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ABSTRACT

We have studied different geometry of the galaxy and the influence of certain geometry on

the possible derivation of non-linear equation. We discussed soliton solutions of the derived

non-linear equations and the properties of the morphologies resulting from these solutions.

For thick disc, perturbations of the equilibrium state cause the non-linear Korteveg de Vries

equation, and the stable solution of that equation results in the ring shape, while for the thin

disc, for the similar type of perturbations, non-linear Schrodinger equation is derived with

stable solution of the spiral shape.
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1 IN T RO D U C T I O N

Spiral structure in galaxies has been studied in both observational

and theoretical field, mainly during the 20th century. First, B. Lind-

blad formulated the hypothesis that the large-scale spiral structure

in galaxies is quasi-stationary, in spite of the presence of differential

rotation in the disc (Lindblad 1963). Due to observed differential

rotation, any material structure could not persist for a long time,

but would be stretched on a very short time-scale. This is known as

the winding dilemma. In contrast, as the conclusion of the Lindblad

work, the idea was introduced in the early 1960s that the spiral

arms, if associated with a wave phenomenon, could survive differ-

ential rotation as a quasi-stationary pattern (Lin & Shu 1964). There

are a few levels at which validity of the density wave theory has

been questioned. The main discussions are posed on generation and

maintenance of density waves (Lin & Bertin 1995).

There are, in general, three different theoretical models that can

be used to investigate stellar component of galaxies, orbital, kine-

matic and dynamical one. Here, we recall just two of them to un-

derline difference and difficulties. A kinematic model specifies the

spatial density of stars and their kinematics at each point without

questioning whether a gravitational potential exists in which the

given density distribution and kinematics constitute a steady state.

To treat galaxy dynamically is more complex and plausible, since

it is necessary to relate the galactic gravitational potential, in which

there is substantial contribution to the local acceleration from a

disc, a bulge and a dark halo, to the mass density. Recently, more

dynamical models of our Galaxy have been explored by Binney

(2012), using complex gravitational potential that is generated by

three discs (gas and both thin and thick stellar discs), a bulge and

a dark halo. There are a number of papers studying the same prob-

⋆ E-mail: vuk.mira@gmail.com

lem from different points of research interests, such as (El-Zanta &

Haßlera 1998; Bratek, Jalocha & Kutschera 2008).

Apart from these studies, there is also number of non-linear ap-

proaches to density waves. In numerical studies, using simulations,

complex system has been treated in non-linear regime (Sellwood

1985, 1986). Turbulent behaviour of the interstellar medium was

studied by number of authors such as Wada, Meurer & Norman

(2002), and this kind of research is very useful since the turbulence

is transient phase that could lead, under certain conditions, to soli-

ton formation. There is also non-linear study of the accretion disc

(Heinemann & Papaloizou 2012), resulting in a non-linear Burg-

ers’ equation and sawtooth waves, that could be used to understand

transient physical processes from linear waves to possible stable

non-linear structure. Theoretical research concerning possible soli-

ton solution was given by Norman (1978) for the first time.

In this paper, our aim is not to investigate complexity but rather

to study theoretically, weakly non-linear dynamics of different sim-

plified galaxy models, using reductive perturbation method (RPM),

with the primary emphasis on possible soliton solutions. Solitons

are able to overcome mentioned difficulties in density wave theory.

In order to use proper coordinate transformation, it is necessary

to analyse stability of the linearized system of equations, and to

define proper parameter regime. Each model is useful in verifying

the more complex models, especially in testing the simulations and

numerics used to explain dynamics of galaxies.

2 G OV E R N I N G E QUAT I O N S

The density wave model consists of transport equations for the

mass density ρ and the momentum ρv, together with the Poisson’s

equation that relates the density to the gravitational potential φ. The

equilibrium state of the system is described as a rotation with an

angular velocity �(r) about z-axis under the balance of centrifugal

and gravitational forces in a frame rotating with constant angular

velocity �0. Then, the equilibrium velocity is v0ϕ = (� − �0)r,
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where �2r = ∂φ0/∂r . The quantities φ0 and ρ0 are the equilibrium

potential and the density, respectively.

The dispersive property originates from the coupled Pois-

son equation, which is a second-order elliptic partial differential

equation.

Depending on the Poisson equation three different geometries

could be considered.

Case (a): the infinitely long cylinder. The simplest solution of

Poisson’s equation is obtained concerning one-dimensional motion

of the infinite fluid. The Poisson equation reads as

∂
2φ

∂x2
= ρ − v2 (1)

if rotation is present in the system, or

∂
2φ

∂x2
= ρ − 1 (2)

if there is no rotation.

Hence, the geometry of the model is infinitely long cylinder,

and the coordinate x corresponds to azimuthal one. In this model,

the galaxy is considered as fluid with both rotation and pressure,

assuming radial velocity component to be much less than azimuthal

one, and � = const.

We consider the density wave that propagates in the ϕ direction

and approximate spatial derivative as

1

r

∂

∂ϕ
=

∂

∂x
. (3)

Then, the set of equations that describes this model has the form

∂ρ

∂t
+

∂

∂x
(ρv) = 0 (4)

∂v

∂t
+ v

∂v

∂x
= −Kγργ−2 ∂ρ

∂x
−

∂φ

∂x
(5)

∂
2φ

∂x2
= ρ − v2, (6)

where v is the x component of the velocity and all variables

are normalized as: ρ = ρ0ρ̄, p = 2πGρ2
0R

2p̄, v = (2πGρ2
0 )1/2Rv̄,

φ = 2πGρ2
0R

2φ̄, x = R/
√

2x̄, t = (2πGρ2
0 )−1/2 t̄ .

We have supposed polytropic fluid and that the variations of ρ

and p take place adiabatically: 1
ρ
∇p = ∇(

γK

γ−1
ργ−1) for γ �= 1, or

1
ρ
∇p = ∇(Klogρ) for γ = 1.

Case (b): infinitely thin disc. The model of Lin and Shu assumes

delta function for the density in z-direction and approximates Pois-

sons equation by

∂φ(r, z = 0)

∂r
= ±2πiGσ (7)

in the vicinity of spiral arms, where σ represents surface mass den-

sity. Then, relation between surface density and two-dimensional

potential is σ = − k
2πG

φ(z = 0), where k = − i
φ

∂φ

∂r
(Lin & Shu

1964). Here, the geometry of the model is infinitely thin disc.

Within this approximation it is necessary to examine more com-

plicated two-dimensional motion of the fluid model of the galaxy,

but we simplified it neglecting the pressure. This simplification will

have no influence on the possibility of deriving integrable non-linear

equation.

In the cylindrical coordinates, the governing equations for two-

dimensional fluid model describing the galaxy, are written as

∂ρ

∂t
+

1

r

∂

∂r
(rρvr ) +

1

r

∂

∂ϕ
(ρvϕ) = 0 (8)

∂vr

∂t
+ vr

∂vr

∂r
+

vr

r

∂vϕ

∂ϕ
−

v2
ϕ

r
= −

∂φ

∂r
(9)

∂vϕ

∂t
+ vr

∂vr

∂r
+

vϕ

r

∂vϕ

∂ϕ
+

vrvϕ

r
= −

1

r

∂φ

∂ϕ
(10)

1

r

∂

∂r

(

r
∂φ

∂r

)

+
1

r2

∂
2φ

∂ϕ2
+

∂
2φ

∂z2
= 4πGρ, (11)

where vr and vϕ are radial and azimuthal velocity components.

The last equation will be approximated using Lin and Shu asymp-

totic solution, and we use notation ρ for surface density. Coordinates

r and ϕ are normalized by mean wavelength of the carrier wave in

the radial direction 2πR/λ, where R is the radial size of the galaxy

and λ ≫ 1 is a dimensionless constant from the Lin–Shu derivation,

t by the period of the carrier wave 2π/ω, ρ by ρ0, both components

of velocity by the phase velocity ωR/λ, φ by ω2R2/λ2 and G by

ω2R/(2ρ0λ).

Case (c): thick disc. In this paper, we propose more realistic

solution, introducing Gaussiansin the z-direction instead of delta

function, f(z) for potential and g(z) for density. Then, we can ap-

proximately express Poissons equation in dimensionless form as

follows:

A∇2
⊥φ̄ + Bφ̄ = ρ̄, (12)

where φ̄, ρ̄ are two-dimensional potential and density, respectively,

normalized in the same way as in case (b), A = a/(4Gc), B =
b/(4Gc) are constants dependent on the thickness of the disc L by

way of a, b and c given by

a =
1

2L

∫ L

−L

f (z) dz = f1(L) (13)

b =
1

2L

∫ L

−L

f ′′(z) dz = f2(L) (14)

c =
1

2L

∫ L

−L

g(z) dz = f3(L) (15)

and ∇2
⊥ denotes two-dimensional Laplacian in the plane perpendic-

ular to z. In order to find analytical solution, we assume ∇2
⊥ ≪ ∂

2

∂
2z

,

and vz ≪ v⊥, which is correct as long as the disc is not too thick.

Note that for B = 0 we can restore infinitesimally thin disc approxi-

mation, taking g(z) = δ(z). Governing equations in this case are the

same as in case (b), only the Poisson equation (11) is replaced by

equation (12).

3 LI NEAR STA BI LI TY ANALYSI S

Before making the choice of transformation of coordinates and

expansion of variables in order to derive possible non-linear equa-

tion, it is necessary to discuss parameter regime. Linear dispersion

relation is very useful since its form can suggest the type of the

non-linear equation. We do it invoking linear stability analysis for

each case. The wavenumber and density for each case is defined

separately, although the same notation is used.

MNRAS 441, 565–570 (2014)
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Non-linear density waves for galaxies 567

Case (a): concerning the gravitational force, there is known Jeans

criterion for the stability of a finite spherical, non-rotating system

with gravity and pressure (Jeans 1902) as

k2c2 > 4πGρ, (16)

where k is the total wavenumber in radial direction, due to spher-

ical symmetry, and c is the sound velocity. Jeans criterion is valid

only locally, as long as the inhomogeneity of the system needs to

be recognized. For a uniformly rotating infinite-length cylindrical

column, Chandrasekhar proved that Jeans criterion is unaffected by

rotation, except for modes with wave numbers perpendicular to the

axis of rotation (Chandrasekhar 1981). In the previous section, per-

turbing and linearizing the system equations (4)–(6), assuming that

all quantities are proportional to ei(ωt−kx), we obtain the dispersion

relation

(ω − k)2k2 + k2 − γ k4 − 2(ω − k)k = 0. (17)

Note that in this model gravitational instability is suppressed by the

rotation, since we treat perturbations in azimuthal direction. Then,

we consider only linearly stable waves in order to apply RPM

(Jaffrey & Kawahara 1982) and to obtain the non-linear equation.

Case (b): For differentially rotating thin disc, linearizing equa-

tions (8)–(10), using equation (7) and assuming plane wave type

variation as f = f (r)ei(kr+mϕ−ωt), we obtain the dispersion rela-

tion

(ω − m�)2 = κ2 − 2πGρ0|k|, (18)

where ω − m� is Doppler-shifted frequency and κ is epicyclic

frequency due to differential rotation

κ2 = 2�

(

2� + r

(

d�

dr

))

. (19)

Equation (18) is the same as obtained by Lin & Shu (1964), but

for pressureless medium. For a pressureless medium, (ω − m�)

becomes negative if

κ2 < 0, (20)

so the disc is unstable. This is the rotational instability due to ex-

ponentially growing departure of particles from circular orbits, and

the growing rate is given by κ .

Stability parameter is defined by k2 = κ2

2πGρ0
, so all waves with

k < k2 are purely stable. For this parameter regime, dark soliton

solution was obtained (Kondoh, Teramoto & Yoshida 2000). The

problem is that such consideration results in dark soliton solution

with diminishing density, and has no spiral pattern. It is due to

improper coordinate transformation used in reductive perturbation

expansion.

Taking initial limitation on the wavenumber into account, namely

k > k1, where k1 =max

{

1
r ,

ρ′
0

(r)

ρ0(r)

}

(sign ’ denotes derivative with re-

spect to r), one finds that observational data suggests having k1 ≈
k2 in real galaxy (Bertin 2000). Marginal stability, as introduced

above in terms of local dispersion relation, identifies a very impor-

tant condition for the basic state. In fact, if the system is far from it

on the side of instability, then it is expected to be subject to rapidly

growing perturbations, which are bound to change the properties of

the basic state in a short dynamical time-scale. It is often said for

this point of astrophysical applications, that violently unstable mod-

els are just the wrong choice of basic state (Bertin 2000), (Toomre

1964). Observed systems are generally well beyond such a transient

dynamical state, or such a rapidly evolving dynamical state would

be very hard to catch by the observer. On the other side of marginal

Figure 1. Marginal stability curve for the zero-thickness fluid model with-

out pressure; ω2 is Doppler-shifted frequency and is normalized by epicyclic

frequency; wavenumber k is normalized by critical wavenumber k2; part de-

fined by ω2

κ2 > 0 is stable and for ω2

κ2 < 0 is unstable region.

stability, if the disc is well within a locally stable regime, not only

would the local instabilities be absent, but wave propagation would

also be inhibited altogether. Hence, the relevant regimes for the

galaxy disc must be close to the threshold of instability (Fig. 1).

In this case, new transformation of variables has to be introduced,

different from the stable case (the reason is that in marginal stability

frequency goes to zero, so group velocity becomes infinite).

Before taking thickness of the disc into account, it is necessary to

underline two points. First, the sign of wavenumber can be positive

or negative (equation 18) defining two possible branches of waves,

leading and trailing. An important effect that might distinguish

between these two branches is differential rotation. Density waves

are propagated primarily by gravitational forces, but they would be

modified by differential rotation, if the non-linear terms, omitted

in linear description, were included. This effect is similar to that

of fluid motion that leads to the distortion of acoustic waves. In

that case, a density decrease in the direction of wave propagation

tends to be accentuated into compression shock, while a density

decrease would tend to be smoothed out by the motion of fluid.

Thus, only the trailing waves are stable in the presence of non-

linear effects. Next, inspecting the dispersion relation for gaseous

disc when the pressure cannot be neglected, there is additional term

c2k2. However, pressure and differential rotation work in the same

way, balancing the non-linearity. That means, omitting the pressure,

the general conclusion on the non-linear effects is not reduced; it

is just modified through the parameters related with dispersive and

non-linear terms.

Case (c): finite thickness of the disc is responsible for the different

value of critical wavenumber due to appearance of parameters A

and B in Poasson’s equation (12). It will result in the more complex

dispersion relation, comparing to one obtained in Lin–Shu model,

for the zero-thickness fluid model. Dispersion relation in this case

has a form

(ω − m�)2 = κ2 −
4πGρ0mk̂2

1 + k̂2
, (21)

where k̂2 = k2

n
, and m = 1/A, n = 1/B.

Marginal stability criterion holds for this case as well, so the

coordinate transformation can be used in the same way as for thin

disc. Non-linear equation will be of the same type as for thin disc,

MNRAS 441, 565–570 (2014)
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568 M. Vukcevic

but with different coefficients of non-linear and dispersive terms.

Using those coefficients, one can control the validity of applied

finite thickness approximation, comparing with observed values for

the galaxies.

4 N O N - L I N E A R E QUAT I O N S

In the previous section, we have summarized instabilities that are

possible to occur in different galaxy models. Using WKJB analy-

sis, Lin and Shu have proposed that gravitational instability is the

basis for formation of the spiral pattern in the infinitesimally thin

disc galaxies. Proposed theory resolved winding dilemma problem,

assuming that the matter in the galaxy can maintain density waves

through gravitational interaction in the presence of a differential

rotation (even neglecting pressure). How density waves can persist

quasi-stationary for a long time, remains unresolved. Several au-

thors searched for different possible mechanisms that can replenish

waves (Toomre 1969; Mark 1976; Bertin et al. 1989), but still there

is no complete understanding. One possibility could be derivation

of non-linear equation, that has stable soliton solution, mainly be-

cause that approach avoids involvement of some other objects which

additionally complicate analysis.

We try to overcome that difficulty just keeping the higher or-

der terms in perturbation expansions, which were omitted in linear

approach, deriving the non-linear equation with localized solution.

Such solutions exist whenever dispersive effects are counterbal-

anced by non-linear effects and coherent structure can be formed.

The Korteveg de Vries (KdV) and the non-linear Schrodinger (NLS)

equation are expressions of that balancing. Some of these coherent

structures are stable and have been found experimentally (Mitchell

& Driscoll 1996).

In order to obtain either of these two equations, we introduce

asymptotic, RPM, which has been developed for non-linear disper-

sive wave problem (Jaffrey & Taniuti 1964). The scale transforma-

tion,

ξ = ǫα(x − λt), τ = ǫβ t, (22)

introduced by Gardner and Morikawa, may be derived from the

linearized asymptotic behaviour of long waves (Jaffrey & Taniuti

1964). Using combination of this transformation of coordinates with

a perturbation expansion of the dependent variables, one can obtain

single non-linear equation (KdV or NLS). This type of perturbation

has generally been developed and formulated by Taniuti and his

collaborators (Jaffrey & Taniuti 1964).

Case (a): we transform coordinates and expand variables as

ξ = ǫ1/2(x − V t), τ = ǫ3/2t (23)

ρ = 1 +
n=1
∑

∞

∞
∑

m=−∞
ǫnρ(n,m)(ξ, τ )E, (24)

v = 1 +
n=1
∑

∞

∞
∑

m=−∞
ǫnv(n,m)(ξ, τ )E, (25)

φ =
n=1
∑

∞

∞
∑

m=−∞
ǫnφ(n,m)(ξ, τ )E, (26)

where ǫ is a small parameter, E = ei(ωt−kx) with k belonging to the

linearly stable domain discussed in the previous section for this case

and V is group velocity. Set of equations is obtained from the lowest

order of ǫ3/2:

v(1,0) =
1

2
ρ(1,0), φ(1,0) =

1 − 4Kγ

4
ρ(1,0), V =

3

2
. (27)

KdV-type equation is obtained from the order of ǫ5/2, as following:

∂

∂τ
φ(1,0) +

3

1 − 4Kγ
φ(1,0) −

1 − 4Kγ

8

∂
3

∂ξ 3
φ(1,0) = 0. (28)

This type of non-linear equation has a solution in the form:

φ(ξ, τ ) = φ∞ + a sech2

[

(ξ − V τ )
( a

12b

)1/2
]

, (29)

where φ∞ denotes the boundary value of φ(1, 0) at (ξ − Vτ ) → ±∞,

a is amplitude of the wave relative to the constant solution φ∞ at

infinity, b = 27

8(1−4Kγ )2 and V is the speed of the soliton. The solu-

tion of such non-linear equation represents the soliton, stable and

localized solution, which, although derived under certain assump-

tions, can be used as a control parameter in numerical simulations.

Also, it can be understood as a kind of equilibrium that could be

perturbed and create some new structures. This soliton is travelling

along azimuthal direction creating the ring structure. The width of

the soliton b represents the width of the ring and could be used to

compare properties of the obtained structure with the properties of

observed rings.

Case (b): as we mentioned in the previous section, a new transfor-

mation of variables has to be introduced for this case, according to

Watanabe (Watanabe 1969), contrary to the stable case (the reason

is that frequency goes to zero in marginal stability, so group velocity

becomes infinite). Stretched coordinates and expansion of variables

in this case are given as

ξ = ǫ(τ − cr), η = ǫ2r, (30)

where τ = t + �ϕ. Consequently, spatial and time derivatives will

be

∂

∂r
= −ǫc

∂

∂ξ
+ ǫ2 ∂

∂η
,

∂

∂τ
= ǫ

∂

∂ξ
, (31)

together with 1
r

= ǫ2 1
η

.

Variable expansions have the form

ρ = ρ0 +
n=1
∑

∞

∞
∑

m=−∞
ǫnρ(n,m)(ξ, η)E, (32)

vr =
n=1
∑

∞

∞
∑

m=−∞
ǫnv(n,m)r (ξ, η)E, (33)

vϕ = r� +
n=1
∑

∞

∞
∑

m=−∞
ǫnv(n,m)

ϕ (ξ, η)E, (34)

where E = ei(kr−ωτ ).

Substituting equations (30) and (31) into equations (8)–(10) with

respect to equation (7), we derive non-linear equation following

procedure of RPM. We separate terms with respect to the order of

small parameter ǫ as follows:

ǫ1 : m = 0, v1,0
ϕ = a1ρ

1,0, a1 =
−iπG

�
, v1,0

r = 0; (35)

m = 1, ω2 = κ2 − 2πGρ0k, v1,1
r = a2ρ

1,1, a2 =
−ω

kρ0

,

(36)
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Non-linear density waves for galaxies 569

v1,1
ϕ = a3ρ

1,1, a3 =
−iκ2

2�kρ0

. (37)

ǫ2 : m = 0, ρ1,0 = 0, v2,0
ϕ = a4ρ

2,0, a4 =
−iπG

�
, (38)

v2,0
r = a5ρ

1,1, a5 =
2ω

kρ2
0

; (39)

m = 1,
∂ω

∂k
=

πGρ0

ω
= c, ρ2,1 = 0, (40)

v2,1
r = b1

∂

∂ξ
ρ1,1, b1 =

ρ0ca2 − 1

iρ0k
, (41)

v2,1
ϕ = b2

∂

∂ξ
ρ1,1, b2 =

a3 − κ2

2�
b1

iω
; (42)

m = 2, v2,2
r = b3(ρ1,1)

2
, b3 =

1
2
ika2

2 + 1
2

k�
ω

a2a3 + iπGk
ω

a2

iω + κ2

4iω
− iπGkρ0

ω

,

(43)

ρ2,2 = b4(ρ1,1)
2
, b4 =

k

ω
a2 +

ρ0k

ω
, (44)

v2,2
ϕ = b5(ρ1,1)

2
, b5 =

1

2

k

ω
a2a3 −

κ2

4iω�
b3; (45)

ǫ3 : m = 0, ρ2,0 = 0; m = 1,
ω

2πG
b2 +

2�

2iπG
b3 = b1; (46)

From equation (46), after substituting all coefficients, we obtain the

NLS equation:

i
∂

∂η
ρ1,1 + P

∂
2

∂ξ 2
ρ1,1 + Q

∣

∣ρ1,1
∣

∣

2
ρ1,1 = 0, (47)

where P = − k2

κ2 = 1
2

∂
2k

∂ω2 < 0, and Q = − 3
2

κ2

k2ρ2
0

< 0, which im-

plies PQ > 0 and consequently bright soliton solution. The solution

of equation (47) has the form:

ρ1,1(ξ, η) = ρa

eiψ

ch

(

√

Q

2P
ρa(ξ − 2Pη)

) , (48)

ψ = P (
Q

2P
ρ2

a − 1)η + ξ. (49)

Here, ρa is relative amplitude of the soliton, its velocity of travel

is the coefficient P,
√

Q/2Pρa is the width of the soliton, all in

dimensionless units, and ψ is the phase.

Going back to the original coordinates, we have obtained solitary

structure with enhanced density along the spiral, which explains the

observed pattern (Fig. 2). The solitary solution resolves the main

difficulty from the linear theory is removed, e.g. the problem of

searching for generators of spiral wave and mechanism that maintain

waves for a long time-scale (quasi-stationarity assumption). Also,

it is likely that the transport of the mass by solitons away from the

considered region of the disc into outer regions will keep the disc

in a state close to the threshold of stability for a long time. This fact

might be responsible for the relative stability of the spiral structure

as a whole. Finally, this solution provides a fine oscillatory structure

inside the soliton, with a space period much smaller than the width

Figure 2. Bright soliton solution.

of the soliton. This property could explain the appearance of large

density gradients within spiral arms, responsible for understanding

the star formation process.

In order to make some rough estimates for the arms of the Galaxy

in the neighbourhood of the Solar system, we take the follow-

ing values from the observations: mass density in the disc (1–

3)10−24 g cm−3, thickness of the flat system (0.1–0.2) kpc, which

implies surface density (3–5)10−4 g cm−2, half-width of the arm

0.5 kpc, enhancement of the mean density in the arm ≈5/100,

which implies ρa ≈ 0.3, � ≈ 10−151/s, and κ ≈
√

2�. Then,

equation (48) indicates that group velocity of the soliton is P =
3 × 105 cm s−1. A more detailed comparison of the observed struc-

tures with our proposed model would request solving the non-linear

integro-differential equations involving the boundary conditions at

the centre.

Case (c): we extend non-linear analysis in the more realistic

case, taking finite thickness effect into account. It will result in

the dispersion relation (21), in a contrast with the Lin–Shu model,

where dispersion relation is linear with respect to k. Resulting non-

linear equation will be of the same type as in case (b), but with

different coefficients of non-linear and dispersive terms. Using those

coefficients, one can control the validity of used finite thickness

approximation, comparing it to the observed galactic parameters.

We transform coordinates as in case (b), invoking again physical

restrictions for the galaxy (marginal stability case), and expanding

variables in the same way, but we have approximated the potential

using Poisson’s equation given by equation (12), as follows:

φ = −
r2�2

2
+

n=1
∑

∞

∞
∑

m=−∞
ǫnφ(n,m)(ξ, η)ei(kr−ωτ ). (50)

Here, spatial and time derivatives are

∂

∂r
= −ǫc

∂

∂ξ
+ ǫ2 ∂

∂η
,

∂

∂τ
= ǫ

∂

∂ξ
. (51)

Following the same procedure as in case (b), one obtains the

NLS equation

i
∂

∂η
ρ1,1 + W

∂
2

∂ξ 2
ρ1,1 + Z

∣

∣ρ1,1
∣

∣

2
ρ1,1 = 0, (52)
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but in this case coefficients related to dispersive and non-linear

terms, W = − k2

nκ2 and Z = − 3
2

nκ2

k2ρ2
0

will be dependent on the thick-

ness of the disc n. Since those coefficients give velocity and width

of the soliton, respectively, comparing with observed structure, it

is possible to evaluate when the finite thickness approximation is

necessary to be involved for the given galaxy. Comparing these two

soliton parameters for zero-thickness model and finite thickness

model, one finds that spiral arm in the first case is wider than in

the latter one. It is expectable because the same material amount

would be redistributed taking vertical direction into account. Also,

the fact that the same type of non-linear equation is obtained is in

agreement with the linear stability analysis.

5 SU M M A RY A N D C O N C L U S I O N

In this paper, we have studied weakly non-linear dynamics of differ-

ent galaxy models, using RPM, with the primary emphasis on pos-

sible soliton solutions. Linear stability analysis of different galaxy

models, which is necessary for defining parameter regime, has been

conducted. We have studied the influence of finite-thickness of the

galaxy disc on dispersive properties of the system. We underline that

the purpose of this paper is not to describe full galactic dynamics

but rather to derive possible non-linear equation which has stable

localized solution for simplified models. The soliton existence gives

physical answer for the permanent density wave phenomenon as a

balance between the tendency of the dispersion to propagate the

wave inwards, and non-linearity that tends to hold it up. This type

of solution is useful for comparison with numerical simulations that

treat more realistic models and with the observations, or for evalu-

ation of dominance of each mechanism that occurs in real galaxy.

We have not treated terms which we have already found that would

not influence the type of the non-linear equation; for example, pres-

sure, that undoubtedly exists in most galaxies, would not change

the necessary and sufficient conditions for derivation of integrable

non-linear equation. It will change only the parameters of non-

linear and dispersive term, giving better agreement with observed

patterns. In one-dimensional model, KdV type of non-linear equa-

tion has been derived. For a twodimensional model, using Lin–Shu

approximation, the NLS equation has been derived. The solution is

bright soliton propagating along the spiral. We have extended two-

dimensional analysis for galaxies solving Poisson’s equation in a

different manner and obtain NLS equation. The last one is with dif-

ferent coefficients for non-linear and dispersive terms, which means

different properties of soliton. The first type of non-linear equation,

namely KdV, is applicable as long as the azimuthal velocity is dom-

inant, together with the assumption of relatively thick disc. In that

case, the ring shape could be formed, with restriction that certain

structure cannot be formed at any distance from the galactic centre,

but the radial distance is defined by restriction ≪ 1
r

∂

∂ϕ
= m

r
, where

m is positive integer and could be understood as number of rings.

The second type of non-linear equation, namely NLS, is applicable

when radial and azimuthal components of motions are coupled, as

long as 1
kr

≪ 1. The last restriction is related with the condition

of the finite amplitude perturbations. We have shown that derived

velocity of the soliton is in good agreement with the observations.

The advantage of the second type is fine structure inside the soli-

tary envelope, that might be used to explain any process within

spiral arms with scales shorter than the width of soliton. Comparing

soliton properties with observational data, it is possible to control

validity of the approximation that was made for each model. How-

ever, neither of these models is able to explain stretched structures,

such as barred or elliptical galaxies. It would be very interesting to

investigate the transient models, the dynamical scale on which the

thickness of the galaxy changes and consequently, change the struc-

ture. If there is any correlation between the age of the galaxies and

their thickness, how does it evolve? There is the remaining problem

of the inner part of galaxy with the singularity in the centre, that

would also be interesting to consider in non-linear regime. Both

aspects will be treated in further research.
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