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unmanned surface vehicle

Sanjay K Sharma, Robert Sutton, Amit Motwani and Andy Annamalai

Abstract

Although intrinsically marine craft are known to exhibit non-linear dynamic characteristics, modern marine autopilot sys-

tem designs continue to be developed based on both linear and non-linear control approaches. This article evaluates

two novel non-linear autopilot designs based on non-linear local control network and non-linear model predictive con-
trol approaches to establish their effectiveness in terms of control activity expenditure, power consumption and mission

duration length under similar operating conditions. From practical point of view, autopilot with less energy consumption

would in reality provide the battery-powered vehicle with longer mission duration. The autopilot systems are used to
control the non-linear yaw dynamics of an unmanned surface vehicle named Springer. The yaw dynamics of the vehicle

being modelled using a multi-layer perceptron-type neural network. Simulation results showed that the autopilot based

on local control network method performed better for Springer. Furthermore, on the whole, the local control network
methodology can be regarded as a plausible paradigm for marine control system design.

Keywords

Unmanned surface vehicle, autopilot design, non-linear model predictive control, local control network, genetic algo-

rithm, neural networks
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Introduction

From the review by Motwani,1 it is clear that

unmanned surface vehicles (USVs) are now being used

in an array of different application areas in the com-

mercial, naval and scientific sectors. Indeed, they are

currently being used for mine counter-measures,2 sur-

veying3 and environmental data gathering,4 to name

but a few. In order to meet the ongoing challenges of

these sectors USV technology continues to be devel-

oped particularly in the field of navigation, guidance

and control systems. For such vehicles to be capable of

undertaking the kinds of mission that are now being

contemplated, they require robust, reliable, accurate

and adaptable autopilot systems which allow seamless

switching between automatic and manual control

modes. Such properties in marine control systems being

necessary for the changes in the dynamic behaviour of

the vehicles that may occur owing to the deployment of

different payloads, mission requirements and varying

environmental conditions. Thus, in order to meet the

testing demands being imposed by these sectors, autop-

ilots have been designed based on, for example, fuzzy,5

gain scheduling,6 H infinity,7 linear quadratic

Gaussian,8 sliding mode9 and neural network (NN)10

techniques that have met with varying degrees of

success.

Since management and monitoring of the environ-

ment is a major issue worldwide, an USV named

Springer, depicted in Figure 1, has been specifically

designed and developed to be a cost-effective and envir-

onmentally friendly USV primarily for undertaking

pollutant tracking, and environmental and hydrogra-

phical surveys in rivers, reservoirs, inland waterways

and coastal waters, particularly where shallow waters

prevail.

The dynamic characteristics of marine vessels are

invariably non-linear and the SpringerUSV is no excep-

tion. This is further confirmed in Sharma and Sutton11

by showing a non-linear model predictive controller

Marine and Industrial Dynamic Analysis Group, Centre for Advanced

Engineering Systems and Interactions, School of Marine Science and

Engineering, Plymouth University, Plymouth, UK

Corresponding author:

Sanjay K Sharma, Marine and Industrial Dynamic Analysis Group, Centre

for Advanced Engineering Systems and Interactions, School of Marine

Science and Engineering, Plymouth University, Drake Circus, Plymouth

PL4 8AA, UK.

Email: sanjay.sharma@plymouth.ac.uk

 at University of Plymouth on May 14, 2014pim.sagepub.comDownloaded from 

http://pim.sagepub.com/


outperforming a linear proportional–integral–derivative

(PID) controller. Thus, this article reports the applica-

tion of two novel non-linear autopilot designs for the

vehicle. Local control network (LCN) and non-linear

model predictive control (NMPC) schemes being used

in their designs. Details of the navigation and line-of-

sight guidance subsystems for the vehicle can be found

in Naeem et al.12

Yaw dynamics of the Springer vehicle

Full details of the Springer’s hardware can be found in

Naeem et al.12 The Springer USV having been designed

as a medium waterplane twin hull vessel which is versa-

tile in terms of mission profile and payload. It is

approximately 4 m long and 2.3 m wide with a displa-

cement of 0.6 tonnes.

A multi-layer perceptron (MLP)-type NN model of

the Springer yaw dynamics was developed using a data-

set recorded during full-scale trials. A genetic algorithm

(GA)13 was used to obtain the unknown parameters of

the MLPNN model which had a population of 20 chro-

mosomes, a crossover probability of pc =0:65 and

mutation probability of pm =0:03. The GA was run till

maximum of 10,000 generations or mean square error

(MSE) of less than MSE40:00001 was achieved on

normalised training dataset. A parallel architecture net-

work model was then tested on validation and test data

to check its predictive capability. The GA selected the

MLPNN with four hidden nodes and represented in

generic form as

ŷ(t)= fNN

u(t), u(t� 1), u(t� 2), u(t� 3), ŷ(t� 1), ŷ(t� 2), ŷ(t� 3), ŷ(t� 4),

e(t� 1), e(t� 2), e(t� 3), e(t� 4)

� �

ð1Þ

where e(t)= y(t)� ŷ(t). In the case of the MLP, inputs

are multiplied by the weights between the input and

hidden layer and then between the hidden and output

layer to produce the final output. Here tanh was used

as an activation function in the hidden layer and linear

in the output.

Figure 2(a) and (b) illustrates the performances of

the MLPNN on validation and test dataset which pro-

duced mean-squared errors of 0:00012567 and

0:00018626 rad2, respectively. Modelling of the yaw

dynamics of the Springer vehicle is detailed in Sharma

and Sutton.14

Thereupon this NN model was used to replicate the

non-linear yaw dynamics of the Springer USV and to

train a LCN autopilot to follow set point trajectories

and also used in the architecture of the NMPC

algorithm.Figure 1. The Springer unmanned surface vehicle.

Figure 2. Predictive capability of the MLPNN model on (a) validation and (b) test data.
MSE: mean square error.
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Autopilot designs

LCN autopilot design

LCN for complex non-linear systems is designed by

divide-and-conquer approach by interpolating several

linear local model controllers (LMCs) spread across the

operating regions.15 A priori information of the local

operating regimes is therefore needed to build a global

LCN. A priori plant knowledge is used to design the

LCN to control most of the non-linear systems.16–19 The

global controller acting at a point receives maximum

contribution from the LMC valid around that operating

point and less from the neighbouring ones and none

from the distant ones. The relative validity of each LMC

at operating point is decided by the associated weighting

function. No work to date has been undertaken to test

the USV while it operates in the non-linear range of its

dynamic response. This article identifies the local operat-

ing regions along with the parameters of a global LCN

based on GAs for Springer.

LCN. Figure 3 shows the general discrete LCN architec-

ture. The same inputs, x, are fed to all the LMCs, and

the outputs are weighted according to some weighting

or scheduling variables, c. The output from the LCN ŷ

is provided by the weighted sum of the output obtained

from each LMC

ŷ=
X

N

i=1

ri(c)fi(x) ð2Þ

where ri(c) is the validity or interpolation function

associated with the ith LMC, fi(x) and N is the total

number of LMCs.

The total contribution from all the LMCs is made

100% by normalising the validity functions ri(c), and

the widely used ri(c) in the literature are normalised

Gaussian functions which are given as

ri(c)=
exp � c� sik k2=2s2

i

� �

P

N

j=1

exp � c� sj
�

�

�

�

2
=2s2

i

� �

ð3Þ

where si is the centre and si is the standard deviation

associated with the validity function of ith LMC.

Herein, discrete-type PID controllers are considered

for the fi(x) as linear controllers for the LCN

construction.

A continuous-time PID control law is defined by

u(t)= kpe(t)+ kd _e(t)+ kI

ð

edt ð4Þ

where kp, kd and kI are the proportional, differential

and the integral gains, u is the control action and e is

the error. The PID controller in discrete form is equiva-

lently represented as

u(k)= u(k� 1)+ kp½e(k)� e(k� 1)�

+ kd½e(k)� 2e(k� 1)+ e(k� 2)�+TskIe(k)
ð5Þ

where k is the sample number and Ts is the sampling

interval and selected 1 here in GA optimisation.

The unknown parameters for GA in each regime in

equation (3) are the validity function centres si and the

standard deviations si. The unknown parameters in

equation (5) are the PID control parameters kp, kd
and kI.

Figure 4 shows the design of a LCN with m PID-

type LMCs. The output of the ith PID-type LMC at

sample k is ci(k) and the overall LCN output is defined

as c(k)=
P

m

i=1

ci(k). The control action applied to the

Springer USV at sample k is given by

u(k)= c(k)+ u(k� 1). All LMCs in the network

receive the same error e(k)= r(k)� y(k), as input. The

weighting or scheduling variable for the validity func-

tion, ri(c), was chosen as c= ½y(k� 1), u(k� 1)�,
where y(k) is the heading angle filtered output and r(k)

is the reference set point. The filter was used to smooth

the signal in the feedback loop. A GA was then used to

construct a LCN for the USV. The optimal number of

LMCs (from a given maximum number), the para-

meters of these LMCs and the parameters of the valid-

ity functions and filter are selected simultaneously by

GA. It also incorporates as constraints to make sure

that all valid LMCs to be mutually orthogonal and act

independently at its operating point. The fitness func-

tion of the GA reduces the tracking error and total

controller effort and is given by ACE=(1+MSE),

where ACE is the average equivalent controller energy

and MSE is the mean square error of the yaw error as

defined in equations (10) and (11), respectively.

The filter used in Figure 4 is of second order with the

input/output relation described in equation (6)

a1y(k)= b1x(k)+ b2x(k� 1)+ b3x(k� 2)

� a2y(k� 1)� a3y(k� 2)
ð6Þ

NMPC autopilot design

The concepts and techniques of model predictive con-

trol (MPC) have been developing for over three decades

Figure 3. General architecture of a LCN.
PID: proportional–integral–derivative.
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and are shown to be popular in many sectors such as the

process and automotive industries, and in academia as

illustrated in the text of Maciejowski,20 Rawlings and

Mayne,21 Wang22 and Allgower et al.23 In addition, the

marine control system design fraternity have also

embraced this approach since it offers the advantage of

being capable of enforcing various types of constraints

on the plant process as exemplified by Perez,24 Oh and

Sun,25 Liu et al.,26 Li and Sun27 and Naeem et al.28

Although MPC is well established and has provided

solutions to a number of problems, in its linear

approach, however, it does have its limitations particu-

larly when dealing with non-linear plant. Many systems

are, however, inherently non-linear and operate under

tight performance conditions with many satisfying con-

straints. These demands require systems to operate

over a wide range of operating conditions and linear

models are often not sufficient to describe the system

dynamics adequately and hence non-linear models

must be used. This inadequacy of linear models is one

of the motivations for the increasing interest in NMPC.

The closed-loop dynamics of the linear MPC are non-

linear due to the presence of constraints and will not

provide an optimal solution. NMPC works on the basis

of non-linear models and takes accounts of non-

quadratic cost-functional and general non-linear con-

straints. Excellent introductions to such techniques can

be found in Tatjewski and Lawrynczuk,29 and Grune

and Pannek.30

Principle of NMPC. At the heart of MPC are the model

of the system and the concept of open-loop optimal

feedback. The model is used to generate a prediction of

future behaviour of the system. At each time step, past

measurements and inputs are used to estimate the cur-

rent state of the system. An optimisation problem is

solved to determine an optimal open-loop policy from

the present (estimated) state. Only the first input move

is applied to the plant. At the subsequent time step, the

system state is re-estimated using new measurements.

The optimisation problem is resolved and the first input

move to the plant is calculated again. Figure 5 presents

the working scheme of a MPC. Here the controller pre-

dicts the dynamic behaviour of the system in the future

over a prediction horizon Np and determines the input

over a control horizon (Nc4Np) based on the measure-

ments obtained at time t such that an open-loop perfor-

mance objective J is minimised.

The block diagram in Figure 6 illustrates the NMPC

process used in this article. The NMPC consists of the

MLPNN model and the GA optimisation block. The

um variable is the tentative control signal, yr is the

desired response and ym is the filtered network model

response. The GA optimisation block determines the

values of um that minimise J, and then the optimal up is

input to the plant.

The objective function J mathematically describes

the control goal. In general, good tracking of the refer-

ence trajectory is required with low control energy con-

sumption. The predictions are used by a numerical

optimisation program to determine the control signal

that minimises the following performance criterion over

the specified horizon

J=
X

Np

i=N0

½ym(t+ i)� yr(t+ i)�2

+ l
X

Nc

j=1

½um(t+ j� 1)� um(t+ j� 2)�2
ð7Þ

where N0, Np and Nc define the horizons over which

the tracking error and the control increments are evalu-

ated. The l value determines the contribution that the

sum of the squares of the control increments has on the

performance index.

The key characteristics of NMPC are as follows:

� Non-linear models can directly be used in NMPC

for prediction.
� Constraints can be easily incorporated.
� Applied on-line.

Figure 4. Proportional–integral–derivative-type local control network acting on the Springer unmanned surface vehicle.
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The repeated on-line solution from NMPC is in gen-

eral complex and computationally expensive compare

to a linear MPC where the on-line solution of the opti-

mal control problem can be efficiently obtained by a

quadratic program. This limits the successful practical

application of NMPC. Thus, NMPC has been applied

almost only to slow systems. For fast systems where

the sampling time is considerably small, the existing

NMPC algorithms cannot be used. Therefore, solving

such a non-linear optimisation problem efficiently and

quickly has attracted significant research interest in

recent years.31–34

The conventional iterative optimisation method

requiring initial values based on gradient descent such

as sequential quadratic programming (SQP) has been

applied to NMPC.35 These techniques can succumb to

local minima and can lead to infeasible solution. GA on

the other hand is a global stochastic search technique

that applies the concept of biological evolution to find

an optimal solution in a search space and has proved to

be efficient in solving complicated non-linear optimisa-

tion problems compared to the more conventional opti-

misation techniques such as SQP. Furthermore, the

search range of the input variable constraints can easily

be incorporated in the search space of a GA during

optimisation, which makes it easier to handle the input

constraint problem than other descent-based methods.

However, the computational burden in the case of a

GA is much heavier and increases exponentially with

the increase of the horizon length of the NMPC making

it difficult to implement in the conventional form; thus,

only a few applications of GAs to non-linear MPC36,37

are available in the literatures. In this article, a modified

NMPC algorithm based on a GA is proposed for the

design of an autopilot for the Springer USV. In place of

seeking the exact global solution for NMPC at every

sampling time, suboptimal control sequences satisfying

the constraints are implemented. The GA decreases the

cost function within the sampling interval and the best

chromosome represents the optimal control sequence at

that time and so on. This requires less computational

demands without deteriorating much to the control

performance.38

GA optimised NMPC algorithm

Here a GA is used to obtain a sequence of optimal con-

trol signals. More specifically, a steady-state GA with

Figure 5. A conceptual picture of MPC. Only (ut tj ) is injected into the plant at time t. At time t+ 1, a new optimal trajectory is

recomputed.

Figure 6. The NMPC process.
NMPC: non-linear model predictive control; MLP: multi-layer perceptron.
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floating point encoding and special genetic operators

including initialisation, mutation, crossover and termi-

nation was used. The fitness function of the GA is

derived from the objective function of the NMPC.

Mutation and crossover operators are designed with

built-in constraints in order not to violate the con-

straints of the control inputs. A convergence measure is

introduced as a termination condition. The operation

of the GA used here is explained as follows.

Encoding. Every individual chromosome foi; i=1, . . . ,

Npopg in the population of the GA determines a con-

trol trajectory: foi= ½ui(t),ui(t+1), . . . , ui(t+Nc�1)�g.
An individual chromosome oi is described by a set

of Nc floating point numbers which are selected within

the admissible control interval [umin, umax] and with

absolute difference fDui(t+ j); j=1, . . . ,Nc � 1g not

exceeding a prescribed value Dumax. Here umin and umax

are constraints limiting the range of the control signal,

whereas Dumax limits the gradient of the control signal.

Initialisation. A suitable initialisation procedure at every

sampling interval is required in order to obtain a better

solution from the GA optimisation. Here the best solu-

tion of the last optimisation cycle with shift in the

sequence of control signals as shown in Figure 7 is used

to initialise the half of the chromosomes in a popula-

tion and the rest of the chromosomes are randomly

initialised with control sequence within the admissible

constrained as defined in the encoding. Figure 7 shows

the previous optimised control trajectory ut as a chro-

mosome with genes: fgene1, gene2, . . . , geneNC�1g rep-

resenting the optimal control sequence at time t. The

optimal chromosome at t+1 is created by shifting the

control sequence as shown in this figure. The last gene

at t+1 is randomly added in ut+1 satisfying limiting

constraints. Now the remaining half of the chromo-

somes in the population are created by randomly add-

ing a floating number within a range of 6Dumax to

each gene of ut+1. The value of a gene is then adjusted

to restrict it within the admissible control interval [umin,

umax].

Initialisation of the chromosomes within the close

vicinity of the best solution of the previous optimisa-

tion cycle facilitates the optimisation procedures by the

exploitation of previously accumulated knowledge.

This strategy guarantees the quality of the current

population and the stability of the NMPC algorithm,

whereas the rest of the population with randomly gen-

erated chromosomes add to the genetic diversity and

are responsible for exploring the global search space in

the solution.

Mutation. The mutation introduces new genetic varia-

tions into the population. The selected genes on the

basis of mutation probability pm are randomly replaced

within admissible constraints of the control signals

[umin4u4umax] and Duj j4 Dumaxj j.

Crossover. The crossover is used to exchange genetic

information between the two chromosomes of the pop-

ulation. In this article, an arithmetic crossover between

the two selected parents on the basis of crossover prob-

ability pc is used to produce two offspring. This proce-

dure maintains the control signals within the admissible

constraints.

Termination conditions. This determines when the GA

optimisation loop should be stopped and first control

input from the best chromosome is applied to the plant.

Judicious selection of the termination criteria of the GA

is the key factor in reducing the computation burden in

the design of the suboptimal NMPC algorithm. Here

the GA was run till 90% of the sampling interval is

either elapsed or evolution converges whichever is ear-

lier. This insures that at every sampling interval, a feasi-

ble control signal is always available for the vehicle.

Fitness value and selection. The fitness value of each chro-

mosome is defined as 1=(J+1) and the best chromo-

somes from the current parent and children are selected

for the next generation and rest are discarded to keep

the number of chromosomes in a population constant.

Simulation results

In this application, a steady-state GA with crossover

probability of pc =0:65 and mutation probability of

pm =0:03 was applied to a population of 20 chromo-

somes. GA minimises the cost function defined in equa-

tion (7) in both LCN and NMPC on infinite and

prediction horizon, respectively. The range of control-

ler input and gradient of the controller input selected

from the actuator limit were fumin, umaxg=
f�132 r=min , 132 r=ming and Dumaxj j420 r=min,

respectively. The weighting parameter l for perfor-

mance objective was kept low to provide better conver-

gence and selected 0.01 as a value after trial and error.

LCN simulation results

For the LCN, the GA was run for 2000 generations,

and to allow for the stochastic nature of the genetic

learning, the training process was repeated 5 times. The

Figure 7. Chromosomes representing optimal control

trajectories at time t and t+ 1.
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GA selected the optimum number of LMCs, along with

parameters of the centres and covariances of the associ-

ated function and for the filter. Figure 8(a) shows the

closed-loop response and Figure 8(b) the actuator

response from the LCN in response to a step change

demand in the vehicle heading and reveals that a good

tracking performance is achieved.

The two PID-type LMCs defining the LCN were

C1(k)=12:3294½e(k)� e(k� 1)�

+17:1494½e(k)� 2e(k� 1)+ e(k� 2)�+5:9548e(k)

ð8Þ

C2(k)=12:2401½e(k)� e(k� 1)�

+18:0646½e(k)� 2e(k� 1)+ e(k� 2)�+6:0891e(k)

ð9Þ

where e(k)= r(k)� y(k) is again the error between the

reference and the controller trajectory. The centres and

covariances for the Gaussian interpolation functions

were r1: (�17:3445, 122:2610) and (4:7751, 2:6754)
and r2: (�108:3460, 80:9760) and (3:9882, 2:8218).

The coefficients for the filter being a1 =1:0,
a2 =�0:8249, a3 =�0:11, b1=0:025, b2 =0:0233
and b3 =0:0182. The global stability of the overall

closed-loop system of the LCN is difficult to prove.39

One way to demonstrate the stability is to test a vehicle

manoeuvre throughout the operating space by employ-

ing some random sequence of course-changing man-

oeuvres. The random sequence as shown in Figure 9

reveals that a stable and smooth closed-loop response

was followed by a vehicle using LCN.

The NN model of the Springer was used directly to

design the LCN in the absence of a priori knowledge.

These results indicate the importance of this approach

to design a LCN-based autopilot for Springer. In addi-

tion, they clearly illustrate the autopilot’s ability to cope

successfully when operating in both the linear and non-

linear realms of the vehicle’s dynamic system response.

NMPC simulation results

In the case of the NMPC, several predictive horizons

were changed heuristically to investigate the suitable

control strategy in terms of root mean square (RMS)

prediction error. It was observed that too short a pre-

diction horizon (Np =2) provided an intensively oscil-

latory prediction with a large RMS prediction error.

The NMPC with a horizon Np =6 resulted in near-

optimal control, and by increasing the prediction hori-

zon above Np =6 added only a slight improvement in

RMS error but the computational time increased con-

siderably more. A prediction horizon Np =6 and con-

trol horizon Nc =3 were found appropriate for this

Figure 8. Local control network responses to a step change in vehicle heading: (a) step response and (b) actuator response.
MSE: mean square error.

Figure 9. Vehicle response to a random sequence of course-

changing demands in heading using the local control network.
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application and were selected for the simulation study.

The simulations were run using Visual C++ on a

desktop PC with Intel Core 2 CPU, 1.86 GHz processor

and 1.97 GB of RAM. The maximum time to run a GA

generation was 0.90 s, so that the next control action

was readily available before the sampling time of 1.0 s.

The step response results for the NMPC autopilot is

shown in Figure 10 and for the multistep in Figure 11.

In order to make quantitative comparisons between

the three autopilot designs, the standard system perfor-

mance criteria of rise time (TR), settling time (TS) and

percentage overshoot (%MP) were employed.40 Here

the rise time is taken as the time required for the system

response to rise from 10% to 90% of its final value. It

is used to denote the speed of response of a system.

While the settling time is the time required for the sys-

tem response to reach and stay within a specified toler-

ance band of the final value which in this case is taken

as 2%. Settling time is the minimum time in which the

transient phase of the system response is assumed to

have decayed away, therefore, indicating the time at

which the system may function at the new operating

point. Whereas the percentage overshoot is the percent-

age maximum amount a system overshoots its final

value and is used to signify the oscillatory nature and

relative stability of the system.

Additionally, as a measure of accuracy and autopilot

control activity, theMSE of the yaw error and the ACE

were used as performance indices. These may be consid-

ered in their discrete forms as

MSE=
1

Ns

X

Ns

k=1

½x(k)� r(k)�2 ð10Þ

and

ACE=
1

Ns

X

Ns

k=1

½u(k)�2 ð11Þ

where r(k) is the desired output at kth instant (in rad);

x(k) is the actual output at kth instant (in rad); u(k) is

the controller effort at kth instant (in r/min); Ns is the

total number of samples.

From the heading step responses in Figures 8 and

10, Table 1 was compiled. Table 2 compares between

the LCN and NMPC autopilots for different trajec-

tories with respect to MSE and ACE.

From the results presented, the rise time (TR) of the

NMPC autopilot is 169% and settling time (TS) is

approximately 27% more than the LCN. This can be

accounted as the NMPC required computing controller

actions within sampling interval which may not be

optimal.

Figure 10. MPC response to a step change in vehicle heading.
MSE: mean square error.

Figure 11. Vehicle response to a random sequence of course-

changing demands in heading using the NMPC.
MSE: mean square error.

Table 1. Comparisons between the LCN and NMPC for rise

time (TR), settling time (TS) and percentage overshoot (%MP).

Method used TR (s) TS (s) %MP

LCN 13 142 0.902
NMPC 35 181 1.02

LCN: local control network; NMPC: non-linear model predictive

control.

Table 2. Comparisons between the LCN and NMPC

autopilots for different trajectories.

Method used Trajectory MSE (rad2) ACE (r/min)2

LCN Step 0.61017 0.00755
Random 0.10945 0.012812

NMPC Step 1.2826 0.42094
Random 0.20696 0.14224

LCN: local control network; NMPC: non-linear model predictive

control; MSE: mean square error; ACE: average equivalent controller

energy.
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In terms of accuracy MSE(c
e
), the LCN autopilot is

better than those generated by the NMPC scheme. In

addition, as shown in Table 2, the LCN methodology

expends the least amount of controller effort ACE(Eu).

Such an achievement may be considered significant as

Springer is battery powered. Thus, in reality, the LCN

autopilot would save more battery power when control-

ling the vehicle in real-time missions and thereby have a

longer operational range compared to the NMPC.

Discussion and concluding remarks

In the majority of the cases presented, the results

demonstrate that the non-linear LCN autopilot per-

formed better overall than its counterpart designed

with NMPC control architecture. The main advantage

of non-linear LCN approach is in its capability to

deliver lower levels of control activity for a given task.

Thus, the LCN autopilot is more economical with its

power consumption than NMPC thereby endowing

Springer with longer mission durations. From a control

systems engineering standpoint, the LCN approach has

several properties that make it attractive from a con-

troller design perspective. Some of these commendable

properties include the incorporation of transparency,

generalisation of constraints and simplicity of design.

Even so, it is surprising that the LCN approach has

had very limited exposure in the field of marine control

systems design. Indeed, this particular non-linear meth-

odology offers an appealing alternative in the design of

marine autopilots systems.

Marine control system designers still employ both

linear and non-linear approaches in the development of

marine autopilots. Thus, the work reported in this arti-

cle has sought to discover the better non-linear

approach to autopilot design for USVs. Therefore, to

address this quandary, two autopilot designs based on

non-linear LCN and NMPC structures were assessed

and contrasted with each other using standard system

performance criteria and indices. Given the superior

performance of LCN non-linear autopilot, it is baffling

as to why LCN techniques have received very little

attention in marine control system design. It is consid-

ered that these techniques offer a new design frame-

work for the development of non-linear autopilots for

application in USVs and in the general marine sector.

Finally and more specifically, it is concluded that of

the two control schemes scrutinised, the LCN autopilot

is the more appropriate for Springer from a practical

viewpoint in terms of controller energy consumption

which would in reality provide the vehicle with longer

mission durations. This being so, the intention in the

near future is to undertake in full-scale real-time trials

with the LCN autopilot in the control loop.
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