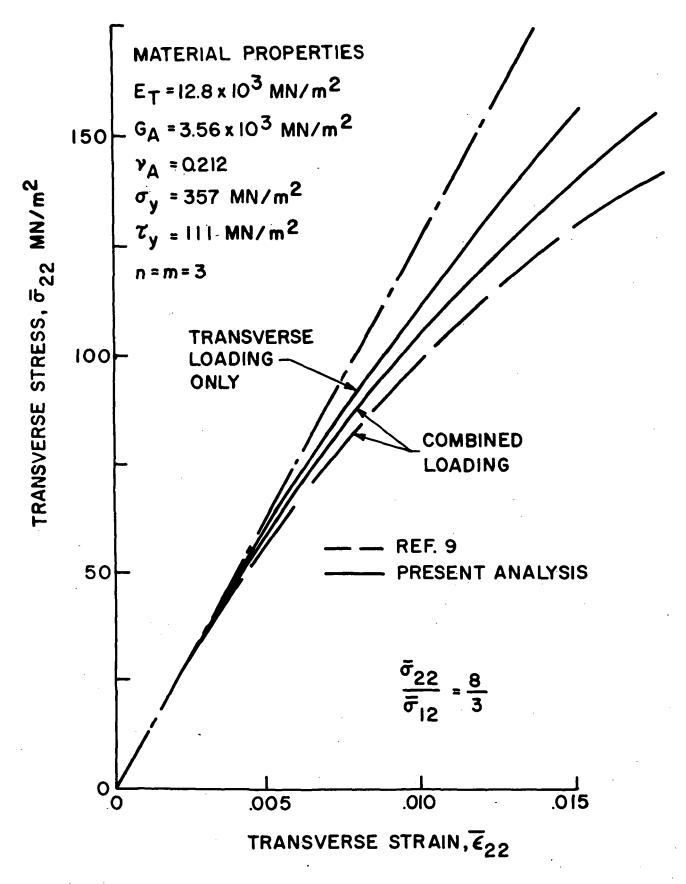
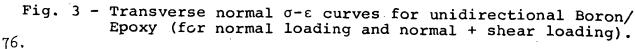
(9) Read (I 5, 2D15.5) IT, EPS, UPBD

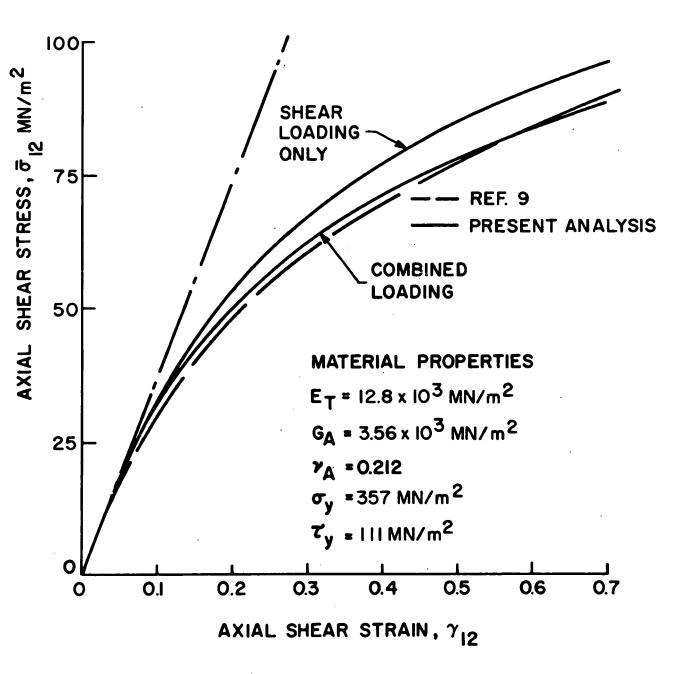
- IT: maximum number of iteration permitted in Newton-Raphson analysis
- EPS: convergence criteria; (ratio of values of two successive iterations should be less than EPS)
- UPBD: divergence criteria (solution will stop if ratio of two successive iterations is greater than $10^{\pm 12}$)
- (10) Read(I5) INMT
 - If INMT = 1, the program uses ratio of previous
 two solutions as the initial guess
 value iteration process;
 - If INMT = 2, the program uses extrapolated value
 of previous two solutions proportioned
 on the basis of stress ratio as the
 initial guess.

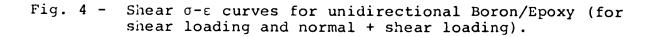
REFERENCES

- Z. Hashin and B.W. Rosen The Elastic Moduli of Fiber Reinforced Materials - J. Appl. Mech. <u>31</u>, 223, (1964).
- G. Pickett Elastic Moduli of Fiber Reinforced Plastic Composites - in Fundamental Aspects of Fiber Reinforced Plastic Composites, R.T. Schwartz and H.S. Schwartz, Eds. Interscience, (1968).
- D.F. Adams, D.R. Doner and R.L. Thomas Mechanical Behavior of Fiber-Reinforced Composite Materials - AFML-TR-67-96, (1968).
- 4. R. Hill Theory of Mechanical Properties of Fiberstrengthened Materials - J. Mech. Phys. Solids, <u>12</u>, 213, (1964).
- 5. Z. Hashin Theory of Fiber Reinforced Materials NASA CR-1974, (1972).
- P.H. Petit and M.E. Waddoups A Method of Predicting for the Nonlinear Benavior of Laminated Composites - J. Composite Mats. 3, 2, (1969).
- D.F. Adams Inelastic Analysis of a Unidirectional Composite Subjected to Transverse Normal Loading - J. Composite Mats. 4, 310, (1970).
- W. Huang Plastic Behavior of Some Composite Materials -J. Composite Mats. <u>5</u>, 320, (1971).
- 9. R.L. Foye and D.J. Baker Design/Analysis Methods for Advanced Composite Structures - AFML-TR-70-299, Vol. I, (1971).
- B. Budiansky A Reassessment of Deformation Theories of Plasticity - J. Appl. Mech., 26, 259, (1959).
- 11. W. Ramberg and W.B. Osgood Description of Stress-Strain Curves by Three Parameters - NASA TN 902, (1943).
- 12. A.A. Iliouchine Plasticite ed. Eyrolles, (1956).
- 13. L.D. Wall, Jr. and M.F. Card Torsional Shear Strength of Filament-Wound Glass-Epoxy Tubes NASA TN D-6140, (1971).
- 14. R.L. Foye Theoretical Post-Yielding Behavior of Composite Laminates - J. Composite Mats. 7, 178, (1973).
- J. F. Mulhern, T.G. Rogers and A.J.M. Spencer A Continuum Theory of a Plastic-Elastic Fibre-Reinforced Material -Int. J. Engng. Sci., 7, 129, (1969).
- D.C. Drucker Variational Principles in the Mathematical Theory of Plasticity - Symposium in Applied Mathematics, Vol. 8, 7, McGraw-Hill, (1956).
- B. Budiansky and R.J. Vidensek Analysis of Stresses in the Plastic Range Around a Circular Hole in a Plate Subjected to Uniaxial Tension - NASA TN 3542, (1955).

- 18. S.W. Tsai and E.M. Wu A General Theory of Strength for Anisotropic Materials - J. Comp. Mats. <u>5</u>, 58, (1971).
- 19. O. Hoffman The Brittle Strength of Orthotropic Materials -J. Comp. Mats. <u>1</u>, 200, (1967).


Fig. 1 - Coordinate system for unidirectional fiber composite material.


۷

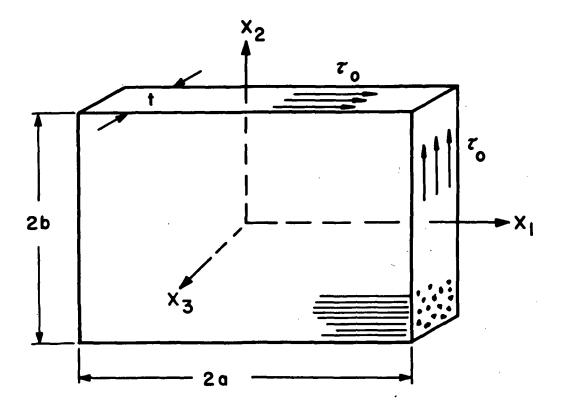
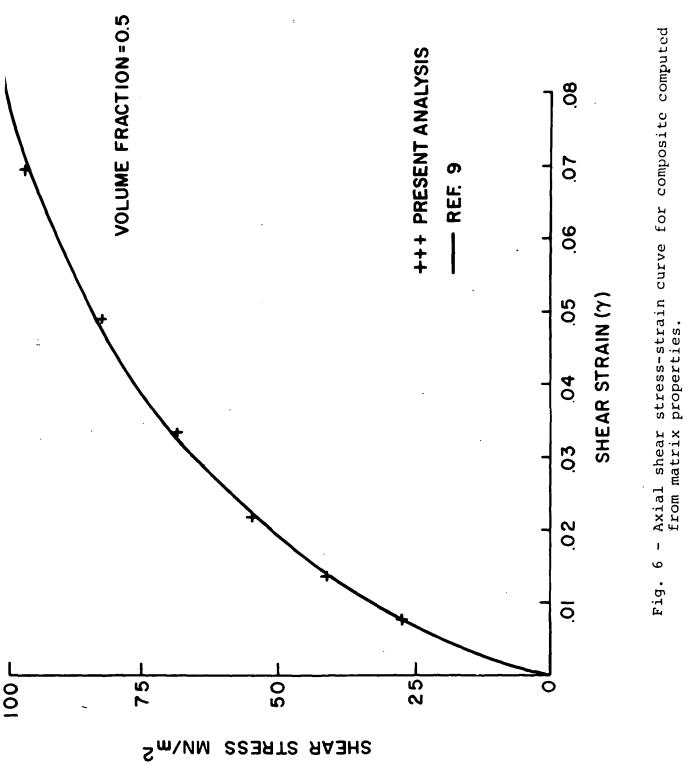
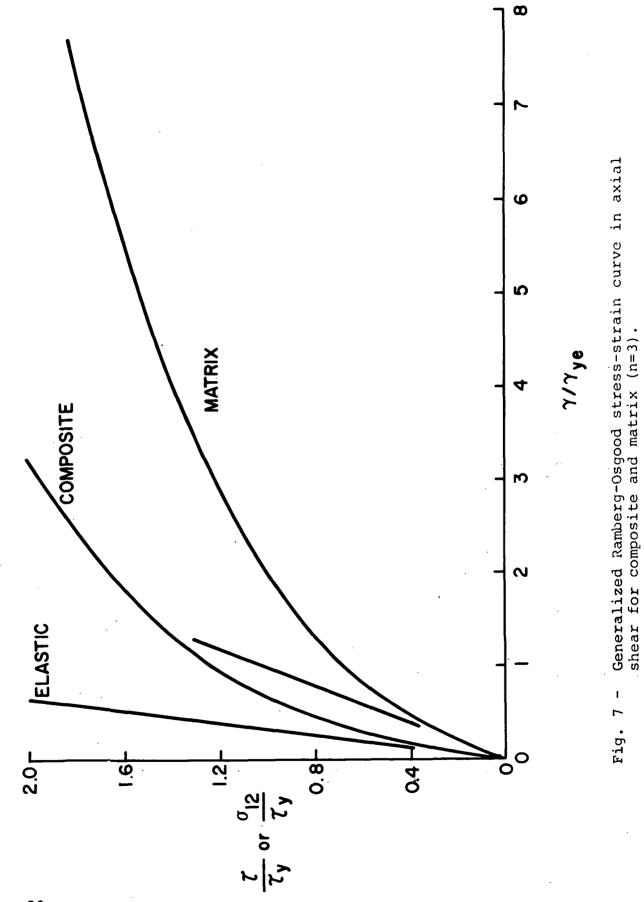
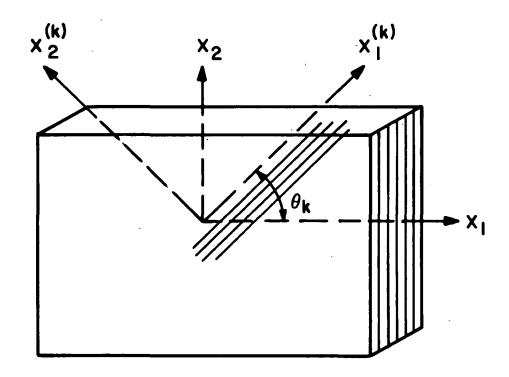
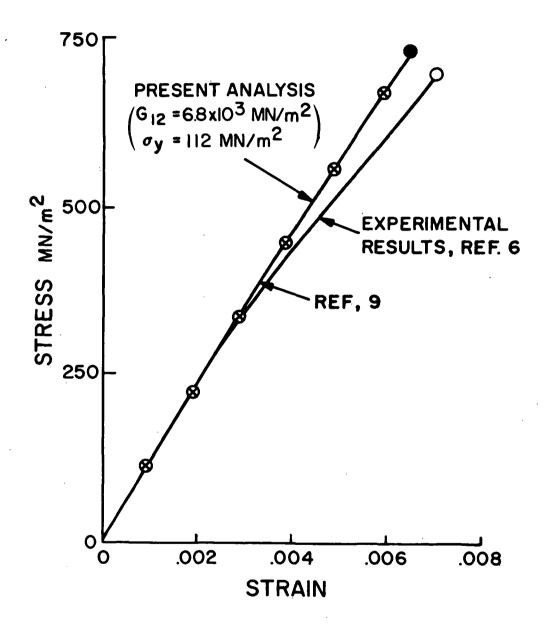
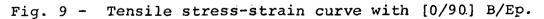
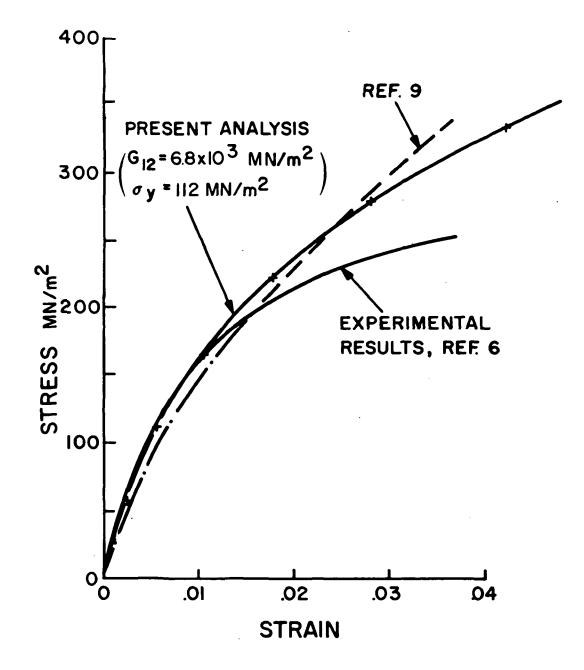
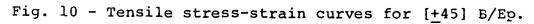




Fig. 5 - Unidirectional fiber composite material under axial shear stress.

. .


Fig. 8 - Laminate coordinate system.

٠

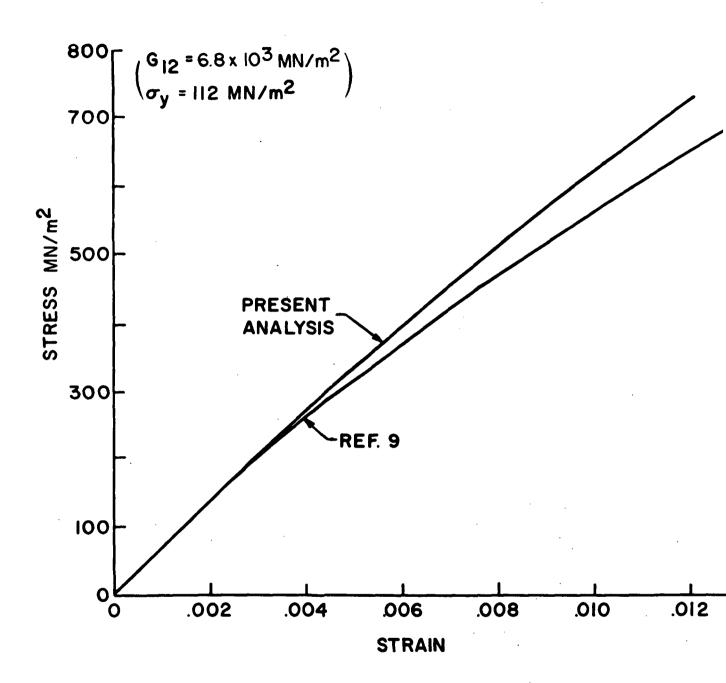
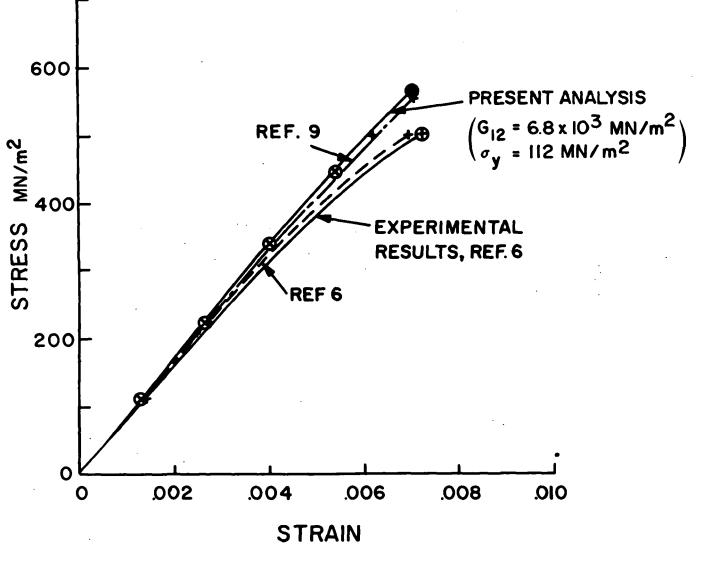
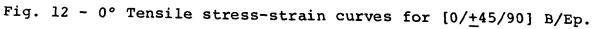




Fig. 11 - Tensile stress-strain curve with [+30] B/Ep.

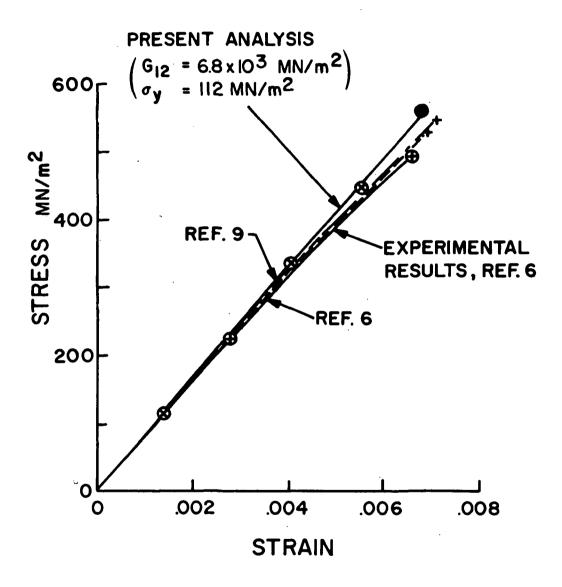
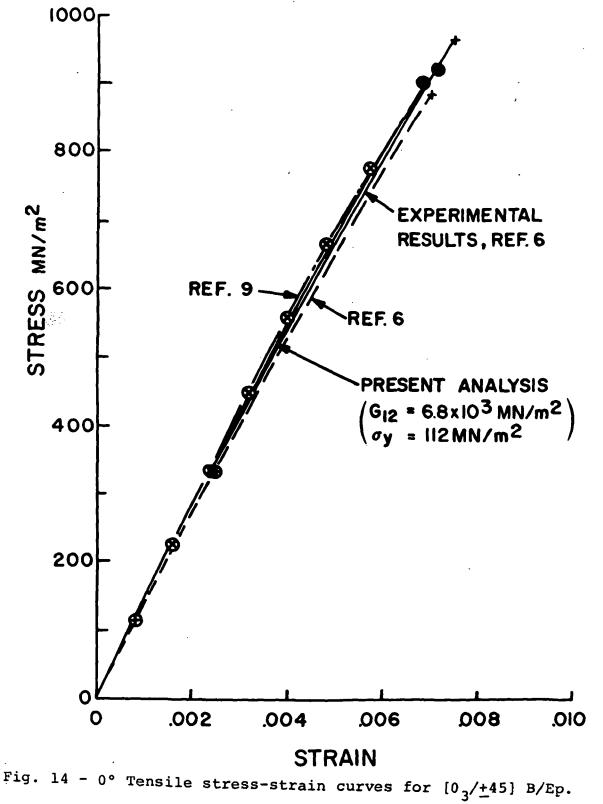
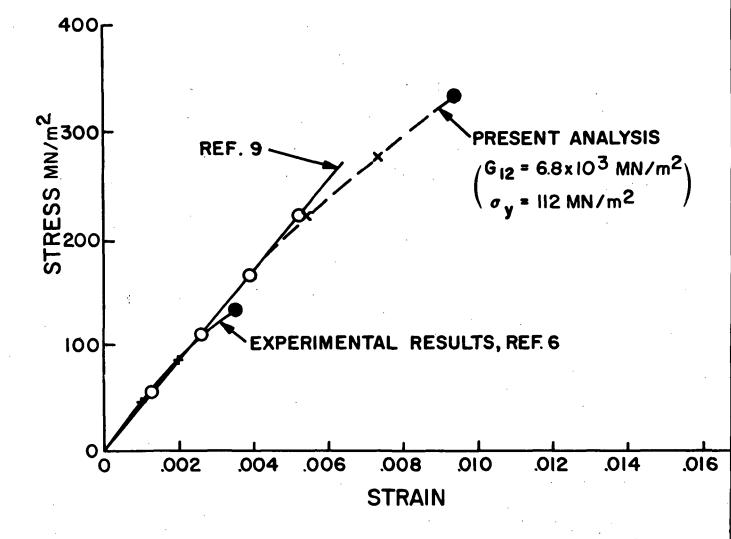
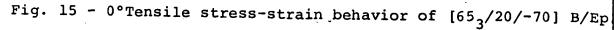





Fig. 13 - 0° Tensile stress-strain curves for $[0/\pm 60]$ B/Ep.

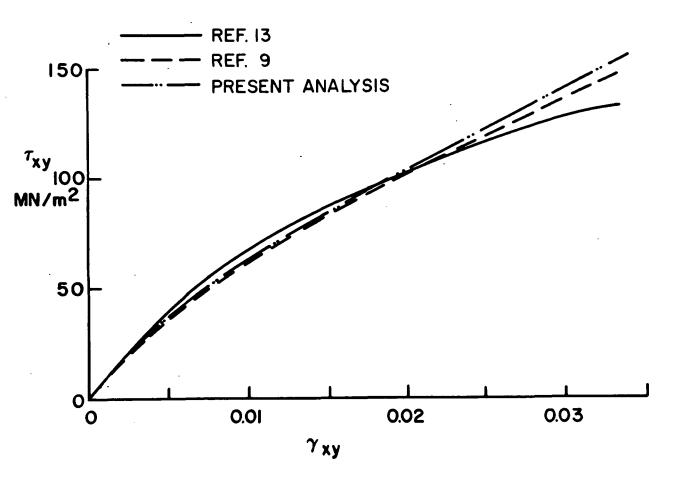
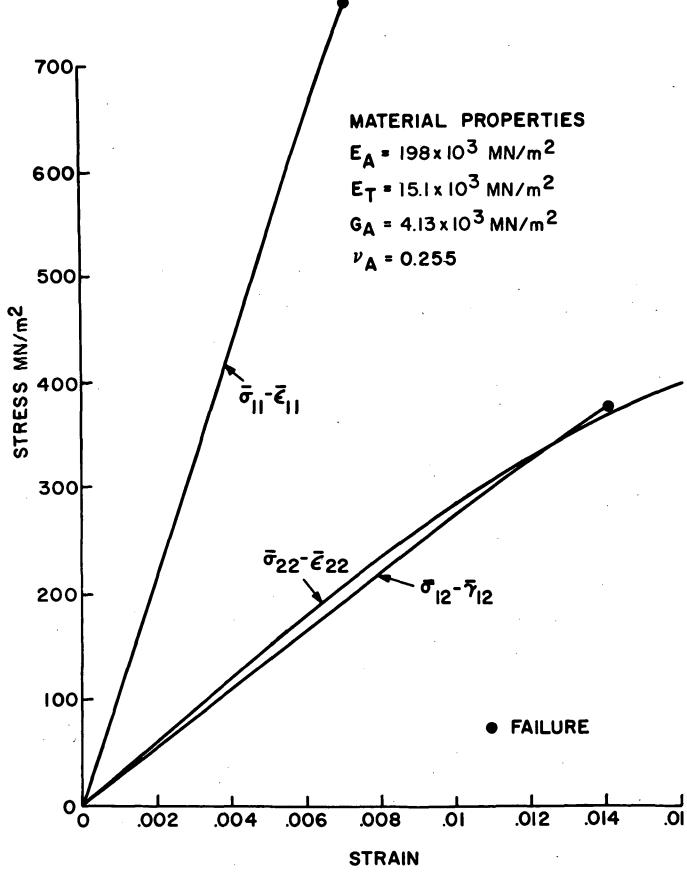
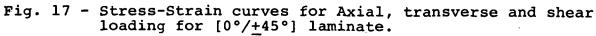




Fig. 16 - Comparison of present results with experimental data for Glass/Epoxy 90/+18 tubes in torsion, and with the results of Ref. 9.

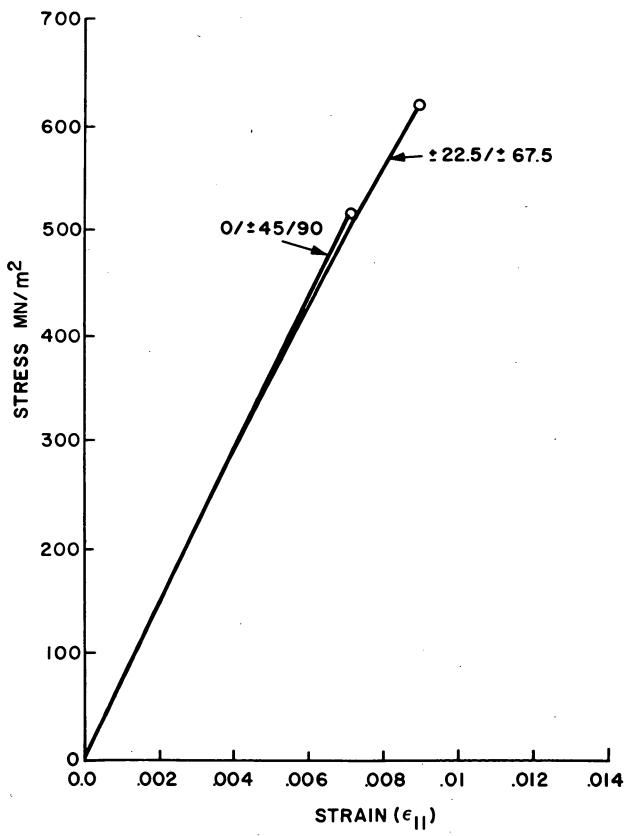
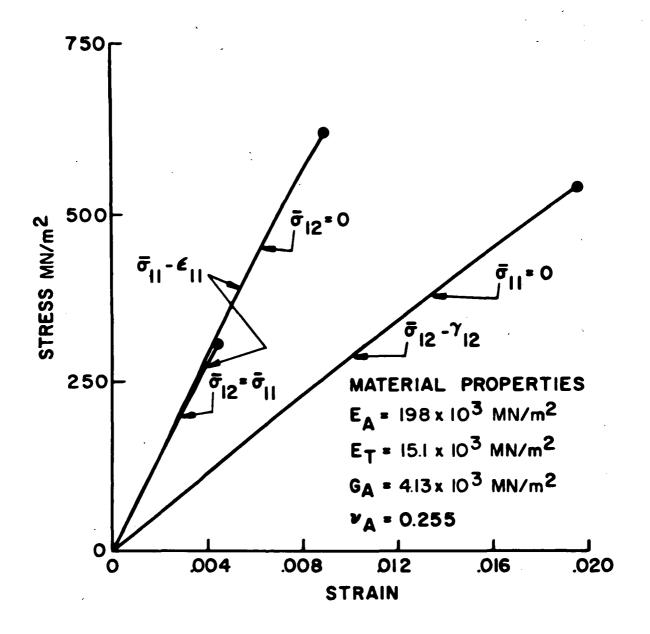
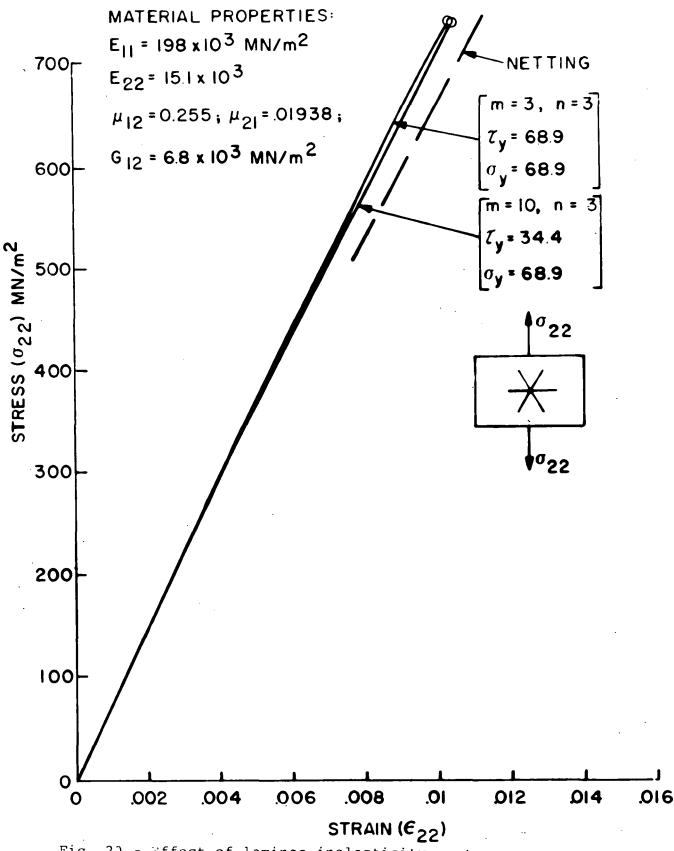
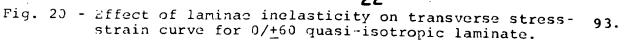
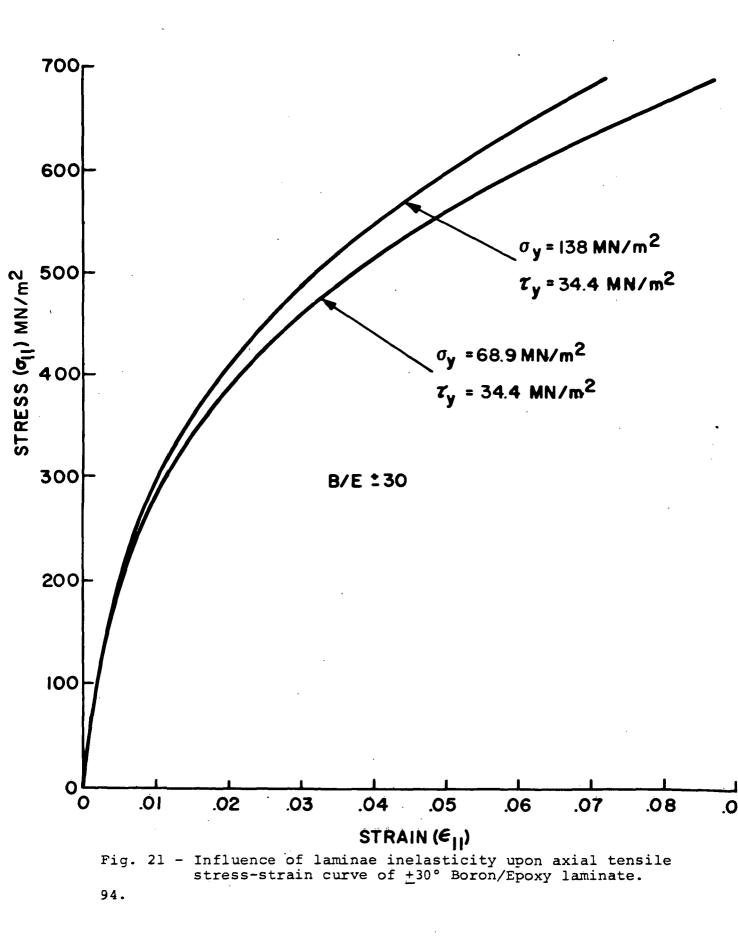
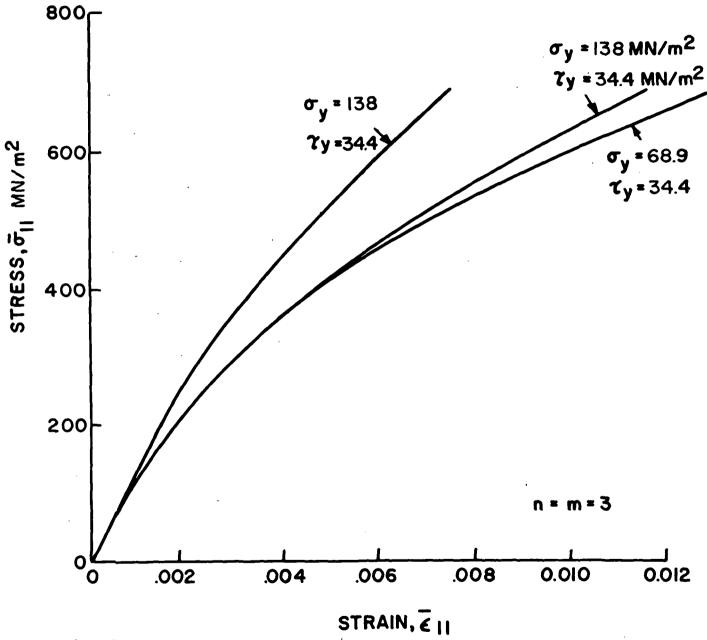
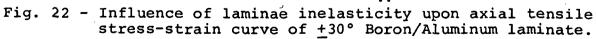


Fig. 18 - Four directional quasi-isotropic Boron/Epoxy plate under unidirectional tension in fiber direction and between fiber directions.

91


Fig. 19 - Combined stress effects on quasi-isotropic [+22.5/+67.5] laminate.

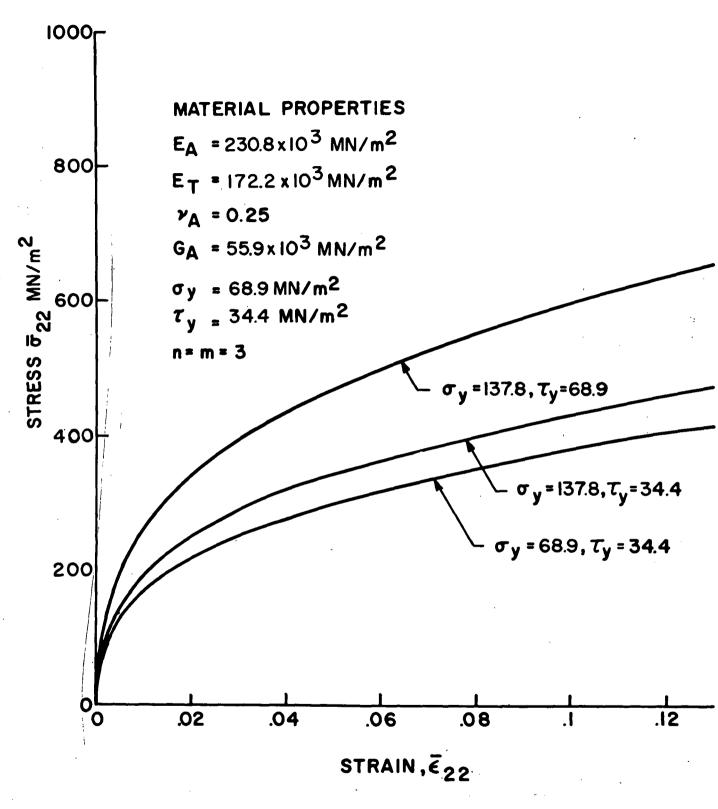


Fig. 23 - 0° Tensile stress-strain curves for $[0_3/\pm45]$ B/Ep.

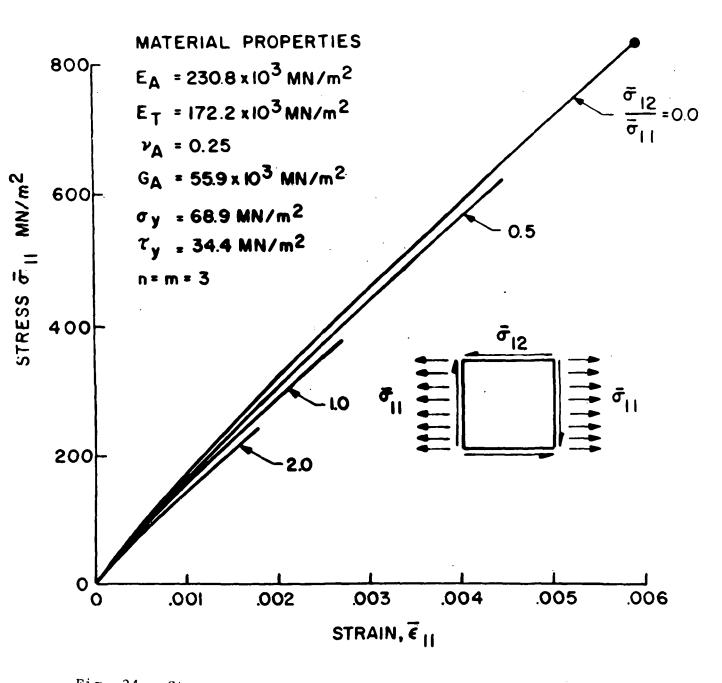


Fig. 24 - Stress-strain curves of Boron/Aluminum [0/+30] laminate under combined loading.

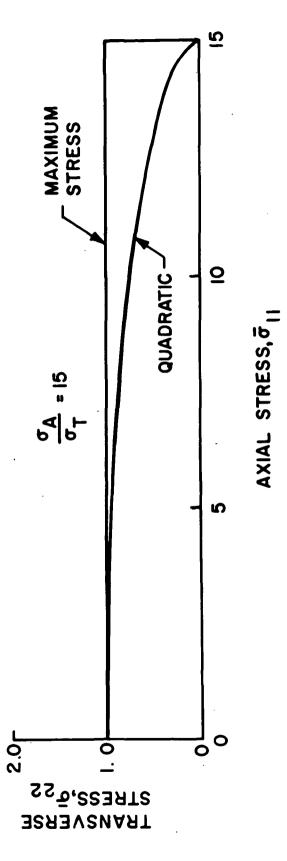


Fig. 25 - Comparison of failure criteria. 98.

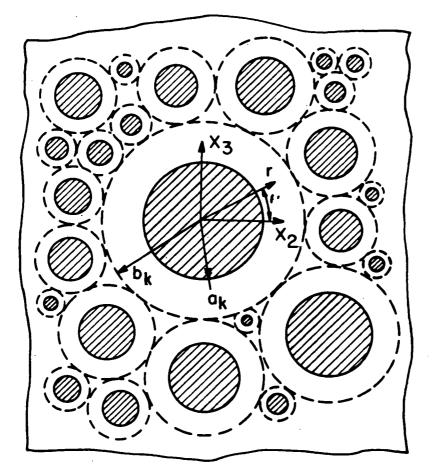


Fig. 26 - Composite Cylinder Assemblage

	278w	130 21 10/ 20/ 34	VAGE 0001
4	INELASTIC LAMINATE ANALYSIS	9	
ט כ			
U U			
0001 C	IMPLICIT REAL*8(A+H,C-Z)		
0002	N E11(20), S11(20).	20),612(20),57(20), 20),544(20),T(20),	
	2 A(20,20),5GG(20,1),5G(20,1),5F(20),IANG(20), 3 SINS(20),CDSS(20),5IN2(20),CDS2(20),	5F(20), TANG(20),	
0003	DIMENSICN PIL(20), P22(20), P12(20), P22(20), P21(20), P22(20), I E F512(20), P22(20), P12(20), P22(20), F512(20), F511(20), F511(20), F511(20), F511(20), F511(20), F511(20), F511(20), F512(20),	(20), PS22(20), 12(20), FP511(20).	
	2 EPS22(20), EPS12(20), SGS(20), 3 SG1(20,1), CB(20,20), BT(20), DV	JIF(20),562(20), 2(20),TY(20),	
000			
0005			
0006	COMMON /TLPARN/SGR,STIFF I /EONTRM/EP11.EPS11.SM11.SOLL		
0007	CCMMCN /RAFNWT/S11,512,521,E22 LOGICAL MSING,MSING		
ن ب •	INPUT		
	NDTE: CONVENTION EOP VI2 AND V21	ESTABLISHED BY FELLOWING	
	RELATIONSHIPS- CIT = -UI2/EII	5	
	125		
	WRITE(6,1500) Reants.1010) NSETS		
1100	00 999 J = 1,NSETS		
0013			
0014	LAMINATE DUTPUT HEADING Mrite(6.1509) J		
0015 0016	WRITE(6,1581) WRITE(6,1510) LAY		
0017 C	GO TO (20,251,		
0018	· _		
0020	READ(5,1002) E11(1), E22(1), V12(1), V21(1)		
0022	REACTS TOTAL STATES STA		n de la constante de la constan
0025	25		
0026 0027	1		
0028 0029	WRITE(6,1565) DO 29 1 = 1.14Y		
0.02.9	CALL TMOLT7/211.623.012.021.615.54.74.11	· · · · · · · · · · · · · · · · · · ·	

-

.

0033 0036 0036 0037	
34 35 36 37	C SO CONTINUE
35	C EQUATION PARAMETERS
36	
36	C INCRIMENTATION PARAMETERS
37	C A A MARTINE ACTION AND A MARTINE A MARTINE ACTION AND AND A MARTINE ACTION AND A MARTINE ACTION AND A MARTINE ACTION AND A
	READIS, 10021 STLFE
0038	READ(5,10C2) SCR C CONTROL PARAMETERS
6:E00	READ(5,1024) IT.EPS.UPBD
1400	
0043	W11616.1515) 1.1ANG(1),T(1),E12(1),V12(1),V21(1),
0044	111710
6400	WITELAIJJUN MITELAIJIN
0047	WRITEL6.1518) XN
0048	KRITE(6,1520) vprtf/c.19831
0050	
	C ANGLE REDUCTION ROUTINE
Tenn	UNCESTENT JANUT
0063	C INITIAL ASSIGNMENTS AND COMPUTATIONS
0053	1 001
0054 0055	TT = TT + T(I) 100 CONTINUE
0056	00 105 l=
0058	= 0,0000
0060	14
1900	a 1
0063	1 II 1 II 1 II
0064	c KSG = I
0065 0066	LTI = LAY N = LTI
0067	= 1d
6900	
11.00	$\frac{L_{1,2} = L_{AT,n,2}}{L_{M1} = L_{AY} - 1}$
12	CO 101 I
0073	511(1) = 1,000/E11(1) 511(1) = 1,000/E11(1)
00,74 00,75	S12(1) = -V12(1)/E11(1) S21(1) = -V21(1)/E22(1)
0076	107 CONTINUE

••

-

00.77	IIQ. CONTINUE	
-	C RETURN TO 110 AFTER INCRIMENTING APPLIEC LUAD OF	
	LAMINATE TESTS 3 OR 4	
0078	MSING = .FALSF. MSINGD = .FALSF.	
0080	$\mathbf{NIT} = 0$	
0081	D0 111 K = 1,20 DC(K) = 0.000	
0083		
0085	0	
0087	(X,L)= C.	
0088 0089	VI INUE	
0000	00 1115 1=1,N \$22(1) = 1,000/622(1)	
2600	S44(1) = 1.000/(4.000+(12(1))	
6600		•
	C AFTER 2ND INCRIMENTATICN USE MULTIPLICATIVE FACTOR C AS THITTAN STRESS SOULTION FSTIMATE	
4500		
0095 0096	IFIX56.6E.31 60 10 120 00 115 1=1.LM1	
0097 0098	h n	
0010 0005	SN2 = SIN2(1) CS2 = CCS2(1)	
1010	C IF(N-F0-1) GT TO 113	
0102		
0104	$\frac{1}{1} \frac{1}{1} \frac{1}$	
2010	C 2367 - 403671111	
0106 0107	113 CONTINUE A11,1) = CSS*T(1)	
0108	Δ(1,1+2+N) = SNS+T(1) Δ(1,1+2+N) = -SN2+T(1)	
	1	
0110 0111	$A(2_1 1 = SAS^{+}(1)$ $A(2_1 + N) = CSS^{+}(1)$	
0112	+2*N) =	
0113		
0115	A(3,1+24N) = CS2#T(1) TEIN EO.1) = CD2#T(1)	
	-	
8110		
0119		
0121	A[3#1+1,1+2#N) = 2.00C#544(1)#SN2	
0122		

TANKAN TALLES	DAIE = 73027 16/26/39 PACE 0004	
0123		
0124 D135	1 +1) +2 > + 2 > + 2 > + 2 > + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	ta 1 Mariana Mariana Langu a 1 marananangkan kanananangkan ka
0126	S 	
0127	-2=	
0128	A(3#1+2,1+2*N+1) = 2.000#S44(1+1)#SN2P	
0129	A[3*1+3,1) = -(S11(1)-S21(1))*SN2 /2.000	
0131		
0133	AL #F # 3.4.2011 J = (5.12(1+1)-5.22(1+1) PSN2P/2.000 A(3#1+3,1+2#N) = -2.0004544(1 + 1.4C50 A(3#1+3,1+2+N+1) = > 00045244(1+1)+C50	an i maaa a maanaan ah ay a maana ay amaana
0135	LIS CONTINUE	
	A(1,1,1)	
0137	A(1,24N) = SNSP#1(N) A(1,34N) = -SNSP#1(N)	
61 19	H	· · · · · · · · · · · · · · · · · · ·
0140	AL2.13*N1 = CSSP#1(N) AL2.13*N1 = CSSP#1(N)	
0142	1 11	
0143	- SN2P#1(N)	-
0145	1	
	LIE CONTINUE	وبوافقا بالمالية بالمالية المالية المالية المحالية والمحالية المحالية والمحالية والمحالية والمحالية
	C INVERI WATRIX A	
0147	CALL INVRIG(A,20,LT3,UET,1.00-15,IRANK)	
	C. CHFCK FUR SINGULAR MATRIX	
0149	MSING = .TRUE.	
01510	NATTE (6.1420) IRANKIDET GO TO 112	والمعادية المحاجب المحاجب المحاجب المحاجب والمحاجب والمحاجب والمحاجب والمحاجب والمحاجب والمحاجب والمحاجب والمحاج
0152	117. CONTINE	
0153	wRITE(6,1425) ((A(K1,L1),L1=1,LT3),K1=1,LT3) MSING = _FALSF_	
0155 0156	GO TC 999 118 CONTINUE	
	c B.C. vECTOR	والمتعادية والمتعادية والمتعادين والمتعادين والمتعادية والمتعادية والمتعادية والمتعادية والمتعادية والمتعادية
0157	SGO(1,1) = SO11 5CO13 11 = 5033	
6510		
	Č RESET STRESS = 0, IF FELATIVE STRESS < 1.00-06	
0161 0162	CALL RESETILT3,SG,1.0D-061 GU TO 126	
0163	120 CONTINUE DD 122 1=1.LT3	P 1 Proprogramme and a sub-state and state
5910	SG(1,1) = SF(1)*SGS(1)	
0166	122 CONTINUE GO TO 126	

٠

FORTRAN	FORTRAN IV G LEVEL 21	MAIN	DATE = 73027	16/26/39	PAGE 0005	
	C RETURN TO 125	FOR NEXT I TERATION	TION STEP			
0168	IJĘ NIT _ I	•	t t			
0110	-					
1210	CU 127 J=1,L13					
0173	561(1,1) ≈ 56(1, BI(1) ≈ 0.00 00	1)				
01.74	127 CONTINUE			and designed and a state of the		
0175	130 CONTINUI					•
0176	00 1305 K=1,LT3 CO 1305 1=1,1T3				· · · · · · · · · · · · · · · · · · ·	
0178	DB (K,L) = 0.00	00			· · · · · · · · · · · · · · · · · · ·	
0179	1305 CONTINUE					
1810.	IF(N.EC.) [M]= ' DO 151 [=1.1M]					
0182 0183	CALL NATPH (LAY,SG,F,C	6+F+6+H+612+5++T++XK+XM+1) 6+F+6+H+612+5++T++XN+XM+1+1+	Y, XN, XM, I)			
	ں ا				-	
0184	"					
0186	SN2 = SIN2(1)					
0187	C S 2 =		and a second damage of the property of the property of the property of the property of	a per en a la calendar de la calenda	ويستعملها القرائبية ومحمد والمحمد ومستعملهم ومعاربته والمحمد والمحمد والمعالي	
0100	4					
0189	ວ່າ ມູ່ພ	151				
0610.	CSSP = CCSS(I+1)					
1610	4					
2610	C C C C C C C C C C C C C C C C C C C				-	
0193	131 CONTINUE			a series a s		
0194	"[SS#T(1)				
0196	11 11	N2#1(1) N2#1(1)				
16 10	C8(2,1) = S	NS#1(1)				
01490	17 U	0041411 N241411				
0200	DB(3,1) =	N2*T(1)/2.				
0201	D3(3, 1+N) = -S	N2#111/2.	-			
0203	18	10 161				
0204	CB(3*1+1,1)					
0206	08(3#1+1+1+1) 08(3#1+1+1+N)	и и				
0207	DB(3*I+I,I+N+I)	"				i
0209	UB(3#1+1,1+2#N) CK(3#1+1,1+2#N+1)	<pre>= -F(3,1) = -(3,1+1)</pre>				
0100		•	and a second	a faire and a subscription of the subscription		
1100	001341421411	11 1				
0212	UB(3#1+2+1+1) DB(3#1+2+1+V)				L	I
0213	C9(3*1+2,1+N+1)	"		· · · · · · · · · · · · · · · · · · ·		
0214	UB(3+1+7,1+2m) 00134140 1425141	N 1				
6120	(1+1+2+1+2)0C	4				
0216	CE(3#1+3,1) OB 23#143 (41)					
0218	0H13#1+3.1+N					
2112						

0221	08(3*1+3)(+2*0+1) = H(3,1+1)
0222	
0224	
	u
0226	8 8
0228	= SN2F#1 (N)
0220	11 1
1620	= CS2P#T(N)
0232	09 .
0234	
0236	
1630	
0238	C INVERT MATRIX DB Call Invert0(08,20,LT3,DET,1.0D-12,IFANK)
0239	IFIRANS.EC.IT31 GC TO 168
0241	MSLNGU = . INUL. WRITE(6.1420) IRANK.DET
0242	GUTC 130
0244	
0246	
-1270	C 1811 40(1) 1005
0248	BC(1) =
0249 0250	DC12) = -5022#TT CC(3) = -5012#TT
0251	
0252	SNS = SINS(1) CSC = COSS(1)
0254	
0256	
0257	DC(2) = DC(2) + S6(1,1)=SN2#1(1) DC(2) = DC(2) + S6(1,1)=SN2#1(1) + S6(LAY+1,1)=CSS#1(1)
0258	I +SG(2*LΔY+I+I)=SN2*T(I) DC(3) = DC(3) + SC((1,1)+T(1)+SN2/2) - SC((1,2)+T(1)+T(1)+
	1 SN2/2 + 56(2*LAY+1, 1)*C 52#T(1
0259	6 CONTINUE C
0260	C REDEFINE CURFFICIENTS S22 AND 544
0261	T125 = (S6(K+2#N,1)/TY(K))##2 T535 = f56(K+A-1)/CV1K11##2
0263	S125 = T125 + T22255 5125 = T125 + T22255 529141 - 1100 - 112 - 11
	$\frac{1}{2} \sum_{i=1}^{2} \sum_{i=1}^$

0266 5440 0267 000 8 0267 000 8 0210 0210 028 0211 028 0213 028 0213 028 0214 0013 0216 013 0216 013 0216 013 0216 013 0216 013 0216 013 0219 010 0200 00 9	[K] = [1.000+5125 [INUE] = 1.000+5125 = 510514] = 510514] = 510514] = 510214]				
	8 K=1,LM1 8 K=1,LM1 5 = CCS5(K) 2 = SIN2(K) 2 = CCS2(K) 2 = CCS2(K)	**([XM-1.)/2.)]/(4. GDO*G12(K))	· · · · · · · · · · · · · · · · · · ·	-	
	•				
	р q			and a second	
	DC(3+3+K-2) = -(211(K)+C23	-(211(K)*CSC+S21(K)*SNS)*SC(K*1) -	• C H •		
		$\frac{1}{56} \left(2 \times 10^{-50} \cdot 3 \times 10^{-5} \times 10^$	-2N2		
	56(LAY+K+1, 1 56(LAY+K+1, 1	1) - 2.*544(x+1)*56(2*LA	Y+K+1,1) *	· · · ·	
	DC(3+3+K-I) = -{SI1(K) * SNS+S21() \$22(K) + C3 + S(C1 + C3) + S(C1 + C3)	K) * SNS+S21(K) * CSS) * SG(K,1) - (S12(K) * SNS+ K) * SS1 * SG(1 A Y + K, 1) - 2 * * S42(K) * SN2 *	+SNS+		-
	S6(24(1) 4(4) 1) 10 10 1) 10 10 10 10 10 10 10 10 10 10 10 10 10	- 11 (FACS + 03 3 4 1 FAC	(C12184114		
	SNSP+522(K+1)#CSSP ===================================	P) + S6(LA + + + + + + + + + + + + + + + + + + +	1 1 + 1) + 2N 2P	n fa fa ta she anna a she an a she an anna an anna an anna an an an an an	
	DC(3+3+K) = -(S11(K)-S21(K)) + S21(K) + S21(K) + S21(K)) + S21(K) + S21(K	# SN2#SG(K,1)/2(S12(K).	-522(K))*		
	<pre>content = content = c</pre>		512(K+1)- K+1)±C 520±		
J	CONTINUE				
	9 I=1.LT3				
.	EĘ				
U	-				
0284 00	00 1 K=1,LT3 ⊎T(I) = BT(I) + CB(I,K)≠CC(K)			-	
U					
15	SG(1,1) = SG1(1,1) + ET(1) CONTINUE				
U U	SET STRESS = 0, IF RELATIVE	STPESS < 1.0L-06			
	CALL RESET(LT3;56,1,00-06) IF(NIT.E0.0) GU TC 125	-			
0291 C COL 0292 C COL	CONVEPGENCE CHECK Call Convertar,56,561,456,5125,590) Continue	(006			
	DATA FEWDUTATIENS				
	11.1 CLEVEL 540 I = 1.L = CINCLI	n mar an ann an ann an ann an an an an an an		and a second	
5 CSS					
	= 0.022(1)				
0298 51 0298 11	Pll(f) = \$11(f)*\$6(f+1) + \$12(f)*\$6(f+N,1) T125 = \$6(f+2*N,1)/TV(f1)**2]±56(!+N,1)			

0301	ļ
	5125 = T125 + T5225 P22/IJ = _521/IJ#56(1,1] + 56(1+N,1)/E22(1)#(1,000+5125##((xN
0303	112-
0305 0306	EFII(I) = PII(I)*CSS + P22(I)*SNS - P12(I)*SN2 EP22(I) = PII(I)*SNS + P22(I)*CSS + P12(I)*SN2
0307	= {Pll(1)-P22(1))*SN2/2.D0 +
0308	540 CONTINUE
0309	C LAMINATE TESTS CALL LAMISTILAY.SG.SGS.KSG.MSG.
0310	730 CONTINUE MRITE(6,1525)
0312	· _
0314	NRITE(6,1529) SOI2
0316	1
0318	WRITE(6.1537) WRITE(6.1538)
0319	LAV
0320	WRITE(6,1550) [,56(1,11,56(1+11,56(1+2*v,1), [] EP11([],EP22([],EP12([],P11(1),P22(1),P12(1),P12(1),P22(1),P12(1)
0321 0322	750 CONTINUE MELTE(6.1588)
6323	C IFIKSGM-KSG1 790,790,760
	C C MULTIELICATIVE FACTOR FOR INITIAL ESTIMATE OF SUCEEDING
	C INCRIMENTATION C
0324 0325	760 CONTINUE G(I TG. (762.766), 1NFT
	C FATIC OF PREVIDUS SCLUTIONS
0326 0327	762 CCINTINUE DC 765 1=1.LT3
0328	IF(KSC.EG.I) 60 10 770
0330	56(1,1)/S6S(1)
0332	163 CENTINE 26 CENTINE 2611 - 1. DDD
0334	165 CONTINUE 2 CONTINUE
2250	
0336	
0338	
0340	1 1.61
0341 0342	CONS = VKSG#(VKSG=2)/(VKSG=1)**2 SF[:] = 1.0D0 + CC43#(SG(1,1)-SG5(1))/SG(1,1)
0343	768

Table CONTINUE 133 STORE TREES AND STRATE VALUES 134 STATE AND STRATE VALUES 134 STATE AND STRATE VALUES 135 STATE TREES AND STATE TREES AND STATE TREES 135 STATE TREES AND STATE TREES AND STATE TREES 135 STATE TREES AND STATE TREES AND STATE TREES 135 STATE TREES AND STATE TREES AND STATE TREES 135 STATE TREES AND STATE TO TRES AND STATE TO TREES AND STATE TREES AND S		
C 5 3000 F 5 400 S 51.0 W(165) 0.0 T/51 1 + 1.4.M 5 561(1 + 1)1 5 521(1 + 1 + 1.4.M 5 561(1 + 1)1 5 521(1 + 1 + 1.4.M 5 561(1 + 1)1 5 521(1 + 1 + 1.4.M 5 51(1 + 1)1 5 521(1 + 1 + 1.4.M 5 51(1 + 1)1 5 521(1 + 1 + 1.4.M 5 51(1 + 1)1 5 521(1 + 1 + 1.4.M 5 51(1 + 1)1 5 521(1 + 1 + 1.4.M 5 51(1 + 1)1 5 521(1 + 1 + 1.4.M 5 51(1 + 1)1 5 521(1 + 10.1 5 521(1 + 10.1 5 521(1 + 10.1 5 521(1 + 10.1 5 521(1 + 10.1 5 51(1 + 10.1 5 521(1 + 10.1 5 51(1 + 10.1 5 521(1 + 10.1 5 51(1 + 10.1 5 521(1 + 10.1 5 51(1 + 10.1 5 521(1 + 10.1 5 51(1 + 10.1 5 521(1 + 10.1 5 51(1 + 10.1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	340	768 CONTINUE
551(1) 1 = 1.6(*) 551(1) = 5.6(1; + 1; 1) 551(1) = 5.6(1; + 1; 1) 551(1) = 5.6(1; + 1; 1) 551(1) = 5.6(1; + 1; 1) 551(1) = 5.6(1; + 1; 1) 552(1) = 5.6(1; + 1; 1) 552(1) = 5.6(1; + 1; 1) 552(1) = 5.0(2; + 5.9(1) 512(1) = 5.0(2; + 5.9(1) 512(1) = 5.0(2; + 5.9(1) 512(1) = 5.0(2; + 5.9(1) 512(1) = 5.0(2; + 5.9(1) 512(1) = 5.0(2; + 5.9(1) 512(1) = 5.0(2; + 5.9(1) 512(1) = 5.0(2; + 5.9(1) 512(1) = 5.0(2; + 5.9(1) 512(1) = 5.0(2; + 5.9(1) 512(1) = 5.0(2; + 5.9(1) 512(1) = 5.0(2; + 5.9(1) 512(1) = 5.0(2; + 5.9(1) 512(1) = 5.0(2; + 5.9(1) 512(1) = 5.0(2; + 5.9(1) 512(1) = 5.0(2; + 5.9(1) 512(1) = 5.0(2; + 5.9(1) 512(1) = 5.0(2; + 5.9(1) 512(1) = 5.0(2; + 5.9(1) 512(1) = 5.0(2;	347	STORF STRESS AND STRAIN 773 CONTINUE
SISTENT = SCIP. (1) SISTENT = PILL SISTENT = PILL PILL = PILL ESTATE = PILL ESTATE = FILL ESTATE = FILL	1348 1340	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
P\$32111 = P12111 P522111 = F121111 P522111 = F121111 P522111 = F121111 P522111 = F121111 P522111 = F121111 P52211 = F121111 P5221 = F1211111111111111 P5221 = F121111111111111111111111111111111	1350	= 20(1+ = 20(1+
175 CONTINE FIZILI FSIZILI FIZILI SOZI SOZI SOZI SOZI <td>352</td> <td>(1)11d</td>	352	(1)11d
EF SAI(1) = EP12(1) FP S22(1) = EP12(1) FP S22(1) = EP12(1) FP S26 = WSG + MPLIED LOADING C INCKEWENT APPLIED LOADING S011 = SC11 + SM11 S012 = S012 + SM12 G0 T0 INUE C S00 CONTINUE C G0 T0 INUE C JOOZ FORMAT (515) IOOZ FORMAT (15:50) IOOS FORMAT (15:50) IOSO FORMAT (1: FOULOS)	1354	P12(1)
FPS12(1) = FP12(1) 775 CUNTIMUE 775 CUNTIMUE 5011 = 5012 + 5M12 5012 = 5012 + 5M12 60 T0 110 790 CONTINUE 690 CUNTINUE 699 CUNTINUE 600 CUNTINUE 60	0355 0356	11 11
C INCREMENT APPLIED LOADING K56 # S64 + 1 SM11 S011 = SC11 + SM11 5012 S012 = S022 + SM22 S022 + SM22 5012 S012 + SM12 G0 TO INUE 790 CONTINUE S012 + SM12 790 CONTINUE S010 + SM12 7002 FORMAT (515) S10 1022 FORMAT (515) S10 1022 FORMAT (15, 5015 + 5) S10 122 FORMAT (15, 5015 + 5) S10 123 FORMAT (17, 100 H MARE 12) <	0357 0358	EPSI2(1) = CONTINUE
K5G = K5G + 1 5011 = 5012 + 5M12 5022 + 5M22 5022 + 5M22 5012 = 5012 + 5M12 60 TO LID 5012 + 5M12 790 CONTINUE 5012 + 5M12 60 CONTINUE 500 CUNTINUE 790 CONTINUE 599 CONTINUE 60 CUNTINUE 599 CONTINUE 790 CONTINUE 5015.51 1002 FORMAT (5015.51 1002 1002 FORMAT (515) 1002 1022 FORMAT (515) 1022 1022 FORMAT (515) 1022 1022 FORMAT (515) 1022 1022 FORMAT (15, 5015.5) 11 1022 FORMAT (17, NUBRIAT IS 51 1022 FORMAT (17, NUBRIAT IS 51 1022 FORMAT (17, NUBRIAT IS 51 1123 FORMAT (17, NUBRIAT IS 51 11515 FORMAT (17, NUBRIAT IS 51 11515 FORMAT (17, NUBRIAT IS 51 11515 FORMAT (17, EXPONET ME 51 11515 FORMAT (17, EXPONET ME<		INCREMENT APPLIED
5022 = 5022 + 5M22 5012 = 5012 + 5M12 500 CONTINUE 790 CONTINUE 500 CUNTINUE 500 CONTINUE 500 FORMAT (1115,5015,515) 513 FORMAT (1114,12,113,21,12,114,114,114,114,114,114,114,114,1	0355 0360	+
GO TO 110 790 CONTINUE 99 CONTINUE 99 CONTINUE 99 CONTINUE 99 CONTINUE 99 CONTINUE 900 EDRMAT (5015.5) 1002 FORMAT (515) 1022 FORMAT (15,5015.5) 1022 FORMAT (17, MURBEE (7, 12) 1224 FORMAT (1, 10, 10, 10, 10, 10) 1225 FORMAT (111, 10, 10, 10) 1510 FORMAT (1, 10, 10, 10, 10) 1510 FORMAT (1, 10, 10, 10) 1510 FORMAT (1, 10) 1520 FORMAT (1, 10) 1520 FORMAT (1, 10) 1520 FORMAT (1, 10) 1520 F	0361 0362	= S022 + = S012 +
C 500 CUNTINUE 599 CONTINUE 599 CONTINUE 599 CONTINUE 599 CONTINUE 5002 FORMAT (5015.5) 1010 FURMAT (5015.5) 1024 FORMAT (55015.5) 1024 FORMAT (15,5015.5) 1425 FORMAT (15,5015.5) 1425 FORMAT (15,5015.5) 1425 FORMAT (111, LLATER IS SIN 1425 FORMAT (111, LLATER THETA) 1505 FORMAT (111, LLATER THETA) 1515 FORMAT (111, LLATER THETA) 1516 FORMAT (111, LLATER THETA) 1517 FORMAT (111, LLATER THETA) 1518 FORMAT (111, LLATER THETA) 1518 FORMAT (111, LLATER THETA) 1528 FORMAT (111, LLATER THETA) 1528 FORMAT (111, LLATER TAN 1528 FORMAT (1111, LLATER TAN 1528 FORMAT (111, LLATER TAN 1528 FORMAT	0363 44	CONTINU
C 599 CONTINUE 599 CONTINUE 599 CONTINUE 5002 FORMAT (515) 1002 FORMAT (515) 1002 FORMAT (515) 1022 FORMAT (515) 1024 FORMAT (515) 1024 FORMAT (515) 1024 FORMAT (515) 1025 FORMAT (15,5015,5) 1425 FORMAT (17, MUMBEF CF 12) 1425 FORMAT (111, LAMINAT = 1515 FORMAT (111, LAMINAT = 1515 FORMAT (111, LAMINAT = 1515 FORMAT (111, LAMINAT = 1515 FORMAT (114, EAMINAT = 1515 FORMAT (114, EAPONENT A = 1516 FORMAT (114, EAPONENT A = 1517 FORMAT (114, EAPONENT A = 1518 FORMAT (114, EAPONENT A = 1518 FORMAT (114, EAPONENT A = 1528 FORMAT (116, EXPCORENT A = 10, EAPONENT A = 1538 FORMAT (116, EXPCORENT A = 10, EAPONENT A = 1538 FORMAT (116, EXPCORENT A = 10, EAPONENT A = 10,	0365	
599 CONTINUE C C C C C C C C 1002 FORMAT (515) 1010 FURMAT (515) 1010 FURMAT (515) 1010 FURMAT (515) 1022 FORMAT (15,5015.5) 1022 FORMAT (15,5015.5) 1022 FORMAT (15,5015.5) 122 FORMAT (15,5015.5) 1425 FORMAT (111, LAMINATE '12) 1505 FORMAT (111, LAMINATE '12) 1505 FORMAT (111, LAMINATE '12) 1505 FORMAT (111, LAMINATE '12) 1510 FORMAT (1// FOUNDER '12) 1511 FORMAT (1// EQUITICN PREAD 1512 FORMAT (1// EQUITICN PREAD 1513 FORMAT (1// EQUITICN PREAD 1525 FORMAT (1// EQUITICN PREAD 1525 FORMAT (1// EXTERNAL 1525 FORMAT (1// EXTERNAL 1525 FORMAT (1// EXTERNAL 1525 FORMAT (1// EXTERNAL 1525 FORMAT (1// F X = 'C13.5) 1525 FORMAT (1// Y Y X = 'C13.5) 1526 FORMAT (1// Y Y =		22
C C C C C C C C C C C C C C	0366 0367	665
1002 FORMAT (5015.5) 1010 FURMAT (515) 1022 FURMAT (515) 1022 FURMAT (515) 1022 FURMAT (515) 1022 FURMAT (515) 1024 FURMAT (515) 1024 FURMAT (15,5015.5) 1226 FURMAT (1,1, MULAGATIC LAMINAT 1425 FURMAT (111, LAMINATE '12) 1505 FURMAT (1/1, NULABEE (7, L2) 1505 FURMAT (1/1, EQUINATE '12) 1505 FURMAT (1/1, EQUINAT M = 15) 1505 FURMAT (1/1, EXPONET M = 15) 1515 FURMAT (1/1, EXPONET M = 15) 1525 FURMAT (1/1, EXPONET M = 10) 1525 FURMAT (1/1, EXPONET M = 10) 1525 FURMAT (1/1, EXPONET M = 10) <		i
1010 FORMAT (515) 1022 FORMAT (15,5015.5) 1420 FORMAT (15,5015.5) 1425 FORMAT (1,1, MATRIX IS SIN 1425 FORMAT (1,1, LATINANT = 1505 FORMAT (1,1, LATINATE '12) 1510 FORMAT (1,1, LATINATE '12) 1511 FORMAT (1,1, LATINATE '12) 1515 FORMAT (1,1, CUMBE (17, 12) 1515 FORMAT (1,1, CUMBE (17, 12) 1515 FORMAT (1,1, EQUATE (12) 1515 FORMAT (1,1, EQUATE (13, 2) 1515 FORMAT (1,1, EXTERNAL 1525 FORMAT (1,1, EXTERNAL 1525 FORMAT (1,1,1,13,2) 1525 FORMAT (1,1,1,1,13,2) 1525 FORMAT (1,1,1,1,13,2) 1525 FORMAT (1,1,1,1,13,2) <	0368	1002 FORMAT
IC24 FORMAT (15,5015.5) I420 FORMAT (1/* MATRIX IS SIN 1425 FORMAT (1/* MATRIX IS SIN 1500 FORMAT (111, LANINATE *12) 1500 FORMAT (111, LANINATE *12) 1510 FORMAT (111, LANINATE *12) 1511 FORMAT (1/* EQUATION PEAN 1515 FORMAT (1/* EQUATION PEAN 1525 FORMAT (1/* EQUATION PEAN 1525 FORMAT (1/* EXTERNAL APPLED 1525 FORMAT (1/* EXTERNAL APPLED 1525 FORMAT (1/* EXTERNAL APPLED 1526 FORMAT (1/* EXTERNAL APPLED 1528 FORMAT (1/* Y * 2*, 57855*, 383, 1355) 1538 FORMAT (1/* LAMINGE AVES 1538 FORMAT (1/* LAMINGE AVES <td>0369 0370</td> <td>ICIC FURMAT (515) 1022 FURMAT (C15.5,15)</td>	0369 0370	ICIC FURMAT (515) 1022 FURMAT (C15.5,15)
1420 FORMAT (// MATRIX IS SIN 1425 FORMAT (// SISS) 1425 FORMAT (// SISS) 1505 FORMAT (// NUMBEF (// 2)) 1505 FORMAT (// NUMBEF (// 2)) 1505 FORMAT (// NUMBEF (// 2)) 1515 FORMAT (// SX,13,2X,C12,5,5,4) 1515 FORMAT (// EQUATIC PARATIX) 1515 FORMAT (// EXPONENT A = 1515 FORMAT (// EQUATICA PARATIX) 1525 FORMAT (// EXPONENT A = 1528 FORMAT (// EXY, 515,51,515,51,515,51,515,51,515,51,515,51,51	0371	IC24 FORMAT
1425 FORMAT (6C15.5) 1505 FORMAT (111.1ELASTIC LAMINATE 1.12) 1509 FORMAT (111.1ELANINATE 1.12) 1510 FORMAT (111.1ELANINATE 1.12) 1513 FORMAT (111.1ELANINATE 1.12) 1513 FORMAT (111.1ELANINATE 1.12) 1513 FORMAT (111.1ELANINATE 1.12) 1515 FORMAT (111.1ELANINATE 1.12) 1525 FORMAT (111.1ELANINATE 1.12) 1525 FORMAT (111.1ELANINATIONAT 1.12) 1525 FORMAT (111.1ELANINAT 1.12) 1536 FORMAT (111.1ELANINAT 1.12) 1538 FORMAT (111.1ELANINAT	0372	1420 FGRMAT (// MATRIX IS SINGULAR DF RANK = DEFFRMINANI =DI5.5/1
150C FORMAT (* INELASTIC LAMINA 1509 FORMAT (1H1, 'LAWINATE *, 12) 1510 FORMAT (1/1, 'NUMBEF CF '1 1515 FORMAT (1/1, 'SV, 13, 2X, C12, 5, 4 1515 FORMAT (1/1, EQUATICA PARAN 1515 FORMAT (1/1, EQUATICA PARAN 1515 FORMAT (/' EXPONENT M = 1520 FORMAT (/' EXPONENT M = 1520 FORMAT (/' EXPONENT M = 1520 FORMAT (/ / /	0373	FORMAT (6C15.5)
1510 FORMAT ///// NUMBEF F 1513 FORMAT //// NUMBEF F 1515 FORMAT //// SQLTECS //// NUMBEF 1515 FORMAT /// SSL12.55/4 1515 FORMAT /// EQUATICN PAERW 1515 FORMAT /// EQUATICN PAERW 1515 FORMAT /// EQUATICN PAERW 1515 FORMAT // EXPONENT ME 1525 FORMAT // EXPONENT ME 1525 FORMAT // EXTENNAL POLIED 1525 FORMAT / F ME 013.55) 1525 FORMAT / F ME 013.55) 1525 FORMAT / F ME 013.55) 1526 FORMAT / F X = .013.55) 1525 FORMAT / F X = .013.55) 1536 FORMAT / F X = .013.55) 1536 FORMAT / / LAYER', 4X, *56' 50 1538 FORMAT / / LAYER', 4X, *56' <td>0374</td> <td>(* INELASTIC</td>	0374	(* INELASTIC
1315 FURMAT (14,55%,115%,17%,17%,12%,12%,5%,4 1515 FURMAT (14,55%,13,2%,512%,5%,4 1515 FURMAT (14,55%,13,2%,512%,5%,4 1515 FURMAT (17%, EXPONENT M = 1518 FURMAT (17%, EXPONENT M = 1526 FURMAT (17%, 15%,15%,13%,5) 1525 FURMAT (17%, 15%,15%,13%,5) 1528 FURMAT (17%, 15%,15%,13%,5) 1528 FURMAT (17%, 15%,15%,15%,15%,15%,15%,15%,15%,15%,15%,	0376	
1515 FORMAT (1/1 500011 M = 1511 1513 FORMAT (1/1 500011 M = 1511 1513 FORMAT (1/1 500011 M = 1520 1520 FORMAT (1/2 500011 M = 1520 1520 FORMAT (1/2 500011 M = 1520 1520 FORMAT (1/2 500011 M = 1520) 1520 FORMAT (1/2 500011 M = 1520) 1520 FORMAT (1/2 7 500011 M = 1530) 1520 FORMAT (1/2 7 500011 M = 1500) 1520 FORMAT (1/2 7 100011 M = 1500) 1530 FORMAT (1/2 7 100011 M = 1500) 1530 FORMAT (1/2 100011 M = 1500000000000000000000000000000000000	1150	- -
1517 FORMAT (*) EXPONENT = 1518 FORMAT (*) EXPONENT = 1520 FORMAT (*) EXTENAL OPPLED 1525 FORMAT (*) EXTENAL OPPLED 1525 FORMAT (*) EXTENAL OPPLED 1525 FORMAT (*) F *) (*) (*) 1525 FORMAT (*) F *) *) (*)	0379	(// EQUATION
1518 FORMAT (' EXFENENT A = 1520 FORMAT (' EXTERNAL APPLED 1527 FORMAT (' EXTERNAL APPLED 1527 FORMAT (' F X = ',C13.5) 1528 FORMAT (' F X = ',C13.5) 1525 FORMAT (' F X = ',C13.5) 1536 FORMAT (' E XY = ',C13.5) 1538 FORMAT (' LAYER',4X, 5G' 1538 FORMAT (/ LAYER',4X, 5G'	0380	(/' EXPONENT M = '.D12.5)
1525 FORMAT (* EXTERNAL APPLIED 1227 FORMAT (* F X = *,C13.5) 1528 FORMAT (* F Y = *,C13.5) 1525 FORMAT (* F Y = *,C13.5) 1525 FORMAT (* 22X, STPESS*,38X, 1536 FORMAT (* 22X, STPESS*,38X, 1538 FORMAT (* LAYER*,4X,*56' 1538 FORMAT (* LAYER*,4X,*56'	0381 0382	L EXPONEN L/2" LCADING
1528 FORMAT (* F Y = ',C13.5) 1525 FORMAT (* F X = ',C13.5) 1536 FORMAT ('E XY = ',C13.5) 1536 FORMAT (/22X,'57FES',38X,* 1538 FORMAT (/, LAYEN',4X,'5C)	0383 0384	(" EXTERNAL APPLIED (" F x = " [13.5]
1536 FORMAT (/22X, STPESS, 38X, 1537 FORMAT (/22X, 11AMINATE AXF 1538 FORMAT (/ LAYEN',4X, 56P 1538 FORMAT (/ LAYEN',4X, 56P	0385 0386	
1538 FORMAT (/º LAYER',4X,'SG	C387 C387	
1 AY IFPC VI AY IFOC	0389	(// LAYEN

<u>#AIN DATE = 73027 16/26/39 PAGE 0010</u>	1//57X,*MATEFIAL ERGPERTIES*) 1 /34X,*F13E**,54X,*MATATX;X*) 1/1 LAYE**:3X,2(7X,*E*+11X,*MU*+12X,*G*+12X,*V*+12X)/	CN fCE SIRESS CCNVERGES MITHIN: 14.		1 1									
N IV CLEVEL 21	1561 EGRMAT 1563 FORMAT 1565 EORMAT	0394	1583 FOPMAT ('	1588 FURMAT (/62%,' 1995 EURMAT (1HQ) 1999 FURMAT (1H1)	0400 SICP 0401 END								

Concentration Statistical structure And on ono on on on on on on on on on one on one on one on one one		
C RECCE ANGLES 10 VALUES BEFERE O AND 410 FLAF FOR COMMANING SILE AND 401. CGS CODI, PARL 511, 211, 211, 211, 211, 211, 211, 211,	ى , ا	
Interficit Return (Interficit) Return (Interficit) Dig 201 XINATION SINGLOSS NOT COST (COST CONTINUE COST) XINATION SINGLOSS NOT COST (COST CONTINUE COST) Dig 201 XINATION SINGLOSS NOT COST (COST CONTINUE COST) XINATION SINGLOSS NOT COST (COST CONTINUE COST) Dig 201 XINATION SINGLOSS NOT COST (COST CONTINUE COST) XINATION SINGLOSS NOT COST (COST CONTINUE COST) ANAT XINATION SINGLOSS NOT COST (COST CONTINUE COST) XINATION SINGLOSS NOT COST (COST CONTINUE COST) ANAT XINATION SINGLOSS NOT COST (COST CONTINUE COST) XINATION SINGLOSS NOT COST (COST CONTINUE COST) ANAT XINATION SINGLOSS NOT COST (COST CONTINUE COST CONTINUE COST) XINATION SINGLOSS NOT COST (COST CONTINUE COST) ANAT XINATION SINGLOSS NOT COST (COST CONTINUE COST COST CONTINUE COST (COST CONTINUE COST COST (COST COST COST COST (COST COST COST COST (COST COST COST COST COST COST COST COST		RECUCE ANGLES TO VALUES BETWEEN O AND AND PI/4 FCP COMPUTING SIN AND COS
Defension Antes of Mission Structures (Mission Structures) Defension Antes of Mission Structures (Mission Structures) Marce Antes of Mission Structures Marce Missin Structures <td< td=""><td></td><td>IMPLICIT REA</td></td<>		IMPLICIT REA
00271 5.114K 005 5.114K 005 5.114K 005 5.114K 005 5.114K 005 5.114K 005 5.114K 104 5.114K 105 1.114K 104 1.114K 114 1.114K 114 1.114K 114 1.114K 114 1.114K 114 1.114K 114 1.114K 115 1.114K 115 1.114K 115 1.114K 115 1.114K 115 1.114K 116 1.114K 117 1.115K 118 1.114K 118 1.115K	0003	SIN SILE
11/482 = 2 + 10/401 4002 = = 10/401 Aut2 = = 10/401 First = = 10/401 First = 10/401	0005	$I = I \cdot LAY$
M02 = 1 M02 M02 = 1 M02 1 M12 = 1 M02/17/5/19/19100 1 M12 = 1 M02/17/5/19/19/100 1 M12 = 1 M02/100/18/100 1 M12 = 1 M02/100/18/100 1 M12 = 1 M02/11/11/11 1 M12 = 1 M02/11/11/11 1 M12 = 1 M02/11/11/11 1 M12 = 1 M02/11/11/11/11	0006	11 11
RAD: = AM6.757.57717951300 FAM: = AM6.757.57717951300 FF(100.450) FF(100.450) FF(100.450) ESIN(0.000)	0008	= IANG2
RARZ = ALESTICARD FUNCTOR FUNCTION RARZ = ALESTICARD FUNCTION STRIPT = DESTICARD FOR TO STRIPTION	0009	= ANG /57.29
if (1.MAL. I.E. o) 0.0 (10 6.0) if (1.MAL. I.E. o) 0.0 (10 6.0) 0.055(1) = 0.05(0.000)** 0.055(1) = 0.05(0.000)** 0.055(1) = 0.05(0.000)** 0.055(1) = 0.05(0.000)** 0.055(1) = 0.05(0.000)** 0.051(1) 1.MAL 1.051(1) 1.0441 1.051(1) 1.0441 1.051(1) 1.0441 1.051(1) 1.0441 1.051(1) 1.0441 1.051(1) 1.0441 1.051(1) 1.0441 1.051(1) 1.0441 1.051(1) 1.0441 1.051(1) 1.0441 1.051(1) 1.0441 1.051(1) 1.0441 1.051(1) 1.0441 1.051(1) 1.0441 1.051(1) 1.0441 1.051(1) 1.0441 1.051(1) 1.0441 0.011.04 0.011.04 0.011.04 0.011.04 0.011.04 0.011.04 0.011.04 0.011.04 0.011.04 0.011.04 0.011.04 0.011.04 0.010.05 0.011.04 0.011.04 0.011.04 0	0100	RAC2 = ANGZ/57.295/1951300 IAVAI = I¢BS(IANG(II))
015:E11: 05:E0:E0:E0:E12 015:E11: 05:E0:E0:E0:E12 05:E11: 05:E0:E0:E0:E12 05:E11: 05:E0:E0:E0:E12 05:E11: 05:E0:E0:E0:E12 05:E11: 05:E0:E0:E0:E12 05:E1: 05:E0:E0:E0:E0:E12 15:E1:E1: 05:E0:E0:E0:E0:E0 15:E1:E1: 05:E0:E0:E0:E0:E0 15:E1:E1: 05:E0:E0:E0:E0 15:E1:E1: 05:E0:E0:E0:E0 15:E1:E1: 05:E0:E0:E0:E0 15:E1:E1: 05:E0:E0:E0:E0 15:E1:E1: 05:E0:E0:E0 15:E1:E1:E1: 05:E0:E0:E0 15:E1:E1:E1: 05:E0:E0:E0 15:E1:E1: 05:E0:E0:E0 <td>0012</td> <td>IF(IAVAL.EC. 0) 60 TO 65 TETIAVAL AE ONL OF TO 45</td>	0012	IF(IAVAL.EC. 0) 60 TO 65 TETIAVAL AE ONL OF TO 45
1035(1) = 051M(0.000)*2 67(2) = 051M(0.000)*2 67(2) = 106 57(2) = 106 57(2) = 106 1500 = 106 1501 = 106 1501 = 106 1501 = 106 1511 = 0505(0.0)156 1121 = 0505(0.0)156 1121 = 0505(0.0)156 0031(1) = 0505(0.0)156 0031(1) = 0505(0.0)156 01100 01100 01101 11211 = 5500(55000)56 001100 01100 0111 = 050(16001)56 0111 = 050(1601) 0111 = 050(1602) 0111 = 050(1602) 0111 = 050(1602) 0111 = 050(1602) 01100 0111 = 050(1602) 0111 = 050(1602) 0111 = 050(1602) 0111 = 050(1602) 0111 = 050(1602) 0111 = 050(1602) 0111 = 050(1602) 0111 = 050(1602) 0111 = 050(1602) 0111 = 050(1602) 11100 11100 11100 11100 1111 = 050(1602)	0014	SINS(1) = DCDS(0.000)**2
678.11 = D0140.000 675.41.1 = 156(11/14vat 55.91 = 516(10.000) 55.91 = 516(10.000) 55.91 = 512(1000) 55.91 = 512(1000) 55.91 = 512(1000) 55.91 = 512(1000) 55.91 = 512(1000) 56.91 = 18(10 57.91 = 18(10 57.91 = 512(1000) 57.91 = 512(1000) 50.01 = 18(10 50.01 = 18(10 50.01 = 18(10 50.01 = 512(1000) 50.01 = 512(1000) 50.01 = 512(1000) 50.01 = 512(1000) 50.01 = 512(1000) 50.01 = 512(1000) 50.01 = 512(1000)	0015	COSS(1) = DSIN(0.000)**2
e contror e contror stor = 1ad(11/1Avat stor = 1stor strattute mecsto cont e4 strattute mecsto cont e4 strattute mecsto cont e6 contror = mecsto cont e6 contror = mecsto cont e6 contror = mecsto cont e6 strattute for eact eact contror = mecsto cont e6 strattute for eact eact strattute for eact eact strattute for eact eact strattute for eact eact strattute for eact eact eact strattute for eact eact eact eact strattute for eact eact eact eact eact eact eact eact	0016	SIN2(1) = 0SIN(0.000) C0S2(1) = -000S(0.000)
0 1501 1 AMG(1)/1 AVL 1501 1500 100 1 11 00050000 1 11 00050000 0 0010 00 0 0010 00 0 0010 00 0 0010 00 0 0010 00 0 0010 00 0 0010 00 0 00100 00 0 00100 00 0 00100 00 0 00100 00 0 00100 00 0 00100 00 0 00100 00 0 00100 00 0 00100 00 0 00100 00 0 00100 00 0 00100 00 0 00000 00 0 000000 00 <	0018	60 TC 72
5GA 5GA 1 [F1.AAL = 15.60 6 [F1.AAL = 45.160 5112.11 = 0.51.00.000 *56.N 51.00.000 *56.N C02.211 = 0.51.01.000 50.N 60.710 6 10.100 60.710 6 10.100 60.710 1 51.01.000 60.710 6 10.010 60.710 6 10.010 61.611 2 51.01.010 10.011 2 51.01.010 10.011 3 51.01.01.010 10.011 4 51.01.01.010 10.011 5 51.01.01.010 10.011 1 51.01.01.010 10.011 0 51.01.01.010 10.011 0 51.01.01.01 10.0011 0 51.01.01.01 10.0011 0 51.01.01.01 10.0011 0 51.01.01 10.0011 0 51.01.01 10.0011 0 51.01.01 10.0011 0 51.01.01 10.0011 0 51.01.01 10.0011 0 50.01.01.01 10.0011 0 50.01.01.01 10.0011 0 50.01.01.01 10.0011 0 50.01.01.01 10.0011 0 50.01.01.01 </td <td>0020</td> <td>$\frac{156M}{156M} = \frac{18MG(1)/18V}{18}$</td>	0020	$\frac{156M}{156M} = \frac{18MG(1)/18V}{18}$
SIF(LANL-ME-45) GO 10 64, CO 70.01 = 051N(0,000)*56N GO 70.01 = 051N(0,000)*56N GO 70.01 = 051N(0,000)*56N GO 70.01 = 051N(0,000) GO 70.01 = 051N(0,000) GO 70.01 = 051N(0,000) FIANLE. FOA <	0021	= IS6A
052.111 052.114 051.010.0001 04 101.06 04 10 10 04 11 10.01 04 12 10.01 04 11 10.01 04 11 10.01 04 11 10.01 04 11 10.01 04 11 10.01 04 11 11 04 11 11 05 11 11 05 11 06 06 11 07 06 12 003 06 13 001 06 14 001 06 12 003 06 13 031 05 14 031 06 15 053 053 16 00 06 17 053 053 18 06 06 19 053 053 10 06 06 <t< td=""><td>0022</td><td>IF (IAVAL.NE-45) 60 TO 64</td></t<>	0022	IF (IAVAL.NE-45) 60 TO 64
64 C01 10 6 15/11/2/11/2/11/2/10 10 6/ 15/11/2/11/2/11/2/11/2/11/2/11/2/11/2/1	0024	COS2(1) = DSIN(0.000)
of F(IAAL-11-45) G0 T0 66 F0A = 2 FILVAL-50 F0A = 10A F0A = 10A	0025	
FPGA = 24AAL-60 RDA = R0A SIN11) = 56N+051015581+80.21) SIN11) = 56N+051015581+80.21) C032(11) = 56N+05101560+80.21) C032(12) = 56N+05101560+80.21) C032(12) = 50011640.21 S102(12) = 500516A0.21 6 CONTINE S102(11) = 050516A0.21 2 S1081(12) S1081(11) = 050516A0.1+*2 7 S00510.14 7 S00510.14 8 CONTINUE 8 CONTINE 8 CONTINE </td <td>0027</td> <td>LUNINUE IF (IAVAL-LT-45) 60 TG</td>	0027	LUNINUE IF (IAVAL-LT-45) 60 TG
R0A = £(£4/57.2951350 R0A = £(£4/57.2951350 C052(1) = - 5(##95105(5156) = 5(##95105(5156) C052(1) = - 5(##95105(54802)) = 5(##95105(54802)) 66 C011NUE = 051(1(EA02)) 67 C032(1) = 0505(5402) = 5(0515(54802)) 68 C0011NUE = 051(1(EA01)) 68 C0011NUE = 0505(EAD1) **? 72 C0311) = 051(1(EA01)) **? 72 6011NUE END = 600	0028	IRD4 = 2*IAVAL50 RD4 = IRD4
51X211 = \$6W#DG051SGN#RDAJ C02211 = \$56W#DG1SGN#RDAJ CU TO 68 6 CONTINUE 5 NUZIO 6 CONTINUE 6 NUTINUE 7 CONTINUE 6 NUTINUE 6 NUTINUE 6 NUTINUE 7 CONTINUE 6 NUTINUE 6 NUTINUE 6 NUTINUE	0030	RDA = RCA/57.295779513C0
CU TO 68 CU TO 68 66 CONTINE 503211 = DSINIAD21 503211 = DSINIAD21 513211 = DSINIAD23 51311 = DSINIAD1+2 513311 = DSINIAD1+2 513311 = DSINIAD1+2 72 CONTINE FO FO FO FO FO FO FO FO FO FO	0031	SIN2(1) = SGN+0C0S(SGN+RDA)
66 CONTINUE 51N2(1) = DCOS(KAD2) C CONTINUE 68 CONTINUE 58 CONTINUE 58 CONTINUE 72 COST(1) = DCOS(PAD)**2 72 CONTINUE FETURN END	2600	NISOLNOS-
C CONTINUE C CONTINUE E C CONTINUE C STSSII = D COSTRADET C STSSII = D COSTRADET**2 C STSSII = D COSTRADET**2 T 2 CONTINUE F F TURN E NO E NO	0034	CONTINUE
68 CONTINE 5 INS(1) = DSIN(RAD)**2 7 CONTINUE RETURN END	0036	u 0
SINSIT = DSIN(RADJ**2 COSTSIL) = DCOS(PADJ**2 T2 CONTINUE RETURN END	0037	CONTINUE
72 CONTINUE RETURN END	0038 0039	= OSIN(RAD)
	0400	CONTINUE
	0042	RE LUKN END

0002 0003	I WPLICIT DI MFNSTCN
0004	CUMMUN /CCFARM/EPS.UPED
0005	
0006 0007	
-	C CONVERGENCE CHECK
0008 0009	D0 375 J3=1,LT3
0100	
0012	1
0013	330 CONTINUE Difilal = CIR
0015	
0016	1F(D1F(J3).61.FPS) 6C TO 340 60. TO 375
	C ITERATION CHECK
0018	340 CONTINUE IEK(NIT-TI).NE.O) GO TO 350
00.20	
0022	IF(UIF(J3).LE.UPB01 GO TO 375 ICON = 4
0023	60 10 315
	DI VERGENCE CHECK
0024 0025	350 IF(DIF(J3).LE.UPBD).GG TC 370 ICON = 4
0026	G0 T0 375 C
0027	370
0028 0029	1CON = 2 375 CONTINUE
0030	
	C NCA-CCNVERGENCE DUMP
1600	282 CONTINUE UBJFFLA. 17203
0033	MRITE(6,1722) EPS
0035	386 CONTINUE
0037	BELECO.11/201 BELECO.11/201 BELECO.11/201
0038	345 CONTINUE
0039 0040	NITP = NIT - 1 ARITE(6,1741) NIT, NITP
0041 0042	MRITEIG.17421 DO 397 I=L.LAY
0043	WRITE(6,1550) 1,56(1,1),56(1+N,1),56(1+2#N,1),561(1,1),561(1+N,1), Sci(1+2*N,1),515(1+2N,1),515(1+2N,1),515(1+2N,1)
0044	367 CONTINUE

0046	400.RETURN 1
0048	1550 FORMAT (14,1X,2(3D13,5,4X),3D13,5)
0050	1/20 FURMAL (* SULULUM FUR STAESS JULES .NUL CGRVERGE!!) 1722 FORMAT (* FLATIVE ERROR +GT*,+CL5+5) 1712 EQUALT (* SULUTIVE GROE STAESS DIVEDEC++)
0052	1141 FURMAT (/18X.*(1TERATION ',13,')',28X.*(17EPATION ',13,')') 1141 FURMAT (/18X.*(1TERATION ',13,')',28X.*(17EPATION ',13,')') 1145 FURMAT (/18.*(57W.*(57W.*)',55K.*(11X.*(55W.*)'))
	1 BX,'SGM Y',6X,'SGP XY',11X,'REL X',8X,'KEL Y',8X, '''' A'''''''''''''''''''''''''''''''
0054	
-	

0002 1144 (LG1) 54 (LG4 Labor) 0003 154 (LG1) 54 (LG4 Labor) 0003 55 (LG4 Labor) 1114 0013 55 (LG4 Labor) 1114 0013 1114 1111 0013 1114 1114 0013 1114 1114 0013 1114 1114 0013 1114 1114 0013 1114 1114 0013 1114 1114 0013 1114 1114 0013 1114 1114 0013 1114 1114 0013 1114 1114 0014 1114 1114 0015 1114 1114 0014 1114 1114 0015 1114 1114 0014 1114 1114	1000	
c rsy istration istration istration istration istretion istration<	0002 -0003 -0004	IMPLICIT DIMENSICN COMMON
200 MINING 500 (50 (50 (50 (50 (50 (50 (50 (50 (50	0005	TEST 1: STIFFNESS JEST
IFICASULEGADIOL GC TE 560 FATIO = DASISTALICEPTICIDITI-EPSILITI) FATIO = DASISTALICEPTICIDICATISTEL GO TO 10.111 FATIO = DASISTALICEPTICIDICATISTEL GO TO 10.111 560 CONTINUE 560 CONTINUE 615 CONTINUE 615 CONTINUE 615 CONTINUE 615 CONTINUE 615 CONTINUE 617 (FALL = 1 610 (FOL 700) 611 (FOL 703). (FALL = 1 700 (GOT 100) 610 (FOL 703). (FALL = 1 710 (FOL 703). (FALL = 1 711 (FOL 100) 610 (FOL 703). (FALL = 1 710 (FOL 703). (FALL = 1 711 (FOL 100) 72 WEITE(6.1455) 73 WEITE(6.1455) 73 WEITE(6.1455) 73 WEITE(6.1455) 74 (FOL 100) 75 FORMAT (1// LAWINATE HAL		DU 675 1 = 1.LAY
Imail of a constraint of the statut Fail of a constraint of the statut 560 CONTINE 560 CONTINE 560 CONTINE 560 CONTINE 615 CONTINE 617 LFUL 611 L00 617 LFUL 617 LEL 617 LEL 617 LEL 610 L00 617 LEL 610 L00 611 L100 611 L101 703 BITE(0.1450) 1035 FORMT (1/// LANINTE H45 FAILEDI 1035 FORMT (1/// LANINTE H45 FAILEDI 1035 FORMT (1/// LANINTE H45 FA	0008	
C IEST 21. IEST IEST EUR. BULKD. CN. SGM X 500 CONTINUE EICRASSISSILIIIJJJAIISES GC IG 679 EC EC C 6.15 CONTINUE ETURN ETURN FETURN FTIRI ETURN ETURN FETURN FTIRI ETURN ETURN FETURN ETURN ETURN ETURN FETURN ETURN ETURN ETURN C 60 TO TOO ESCH EC C0 CONTINUE EC TOO C 50 TO TOO ESCH EC C CO TOO ETURN ETURN C TOO ETURN ETURN ETURN T TOO ETURN ETURE ETURE C TOO ETURN ETURN ETURE C TOO ETURN ETURE ETURN T E	0010	IF (RATICALI STIFF) (
C LELGAGSLSSGLLiJJJAGLASCEJ GC TG 019 C G15 CDNTIAUE C MRITE(6,1555) R MITE(6,1555) MRITE(6,1555) FEILEI MRITE(6,1555) FEILEI MRITE(6,1555) LALLE MRITE(6,1555) C MRITE(6,1555) LALLE MRITE(6,155) C C CONTINE MRITE(6,155) C C CONTINE MRITE(6,1450) C C CONTINE MRITE(6,1452) C C CONTINE MRITE(6,1452) C C CONTINE MRITE(6,1452) C C CONTINE MRITE(6,1452) C C C CONTINE MRITE(6,1452) C C C CONTINE MRITE(6,1452) C C C C C C C C C C C C C C C C C C C	1100	TEST 2: TEST FUR
C C C MRITE(6,1555) MRITE(6,155) MRITE(6,155) MRITE(6,155) MRITE(6,155) MRITE(6,151) MRITE(6,151) MRITE(6,152) MRITE(6,1452) MRITE(6,152) M	0012	
6 675 CONTINUE WITTE(6:1555) WITTE(6:1555) FETURN 677 LEAIL = 1 KSG = KSGM 60 TO 700 675 CELL = 2 KSG = KSGM 60 TO 700 60 TO 100 100 MEIE(6:1452) 700 MEIE(6:1452) 700 MEIE(6:1452) 700 MEIE(6:1452) 712 MEIE(6:1452) 703 MEIE(6:1452) 703 MEIE(6:1452) 703 MEIE(6:1452) 712 MEIE(6:1452) 712 MEIE(6:1452) 712 MEIE(6:1452) 713 MEIE(6:1452) 713 MEIE(6:1452) 713 MEIE(6:1452) 713 MEIE(6:1452) 713 MEIE(6:1452) 713 MEIE(6:1452) 714 MEIE(6:1452) 715 MEIE(6:1452) 715 MEIE(6:1452) 715 MEIE(6:1452) 715 MEIE(6:1452) 715 MEIE(6:1452) 715 MEIE(6:1452) 716 MEIE(6:1452) 717 MEIE(6:1452) 718 MEIE(6:1452) 718 MEIE(6:1452) 719 MEIE(6:1452) 710 MEIE(6:1452) 710 MEIE(6:1452) 711 MEIE(6:1452) 711 MEIE(6:1452) 712 MEIE(6:1452) 713 MEIE(6:1452) 713 MEIE(6:1452) 714 MEIE(6:1452) 715 MEIE(6:1452) 717 MEIE(6:1452) 718 MEIE(6:1452) 718 MEIE(6:1452) 718 MEIE(6:1452) 719 MEIE(6:1452) 719 MEIE(6:1452) 719 MEIE(6:1452) 719 MEIE(6:1452) 719 MEIE(6:1452) 719 MEIE(6:1452) 710 MEIE(6:1452) 710 MEIE(6:1452) 711 MEIE(6:1452) 711 MEIE(6:1452) 711 MEIE(6:1452) 712 MEIE(6:1452) 713 MEIE(6:1452) 713 MEIE(6:1452) 714 MEIE(6:1452) 715 MEIE(6:1455) 718 MEI		1
MRITE(6.1555) RETURN 0.77 (Fail = 1 KSG = KSG 0.0 T0 700 6.75 (Fail = 2 KSG = K = 2 C 0.0 T0 700 0.0 T00, 10 0.0	E100	
b77 [Falle 1 b77 [Falle 1 k56 = k56M 60 T0 700 61 T0 700 62 T0 700 60 T0 700 61 T0 700 61 T0 700 61 T0 725 700 kntt66,1452) 725 kntf6,1452) 725 kntf6,1452) 725 kntf1(5,1452) 725 kntf1(5,1452) 1395 FORMAT (1/' LaWINATE HAS FAILED: STIFFNESS TEST 1495 FORMAT (1/C) 1295 FORMAT (1/C) 60 T0 7	0014	1
KSG = KSGM GO TU 700 GO TU 700 GO TU 700 GO TU 700 GO TU 700 GO TO 700 C C C C C C C C C C C C C	0016	
675 UC 10 700 60 T0 700 60 T0 700 700 CONTINUE 700 CONTINUE 701 bPT T6(6,1450) 703 bPT E(6,1450) 703 bPT E(6,1452) 703 bPT E(6,1495) 725 WATT E(6,1495) 725 WATT E(6,1495) 725 PRMAT (1/1 LAWINATE HAS FAILED: STIFFNESS TEST 1495 FORMAT (1/1 LAWINATE HAS FAILED: SGM X EXCEEDS M 1495 FORMAT (1/2) 1995 FORMAT (1/2) 1995 FORMAT (1/2) ENC ENC	0012	
KSG = KSGM GO TO 700 GO TO 700 GO TO 700 GO TO 701 (701,703), LFAIL 701 kRIFE(6,1452) GO TO 725 703 kRIFE(6,1452) GO TZ5 703 kRIFE(6,1452) 703 kRIFE(6,1452)	0019	LEALL
C 700 CDNTINUE 701 hrIfe(6,1450) 701 hrIfe(6,1452) 703 hrIfe(6,145	0020 0021	K S C = GO T O
700 CONTINUE 60 TO (7CL.703), LFAIL 70 brite(6,1452) 60 TO 725 703 hrite(6,1452) 60 TO 725 725 write(6,1495) 725 write(6,1495) 727 write(6,1495) 727 write(6,1495) 727 write(6,1495) 728 write(6,1405) 728 write(6		
701 WFIFE(6,1450) GD T0 725 103 WFIFE(6,1452) 2010 724 2010 724 2010 724 2010 724 2010 724 1455 FORMAT (//: LAMINATE HAS FAILED: SGM X EXCEEDS M 1455 FORMAT (//: AT FAILURE:) 1925 FORMAT (//: AT FAILURE:) 1000 FORMAT (//: AT FAILURE:) 1	0022	700 CONTINUE
703 MATE(6,1452) GO TO 725 725 WATE(6,1495) 725 WATE(6,1495) 725 MATE(1/, LAMINATE HAS FAILED: STIFFNESS TEST 1455 FORMAT (//, LAMINATE HAS FAILED: SGM X EXCEEDS M 1495 FORMAT (//, AT FAILURE') 1495 FORMAT (1//) 1995 FORMAT (1//) C ÁETURN ENC	0024	WRITE(6,1450) GO TO 725
725 WRITE(6.1495) 725 WRITE(6.1495) 1450 FORMAT (//' LANINATE HAS FAILED: STIFFNESS TEST 1452 FORMAT (//' LANINATE HAS FAILED: SGM X EXCEEDS M 1495 FORMAT (//' AT FAILURE') 1995 FORMAT (//' AT FAILURE')	0026	703 kRITE(6,1452)
1450 FORMAT (//' LAVINATE HAS FAILED: STIFFNESS TEST 1452 FORMAT (//' LAMINATE HAS FAILED: SGM X EXCEEDS H 1945 FORMAT (//' AT FAILURE') 1945 FORMAT (1+C) 1945 FORMAT (1+C) 1	0028	725
1495 FORMAT (7/1 AT FAILURE1) 1995 FORMAT (1HC) C C C FORM ENC ENC	0029	1450 FORMAT (//'LAMINATE HAS FAILED; STIFFNESS TEST 1455 FORMAT (//'LAMINATE HAS FAILED; SCM X FACFENC M
	0031	(// AT FAILURE')
ISTURN ENC	26.0.0	LYYD FUKMAL
	0034	ENC FACTURE

**8(A-H, G-Z) **5 **5 **1 **1 **2 **2 **2 **2 **1 **2 **1 **2 **2 **2 **2 **2 **1 **2 **2 **1 **2 **2 **1 **2 **2 **2 **2 **2 **2 **2 **2 **2 **2 **2 **2 **2 **2 **2 **2 **2 **2 * * * * * * * * * * * * </th <th></th>	
Implicit Implicit Rel DIWENE EPECTISION DAI DIWENSICN SII1 SII1 2 CCMMON ANGPFD/SII. 2 CCMMON ANGPFD/SII. 1 /ANGPFD/SII. SII1 1 /ANGPFD/SI	
DIMENSICIN 511 DIMENSICIN 511 C COMON / RAENAL 7511, ANGPF0/51K A = LAY T122 = 56(1+2*N,1)/1/122 AA = 57(1)*14,000-60 PAT = 57(1)*14,000-60 PAT = 57(1)*14,000-60 PAT = 57(1)*14,000-60 PAT = 56(1+2*N,1)*5 VAL = CABS(RAT) T222 = 56(1+2*N,1)*5 VAL = CABS(RAT) T222 = 56(1+2*N,1)*5 VAL = CABS(RAT) T222 = 56(1+2*N,1)*5 VAL = CABS(RAT) T222 = 56(1+2*N,1)*5 VAL = CAS2 = 502(1) C121 = 56(1+2*N,1)*5 C122 = 56(1+2*N,1)*5 C121 = 512(1)*5 C121 = 502(1) C121 = 502(1) C122 = 502(1) C12	
$\begin{array}{c cccc} & & & & & & & & & & & & & & & & & $	
1 /ANGPFD/SIA: 1 N = Lay 1125 56(1+2*N,1)/T) 1125 56(1+2*N,1)/T) 1125 56(1+2*N,1)/T) 1125 56(1+2*N,1)/T) 1125 56(1+2*N,1)/T) 1125 56(1+2*N,1)/T) 1126 56(1+2*N,1)/T) 1127 56(1+2*N,1)/T) 1128 56(1+2*N,1)/T) 11 1220 1225 56(1+2*N,1)/T) 1215 56(1+2*N,1)/T) 1215 56(1+2*N,1)/T) 1215 56(1+2*N,1)/T) 1215 56(1+1/T) 1215 56(1+1/T) 1215 56(1+1/T) 1225 56(1+1/T) 125 512(1) 125 512(1) 125 512(1) 125 512(1) 125 512(1) 125 512(1) 125 512(1) 125 512(1) 125 512(1) 125 512(1) 125 512(1) 125 512(1) 125 512(1) 125 512(1) 125 512(1) 12 512(1) 12 512(1) <td>) + 5Y(20)</td>) + 5Y(20)
$N = LAY$ $112S = (SG([+2*N,1])/(1))$ $122S = SG([+N,1])/(1)$ $YAL = SY([1]*1_000-60]$ $PAT = SG([+N,1])/(1) = SG([+N,1])/(1)$ $RAT = CBS(RAL)$ $RAT = CBS(RAL)$ $RAT = CABS(RAL)$ $RAT = CABS(RAL)$ $RAT = C12S = RA1/(2*N,1))/(1)$ $SAS = SISS = 12S + 7S2SS$ $C12S = SG([+N,1])/(2)$ $SAS = SISS(1)$ $CS = SIS$	
T120 = 56(1+2*N,1). T225 = (56(1+N,1)/1) VAL = 5Y(1)=1.000-60 PAT = 56(1+2*N,1)=6 VAL = CABS(RAT) T220 = 56(1+2*N,1)=6 C121 = 56(1+2*N,1)=6 C121 = 56(1+2*N,1)=6 C121 = 56(1+2*N,1)=6 C121 = 56(1+2*N,1)=6 C121 = 512(1)=5 C121 = 512(1) C121 = 512(1) C22 = 502(1) C22 = 502(1) C22 = 502(1) C23 = 502(1) C23 = 502(1) C23 = 502(1) C32 = 50	
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$	
PAT = SG(1+2*N,1)*G VAL = CABS(RAT) RAT = CBS(RAT) IF(RAT_LE-VAL) RAT = CBS(RAT) SI2S = SISS(R) SSS = SISS(R) SSS = CDS(R) SSS = CDS(R) SSS = SISS(R) R(1,1) = SIR(R) R(1,	
RAT =	
C 125. = KAT/5V(1) C 121 = SG(1+2*N,1)): T 5225 = (56(1+N,1)): T 5225 = (56(1+N,1)): T 5225 = (56(1+N,1)): S 2 = S1AS(1) C 52 = S1AS(1) C 52 = C052(1) C 52 = S12(1)*C55 F (3,1) = S12(1)*C55 F (3,1) = S12(1)*S15 C (3,1) = S12(1)+S15 C (3,1) = S12(1)+S15 C (3,1) = S12(1)+S15 C (3,1) = S12(1)+S15 C (3,1) = S12(1)+S15 C (3,1) = S12(1)+S15 C (3,1) = S12(1)+S15 C (3,2) = S12(1)+S15	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$C \qquad SI2S = TI2S + TS2S \\ C \qquad SNS = SINS(I) \\ C \qquad SN2 = SINS(I) \\ SN2 = SIN2(I) \\ C \qquad CS2 = COS2(I) \\ C \qquad CS2 = CS2(I) \\ C \qquad C \qquad$	
SNS SINS(1) CSS = COSS(1) SN2 = SIN2(1) CS2 = COSS(1) CS2 = COSS(1) CS2 = SIN2(1) CS2 = SIN2(1) F(2,1) = SIN2(1) F(3,1) = SIN2(1) F(3,1) = SNS*(SS2) C - SNS*(SS2) D - SNS*(SS2)	
C CSS = COSS(1) C CS2 = SIN2(1) C CS2 = SIN2(1)+CSS F(2,1) = S11(1)+CSS F(2,1) = S12(1)+CSS F(2,1) = SNS*1S2S3 F(3,1) = -SN2/(2,*61) C CS2 + 12 C CS2 + 12	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
F(1,1) = S12(1)+CSS $F(2,1) = S12(1)+CSS$ $1 - SN2(1)+CSS$ $F(3,1) = -SN2(1)+CSS$ $2 - SN2(2,+G]$ $C(2,1) = SN2(1)+SNS$ $C(2,1) = SN2(1)+SNS$ $C(2,1) = SN2(1)+SNS$ $C(3,1) = SN2(1)+SN2$ $C(3,1) = SN2$ $C(3,1) = S$	
$ \begin{bmatrix} 1 & + & SNS * TS2SS \\ 2 & - & SA2 * (Xm-1, z) \\ 1 & - & SN2 * (Z_2 * G_1, z) \\ 2 & - & SN2 * (Z_2 * G_1, z) \\ 6 & (Z_1, 1) & = & SL1(1) * SNS \\ 6 & (Z_1, 1) & = & SL1(1) * SNS \\ 6 & (Z_1, 1) & = & SL1(1) * SNS \\ 1 & + & CSS & * (Z_2 * G_1, z) \\ 6 & (Z_1, 1) & = & SN2 * (Z_2 * G_1, z) \\ 1 & + & (Xm-1, z) + CSS \\ 1 & + & (Xm-1, z) + CSS \\ 1 & + & (Xm-1, z) + CSS \\ 1 & + & (Z_1, 1) + SSS \\ 1 & - & (Z_1, 1) + SSS \\ 2 & + & (Z_2, 1) + SSS \\ 3 & + & CSZ + CSS \\ 2 & - & CSZ + CSS \\ 3 & - & CSZ + CSS \\ 2 & - & CSZ + CSS \\ 3 & - & CSZ + CSS \\ 2 & - & CSZ + CSS \\ 3 & - & CSZ + CSS \\ 2	+ SNS/E22(1)*S12S*#((XN-1.)/2.)
F(3,1) = -SN2/(2,*G) 2 $C(1,1) = SN2*T125*1$ $G(2,1) = SN2*T12*1$ $G(2,1) = SN2*S12(1)$ $G(2,1) = SN2*S12(1) + SN2$ $CS = 1 + (SN-1,-1)*(1) + SN2$ $H(2,1) = SN2/(2,*G12) + (SN2)	-3.172.1*C125 3.172.1*C125
$\begin{array}{c} 2\\ 6(1,1) = 511(1)*5NS\\ 6(2,1) = 511(1)*SNS\\ 1\\ 1\\ 1\\ 2\\ + CSS \\ + CSS $	125*¤((XM-1.//2.) ((XM-3.//2.)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	*((XN-3.)/2.)
2 + (XM-1.)*C 5(3,1) = SN2/(2.*612 1 + SN2/(2.*612 1 + (XN-1.)*C H(1,1) = (S11(1)-52 H(2,1) = S12(1)+SN2 1 /(2.*622(1)) 3 *CS2/5 3 *CS2/5	-1.) /2.) #C SS/E22([) /E22(1)#T5 225
1 + SN2*(XM-1-) 2 + (XN-1-)4C12 H(1,1) = (S11(1)-S2 H(2,1) = S12(1)+SN2 1 /(2,*E2(1)) 3 *C52/(2)	/(2,*612(1)) /2,1/(2,*612(1))
H(1,1) = (511(1)-52) $H(2,1) = 512(1)+5N2$ $1 / (2, *E2(1))$ $2 * 522(2)$ $3 * 522/2$	•)/2•)≢T12S 22(I)
/(2.*E22(1)) *T5225 *C52/(2.	25**([XN-1.)/2.)*SN2
*CS2/(2.	2。)*SN2/(2。*E22(1)) *S125**((XM-3。)/2。)
H(3,1)= CS2/(2.*612	\$2/(2,*612(1))
1 2	/(2.*612(1)) /(2.*E22(1))

1000	SUBSIDITINE PESEILLI3, SIG, RVAL I	
0002		
0003	CIMENSTON S6(20+1)	
0004		· · · · · · · · · · · · · · · · · · ·
0006 0007	IF(CABS(SG(K,1)).GT.SGMX) SGMX = DABS(SG(K,1)) 318 CONTINUE	and a set of a second design of the first of the second design of the second design of the second
0008 0009	SGMX1	
0010	IF (RAT.LT.RVAL) SG(K,1) = 0.00 00 319 CONTINUE	
0012 0013	RETURN END	
		-

-

Subschultze Inscitz Austchultze Inscitz Interlicit Execution feated - 2) Diblact Exection Exection Diblact Exection Exection Intricet 1.1.2.1.1.2.2.1.12.001.12.001.11.12.001.001	FURTRAN IV	EDRTRAN IV C LEV.L 21 INPUT2 DATE = 73027 16/26/39 PAGE 0001
C C C C C C C C C C C C C C C C C C C	1000	SUBEGUTINE INPUT21E11.E22.Y12.V21.G12.5Y.TY.1)
C IMPLICIT INTEGER INTEGER INTEGER INTEGER INTEGER INTEGER READIS-1002) EF-M READIS-1002) EF-M READIS-1002) EF-M READIS-1002) I2 READIS-1005) 12 READIS-1005) 12 RMM = 1.0000+V RMM = 1.0000+V RMM = 1.0000+V RMM = 1.0000 SUMS6 = 0.000 SUMS6 = 0		
Implication Implication Implication <td></td> <td></td>		
DIMEGER INTEGER INTEGER READ(5.1002) EF.M READ(5.1002) COT FEAD(5.1002) TYLI FEAD(5.1002) TYLI READ(5.1002) COT READ(5.1002) COT READ(5.1002) TYLI READ(5.1002) COT READ(5.1002) COT <td>0003 0003</td> <td>IT PRFC1S1CN</td>	0003 0003	IT PRFC1S1CN
INTEGER READ(5,1002) EF,M READ(5,1002) EF,M READ(5,1002) I2 VM = 1,000,0 VM = 1,000,10 VM = 1,000,10 READ(5,102) I7U1 F(I2,11) = TRM1 GG TG 60 TG TG FEAD(5,1002) ITM1 GG TG 60 CONTINUE READ(5,1002) ITM1 READ(5,1002) ITM1 READ(5,1002) ITM1 READ(5,1002) ITM1 READ(5,1002) ITM1 READ(5,1002) ISG4 CONTINUE READ(5,1002) ISG4 READ(5,1002)	0004	
READ(5) READ(5) READ(5) READ(5) READ(5) READ(5) READ(5) 30 GO TO 6(5) 80 A0(5) READ(5) 80 A0(5) READ(5) 80 A0(5) READ(5) 80 A0(5) READ(5) 80 A0(5) READ(5) 80 A0(5) 80 A0(5) 8	0005	
READ (5) VM TAMI SUNSIS SUNSS SUNS SUNS <	0006	EF. MUF. GF. VF FM. MILM. GR.
TRM1 TRM1 MKLITE(E. MK MK MM MM MM MM MM MM MM MM	0008	12
IF(I2.FC	0010	TRMI = (1.000+VF) ± GM
GI 2 (1) - GI 2 (1) - C C 0 M 1 M C	0012	- [F(12. FC. 1) GO TC 30 - FE(12. FC. 1) GO TC 30 - FEADS - SVIII - TVIII
30 CONTINUE READ(5,1) R R R R R R R R R R R R R R R R R R R	0014	61211 = TRM1 612(1) = TRM2
C C <td>9100</td> <td>CONTINUE CONTINUE PERSONALINE</td>	9100	CONTINUE CONTINUE PERSONALINE
C C <td>0018</td> <td>NUMT</td>	0018	NUMT
C C COMPUTE C C COMPUTE SUMS = = SUMS = = SUMS = = SUMS = = SUMS = = C C OPPUTE C C OPPUTE SUMS = = TRMS = = TRMS = = TRMS = = C C OPPUTE SUMS = = C C OPPUTE SUMS = = TRMS = = C C OPPUTE SUMS = = TRMS = TRMS = = TRMS = TRMS = = TRMS = TRMS = TRMS = = TRMS = TRMS = T	0019	(TAUL)
C C MPUTE SUMS56 = SUM56 = SUM56 = SUM56 = SUM56 = SUM56 = SUM56 = SUM56 = C C D TAUY = C C D TAUY = C C D TAUY = C C D TAUY = SUM56 = SUM56 = = SUM56 = SUM56	1200	READ(5,10021 (56121)
SUM54 = SUM54	00 22	0.000
Dn 40 Ju SUMSS SUMSS SUMSS C SUMSS SUMSS SUMSS	0024	SUMS4 = 6.0E0 SUMS3 = 0.000
SUMSS =	0025	J=L, NUMT
SUMS3 = SUMS3 = C COMTINUC C COMPUTE SUMS4 = TRM2 = TRM2 = C SALJ] = SUMS6 = SUMS6 = SUMS6 = C G SALJ] = SUMS6 = SUM	0026 0027	= 50M56 + 1AU = 54M54 + 1AU
C C CONTINUE C C CONTINUE SUMS6 = SUMS6 = SUMS6 = T R M2 = T R M2 = T R M2 = C C C C C C C C C C C C C C C C C C C	0028	SUMS3 = SUMS3 + GAM
C C C 0 P UTE S UMS 6 = S UMS 6 = S UMS 6 = S UMS 6 = I R M 2 = I R M 2 = I R M 2 = S UMS 6	06.00	TAUY = DSCPT(SUMS6/
SUM56 = SUM56 = SUM56 = SUM54 = TRR2 = TRR2 = TRR2 = 11 00 50 Ju 00 50 Ju 0	1500	COMPUTE SY AND GI SG12(1) = 0.000
L TRM2 = L TRM2 = L TRM2 = L TRM2 = C 00 50 Js 0 Js 0 Js 0 Js 0 Js 0 Js 0 Js	0032	= C.0D0
00 50 J- 00 50 J- 65ALJ) = 50 C0NTINUS 50 C0NTINUS 50 C0NTINUS 612(1) = 612(1) = 7 M =	0034	= 13.000+13.0
50 CONTINUE 50 CONTINUE 50 CONTINUE 50 CONTINUE 50 CONTINUE 71 = 71 = 7		,11 TON:////C
50 COUTINUE 50 CONTINUE 51 CONTINUE 51 CONTINUE 60 CONTINUE 7 M F =	0037	SUNS6 + 56
SY(1) = 6 6 60 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	0039	CONTINUE
C 60 CONTINUE PT = A A =	0040	SY(1) = DSCRT(SUPS6/SUMS4) G12(1) = GSA(1)
П.Я.Х. Т.Я.Х. П.Я.Х. П.Я.К.	0042	60 CONTINUE
	0043	PI = 3.1415900
T	0045	n u
I (KF#(PI-4.000#VF) + 2.0004K/≝#(PI#K∪M+2.0004VF))	0046	11 X

VIII : FERR FAILURGETTI VIII : FERR FAILURGETTI VIII : VERR FAILURGETTI VIII : VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		
mill - million million million visition million visiti	0048	E11111
	0050 0050	
1002 EDEMAT (14.2 EYX, 4001.4.23.1) 1003 EDEMAT (14.2 EYX, 4001.4.23.1) ERTUN	0052	<u> </u>
	0053	(5615.5) (2615.5)
RETURN	0055	1567 FORMA
	0056 0057	

-

	SUBE DUTINE MAMUEDIALEICINEOMAINE CLAINCOLEIMA, NAINBI	P060001	
0002	DIMENSICN & (NECHA, NC	2060002	
0003	DGUELE PRECISION 4.5.6.C.X		
0004		P 06D0004	A sum state and
0005	00 20 J=1.NP	R060005	. :
9000		R 06D 00 06	
7000	00 10 K=1+NA	R06D0007	
8000	LU X=X+A(1+K)+B(K+J) DD F(1, -1)-Y	P. 36 09008	
0100	PETRO DE LE CONTRACTOR DE CONTRACTOR DE LE CONTRACTOR DE	P04 000 10	
1100	FND	R0600011	
			a mar a star ann an
			a war a a an an an an an an an an
		•	
			-
	a developed a developed a 1999 to the second on a subject of subject subject of subject subject subject subjects and subject subject subjects and subject subject subjects and subject subject subjects and subject subjec		
	• •		

0002 0003	DIREASION A(ADIM, NOIM) DOUMLE PRECISION PIV2, A, DETA, TEST, X, FIV, PIV1, TCL, TEMP, SUM, PMS,	_
40	a e e a compositor de la c	F1205004
0005	CFT4=1.	
0007	DC = 1, N	P1200076 R1200008
00.08	CO. 10 J = 1. N	R1200009
0000 0010	LC SUM=SCM+A(1, J) ##2 SUM=DSQHT(SUM)	P12D0010
1100		R1200012
	TOLE PSARMS	P1200014
4		
6 9	1 P (1) ≤ 0 20 IC(1) = 0	P12D3016 P12D0017
10077	1	R12D0018
. 61	30 1=0	R1 2000 20
	J≊Q TECTEA.0	RI 200021
- 2	1231 ± 0.00 D0 50 K = 1, N	R1200023
23	IF(IR(K).NE.0)60 T050	R12D0024 01200025
0025	IF(IC(L).AE.0)60 T040	R1 200026
26	X=DABS(A(KJL)) IEIV IT.TESTIGN TOAA	R1200027
28		R1200029
50	J=L TECT=X	R1200030
1	1	R1200032
32	50 CONTINUE	F1200033
34	1 + 1 + 1 + 1 + 0 + 73 DETA = 0.00 00	
35	DETA=PIV*CETA LE LOADSLOIVI - LF TCLI CO TC 150	P1200035
37		
80		
6 O	PIV = 1.000/PIV A(1.J)=PIV	_
0041	CG 60 K = 1,N 60 IFIK_NF_JJAII.KJ=AII.KJ*PIV	R1200041 R1200042
	DT = 90 K = 1 N	•
0044	IF (K.EC.I) GO TO 90	_
0, 0	$D_{0} = B_{0} C = 1 \cdot N$	r 1 2 000 4 5
0047	80 IF(L.NE.J)A(K,L)=A(K,L)-PIVI*A(I,L)	
0049		R1200048
	100 IF(K.NE.11)a(K,J)=-F:V*A(K,J)	R1 20 00 50
10	5=5+1 1610-11.6107 TC 30	P12N0052
		R1200053
54	X=1(1:)	R1 2000 54
0054	F = 1.4.1.7 1 F (∀.+ E.G.+ T) GC TC 140	R1200356
10	4	9,1200.57
28	111 1 2 0 L = 1 N	

0000 12 Alttil=KIL 0002 00 130 t = 1.K 0005 130 tt = 1.K 0005 130 Attil=EKP 0005 130 Attil=EKP 0005 140 Attil=EKP 0005 140 Attil=EKP 0005 150 Attil=EKP 0000 EFLANK=S. EFLANK=S. 0000 EFLANK=S. 0000 EFLANK=S. 0000 EFLANK=S. 00	R1203060 P1200362 P1203054 R1200564 R1200064 R1200064 R1200067 R1200067
00 1 30 t = 1,N Att. V1= Att. 1 Att. V1= Att. 1 Att. V1= Att. 1 Att. V1= Att. 1 Att. V1= Att. 1 Its Att. 1= TERP Its Att. 1= TERP	P1203061 P1203063 P1203064 P1200965 P1200967 R1200967 R1200969 R1200070
A(L.M)=A(L.1) A(L.M)=A(L.1) I(X)=A(L.1)=TEVE	R1201064 F1200054 R1200065 R1200067 R1200069 R1200070 R1200070
130 ALLLITERE 131 ALLLITERE 132 CONTINUE 134 CONTINUE 144 CONTINUE 154 CONTINUE 155 CONTINUE 155 CONTINUE 155 CONTINUE	F1200064 P1200065 P1200067 R1200069 R1200069 R1200070
IC (M) = K IC CONTINUE FE TORN RETORN END	P1200065 P1200067 R1200069 R1200069 R1200070
Iso Isotrae Iso Isotrae erroew End Arrow	R1200065 R12010669 R1200070
Ise Contract Berlow END. A. END. A. END. END. END. END. END. END. END. END.	R1203069 R12030670 R1200070
	R1200070
	يتومعني المسيوسين والمراسب المسترعين الراري والمراح والمراحب والمراحب والمراحب والمراجع والمراجع والمراجع والمراجع والمراجع
	1991 - 1995 - 1998 - 19
	and a summary second a second and a second
	-
	na management of the to sense the same of the first of the original contract of the sense of t
, 2010 1.1. THE BAR OF GALLARS - MEMORY AND	990 - 1937 - 1938 - 1937 - 1938 - 1938 - 1938 - 1938 - 1939 - 1938 -

¥YEKS.= 3 T E11 E22 V12 Y21 G12 516 Y Y4U Y U.33530U DU U. U. U.33530U DU U. U.28755D C8 U.21855D C7 U.25500D UC 0.1931D-01 0.98700D US U.50000D 05 U.50000D 04 U.33330U GU U. 28755D 08 U.21855D 07 U.25500U UC 0.19381D-01 0.98700D 06 0.100000 05 0.500000 04 U.33330U GU U.28755D 08 U.21855D 07 U.25500C1 UC 0.19381D-01 0.98700D 06 0.1000000 05 0.500000 04 AFEIEKS E.1560000 01 U.100000 05 U.20000 05 U.500000 04 U.500000 04
E11 E22 V12 V21 C12 S16 Y TAU Y 00 0.287550 08 0.218550 07 0.255000 00 0.193810-01 0.987000 06 0.100000 05 0.5500000 00 0.287550 08 0.214550 07 0.255000 00 0.193810-01 0.987000 06 0.100000 05 0.590000 00 0.287550 08 0.214550 07 0.255000 00 0.133810-01 0.987000 06 0.100000 05 0.500000 00 0.287550 08 0.214550 07 0.2555000 00 0.133810-01 0.987000 06 0.100000 05 0.500000 01 01 0.28755000 00 0.133810-01 0.987000 06 0.100000 05 0.500000 01 01 01 0.28755000 00 0.133810-01 0.987000 06 0.500000 0.500000 01 01 01 01 0.133810-01 0.9870000 05 0.500000 0.500000 01 01 01 01 0.133810-01 0.9870000 0.500000 0.500000 01 01 01 01 0.133810-01 0.98700000 0.5000000 0.500000
LAYERS = 3 A T EL1 E22 V12 V21 G12 SIG Y TAU Y U-353300 00 U-353300 00 U-287550 C8 U-218550 C7 U-255000 0C 0-193510-01 0-987000 06 U-100000 05 0-500000 U-333300 00 U-287550 08 U-218550 C7 U-255000 UC U-193510-01 0-987000 06 U-100000 05 0-500000 0.3333300 00 U-287550 08 U-218550 07 U-255000 UC U-193810-01 U-987000 06 U-100000 05 U-500000 M = U-30000 01 U-23000 01 U-255000 UC U-193810-01 U-987000 05 U-500000 05 U-500000 M = U-30000 01 U-2 U-2000 UC U-255000 UC U-193810-01 U-987000 US U-100000 05 U-500000 M = U-30000 01 U-2 U-2000 U-2 U-2000 U-2 U-2000 U-2 U-20000 U-2 U-2000 U-2 U-2000 U-2 U-2000 U-2 U-20000 U-2 U-20000 U-2 U-20000 U-2 U-20000 U-2 U-20000 U-2 U-20000 U-2 U-2000 U-2 U-20000 U-2 U-20000 U-2 U-2000 U-2 U-2000 U-2 U-20000 U-2 U-20000 U-2 U-20000 U-2 U-20000 U-2 U-20000 U-2 U-20000 U-2 U-2000 U-2 U-20000 U-2 U-20000 U-2 U-2000 U-2 U-2000 U-2 U-2000 U-2 U-2000 U-2 U-2000 U-2 U-2000 U-2 U-20000 U-2 U-20000 U-2 U-2000 U-2 U-2000 U-2 U-20000 U-2
LAVERS = 3 T T EJ1 E22 V12 V21 C12 SIG Y TAU Y U-3333UU UU 0.28755D C8 0.21855D C7 0.25500D 0C 0.19381D-01 0.98700D 06 0.10000D 05 0.50000D 0.3333UU UU 0.28755D 08 0.21855D C7 0.25500D 0C 0.19381D-01 0.98700D 06 0.10000D 05 0.50000D 0.3333UD 00 0.28755D 08 0.21855D 07 0.25500D 0C 0.19381D-01 0.98700D 06 0.10000D 05 0.50000D 0.3333UD 00 0.28755D 08 0.21855D 07 0.25500D 0C 0.19381D-01 0.98700D 06 0.10000D 05 0.50000D
LAYEKS.= 3. A T E.11 E.22 V12 V12 V21 0.12 S15 Y TAU Y U-33530U 00 0.287550 UB 0.218550 C7 0.255000 0C 0.193810-01 0.987000 06 0.100000 05 0.500000 U.3333400 00 0.287550 08 0.218550 C7 0.255000 0C 0.193810-01 0.987000 06 0.100000 05 0.500000 0.333340 00 0.287550 08 0.218550 07 0.25500C 0C 0.153810-01 0.987000 06 0.100000 05 0.500000
LàYEk S.=. 3

-0.840C4D-03 C.10566L-C2 C.73041C-03 0.638650-C3 -0.62415C-03 C.948290-03 0.10565C-C2 -C.846C60-03 -0.73039C-03	STPAIN STPAIN (LAVEH AXES) EPS X EPS Y EPS XV	-0.127830-62 0.158840-02 0.11198 0.127460-02 -0.954720-03 0.14334 0.158840-62 -0.127830-02 -0.11198		SIRAIN (LÁYER AXE'S) FPS X EPS Y EPS XY -0.172800-C2 0.212140-02 0.152550-02 0.172220-02 -0.152800-02 -0.152550-02 0.212140-62 -0.172800-02 -0.15255C-C2	
I -C.23720C 05 U.16651D 04 0.13.360 U4 U.83807D-03 U.94829D-03 2 Q.23411D U2 U4 U.16136D U4 U.033905D-03 U.94829D-03 3 U.2330066C U2 U.11556D U4 U.033905D-03 U.94829D-03 U.94829D-03 3 U.2330066C U2 U.11556D U4 U.033905D-03 U.94829D-03 U.94829D-03 3 U.2330066C U2 U.11556D U4 U.032849D-03 U.94829D-03 U.94829D-03 3 U.230066C U2 U.11556D U4 U.032849D-03 U.94830D-03 U.94829D-03 5 M.24440 AFPLIEC LUADING L U.032860C U5 U.05600C 05 6 M.240200C 05 U2 U.05600C 05 U2 U20500C 05 U2	CN FCR STF	-02 -0.964720-03 0.1 -02 -0.964720-03 0.1 -02 -0.964720-03 0.1	VERGES MITHIN Z ITERATIÓNS	Ek SURAIS SIAAIN Ek SURA SURAIS -0.46563D 05 0.284390 C4 0.232240 04 0.172220-62 -0.132600-02 0.192470-02 -0.46563D 05 0.284390 C4 0.232240 04 0.172220-62 -0.132600-02 0.192470-02 0.46151E US -0.145450 04 0.172220-02 -0.152800-02 0.152470-02 0.649151E US -0.233751E 04 0.172220-02 -0.132800-02 0.152470-02 0.660477D C5 -0.23751E 04 0.172220-02 -0.152800-02 0.152470-02	EXTERNAL APPLIEE LCAGING F A = 4.6200000

!

STRAIN Ilayer axesj	EPS X 5 µ5 Y EPS XY -0.218670-02 0.255470-02 0.19447C-02 0.218660-02 -0.171070-02 0.242660-02 0.265470-02 -0.2186810-02 -0.19446C-02		STRAIN (LAYEN AXES)	EPS_X EPS_Y EPS_X -0.255205-02 0.31679U-02 0.237470-02 0.26423U-02 -0.210710-02 0.237460-02 0.318780-02 -0.255270-02 -0.237460-02		STRAIN (LAYER AXES) POS. 7. EDS. V EDS. VV	0-02 -0.312070-02 -0.28135 0-02 -0.3120-02 -0.34222 0-02 -0.312420-02 -0.28134	• • •	
	EPS X EPS Y EPS X U.217670-02 -J.111070-02 U.242070-02 U.217860-02 -J.171070-02 U.242060-02 C.217850-02 -U.171070-02 G.242070-02	 ITEATIGNS	STRAIN STRAIN (LAMINATE AXES)	EPS.X EFS.Y tPS.XY 0.264240-02 -C.216710-02 0.292620-02 0.204230-02 -0.210710-02 0.292010-02 0.204220-02 -0.210710-02 0.292020-02	I1 trafi LAS	STRAIN STRAIN (LAMINATE AXES) FPS X EPS V FPS XV	50-C2 -0.25[520-02 0.34224 50-C2 -0.251520-02 0.34222 50-C2 -0.251520-02 0.34222		•
STRESS	LAYER SGM X SGM Y SGM X SGM X SGM XY 1 - C.622495C UD 0.12725U C4 0.27313D 04 2 0.42249C UD -0.17301D 04 0.32740D 04 3 0.75719C UD -0.24145D G4 -0.27967C C4	EXMAL AFFLIEL LUNDING = 0.00000 00 Y = 0.300000 05 UITON FGR STRESS CONVERGES WITHIN 2	STRFSS	LAYER SGM x SGM y SGM y <th< td=""><td>EXTERNAL AFPLIED LCADING EXTERNAL AFPLIED LCADING F Y = 0.350000 05 F Y = 0.355000 00 SOLUTION FLK STRESS CCAVERGES WITHIN 2</td><td>SIRESS IAVER SUR A SUR Y SOM XY</td><td>-0.888260 05 0.394760 04 0.34203 0.889090 05 -0.223580 04 0.39960 0.106220 06 -0.301280 04 -0.399062</td><td>EXTENNAL APPLIEC LLAUING</td><td>÷</td></th<>	EXTERNAL AFPLIED LCADING EXTERNAL AFPLIED LCADING F Y = 0.350000 05 F Y = 0.355000 00 SOLUTION FLK STRESS CCAVERGES WITHIN 2	SIRESS IAVER SUR A SUR Y SOM XY	-0.888260 05 0.394760 04 0.34203 0.889090 05 -0.223580 04 0.39960 0.106220 06 -0.301280 04 -0.399062	EXTENNAL APPLIEC LLAUING	÷

-

<pre>F X = 0.400CUG 05 F Y = 0.400CUG 00 F X = 0.400CUG 00 Solution fly STRESS CLAVERGES WIFHIN 2</pre>			:
	STRAIN (LAMINATE AXES)	JIRAIN (LAVER AXES)	•
LAYER SON X SGM Y SGN AY	EPS A EPS Y EPS XY	EPS A EPS Y	EPS XY
1 -0.102445 0c 0.42220 04 0.371710 64 2 0.102495 0c -0.249220 04 0.430330 04 3 C.121465 0c -0.326765 C4 -0.321180 04	0.358550-02 -0.293500-02 0.392660-02 0.358550-02 -0.293300-02 0.392630-02 0.35570-02 -0.293360-02 0.392660-02	0.425300-02 -0.273300-02 -0.360030-62	0.325950-02 0.352530-02 0.352530-02
		•	
EXTERNAL APPLIEC LCADING	· · · · · · · · · · · · · · · · · · ·		ı
C.45C000 05 0.C000UC 00 0.45CC00 05			
OLUTION FCK ST	ITERATIONS		
STRESS	STRAIN (LAMINATE AXES)	STKAIN ILAYER AXESI	
LAYER SGM X SGM Y SUM XY	EPS X EPS Y EPS XY	EPS X EPS Y	EPS XY
1 -0.110180 C6 0.446860 C4 0.39896C 04 2 0.110180 00 -0.206630 C4 0.456030 04 3 0.136690 00 -0.349870 C4 -0.400960 04	0.400390-02 -0.335890-02 0.443240-02 C.400390-02 -0.335890-02 0.443210-02 C.406300-02 -0.335890-C2 0.443240-02	0-02 0-02 0-02	0.371146-02 0.443210-02 -0.371126-02
			n and the second s
EXTERNAL APPLIEC LUADING			:
F X = 1 C.500000 05 F Y = 0.000000 00 F XY = 0.500000 05			
<u>solution Fck stress</u> ccaverges althin 2	ITEMATILNS		: :
STRESS	STRAIN (LAMINĂTE AXES)	STRAIN STRAIN ILAYER AXESI	
LAYER SGM A SUM Y SUM XY	LPS X EPS Y EPS XY	FPS X EPS Y	, EPS XY
1 - C.1.30C1C 06 U.40909D 04 U.42416D 04 2 0.12956D 06 -U.20098C 04 U.403400 04 3 0.1141856 04 -U.371560 74 -U.452400 04		-0.456280-C2 -0.571640-02 -0 0.454510-02 -0.574150-02 -0 0.431490-02 -0.54420-02 -0	-0.416830-02 0.453930-02

----1 -0.504830-02 0.504740-02 0.462955-02 0.502900-02 -0.422990-02 0.544750-02 0.5847350-02 -0.4840-02 0.544750-02 -0.00430-02 0.037600-02 0.509430-02 0.551530-02 -0.46730-02 0.555670-02 0.637750-02 -0.503620-02 -0.509420-02 ÷ THE EPS XY ! EPS XY i • l (LAYER AXFS) STRAIN (LAYER AXES) 50-(1741)-US ILAYEF AXES! : STEAIN STAAIA EPS V : ļ 1 : TEPS"X' EP 5 A i : Ì 1 1 1 0.544780-02 0.544750-02 0.544780-02 0.55670-02 0.595700-02 C. 5557CD-02 i 1 1 EPS XY EPS XY -----; 1 i STAAIN (LAMINATE AXES) (LAMINATE AXES) (LAMINATE AXES) EPS Y C.502510-C2 -0.422590-02 0.502900-02 -0.422990-02 C.502870-C2 -0.422990-02 U.551530-02 -0.467330-02 U.551530-02 -0.467330-02 U.551530-02 -0.467330-02 STRAIN STRAIN EPS Y 1 × · ŁPS X 2 ITERATIONS I TERATIONS I TERATIONS EPS ; 1 : 1 1 ł ÷ ł \sim ~ U.447650 C4 U.507010 04 -U.458420 C4 C.157590 00 0.508170 04 0.465730 04 0.157770 06 -0.321×10 04 0.528960 04 C.152350 C6 -0.405440 C4 -0.460700 04 -----SGM XY NIHTIA NIHTIA SUN AY FLE STRESS CLAVERGES MITHIN FUR STRESS CONVERCES MITHIN : : ; . į ÷ CCNVENCES ! 1. 1. 1. STRESS STRESS. SGM Y STRESS APPLIEC LCADING : LCAJING APPLIEC LLACING SGV • : G. 651000 US ---FCK STRESS 0.55646E 05 0.606600 60 0.556406 00 <u>50</u>0 0.CUCUUE 00 C.ESCUUE 05 C. LCUCUD U5 1 -0.143830 06 -C. COCCUD (-C.157590 00 APPLIEC : × SGr X t SGE . t 1 EXTERNAL 1 SULUTION SOLUTION EX TERNAL SOLUTION EXTERNAL i 1 FX = 4 n n ų : . . . п в B n LAVER LAYER F Y F X . 1.1.1 ...Ε XY ∾่า ۳.۴ × ۲ 2 ;**-**1 m ---i : ; 125 į ł İ Ľ. ł

:

Ĵ

EPS A EPS Y EPS X EPS XY EPS X EPS X EPS Y EPS Y EPS Y EPS X EPS X G.e0036C-02 -0.512115-02 0.644700-02 -0.602570-02 0.5946-02 G.e00370-62 -0.512110-62 0.646670-02 0.600370-02 0.512110-62 0.640670-02 G.e000340-620-012110-62 0.646700-02 0.600370-02 -0.502590-02			א א ש			
1 LAYEK SUL.X SGM Y	LAMINATE HAS FAILED; SGM X ËXCEËDS MAXIMUM	AT FAILURE EXTERNAL APPLIEC LLAUING EXTERNAL APPLIEC LLAUING F X = 0.70000 00 F X = 0.70000 00 F X = 0.70000 00 F X = 0.70000 00 F X = 0.70000 00	STRESS LAYER SUL A SUM XY			Langley, 19

Page Intentionally Left Blank

-

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE \$300

SPECIAL FOURTH-CLASS RATE BOOK POSTAGE AND FEES PAID NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 451

POSTMASTER :

If Undeliverable (Section 158 Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof." --NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons. Also includes conference proceedings with either limited or unlimited distribution.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge. TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include final reports of major projects, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION

PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from: SCIENTIFIC AND TECHNICAL INFORMATION OFFICE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D.C. 20546