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Abstract: In this paper, non-linear transverse de�ection,

stress and stress concentration factors (SCF) of isotropic

and laminated composite sandwich plate (LCSP) with

and without elliptical cutouts subjected to various trans-

verse loadings in hygrothermal environment are studied.

The basic formulation is based on secant function-based

shear deformation theory (SFSDT) with von-Karman non-

linearity. The governing equation of non-linear de�ection

is derived using C0 �nite element method (FEM) through

minimum potential energy approach. Normalized trans-

verse maximum de�ections (NTMD) along with stress con-

centration factor is determined by using Newton’s Raph-

son method through Gauss point stress extrapolation. In-

�uence of �ber orientations, load parameters, �ber vol-

ume fractions, plate span to thickness ratios, aspect ratios,

thickness of core and face, position of core, boundary con-

ditions, environmental conditions and types of transverse

loading in MATLAB R2015a environment are examined.

The numerical results using present solutionmethodology

are veri�ed with the results available in the literatures.
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Abbreviations List

Vf and Vm �ber and matrix volume fraction

A1ij, Bij, C1ij, Eij, F1ij, Hij, A2ij, C2ij and F2ij
sti�nesses matrices

a, b plate length and breadth along x, y-

direction respectively

h the thickness of the plate

Ef1 and Ef2 the elastic module of �ber material along

the �ber and transverse direction

νf1 and νf2 poission ratios of �ber material along the

�ber and transverse direction

βf1 and βf2 moisture coe�cients of �ber along the �ber

and transverse direction

αf1, αf2 thermal expansion coe�cients of �ber

along x and y-direction

αm and Em thermal expansion coe�cient and modu-

lus of elasticity of matrix material

βm and Vm moisture coe�cient and volume fraction of

matrix material

E1 and E2 modulus of elasticity along longitudinal

and transverse direction of �ber

α11 and α22 thermal expansion coe�cients of lami-

nated reinforced composite along x and y-

direction

ν1 Poisson ratio of composite

α1 coe�cient of thermal expansion of com-

posite material

[Kl] linear bending sti�ness matrix

[Knl] non-linear sti�ness matrices

NE number of elements

NL number of layers in laminates

Ni shape function of the ith node

∨e displacement vector of eth element

u0, v0 and w0 displacements of a point in the mid plane

of the plate

u, v and w displacement of a point along the (x, y, z)

co-ordinate axis
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σij, εij stress vector, Strain vector

θy, θx rotations of normal to the midplane about

the x and y-axis respectively

ϕx, ϕy slopes along x and y-axis

x, y, z cartesian coordinates

{εl}, {εnl} the linear, non-linear strain, and thermal

strain vectors

B geometrical matrix

∆T increment in temperatures

∆C increment in moisture

Ul, Unl the linear, non-linear stain energy respec-

tively

[K] and {F} total sti�ness matrix and force vector, re-

spectively

1 Introduction

The laminated sandwich plates are being utilized in vari-

ous industries with weight sensitive applications such as

space vehicles, transportations, racing cars, boat hulls,

marine and other o�shore structures due to their superior

strength and sti�ness to weight ratio.

To further improve transverse rigidity against out

plane de�ection of the sandwich plate, reinforced compos-

ite laminates can be used in place of isotropic face sheet

materials. Usually, cutouts are provided into these plates

as in rooftop and di�erent structures to permit passage of

light, access to inner parts, venting and to upgrade open-

ness of parts of the structure, fastening with di�erent frag-

ments and once in a while to avoid the resonance and op-

timum performance. These cutouts in the sandwich plate

cause strength deprivation and hence to exploit their ad-

vantages, the suitable mathematical tools that deal with

their infrequent behavior especially when weakened with

cutouts, are imperious. Further e�ect of localised loading

conditions like point load, line load, and patch load etc,

with ecological conditions, such as temperature and mois-

ture have extra criticalness on response of these plates

and plays a signi�cant role in designing for better relia-

bility and performance. Stress concentration factor (SCF)

around elliptical holes plays an important role for failure

and fracture of the structures. The accurate evaluation of

SCF is also helpful to improve optimum performance of

structures.

Lots of research work are available for the bending

analysis of laminated composite and sandwich plate with

cutout. Paul and Rao [1, 2] analyzed laminated compos-

ite sandwich plate with circular cutout subjected to out

plane loadings reveal stresses and SCF. Plate of length

(A) with circular hole od diameter (D) are analyzed by

Jain [3] to investigate the e�ect of ratio (D/A), plate thick-

ness and loading conditions on SCF. Laminated compos-

ite plate with �nite dimensions having multiple cutouts

is considered to investigate the in�uence of stacking se-

quence, distance between cutouts, and number of cutouts

on SCF by XIWU et al. [4]. Rzayyig [5] analyzed in�uence of

position of cutout of rectangular and square plates along

the length and width on SCF, stress and displacement.

Ukadgaonker and Rao [6] done analysis for distribution of

stress around a hole in a plate subjected to in-plane load-

ing and reveal the e�ect of shape of holes, nature of load-

ings and plate geometry. Toubal et al. [7] determined SCF

near hole of carbon/epoxy composite plate experimentally

and veri�ed the outcomeswith that of obtained by Lekhnit-

skii model. Patel and Sharma [8] done parametric study

for failure strength and moment distribution and reveals

the variation of these with ply layup, �ber orientation,

corner radii, materials, loading angle. Composite plates

with and without hole are analysed by Priyadharshani et

al. [9] using FEM and ABAQUS and veri�ed the results

with experiments. Ram and Babu [10] investigated �exural

behaviour of axisymmetric laminated panels using FEM

based higher order shear deformation theory. Chaudhuri

et al. [11] adopted same method for shell with di�erent

boundary conditions having reinforcement along margin

of hole. Ghannadpour and Mehrparvar [12] developed a

new method to determine e�ect of shape of hole, dimen-

sion and position on SCF of laminated composite plates

with di�erent boundary conditions. Zhou et al. [13] predict

damage index for composite plates with hole and veri�ed

the results with experimental testing.

With the rise in applications of composite and sand-

wich plate, a rational analysis is also required for their op-

timum performance and during this course, di�erent the-

ories are developed and utilized by researchers for struc-

tural analysis of laminated composite plate under bend-

ing.

A new type of meshfree technique to discretize the

third-order model of Reddy for orthotropic laminated

plates and to predict the �eld variables very accurately

was presented by Ferreira [14]. To analyze the structure of

laminates with an equal thickness of laminae Ghosh and

Dey [15] had considered four noded rectangular elements

with seven independent variables. Higher-order plate the-

ories are developed for out plane shear and large rota-

tions in transverse bending of shear deformable compos-

ite plate. Cho and Parmerter [16], Putcha and Reddy [17]

and Pandya and Kant [18] had considered all higher-

order terms in formulation for non-linear deformation.

A new non-polynomial generalized non-linear transverse
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shear deformation theorywaspresented and implemented

based on the principle of virtual work for the structural

response of laminated-composite and sandwich plate by

Grover et al. [19, 20] and a number of numerical examples

of composite and sandwich plates for the static and buck-

ling responses were solved. Lal et al. [21] had analyzed to

predict the behavior of the vibratory system of a laminated

composite plate supported by an elastic foundation with

lamina material properties and foundation sti�ness pa-

rameters. A new trigonometric shear deformation theory

which considers transverse shear strains along plate thick-

ness and tangential stress-free boundary conditions was

developed by Mantari et al. [22] which gives better results

for 3D elastic bending for composite laminated and sand-

wich plates. Review of equivalent single layer and layer-

wise laminated plate theories presented by Reddy [23].

Sayyad et al. [24] had developed an analytical solution

for bi-axial bending of isotropic, transversely isotropic,

laminated composite and sandwich plates with transverse

shear and normal e�ects by a sinusoidal shear and nor-

mal deformation theory. A triangular element shear de-

formation theory modeled on Reddy’s higher-order shear

deformation plate theory which is quite better in some

cases but has few complexities with the satisfaction of

inter-element connectivity requirement of the plate the-

ory was presented by Sheikh and Chakrabarti [25]. A new

plate theory was presented by Touratier [26] that accounts

for cosine shear stress distribution and satisfy zero trans-

verse shears at top and bottom of the plate with complex-

ity as of the �rst order but gives better results and does

not use shear correction factor. Failure analysis of thin

laminated plates with even temperature growth by non-

linear �nite element method based on Tsai–Wu failure cri-

terion stresses has done to predict �rst-ply failure temper-

ature by Srikanth and Kumar [27]. Maiti and Sinha [28]

had developed a method based on �nite element analy-

sis to study the response of composite plates under bend-

ing, free vibration, and impact. An overview of available

theories and �nite elements developed for multilayered,

composite plates and shell structure was paid attention

by Carrera [29, 30]. Carrera and Valvano [31] used �nite el-

ement based equivalent single layer, layer-wise and vari-

able kinematic models for thermoelastic static analysis

of laminated shell and accurately de�ned displacement

and stress distribution along thickness of shell by combin-

ing re�ned model to Carrera Uni�ed Formulation (CUF).

They found that CUF is extremely useful in the thermo-

mechanical analysis of composite shells. Carrera et al. [32]

proposed �nite element based new zig-zag power function

depending on shell thickness for linear static stress anal-

ysis of laminated composite shell and carried out inves-

tigation to check e�ciency of the present shell element.

The variable kinematic �eld iswritten by using continuous

piecewise polynomial functions.

Tornabene et al. [33] proposed a mathematical model

for damage analysis through a set of parametric studies in

terms of displacement, stress and strain variation along

thickness of laminated composite and sandwich struc-

tures. Tornabene et al. [34] done analytical and numerical

comparative study of three and two dimensional spherical

and doubly curved shell model in terms of displacements,

stresses and strains of composite and sandwich plates sub-

jected to transverse load. Tornabene et al. [35] usedCarrera

Uni�ed Formulation for free vibration analysis of compos-

ite sandwich plates and doubly-curved shells having vari-

able sti�ness in which �ber orientation in top and bottom

faces are along curvilinear path described by power law, si-

nusoidal, exponential, Gaussian and ellipse-shaped func-

tions.

Composite and sandwich structures are frequently

acted upon by various loading conditions and therefore

the nature of loading is one of the key factors that must

be considered for behavioral analysis of the plate. A pro-

portional study of the sandwich plate with homogeneous

and functionally graded material (FGM) core was carried

out under point, uniformly distributed, patch, line, andhy-

drostatic loading to see the e�ect of FGMcore on stress and

transverse maximum de�ection by Woodward and Kash-

talyan [36].

The composite and sandwich structures are usually

exposed to the ecological conditions during their func-

tioning, therefore the in�uence of parameters like temper-

ature and moisture must be examined for better safety

and performance. Many research works have been done to

demonstrate the e�ect of environmental conditions on re-

sponse analysis of laminated composite plate. Analytical

results based on Chebyshev series for the non-linear �ex-

ural response of hygro-thermo-mechanical loaded elas-

tically supported thick laminated composite rectangular

plates were presented by Upadhyay et al. [37]. Buckling

characteristics of the laminated composite plate under

hygro-thermo-mechanical loading were analyzed with C0

FEM by Kumar et al. [38]. Non-linear static analysis of a

piezoelectric sandwich plate with elastic foundation un-

der hygro-thermo-mechanical loading was presented by

Lal et al. [39] using (SFSDT) and revealed the e�ect of ran-

dom system characteristics with �ber volume fraction, ply

lay-up, geometry, boundary conditions, etc. on the trans-

verse maximum de�ection. Static analysis of a laminated

sandwich plate with a soft compressible core was done

by a proposed higher-order zig-zag theory. It is assumed

that plane displacement varies cubically for both core
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and face sheets and transverse displacement as quadrat-

ically within the core but remains constant through the

face by Pandit et al. [40]. Hadjiloizi et al. [41, 42] devel-

oped a micromechanical model and analyze smart com-

posite piezomagnato-thermoelastic thinplatehavingvary-

ing thickness using three-dimensional formulation in Part-

I [41]. The e�ective elastic, piezo-electro-magnetic, dielec-

tric permittivity, mechanical stress, electric displacement

and magnetic induction are determined. While in Part-II

[42] of their research work, the theory is presented using

examples refer to thin laminatedmagnetoelectric plates of

constant thickness and smart piezoelectric piezomagnetic

composite plates.

From the literature survey, it is found that few works

have been done by researchers on the analysis of lami-

nated composite and sandwich plate with various cutout

shape, but yet the e�ect of cutout dimension with various

shapes on the transverse maximum de�ection and stress

of the LCSP is needed to be explored. Static analysis for

bending of a sandwich plate with few certain types of load-

ing (UDL, SSL) was reported but still limited work has

been done with other types of loading like point load, line

load, hydrostatic load and patch load. To the best of au-

thor’s knowledge, e�ect of various parameters like stack-

ing sequence, �ber orientation, loading conditions, span

to plate thickness ratio, position of core, aspect ratio, �ber

volume fraction, boundary conditions and cutout dimen-

sions on the normalized transverse maximum de�ection

of a LCSP with elliptical cutout under induced tempera-

ture and moisture conditions were not investigated. In ad-

dition to this, in�uence of thickness of face sheet and core

of sandwich plate along with cutout is not addressed.

In the current analysis NTMD, stresses and SCF for

LCSPwith di�erent elliptical cutouts under various type of

transverse loading are investigated. The e�ect of stacking

sequence, �ber orientation, loading conditions, length to

plate thickness ratio, position of core, aspect ratio, thick-

ness of face sheet and core, �ber volume fraction, bound-

ary conditions, environmental conditions and cutout di-

mensions on NTMD, stresses and SCF are examined.

2 Formulation

The LCSP of span a×b and height h as shown in Figure 1(a)

is consider under bending. The thickness of the plate is di-

vided into a thickness of core (hc) and face sheet (hf). The

face is assumed as a laminated composite with stacking

angle θk, where k denotes layer of plates. The sandwich

plate has an elliptical hole having major and minor axes

diameters indicated by ma and mi respectively.

2.1 Displacement �elds

Modi�ed secant function shear deformation theory

(SFSDT) based displacement �eld is proposed in this paper

due to its high accuracy and less time taken in computa-

tion with the fewer unknown as compared to higher-order

shear deformation theory. The displacement �eld on the

basis of SFSDT at any point along principal axis direction

(a)

          

 

m
i 
/2 

 

m
a 
/2 

 
(b)

Figure 1: Laminated sandwich square plate with (a) elliptical cutout; (b) quarter part of elliptical cutout plate with FEM mesh
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can be given as [21].

u = u0 − z
∂w0

∂x
+ (f (z) + zH0)θx; (1)

v = v0 − z
∂w0

∂y
+ (f (z) + zH0)θy; w = w0;

Where, f (z) = z sec( rz
h
) is the shear strain function for

SFSDT and H0 = −
sec( r2 )

1+ r
2 tan(

r
2 )
is a constant and its value can

be determined by using zero transverse boundary condi-

tions at outer surfaces. The value of transverse shear stress

parameter ‘r’ can be determined by the reversemethod. As

Eq. (1) contains ∂w0

∂x
and ∂w0

∂y
therefore large computational

e�ort is required to satisfy C1 continuity. To avoid this dif-

�culty, two additional degrees of freedom ϕx = w0,x and

ϕy = w0,y are introduced. Then new displacement �elds

and displacement vector can be written as

u = u0 − zϕx + (f (z) + zH0)θx; (2)

v = v0 − zϕy + (f (z) + zH0)θy; w = w0

and displacement vector can be written as

{∨} =
(

u0 v0 w0 ϕy ϕx θy θx

)T
(3)

2.2 Strain displacement relations

When a large load is applied, structural sti�ness changes

due to large deformation and therefore geometrical nonlin-

earity must be considered. Von-Karman nonlinearity has

considered in the present paper with large displacement

assumption. The strain vectors for the displacement of

laminae can be given as [21].

{ε} = {ε0} + {εnl} (4)

Where {ε0} and {εnl} are linear and nonlinear strains re-

spectively.

2.3 Properties of face sheet material

The micromechanical approach is utilized in the current

paper to decide the material characteristics of the rein-

forced composite face sheet of LCSP at induced ecological

conditions. In�uence of temperature on matrix material is

more signi�cant hence the same on the composite mate-

rial can be referred to as that of the matrix material. The

properties retention ratio for the matrix is given as [39]

Rm =

[

tw − t

td − tenv

]
1
2

(5)

Where, t is the temperature at which properties of a com-

posite laminate is to be estimated, td, tevn and tw are glass

transition temperature for dry condition, reference envi-

ronmental temperature and glass transition temperature

at wet conditions respectively.

Using the micromechanical approach, the elastic con-

stants of reinforced composite face sheet can be given

as [39]

E11 = Ef1Vf + RmEmVm (6a)

E22 =
(

1 −
√

Vf

)

RmEm +
RmEm

√

Vf

1 −
√

Vf

(

1 − RmEm
Ef2

) (6b)

G12 =
(

1 −
√

Vf

)

RmGm +
RmGm

√

Vf

1 −
√

Vf

(

1 − RmGm

Gf12

) (6c)

ν12 = νf12Vf + νmVm (6d)

Where ‘f ’ and ‘m’ are subscript used for �ber and matrix

material of composite face. The matrix thermal property

can be estimated with a thermal characteristics retention

ratio given as

Fth =
1

Fm
(7)

The thermal expansion coe�cients using a micromechan-

ical approach can be written as Kumar et al. [9]

α11 =
Ef1Vf αf1 + FmEmVmFthαm

Ef1Vf + FmEmVm
(8)

α22 =
(

1 + νf12
)

Vf αf2 + (1 + νm)VmFthαm − ν12α11 (9)

2.4 Constitutive equation

The constitutive equation for kth orthotropic lamina is a re-

lation among stress, strain, and elastic constants and can

be written as [39]

[σ] =
[

Qk

]

{ε} (10)

Where
[

Qk

]

= [Qc] for k=3 (de�ned in Appendix A-3) and
[

Qk

]

=
[

Qf

]

for k=1,2,4 and 5 (calculated using microme-

chanical approach) are reduced constitutive elastic sti�-

nessmatrices for core and face sheetmaterials respectively

in case of �ve-layer LCSP.
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2.5 Stress concentration factor (SCF)

Plate with geometrical discontinuities like hole and

notches is generally used as structural member. Any such

irregularity in a structural member in�uences the stress

distribution in the nearby area and acts as stress raiser.

The ratio of stress at a point on the circumference of cutout

to the stress at the same point without cutout is known as

SCF and can be given as

SCF =
Stress at a pointonthecircumferenceofcutout

stress at the samepointwithoutcutout

2.6 Strain energy of LCSP

The strain energy of LCSP can be expressed as

U =
1

2

NL
∑

k=1

∫

V

(

(ε0 + εnl)
T [

Qk

]

(ε0 + εnl)
)

dV (11)

=
1

2

NL
∑

k=1

∫

V

(ε0)
T
[

Qk

]

(ε0) dV

+
1

2

NL
∑

k=1





∫

V

(ε0)
T
[

Qk

]

(εnl) +

∫

V

(εnl)
T
[

Qk

]

(ε0)

+

∫

V

(εnl)
T
[

Qk

]

(εnl)



 dV

Where, k denotes layer of LCSP.

On substituting displacement vector and kinematic

matrix, the expression for strain energy can be written as

U =
1

2

∫

A

(

∨TLTDL∨
)

dA (12)

+
1

2

∫

A

(

∨TLTD2Aϕ + ATϕTD3 ∨ L + ATϕTD4ϕ
)

dA

Where [L] is kinematic matrix (given in Appendix A-2), D

is system linear elastic sti�ness matrix and D2, D3 and D4

are nonlinear elastic sti�ness matrices of system de�ned

in Appendix A-4.

2.7 Finite element method-based solution

FEM is an e�cient technique to �nd an approximate solu-

tion for bending problem with complex boundary condi-

tions and geometry. The displacement vector can be writ-

ten as

{∨} =

NN
∑

i=1

[Ni] {∨i} , (13)

Where i denotes node number and N i is shape function at

ith node. The strain displacement matrix [B] for the plate

can be expressed as

[B] = [L] [Ni] with [B] = [B1, B2, .., BNN ] (14)

and [Bi] = [L]Ni (i = 1, ..., NN)

Using �nite element model modi�ed strain energy can be

expressed as

U =

NE
∑

i=1

(

∨TK0∨
)

(15)

+

NE
∑

i=1

{(

∨TK1∨
)

+
(

∨TK2∨
)

+
(

∨TK3∨
)}

Where K0 =
NL
∑

k=1

1
2

∫

A

BTD B dA, is a summation of linear el-

ement sti�ness matrix for di�erent layers of the plate and

K1 =
1
2

NL
∑

k=1

∫

A

BTD3{A}{ϕ}dxdy,

K2 =
1
2

NL
∑

k=1

∫

A

{A}T{ϕ}TD4Bdxdy

and K3 = 1
2

NL
∑

k=1

∫

A

{ϕ}T{A}TD5{A}{ϕ} dxdy are the non-

linear element sti�ness matrix.

Potential energy (Ω) due to work done by mechanical

loading can be given as

Ω =

NE
∑

i=1

{∨}T F, (16)

Where F = (0 0 qo 0 0 0)T is force vector and q0

is input load parameter.

Using Gauss point integration, bending sti�ness ma-

trix can be determined by transforming elemental coordi-

nate to that of Gauss quadrature element.

2.8 Governing equation for bending

The governing equation for the nonlinear static study can

be expressed by utilizing the principle of virtual displace-

ment as

∂
∏

∂∨T
= 0 (17)

Where
∏

= U + Ω (18)

The governing equation can be written as

[K] {∨} = [F] (19)
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Where [F] is the external force vector and [K] is overall sti�-

ness matrix, further written as

[K] = {Kl + Knl} (20)

Where [Kl] and [Knl] are overall linear and nonlinear sti�-

ness matrices.

2.9 Solution approach

Due to less computational e�ort and fast convergence the

Newton Raphsonmethod is utilized to solve the governing

equation of bending (equation-19) as

[K] ({∨}) {∨} = [F] (21)

Now residual vector for the above equation is written as

R{∨} = K({∨}){∨} − {F} = 0 (22)

By assuming initial solution residual vector can be ex-

panded using Taylor’s series and after neglecting higher

order terms starting from second order equation (22) can

be given as

KT({∨}
i−1)δ{∨} = −R({∨}i−1) (23)

= {F*} − K({∨}i−1){∨}i−1

Where, [KT({∨}
i−1)] =

(

∂R({∨})
∂{∨}

)i−1
is tangent sti�ness

matrix.

The new displacement vector for ith iteration can be

expressed as

{∨}i = {∨}i−1 − [KT({∨}
i−1]−1R({∨}i−1 (24)

This process is continued till the two consecutives itera-

tive values approaches less than a predetermined toler-

ance value.

After determining de�ection, post-processing steps of

FEM can be used to compute Gauss point stresses at any

node (i) of the element using Eq. (10), and Eq. (14) is ex-

pressed as

[σi]
e =

[

Qk

]

[Bi] {∨i}
e (25)

The strain displacement matrix [B] contains derivatives of

interpolationwith respect to Gauss element coordinates of

the nodal point at which stress is to be evaluated in the

element. This process is repeated in a loop for all the ele-

ments of LCSP andGauss point stresses are computed. Cor-

responding stresses at element nodes σi,ep can be extrap-

olated by using Gauss point stress and shape function as

{

σi,ep
}e

=
[

N′
i

]

{σi}
e (26)

for i = 1, 2, 3, 4, 5, 6, 7, 8 and 9

Where [N′
i] are shape functions with Gauss element coordi-

nates replaced with natural coordinates using proportion-

ality factors.

3 Results and discussion

By using proposed formulation and solution approach, an

FEM based MATLAB code is generated for bending anal-

ysis of LCSP with and without elliptical hole. The plate

is discretized using nine noded iso-parametric quadrilat-

eral element with seven degrees of freedom at each node.

TheNTMDand stresses are calculated for various input pa-

rameters and outcomes are compared to published results.

The linear values are written in brackets, unless otherwise

stated.

Stress concentration factors for σx and σy are deter-

mined for various cutouts of LCSP at top of �rst layer and

SCF for τxy is evaluated at bottom of the �rst layer at a

point on the circumference of cutout. The e�ects of sup-

port conditions, �ber orientation, ecological conditions

and span to thickness ratio are examined. The cutouts for

the present work are considered as

ma = 0.2, mi = 0.1 as cutout case 1, ma = 0.4, mi = 0.1 as

cutout case 2

ma = 0.6, mi = 0.1 as cutout case 3, ma = 0.1, mi = 0.2 as

cutout case 4

ma = 0.1, mi = 0.4 as cutout case 5, ma = 0.1, mi = 0.6 as

cutout case 6

and ma = 0.5, mi = 0.5 as cutout case 7

While applying the above boundary conditions for a

plate with cutout, an equivalent quarter portion of the

plate is considered. Finite element mesh of quarter por-

tion of the plate is shown in Figure 1(b). No constraints on

the arc of cutoutwere consideredwhile applyingboundary

conditions.

Sandwich plates are usually acted upon by di�erent

types of loading during their functioning in various appli-

cations therefore many types of loading (UDL, SSL, Point

load, hydrostatic load, patch load and line load) has been

considered here in this paper to estimate transverse de�ec-

tion.

Types of loading shown in Figure 3(a-f) and their nor-

malization used for current results can be written as

Uniformly distributed load (UDL):

qudl = q0(xc × yc)E2(h/a)
4
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(a) (b)

(c) (d)

Figure 2: Boundary condition of full plate with hole and equivalent quarter portion of the plate (a) SSSS1; (b) SSSS2; (c) CCCC; (d) CSCS

 (a)  (b)  (c)

(d)  (e)  (f)

Figure 3: E�ect of various types of loading on the sandwich plate for (a) uniformly distributed loading; (b) sinusoidal loading; (c) hydrostatic

loading; (d) line loading; (e) point loadings; (f) patch loadings
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Sinusoidal load (SSL):

qssl = q0 sin(πxc/a) sin(πyc/a)E2(h/a)
4

Point load (PL):

qp = q0δ(xc − x0c)δ(yc − y0c)

Hydrostatic load (HL):

qhyd = q0 (1/2)(xc × yc)E2(h/a)
4

Line load (LL):

qline load = q0δ(xc − x0c)y0c

Patch load (PaL):

qpatch =
(

16
4

)

q0(xc × yc)E2(h/a)
4

Where q0 is input load parameter, q with subscript is ap-

plied load for corresponding loading conditions, E2(h/a)
4

is normalization factor, xc and yc are coordinates along x-

and y-direction of the plate and δ(xc− x0c) and δ(yc− y0c)

are midpoint coordinates at which point load is applied.

The following normalization with di�erent loading

conditions are used for the present paper.

For UDL, PL, HL, PL and PaL:

W0 = wmax/h and

[σx , σy , τxy , τyz , τzx] =
1

q0
[σ0x , σ0y , σ0xy , τ0yz , τ0xz]

For SSL:

W0 = wmax(100E2h
3
/b4q0) and

[σx , σy , τxy , τyz , τzx]

=
h

bq0
[
h

b
σ0x ,

h

b
σ0y ,

h

b
σ0xy , τ0yz , τ0xz]

where, W0 and wmax are normalized and maximum trans-

verse de�ections respectively. The parameters σx, σy, τxy,

τyz, and τzx are the normalized stresses for corresponding

to stresses σ0x, σ0y, σ0xy, τ0yz and τ0xz.

For the computation of results in the present work,

temperature-dependent properties of reinforced compos-

ite material are considered and estimated with a microme-

chanical approach. The reference temperature and mois-

ture are assumed as 21∘C and 0% respectively. Following

material properties are taken to generate some useful re-

sults.

Material-I (for micromechanical property)

Ef1 = 220 × 109Pa, Ef2 = 13.79 × 109Pa, νf12 = 0.2,

αf1 = 0.99 × 10−6m/
∘C, αf2 = 10.08 × 10−6m/

∘C,

νf12 = 0.25, Em = 3.45 × 109Pa, νm = 0.35,

αm = 72 × 10−6m/
∘C, βm = 0.33mm/% RH ,

βf1 = βf2 = 0mm/% RH,

LCSP with face sheet as orthotropic material and core as

isotropic material is considered. Properties of the core ma-

terial (Qc) is given in Appendix A-3 and that of face sheet

(Material -I) are calculated with the micromechanical ap-

proach as discussed in section 2.3.

Table 1 reveals convergence study for clamped edges

of laminated composite square plate (0/45/−45/90) having

a/h = 10 for di�erent mesh size under UDL of q0 = 100. It

is observed that the NTMD converges for 5 × 5 mesh size.

Hence the bending analysis of the LCSP is done by consid-

ering 16 elements.

Figure 4(a-b) shows validation for linear and non-

linear NTMD of composite plate subjected to uniform

pressure having a/h = 10, with stacking sequence

(0/45/−45/90). It is clear from the�gures that the present re-

sults are in good agreement with the published results [17]

for both simply supported and clamped edges conditions.

Table 1: Convergence study for transverse central deflection in

bending of laminated composite sandwich plate

Mesh density Present result (W0) Reddy [17]

a/h = 10

0.3000

3×3 0.4068

4×4 0.3304

5×5 0.3108

6×6 0.3347

7×7 0.3358

Figure 5(a) shows validation for ratio of NTMD of solid

plate to that of plate having circular cutout with diameter

of hole (D) to length of plate (a) ratio (D/a) with published

result [3] for CSCS boundary conditions. Figure 5(b) repre-

sents the variation of SCF with di�erent cutout cases.

It can be observed that the present results are in good

agreement with the published results. From Figure 5(b)

SCF for σy shows maximum variation with cutout cases

and τxz shows least variation with same cases of cutouts.

Figure 6(a) shows a graphical representation of NTMD

throughout the simply supported (S1) LCSP (0/90/C/90/0)

plate with a/h = 10 under the UDL of q0 = 10. There is a

maximum de�ection in the center of the plate considered.

The NTMD along the diagonal (along cutout) of the quar-

ter part of the plate is shown in Figure 6(b). It is clearly ob-

served from the �gure that, as wemove towards the cutout

from the opposite corner the NTMD get increases due to a

reduction in constrains along the edge of the cutout. With

the increment in cutout dimension plate gets weaken due
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(a) (b)

Figure 4: Validation for transverse maximum deflection of composite plate subjected to uniform pressure for a/h = 10, with stacking se-

quence 0/45/−45/90 for (a) simply supported (SSSS2) and (b) clamped edges

(a) (b)

Figure 5: (a) E�ect of D/A ratio onW0/W*
0 for orthotropic plate with CSCS boundary condition. (b) E�ect of cutout on SCF for LCSP in simply

supported conditions

to which the NTMD increases. Plate with circular hole (ma

= mi = 0.5) de�ects maximum due to a larger reduction in

the resisting area of the plate.

Figure 7(a-b) depicts the e�ect of cutout dimen-

sions with �ber volume fraction on linear and non-linear

NTMD of LCSP (45/−45/C/−45/45) with its all edges simply-

supported (S2) for a/h = 20, ∆T = 0, ∆C = 0 under the ac-

tion of transverse UDL of q0 = 100. It can be clearly ob-

served that LCSP has a minimum transverse de�ection for

0.6 �ber volume fraction. The plate without any cutout de-

�ects minimum.

The plate gets weakened with cutout and increasing

cutout dimension; therefore, de�ection increases as the

whole load is acting upon the smaller area. For cutout as

ma = 0.1 and mi = 0.6 the plate shows maximum NTMD.

Figure 8(a-b) shows the in�uence of cutout dimen-

sions with a transverse UDL on the linear and non-linear

NTMD of simply supported (S2) LCSP (0/90/C/90/0), for

a/h = 10, Vf = 0.5, ∆T = 0, and ∆C = 0. It can be clearly

observed from the �gure that, NTMD increases with in-

crease in load. Plate without cutout shows more rigidity

and minimum increment in de�ection with an increase in

load while plate with circular cutout and elliptical hole

(ma = 0.1, mi = 0.6) show maximum increment in de�ec-

tion with the rise in load and gets de�ected the most (ap-

prox. 40% more than plate without cutout). As cutout di-

mensions increase, the de�ection increases due to the in-
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(a) (b)

Figure 6: Transverse deflection contour for (a) the plate (b) along diagonal (along cutout) of the plate for di�erent cutout cases

(a) (b)

Figure 7: (a) Linear and (b) nonlinear, variation of NTMD with �ber volume fraction

crease of load intensity on the remaining reduced exposed

area of the plate.

Figure 9(a-b) illustrates the e�ect of cutout dimen-

sions with plate aspect ratio on the linear and non-linear

NTMD of simply supported (S2) laminated (0/90/C/90/0)

sandwich square plate with a/h=15, V f = 0.5, ∆T = 0, and

∆C = 0 when acted upon by transverse UDL of q0 = 25.

It is observed from the Figure 9(a-b) that LCSP with as-

pect ratio, b/a = 1 has least NTMD because square plates

have more strength than equivalent rectangular plate un-

der same loading condition. Increase in aspect ratio from

1 to 1.5 de�ection increases severely, after b/a = 1.5 less in-

crement is observed.

Linear and non-linear variation of NTMD with cutout

dimensions and plate span to thickness ratio (a/h) for

square LCSP (0/90/C/90/0) with clamped edges under q0

= 50, having Vf = 0.5, ∆T = 0, and ∆C = 0 are shown in Fig-

ures 10(a) and 10(b), respectively. It is observed from these

�gures that with increasing the plate thickness ratio, the

NTMDdecreases because in thick plate, shear deformation

and transverse elasticity are more pronounced. Plate with

circular hole showsmaximumde�ection due to the largest

cutout area and solid plate without any cutout de�ect less.

The �gure shows that with a rise in span to thickness ra-

tio (a/h) the NTMD lower while the e�ect of an increase in

cutout dimensions on the same is reverse as resisting area

decrease with increasing cutout dimension.

The NTMD for lower span to thickness ratio is higher

than that of higher span to thickness ratio due to the same

reason that, for thicker plate, transverse �exibility and

shear deformation are higher. The compressibility of core
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(a) (b)

Figure 8: (a) Linear and (b) nonlinear variation of NTMD with loading of LCSP having elliptical cutout

(a) (b)

Figure 9: (a) linear and (b) nonlinear variation of NTMD with aspect ratio of plate with cutout

also plays a signi�cant role due to the large thickness por-

tion (0.8h) of total plate thickness.

Figure 11 shows a variation of NTMD with loading

conditions for square simply supported composite plate

(0/45/−45/90) having b/a = 1, a/h = 10. Point or concen-

trated load showsmaximum de�ection, approximately 2.5

times more than UDL due to action on small area. There-

fore, care must be taken while applying point load on

the structure to avoid unwanted deformation and failure.

Patch load is the second most severe loading condition

and line load shows minimum de�ection while SSL and

HL show 3 times more NTMD than line loading.

Figure 12 depicts the trend variation of in-plane nor-

mal stress (σx) along the thickness of simply supported

(SSSS1) LCSP (0/C/0) of a/h = 10, under sinusoidal load-

ing with and without cutout. The distribution of out plane

shear stress (τxz)along the transversedirectionof theplate

has been compared forwith andwithout cutout alongwith

cutout dimensions as shown in Figure 13(a-b) for the same

boundary and loading conditions.

Table 2 shows that present results are in well favor

of published results. The nonlinear values are written in

brackets. With the increase inmultiplying factor plate gets

sti�er and hence shows less de�ection.

Table 3 demonstrates the e�ect of stacking sequence

and the position of core with cutouts dimension on the

linear and nonlinear (in brackets) NTMD of simply sup-

ported (S2) edges LCSP and a composite plate of a/h =

10, Vf = 0.5, ∆T = 0, and ∆C = 0 acted upon by trans-

verse UDL of q0 = 100. Linear values are shown in the

bracket. It is observed that there is very little e�ect on

transverse de�ection due to a change in stacking se-
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(a) (b)

Figure 10: (a) Linear and (b) nonlinear variation of NTMD with plate span to thickness ratio

Figure 11: Variation of NTMD of LCSP under various loading condi-

tions

quence from symmetric to antisymmetric (0/90/C/90/0)

to (0/90/C/0/90), while the signi�cant di�erence in trans-

verse de�ection has been observed with variation in core

position (0/C/90/90/0) to (0/90/0/C/90). Laminated com-

posite sandwich plate (LCSP) with circular hole shows

maximum de�ection about 39% more than plate without

cutout. The NTMD increases with an increase inmajor and

minor axis radii of elliptical cutout due to the same rea-

son as a decrease in the area upon which load acts re-

duces. Sandwich plate (0/C/90/90/0) shows lower de�ec-

tion than composite (0/90/90/0) plate because sandwich

panels have higher transverse rigidity.

Table 4 shows the e�ect of cutouts dimension with a

thickness of face sheet and the core of simply supported

(S2) LCSP with stacking sequence (45/−45/C/45/−45) and

a/h = 10, Vf = 0.5, ∆T = 0, and ∆C = 0 on NTMD under uni-

Figure 12: Variation of σx for LCSP having di�erent cutouts

formly distributed loadof q0= 100. It is clear from the table

that, with an increase of face thickness (hf ), the de�ection

decreases. It is because of the increase in the thickness of

sti�er material (face or skin). With the increase of major

and minor axis radii of the elliptical hole, de�ection in-

creases due to decrease in resisting area to the load. Plate

without cutout shows minimum de�ection and weakened

with cutout. It is interesting that with just doubling the

face sheet thickness the de�ection gets reduced by 32%.

Table 5 reveals the in�uence of �ber angle with cutout

dimensions on NTMD of simply supported (S2) LCSP hav-

ing a/h = 20, Vf = 0.5, ∆T = 0, and ∆C = 0 under the ac-

tion of UDL of magnitude q0 = 100. It is clear from the

table that the stacking sequence has a signi�cant e�ect

on NTMD. The de�ection decreases with increase in �ber

angle along principle material direction up to 45∘ after
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



(a) 



=0.5, ΔT=0, and ΔC=0 ac

(a) (b)

Figure 13: (a) and (b) distribution and comparison of τxz along the thickness of LCSP having di�erent cutout

Table 2: Validation study for square sandwich plate (0/C/0) of

a/h=10 with simply supported edges under uniform pressure

R Source W0

5

Present 257.24 (153.081)

Exact 258.97

Ferreira [14] 258.74

Pandya and Kant [18] 258.74

Mantari et al. [22] 256.706

10

Present 159.01 (89.814)

Exact 159.38

Ferreira [14] 159.402

Pandya and Kant [18] 152.33

Mantari et al. [22] 155.498

15

Present 121.81 (63.614)

Exact 121.72

Ferreira [14] 121.821

Pandya and Kant [18] 110.43

Mantari et al. [22] 115.919

that the NTMD increases with further increment in �ber

angle. Therefore, it is clear that laminates have highest

NTMD with 45∘ �ber angles. As �ber angle changes from

(0/0/C/0/) to (30/30/C/30/30) NTMD reduced to 33% with

further reduction in the �ber angle to (45/45/C/45/45) the

de�ection reduced to 42% as compared to (0/0/C/0/0).

Table 6 shows the variation of NTMD with various

support conditions and cutout dimension for laminated

[45/−45/C/45/−45] sandwich square plate with a/h=10, Vf

= 0.5, ∆T = 0 and ∆C = 0 under the action of transverse

UDL of magnitude q0 = 50. The linear values are bracket.

The LCSP shows less de�ection (11% less) for SSSS (1)

than SSSS (2) due to having more constrains. With all

edges clamped plate shows the least de�ection, about 27%

less than a plate with SSSS(S1) boundary condition. With

the increase in major and minor axis radii de�ection in-

creases. It is clear from the table that platewith its all edges

clamped is more stable.

Table 7 shows linear and nonlinear (in brackets)

variation of NTMD with cutout dimension and environ-

mental conditions for simply supported (S2) laminated

(0/90/C/90/0) sandwich square plate with a/h = 50 and Vf

= 0.5 when UDL of q0 = 50 is applied transversally. The

NTMD increases with the increase of ∆T due to weaken

the intermolecular bonding force. With the increment in

cutout dimension NTMD increases. There is a negligible ef-

fect of ∆C on the de�ection while temperature has a signif-

icant in�uence on the same. With the increment in mois-

ture from ∆C = 0.1 to ∆C = 0.2, there is very less 0.12% in-

crement in NTMDwhile increasing temperature from ∆T =

100 to ∆T = 150 the NTMD increases 3% which is far more

than that due to moisture.

Table 8 showsvalidationofNTMD for di�erent loading

conditions on square simply supported isotropic plate for

a/h = 10 with published results [17]. Present results are in

great agreement with published one for UDL, SSL, HL and

LL while satisfactory in case of point loading condition.

Table 9 demonstrates the variation of NTMDwith load-

ing conditions and cutout dimension for laminated com-

posite sandwich square plate (0/90/C/90/0) with clamped

edges having a/h=10 acted upon by an UDL of magnitude

q0= 50. There ismaximumde�ectionwhen thewhole load

is concentrated to a point and minimum for load acted

along a line. It is clear from the table that, the plate isweak-

ened with cutout and NTMD increase with the increase in
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Table 3: Variation of transverse central deflection of simply supported (S2) LCSP and composite plate with stacking sequences and cutouts

dimensions

Cutouts dimension W0

0/90/C/90/0 0/90/C/0/90 0/C/90/90/0 0/90/0/C/90 0/90/90/0

ma = 0.2

mi = 0.1

1.447

(1.981)

1.400

(1.920)

0.867

(1.054)

1.854

(3.550)

0.991

(1.178)

ma = 0.4

mi = 0.1

1.686

(2.229)

1.633

(2.168)

0.991

(1.176)

2.046

(3.613)

1.175

(1.361)

ma = 0.6

mi = 0.1

1.606

(2.251)

1.561

(2.209)

1.018

(1.295)

2.101

(4.992)

1.176

(1.380)

ma = 0.1

mi = 0.2

1.463

(2.062)

1.415

(1.995)

0.880

(1.088)

1.824

(3.641)

1.001

(1.236)

ma = 0.1

mi = 0.4

1.660

(2.414)

1.585

(2.303)

1.098

(1.551)

1.877

(3.764)

1.458

(2.026)

ma = 0.1

mi = 0.6

2.056

(3.726)

1.961

(3.468)

1.098

(1.551)

2.100

(4.107)

1.829

(3.772)

ma = 0.5

mi = 0.5

1.898

(3.703)

1.833

(3.555)

1.136

(1.872)

2.103

(4.236)

1.528

(2.869)

Without cutout 1.358

(1.900)

1.321

(1.842)

0.842

(1.039)

1.757

(3.501)

0.913

(1.118)

Table 4: E�ect of cutout dimensions with thickness of face and core on NTMD of simply supported (S2) laminated sandwich square plate

(45/−45/C/45/−45)

Cutouts dimension W0

hf = 0.05h,

hc = 0.8h

hf = 0.1h,

hc = 0.6h

hf = 0.15h,

hc = 0.4h

hf = 0.2h,

hc =0.2h

ma = 0.2

mi = 0.1

1.049

(1.355)

0.702

(0.833)

0.568

(0.662)

0.506

(0.597)

ma = 0.4

mi = 0.1

1.141

(1.465)

0.769

(0.900)

0.626

(0.716)

0.562

(0.646)

ma = 0.6

mi = 0.1

1.208

(1.571)

0.820

(0.965)

0.671

(0.769)

0.605

(0.694)

ma = 0.1

mi = 0.2

1.111

(1.741)

0.778

(1.068)

0.568

(0.662)

0.581

(0.766)

ma = 0.1

mi = 0.4

1.202

(1.687)

0.828

(1.036)

0.682

(0.825)

0.615

(0.744)

ma = 0.1

mi = 0.6

1.232

(1.642)

0.843

(1.009)

0.691

(0.804)

0.624

(0.726)

ma = 0.5

mi = 0.5

0.970

(1.444)

0.667

(0.888)

0.549

(0.709)

0.493

(0.644)

Without cutout 1.023

(1.489)

0.631

(0.876)

0.501

(0.632)

0.475

(0.502)

cutout dimension with 13% as compared to the plate with-

out any cutout. Point load is almost 2.5 and 16 times sever

than UDL and line load, respectively. Therefore, care must

be taken for the structure acted upon by point load. Patch

load is applied on the four, central element (except ele-

ment adjacent to boundary of the plate). The whole UDL

is concentrated on these four elements which causes sec-

ond most severe condition.

Table 10 represents the impact of cutout dimensions

with various stresses the NTMD of simply supported (S2)
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Table 5: E�ect of stacking sequence with cutout dimensions on simply supported (S2) laminated sandwich square plate

Cutouts dimension W0

0/0/C/0/0 30/30/C/30/30 45/45/C/45/45 60/60/C/60/60 90/90/C/90/90

ma = 0.2

mi = 0.1

1.591

(1.773)

1.055

(1.232)

0.907

(1.063)

0.9339

(1.083)

1.176

(1.358)

ma = 0.4

mi = 0.1

1.910

(2.127)

1.137

(1.300)

1.009

(1.157)

0.974

(1.1016)

1.295

(1.751)

ma = 0.6

mi = 0.1

1.876

(2.120)

1.235

(1.467)

1.176

(1.503)

1.132

(1.899)

2.081

(3.739)

ma = 0.1

mi = 0.2

1.877

(2.122)

1.207

(1.344)

0.924

(1.106)

0.930

(1.098)

1.192

(1.387)

ma = 0.1

mi = 0.4

3.243

(4.673)

2.271

(3.123)

1.787

(2.315)

1.287

(1.552)

1.213

(1.422)

ma = 0.1

mi = 0.6

3.771

(8.833)

2.843

(6.020)

2.286

(4.438)

1.874

(3.047)

1.219

(1.858)

ma = 0.5

mi = 0.5

2.674

(5.333)

2.249

(3.735)

1.907

(3.073)

1.441

(2.233)

1.942

(3.877)

Without cutout 1.361

(1.575)

1.025

(1.210)

0.888

(1.053)

0.868

(1.025)

1.167

(1.346)

Table 6: E�ect cutout dimensions with various support conditions on the NTMD of laminated (45/−45/C/45/−45) sandwich square plate

Cutouts dimension W0

SSSS (2) SSSS (1) CSCS CCCC

ma = 0.2

mi = 0.1

0.679

(0.746)

0.571

(0.746)

0.278

(0.310)

0.226

(0.242)

ma = 0.4

mi = 0.1

0.774

(0.862)

0.630

(0.862)

0.261

(0.291)

0.206

(0.218)

ma = 0.6

mi = 0.1

0.822

(0.969)

0.636

(0.969)

0.344

(0.463)

0.245

(0.286)

ma = 0.1

mi = 0.2

0.742

(0.819)

0.644

(0.819)

0.286

(0.322)

0.237

(0.256)

ma = 0.1

mi = 0.4

1.208

(1.432)

0.957

(1.432)

0.323

(0.364)

0.289

(0.318)

ma = 0.1

mi = 0.6

1.551

(2.216)

1.137

(2.216)

0.526

(0.637)

0.458

(0.607)

ma = 0.5

mi = 0.5

1.098

(1.466)

0.805

(1.466)

0.480

(0.643)

0.412

(0.518)

Without cutout 0.627

(0.692)

0.540

(0.692)

0.278

(0.311)

0.227

(0.244)

LCSP (0/90/C/90/0) under SSL with q0 = 100, for a/h = 10

by considering micromechanical approach for face sheet

material property with Material-I. It can be observed from

the table that with cutout dimensions NTMD and stresses

vary severely. For a plate with an elliptical hole, as ma-

jor and minor axis radii of the hole increases de�ection

and stresses increases. NTMD of a plate without cutout in-

creases by 20% when an elliptical hole ofma = 0.2 andmi

= 0.1 is made in the center of the plate and then drastically

increased by approximately 10 times of that of the plate

without any cutout. This is due to the severity in the cutout

edge which has no constrains of boundary conditions.
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Table 7: E�ect cutout dimensions with environmental condition on the central deflection of simply supported (S2) laminated (0/90/C/90/0)

sandwich square plate

Cutouts dimension W0

∆T = 0

∆C = 0

∆T = 100,

∆C = 0.1

∆T = 150,

∆C = 0.1

∆T = 100,

∆C = 0.2

∆T = 150,

∆C = 0.2

ma = 0.2

mi = 0.1

0.4964

(0.5158)

0.5173

(0.5385)

0.5372

(0.5602)

0.5179

(0.5392)

0.5384

(0.5616)

ma = 0.4

mi = 0.1

0.5548

(0.5798)

0.5774

(0.6045)

0.5987

(0.6280)

0.5781

(0.6053)

0.6000

(0.6294)

ma = 0.6

mi = 0.1

0.6005

(0.6327)

0.6249

(0.6601)

0.6479

(0.6860)

0.6256

(0.6609)

0.6493

(0.6876)

ma = 0.1

mi = 0.2

0.6260

(0.6737)

0.6516

(0.7042)

0.6760

(0.7335)

0.6524

(0.7051)

0.6775

(0.7353)

ma = 0.1

mi = 0.4

0.6298

(0.6720)

0.6545

(0.7006)

0.6779

(0.7278)

0.6552

(0.7015)

0.6793

(0.7295)

ma = 0.1

mi = 0.6

0.6244

(0.6626)

0.6493

(0.6912)

0.6728

(0.7181)

0.6501

(0.6920)

0.6742

(0.7198)

ma = 0.5

mi = 0.5

0.5875

(0.6379)

0.6133

(0.6700)

0.6380

(0.7011)

0.6141

(0.6710)

0.6395

(0.7030)

Without cutout 0.4834

(0.5084)

0.5045

(0.5276)

0.5271

(0.5547)

0.5085

(0.5214)

0.5237

(0.5543)

Table 8: Validation of displacements for di�erent loading conditions on square simply supported isotropic plate

Loadings Uniformly Distributed Load Sinusoidal Load Hydrostatic Load Line Load Point Load

Reddy [43] 0.0444 0.0280 0.0222 0.0074 0.1266

Present 0.0480 0.0293 0.0240 0.0080 0.1555

Table 9: Variation of NTMD with loading conditions for laminated composite sandwich square plate with clamped edges

Cutouts dimension W0

UDL SSL Point Load Hydrostatic Load Line Load Patch Load

ma = 0.2

mi = 0.1

0.4112 0.2319 1.0174 0.1912 0.0645 0.4124

ma = 0.4

mi = 0.1

0.4314 0.2579 1.1050 0.2127 0.0718 0.4592

ma = 0.6

mi = 0.1

0.4462 0.2806 1.1718 0.2315 0.0782 0.5759

ma = 0.1

mi = 0.2

0.4435 0.2859 1.0670 0.2376 0.0815 0.6536

ma = 0.1

mi = 0.4

0.4590 0.2923 1.1390 0.2401 0.0804 0.6872

ma = 0.1

mi = 0.6

0.4629 0.2924 1.1849 0.2415 0.0817 0.7131

ma = 0.5

mi = 0.5

0.3856 0.2461 0.9843 0.2040 0.0696 0.4334

Without cutout 0.3625 0.2313 0.964 0.2005 0.0613 0.4030



Non-linear deflection and stress analysis of laminated composite sandwich plate | 97

Table 10: E�ect of cutout dimensions with various stresses the central deflection of simply supported (S2) laminated (0/90/C/90/0) sand-

wich square plate under SSL

Cutouts dimension W0

(a/2, b/2, 0)

σx

(a/2, b/2, h/2)

σy

(a/2, b/2, h/4)

τyz

(a/2, 0, 0)

σxz

(0, b/2, 0)

ma = 0.2

mi = 0.1

2.045 0.020 0.0184 0.0069 0.0018

ma = 0.4

mi = 0.1

16.49 0.065 0.0548 0.0202 0.0703

ma = 0.6

mi = 0.1

15.75 0.064 0.0434 0.0591 0.0669

ma = 0.1

mi = 0.2

2.162 0.031 0.0213 0.0051 0.0043

ma = 0.1

mi = 0.4

15.75 0.072 0.0614 0.0363 0.0203

ma = 0.1

mi = 0.6

16.84 0.075 0.0734 0.0636 0.0324

ma = 0.5

mi = 0.5

8.234 0.0563 0.238 0.510 0.449

Without cutout 1.692 1.023 1.014 0.156 0.156

4 Conclusions

This paper presents �exural behavior of LCSPswith cutout

subjected to di�erent types of loading under various sup-

porting condition with in�uence of ecological conditions.

Some outcomes of the present work can be concluded as,

• With increasing the major and minor axis radii one

at a time keeping another constant the de�ection in-

creases due to decrease in the resisting area acted

upon by load.

• Variation in stacking sequences with the same ply

angle has less e�ect on the NTMDwhile the position

of core a�ects signi�cantly and the LCSP with the

core as the middle layer shows minimum de�ection.

• With an increase in the thickness of sti�er mate-

rial (face sheet) the plate goes sti�er and shows less

NTMD.

• The NTMD of LCSP decreases with an increase in

span to plate thickness ratio up to a/h=20 then af-

ter approaches a constant value because plate gets

rigid enough to resist further de�ection when thick-

ness increases up to a certain value.

• The square plate shows less NTMD than a rectangu-

lar plate with and without cutout. NTMD increase

with the increase in a/b ratio, initially at a faster rate

and after a/b = 2 for the rectangular plate, compara-

tively with a slower rate.

• Plate with all edges clamped shows less NTMD due

to a large number of constrains.

• Up to Vf = 0.7 of �ber volume fraction, NTMD de-

creases with increase inVf fraction, after that with a

further increment of Vf the de�ection increases be-

cause of reduction in bonding surface area between

�ber and matrix material of composite.

• Temperature a�ects proportionally and more signif-

icantly than moisture to NTMD.
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