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Abstract  The paper proposes a fast dynamic mathematical model to evaluate the performances of saturated permanent magnet 

synchronous machines (PMSM) under stator winding’s inter turn fault. The parameters of the model can be determined using only 

manufacturer’s data of the healthy machine. Two surface mounted PMSM have been considered to investigate the validity of the 

proposed approach; with distributed and concentrated winding. It has been shown that the proposed model predicts the fault 

current with a reasonable accuracy compared to the non-linear Finite Elements analyses and to the experimental results. This 

model can be incorporated in a global simulation environment of power electronic of electrical device since the computation time 

is very short. 

 

Index Terms— Inter-turn fault, finite elements methods, dynamic models, magnetic saturation. 

 

I. INTRODUCTION  

Inter turn fault in the stator winding is the consequence of insulation failures between two turns in the same phase and it is one of 

the most common fault in electrical machines. This fault results in a very large short circuit current which could lead to the 

machine breakdown if this current is not quickly detected and eliminated [1, 2].  Furthermore, from a pure modelling aspect, a 

high short-circuit current causes magnetic saturation of stator yoke. In the literature, many authors have proposed linear circuit 

models coupled with equivalent magnetic circuits in which the faulty machine is represented by a set of constant inductances and 

resistances [3, 4]. Unfortunately, these models fail to give satisfactory results in the saturated case. In this case, finite element 

(FE) analyses of the faulty machine lead to the most precise results. However, FE analyses are very costly in terms of 

computation time. Furthermore, the machine geometry and the ferromagnetic materials have to be specified.  

To reduce the computation time, circuit models extended to the non-linear case, are the preferred methods of analysis of saturated 

faulty machines. The basic idea is to use a set of inductances which vary with the instantaneous current value as to deal with the 

saturated case. Obviously, these current-dependent inductances, known as “saturated, incremental or dynamic inductances” need 

to be determined [5]. When the machine geometry is available, FE methods or permeance networks [6, 7, 8] allow the 

computation of these inductances under faulty conditions. Another approach consists of representing the faulty machine by a set 

of non-linear differential equations where a map of the machine’s fluxes and their derivatives vs. the different currents are 

introduced ; their computation being performed by FE, permeance network or winding function theory [9, 10, 11]. However, the 

use of these approaches requires, again, the knowledge of the machine geometry and the B-H curves of the ferromagnetic 

materials but the computation time is lower than the full FE analyses. All these works on saturated PM machines under inter-turn 

faults conditions allow a good prediction of the machine performances as well as the current in the faulty turns. Researchers in 

this area and experienced engineers are familiar with these approaches which require detailed data of the machine. These details 

are of course not available for the machine end-user who needs much simple mathematical models with only few data generally 

given by the manufacturer for the healthy machine.  

In the healthy case, many authors [12, 13, 14, 15] have proposed models taking into account the saturation effect by using the d-

axis and q-axis machine magnetizing curves which can be given by the manufacturer [16]. By using theses curves, we propose in 

this paper a fast dynamic mathematical model of PMSM under inter turn fault. The presented model is the extension, to the 

saturated case, of the simple linear model of PMSM under inter-turn fault condition. This model whose parameters are obtained 

from manufacturer’s data allows an evaluation of the saturated PMSM performances under inter-turn fault. 

eezrb2
Text Box
This paper is a postprint of a paper submitted to and accepted for publication in IET Electric Power Applications and is subject to Institution of Engineering and Technology Copyright. The copy of record is available at IET Digital Library




II. CLASSICAL LINEAR MODEL OF PMSM UNDER INTER-TURN FAULT  

In linear conditions, the classical dynamic model of PMSM under inter turn short circuit can be developed in abc or dq frame. 

Assuming that a short circuit occurs in phase “a” Fig. 1, the modelling of the shorted turns fault requires the introduction of an 

additional differential equation associated to the shorted turn [17, 18, 19, 20]. Thus, phase ‘a’ will be divided into two windings 
whose resistances Ra1 and Ra2 are proportional to the number of short-circuited turns. They are expressed in term of the healthy 

machine phase resistance R and the ratio µ=Ntsh /Nt between the number of shorted turns and the number of total phase turns 

by RR
a


2

 and   RR
a

 1
1

.  

 

 
The additional circuit is modelled as an additional phase winding magnetically coupled to all the other phases of the machine. 

Indeed, the self and the mutual inductances of the additional faulty circuit are related to the healthy machine inductance L and the 

ratio µ.  

The self-inductance of the faulty part of phase ‘a’, the mutual inductances between the faulty part and the phases ‘a’ and ‘b’ and 
the mutual inductance between the faulty part (coil a2) and the healthy one (coil a1) are expressed by [17] 

 LLa

2

2   ; MMM caba  22
 ;  LM aa   121

 (1) 

Where L and M are the phase self and mutual inductances of the healthy machine respectively. 

 

In reality, the relations given in (1) assume that the machine has only one coil per phase. In the case of multipolar and/or  

distributed winding, the use of (1) is not strictly valid because the « faulty turns coil »  is not necessarly aligned with the axis of 

the faulty phase. Nevertheless, owing to their simplicity, many authors used relations (1) for modelling interturn faults in 

electrical machines (including fractional slot windings) [7], [19] and [20]. The obtained results were not far from those computed 

using finite element analyses.  

In this study, we adopt the same relations (1) to compute the parameters of faulty surface mounted permanent magnet machine 

and we will show how the linear model is extended to the saturated case. 

 

To establish the machine’s equations, iron losses, damping effects and all eddy currents are neglected. For an unsaturated surface 

mounted PMSM, the electrical model in (abc) frame describing the circuit in Fig.1, can be written as  
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According to (2) and to the circuit of Fig.1, the voltage of phase ‘a’ is  

 21 aaa VVV   (3) 

With  

1aV  is the voltage in the healthy part (coil ‘a1’) 

2aV  is the voltage in the faulty part (coil ‘a2’), it is given by  

 ffa iRV 2  (4) 
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Fig. 1. Three phase winding under inter-turn fault in phase ‘a’ 



fi is the fault current through the insulation fault resistance Rf  which depends on the failure severity. Rf is very high in the 

healthy case (several Mega Ohms). 

 

The fault current if is a new state variable. Indeed, the modelling requires the introduction of an additional differential equation 

associated to the shorted turn. From the circuit presented in Fig.1, the equation of the fault loop is given by 
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For the balanced healthy PMSM, we have 

 

 RRRRR cba  a21
 (6) 

 LLLL cba  a1a2a21 2ML  (7) 
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By considering these last equations, (2) can be rewritten as  
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Where the inductance matrix is  
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MLLs  is the cyclical inductance. 

abcfV , abcfi and abcfe  are the stator voltage, current and back-EMF vectors, respectively. They are expressed by 

  Taabcf VV 0 V V cb   ;  Taabcf ii fcb i i i   ;  Tfcbaabcf  e eeee     (12) 

 

The resistance matrix abcfR  is 

 

























  R R       0      0  R-

0      R       0       0

0       0      R       0

R-     0      0       R

R

fa2a2

a2

abcf  (13) 

 

fe is the back-EMF of the faulty turns (coil a2). It is expressed in term of the ratio µ by 

 

 af ee   (14) 

 

The back-EMFs in the three phases eabcf can be expressed as  

 



 
e

abcf

abcf
d

d
pe




  (15) 

 pe  is the electrical angle,  is the mechanical angular speed ( dtd / ) and p the number of pole pairs. 

abcf is the flux linkage vector due to the permanent magnets expressed by  

 )]sin(),3/2sin(),3/2sin(),[sin(],,,[ eeeemfcbaabcf    (16) 

With f is the flux through to the faulty part (coil ‘a2’) and
m is the magnet flux linkage 

Equations (10) – (12) clearly show that the faulty machine model can be separated into a healthy part and a faulty one.  The two 

part being electrically coupled. Hence, one can use an extended Park transform to the machine in which the ConcordiaT43 and the 

rotation P(e) matrices contain an additional elements to account for the faulty part.  These transformation matrices are  
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Then, applying the transformation to (10), one obtains in the dq reference frame 
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With  
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The voltage equations in dq frame are then 
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In (20), sqd LLL  as unsaturated, smooth air-gap PMSM is considered. The other parameters are given by 
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The stator winding of the PMSM under inter-turn fault is composed of two balanced parts in dq frame supplied by the phase 
currents (id and iq) and a faulty winding supplied by the fault current if. The electromagnetic torque is expressed as  
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III. SATURATED DYNAMIC MATHEMATICAL MODEL UNDER INTER-TURN FAULT  

In the voltage equations (20) under linear conditions, the inductances along the d and the q axes are constant ( sqd LLL  ). This 

is not anymore the case under saturated conditions. One approach commonly used to consider the saturation effect is to introduce 

dynamic inductances noted ( dL


, qL


) instead of (
dL , qL ) respectively. These inductances are obtained from the time derivatives of 

the dq components of the flux linkage as follows 
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Regarding the faulty turns circuit, its self and mutual inductances are related, as shown by (1), to the self-inductance L of the 

healthy machine. The simple approach introduced here is to use, in (1), an equivalent differential inductance L


instead of the 

healthy phase inductance L.  

The mutual inductance in PMSM with a concentrated winding can be neglected, so the phase inductance is the same as the d-axis 

inductance which can be determined from the d-axis flux. 

For distributed winding PMSM, the phase inductance can be calculated by assuming a constant flux leakage coefficient between 

two stator phases. Hence, we introduce the following constant coefficient 

 
L

M
k       (26) 

The phase inductance of the healthy machine is then 

Notice that the current ia is obtained by inverse Park transformation from id and iq. 

To summarize, one can say that the saturation effect is considered by simply substituting the linear inductances given above in (1) 

by the dynamic ones calculated from the Ψd(id) and Ψq(iq) curves of the healthy machine. These curves can be given by the 

manufacturer according to the IEEE standard [16], so an end-user does not need to use any numerical calculations. Alternatively, 

these curves can be obtained from a simple experimental procedure. This will be described later. It is also important to note that 

this non-linear model does not consider the cross saturation effect. 

To implement the method in simulation, one can use a look-up table to compute the measured Ψd(id) and Ψq(iq) curves. In our 

case, we used the following approximation of the flux-current curves 

     iaiaai 321 arctan      (28) 

From (28), we can derive the dynamic inductance expression as 
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Where  

i represents either 
di  or qi  

21 ,aa  and 3a are unknown coefficients identified, as shown later, using least squares. 
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IV. MODEL VALIDATION 

To investigate the validity of the proposed approach, two surface mounted permanent magnet synchronous machines (PMSM) are 

considered; with distributed winding and with concentrated (fractional-slot) winding. 

 For the PMSM with distributed winding, the geometry is known. In this case, the d-axis and q-axis magnetization curves are 

computed for different d-axis and q-axis currents.  

For the PMSM with concentrated winding, the geometry is unknown. In order to overcome this problem, the Ψd(id) and Ψq(iq) 

curves are obtained by using a simple experiment which will be described later.  

 

The main parameters of this machine in healthy condition and at rated operation are presented in Table I. 

 

Table I Parameters of the studied machines 

Parameter PMSM with 

concentrated 

winding 

PMSM with 

distributed 

winding 

Pole pairs, p 14 4 

Number of slots, Ns 24 24 

Phase inductance (linear case), L (mH) 2.3  3.1  

Mutual inductance, M (mH) -0.05 -0.35  

Phase resistance, R (Ω) 0.8  0.44 

Series turns per phase, Nt  64  40  

Magnets flux linkage, Ψm (Wb) 0.0821  0.081  

Moment of inertia, J (kg.m2) 0.0019  0.018  

Rated speed, N (rpm) 5000  1000  

Rated torque, Γ (Nm) 15 11 

 

A.  Finite elements validation (PMSM with distributed winding) 

The parameter k given by (26) is then k=0.125. A FE simulation under the usual 2D plane assumption is performed to validate the 

proposed model. The main geometrical specifications of the machine are given in Fig. 2. The used permanents magnets are 

NdFeB with a remanence flux density Br=1.2 T. 

To consider the saturation effect, we use the non-linear d-q axes fluxes vs. the corresponding d-q currents, Ψd(id) and Ψq(iq). As 

indicated above, we can use a simple experimental procedure to obtain these curves. It will be described later. Here, a 2-D non-

linear FE analysis is used to obtain these curves.  

Fig. 3 shows the curves Ψd(id) and Ψq(iq) computed using non-linear FE analysis for different currents id and iq. The variation of 
the d-axis flux is calculated by subtracting the flux Ψm of the PMs (Ψm =Ψd(id=0, iq=0)) from the total d-axis flux Ψd(id, 
iq=constant).  

It can be seen that the magnetizing curves Ψd(id) and Ψq(iq) have the same tendency and they are almost the same for different 
currents id and iq . Also, the d-axis magnetizing curves are note symmetrical due to the presence of the PMs flux. 

The curve Ψd(id) is computed for iq=0 and the curve Ψq(iq) for id=0, then they are approximated by the fitness function (28). As it 
is shown in Fig. 3-b, the curve Ψq(iq) is symmetrical, so it is approximated by (30) and (31). 

The dynamic inductances Ld (id) and Lq(iq) calculated by (29) from Ψd(id, iq=0) and Ψq(iq, id=0) are presented in Fig. 3-c and Fig. 

3-d respectively. 
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Ψd(id) curve being not symmetrical, the used fitness function is  

    
 














0i if                    1085.110.689,7arctan698,0

0i if                 1004,210.57,4arctan1087.6

d

43

d

422

dd

dd

dd
ii

ii
i  (31) 



Ø3,3

Ø4

Ø164,6

Ø73,6

Ø74,6

Ø56,6

Ø70,6

 
Fig. 2. Cross section view and geometrical parameters of the studied machine  
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Fig. 3.Flux-current magnetization and dynamic inductances curves of the studied PMSM (a) Ψd(id, iq constant) (b) Ψq(iq, id constant) (c) Ld(id) (d) Lq(iq)    

 



Fig. 4 shows the fault current curves computed using the three models, i.e. the classical linear model, the proposed nonlinear 

model and nonlinear FE. Here, the load torque is set to 20 Nm which leads a high saturation effect. The ratio between the shorted 

turns and the total turns µ is set to 0.5.   

 In the simulation results given in Fig. 4.a, the insulation resistance Rf is set to 1 µΩ which leads to a high short-circuit current 

so to an important saturation level as well.  Regarding the results of Fig. 4.a, it can be seen that the proposed model predicts a 

fault current of about 112 A whereas the nonlinear FE computation gives 139 A (a relative error of about 20%). The linear model 

underestimates the fault current since it predicts only 81 A (relative error ≈ 40%).  

 For Rf =0.1 Ω, the results are presented in Fig. 4.b. Again, it can be seen that the proposed model predicts a fault current of 

90A and the non-linear FE computation gives a fault current of about 109 A (relative error ≈ 17 %).  The linear model 
underestimates the fault current as it predicts only a value of 69 A (a relative error of about 36 %). 

 Fig. 4.c presents the fault current obtained for one shorted turn and simulated by the three models. It can be seen here that the 

proposed model predicts a fault current of about 124 A and the non-linear FE gives a value about 136 A (a relative error of 8%) 

whereas the linear model underestimates the fault current with a relative error ≈ 12%. In this case, the machine is not saturated so 
the three models give almost the same results.  
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Fig. 4. Fault current with T=20 Nm and for (a) µ=0.5 ,Rf=1 µΩ,  (b) µ=0.5, Rf=0.1 Ω and (c) 1 shorted turn, Rf=0.1 Ω 

 

In order to study the evolution of the fault severity of the considered machine, the rms value of the fault current is calculated as a 

function of the insulation resistance Rf . Fig. 5-a shows a comparison between the results obtained by the three different models. 

Here, the torque and the ratio µ are set to 20 Nm and 0.5 respectively.  

  

It can be seen that the discrepancy between the three models becomes negligible when Rf > 1Ω. Indeed, the fault current in this 
case is low and the machine is almost under linear operating conditions. For the severe short-circuit case (Rf=0.01) the proposed 

model predicts an rms fault current value of about 82 A, whereas the nonlinear FE computation gives 87A (a relative error of 

about 5%). The linear model underestimates the rms value of the fault current since it predicts only 70 A (a relative error of 20 % 

compared to non-linear FE). The proposed model predicts the fault current with an acceptable accuracy since the relative error 

compared to the non-linear FE simulations doesn’t exceed 5%. 
 

In Fig. 5-b, Fig. 5-c and Fig. 5-d, we have plotted the machine phase currents computed by the three models in the same 
conditions. As it can be seen, the inter-turn fault results in unbalanced non-sinusoidal phase currents. From the simulation results, 
the linear model underestimates the phase current ia (the faulty phase) since it predicts about 85A whereas the non-linear FE 



model gives about 100 A (relative error of ≈ 15 %). The proposed non-linear model slightly overestimates the magnitude of the 
phase current ia with a value of 103 A (relative error of ≈ 5 %). 
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Fig. 5. (a) Short-circuit rms current vs. insulation resistance, Rf (T=22 Nm,  µ=0.5)  

(b) Classical linear model (c) Non-linear FE model (d) Proposed non-linear model, (Rf =0.1 Ω, T=20 Nm and µ=50%) 
 

B.  Experimental Model Validation (PMSM with concentrated winding) 

The main parameters of this machine in healthy and rated operation are those of Table I. Here, the mutual inductance is neglected 

(concentrated winding). The parameter k given by (26) is then k=0. 

As presented above, we need the non-linear d-q axes fluxes vs. the corresponding d-q currents, Ψd(id) and Ψq(iq) to feed into the 

non-linear model. Here, the geometry of our machine is unknown so we used a simple experimental procedure to obtain these 

curves as described in [21, 22]. Indeed, it has been shown that a single test allows to obtain the full Ψd(id) (or Ψq(iq)) curves for a 

constant current iq (respectively id).   

To obtain the Ψd(id) curve for a given iq current, the experimental procedure (Fig. 6-a) consists of: 

- Lock the rotor, so dθ/dt=0, 

- Apply an ac step voltage (rectangular wave) while controlling the iq current to keep it at the desired value, 

- Measure and record ud(t) and id(t), 

The electrical equation associated to this test procedure is given by (32). The time-dependent flux linkage Ψd(t) can be obtained 

from the recorded voltage ud(t) and current id(t) by integration of (32). 



      
dt

td
tRitu d

dd


  (32) 

        
t

ddd dRiut

0

   (33) 

 

Fig. 6-b and Fig. 6-c present the applied voltage ud(t) and the measured current id(t) respectively by keeping the current iq=0 for 

one period. Indeed, the cross saturation effect is neglected.  

 

The flux linkage Ψd(t) computed by (36) using the recorded voltage and current given in Fig. 6-b and Fig. 6-c is presented in Fig. 

6-d. Hence, at any time t, Ψd(t) and id(t) are known. Indeed, by eliminating the time form, these two quantities allow the 

determination of the curve Ψd(id, iq=0) as shown in Fig. 7. It can be seen that the obtained curve is somehow an image of the 

hysteresis cycle of the ferromagnetic material.  

 
For the obtained complete cycle presented in Fig. 7-a, the average value of current id is calculated for each value of the d-axis 

flux linkage. In this way, the nonlinear characteristic Ψd(id, iq=0) presented in Fig. 7-b is generated. It can be seen that the d-axis 
magnetizing curve is not symmetrical due to the presence of the PMs flux [23]. A similar procedure can be used to obtain the 
Ψq(iq) curve for a given id current. 
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Fig. 6. (a) Photograph of the test bench used for testing the PMSM with concentrated winding (b) The recorded stepwise voltage change Vd, (c) The recorded 

currents id and iq measured during stepwise voltage and (d) The calculated d- axis flux linkage Ψd(t) during the stepwise voltage change Vd for one period. 
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Fig. 7. The non-linear characteristic Ψd(id, iq=0), (a) one magnetization cycle (b) The characteristic averaged for each Ψd. 

 

As shown above, the generated d-axis magnetization curve Ψd(id) is not symmetrical. The used fitness function is then 

    
   









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0i if                          104,110.42,3arctan10.5,3

0i if                              10.97,92329,0arctan108,5

d

313

d

43

dd

dd

dd
ii

ii
i  (34) 

 

In this study, the cross saturation effect is not considered. In fact, the curve Ψd(id) is measured for iq=0 and the curve Ψq(iq) for 

id=0 and approximated by the fitness function (28). As it is shown in Fig. 8-a, the curve Ψq(iq) is symmetrical, so it is 

approximated by (35). Notice that the Ψq(iq) curve for this surface mounted PM machine under vector control operation the 

control strategy imposes a null id current at base speed.  

      109,17669,0arctan10.7 34

qqqq iii
   (35) 

 

The obtained dynamic d-axis and q-axis current dependent inductances Ld(id) and Lq(iq) are approximated by (36)-(37) and 

presented in Fig. 8-b and Fig. 8-c. It can be seen that the maximum values of the inductances Ld and Lq are around 2.3 mH and the 

curve Ld(id) is not symmetrical since the d-axis magnetization curve Ψd(id) is not symmetrical as shown above.   
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Fig. 8. (a) The generated and approximated non-linear characteristic Ψd(id, iq=0) and Ψq(iq, id=0), (b) the dynamic d-axis inductance and (c) the dynamic q-axis 

inductance obtained from fluxes curves approximation 

 

Using the measured and approximated d-axis and q-axis magnetization curves and inductances of the PMSM in healthy case, the 

faulty machine is simulated in linear and non-linear conditions in MATLAB-SIMULINK environment. The different currents 

obtained with this simulation are compared with those measured. The fraction of the shorted turns is set to 25%.  

 
This machine is supplied by three phase sinusoidal voltage and operates at 321 rpm. The simulation of the machine in healthy 

condition can be done by setting a large value of the insulation resistance (1000 Ω). Fig. 9 shows a comparison between the phase 
currents in healthy case simulated by the proposed non-linear model, those simulated by the linear model and the experimental 
ones.  Here, the developed torque is fixed at 11 Nm. It can be seen that the measurements give a value of 10 A and the proposed 
model predicts a phase current of 9.6 A (a relative error of 0.3 %). The linear model underestimates the phase currents with a 
relative error ≈ 4 %. Fig. 10-a shows the fault current curves computed using the proposed non-linear model, the linear model and 
those measured. Here, the load torque is set to 16 Nm which leads to a higher saturation level than in the previous case; the ratio 
between the shorted turns and the total turns µ and Rf is set to 0.25. It can be seen that the measured peak fault current and the one 
computed by the proposed model is about 17 A whereas the one computed by the linear classical model is about 14 A, a relative 
error of 17%. Fig. 10-b and Fig. 10-c shows the fault current curves computed using the proposed non-linear, the linear models 
and those measured. Here, the load torque is set to 11 Nm and the ratio between the shorted turns and the total turns µ is set to 
0.25.   

For the results given in Fig. 10-b, the insulation resistance Rf is set to 1.5 Ω.  It can be seen that the proposed model predicts a 
fault current of about 8 A whereas the measurements give the same value. The linear model underestimates the fault current since 
it predicts only 6 A.  

From the results of Fig. 10-c, the insulation resistance Rf is set to 2.5 Ω. It can be seen here that the proposed model predicts a 
fault current of about 4.2 A and the measurements give a value of about 4.5 A. The linear model underestimates the fault current 
as it only gives 4 A.  

Notice that a basic vector control is used to control the studied PMSM. In this case, the id component of the current is maintained 

at zero under base speed and the flux linkage Ψd doesn’t increase with the current id. In this case, the results depend on only the 

load level (the value of the current iq). 
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Fig. 9. Phases and fault currents for a healthy machine (a) Measured (b) Proposed non-linear model and (c) Classical linear model 
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Fig. 10. Fault current comparison: 

(a) N=357 rpm, T=16 Nm and for Rf=0.6 Ω, (b) N=321 rpm, T=11 Nm for Rf=1.5  (c) Rf=1.5 Ω (b) N=321 rpm, T=11 Nm for Rf=2.5 Ω  

V. CONCLUSION 

 A simple dq circuit-based model of PMSM under inter-turn faults which takes into account magnetic saturation has been 

presented in this paper. The main advantage of this model concerns its easy practical implementation. In fact, all the input 

parameters of the proposed model are those of the healthy machine data which can be obtained from the machine manufacturer or 

a simple experimental method. It has been shown that the proposed model predicts the fault current with a reasonable accuracy 



compared to the FE analyses and to the experimental results. The computation time is very short which makes the model suitable 

to be incorporated in a global simulation environment of power systems which include electromechanical drives. 
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