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Abstract 

The presence of cracks in a structure is usually detected by adopting a linear approach through the 

monitoring of changes in its dynamic response features, such as natural frequencies and mode shapes. 

But these linear vibration procedures do not always come up to practical results because of their inher-

ently low sensitivity to defects. Since a crack introduces nonlinearities in the system, their use in dam-

age detection merits to be investigated. With this aim the present paper is devoted to analyze the pecu-

liar features of the nonlinear response of a cracked beam. 

The problem of a cantilever beam with an asymmetric edge crack subjected to a harmonic forcing at 

the tip is considered as a plane problem and is solved by using two-dimensional finite elements; the 

behaviour of the breathing crack is simulated as a frictionless contact problem. The modification of the 

response with respect to the linear one is outlined: in particular, excitation of sub- and super-harmonics, 

period doubling, quasi-impulsive behaviour at crack interfaces are the main achievements. These re-

sponse characteristics, strictly due to the presence of a crack, can be used in nonlinear techniques of 

crack identification.  

Keywords: cracked beam, breathing crack, nonlinear forced response, period doubling, quasi-

impulsive behaviour. 
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1. Introduction 

The vibration characteristics of cracked structures can be useful for an on-line detection of cracks (non-

destructive testing) without actually dismantling the structure. Thus, the development of structural in-

tegrity monitoring techniques is received increasing attention in recent years [1,2]. Among these tech-

niques, it is believed that the monitoring of the global dynamics of a structure offers favourable alterna-

tive if the on-line (in service) damage detection is necessary. In order to identify structural damage by 

vibration monitoring, the study of the changes of the structural dynamic behaviour due to cracks is re-

quired for developing the detection criterion. 

With the ever increasing sophistication of available equipment more effective models had to 

be built to better interpret the experimental results. In the development of some theoretical models, it 

has been assumed that the crack remains open [3]. Unfortunately, relying on the drop in the natural 

frequencies only and using the open crack model could lead to underestimating the severity of the 

crack [4]. Furthermore, as it has been shown that the modal frequencies are not very sensitive to the 

presence of a breathing crack, alternative detection techniques have been proposed [5]. They are based 

upon the analysis of the dynamic nonlinear effects of the crack; in fact they are not exhibited by the 

intact beam response in the frequency domain, which instead contains only the natural frequencies and 

the excitation frequency. Chu and Shen [6] made an analogy between cracked beam and a bilinear 

spring-mass system; their method centred on forcing the beam at a low frequency and observing the 

resultant spectra. They noted some nonlinear features of the spectra; they in fact observed a modest 

crack signature from a crack halfway through the thickness of a simply supported beam. More recently, 

researchers have been looking at the steady state response of the beam to a single harmonic input while 

including the non linear effects of crack closure and outlining procedures of sub- and super-resonant 

diagnostics [7]. 

In summary, the main problem with crack detection methods based on linear vibration analy-

sis has been a lack of sensitivity to the presence of small cracks. This paper is concerned with the pos-

sibility of crack detection by exploiting one or more characteristic features of bilinear systems, e. g. the 

presence of sub- and super-harmonic components in the steady state response of the system. In fact the 

presence of side peaks in the Fourier spectra may be used as a feature to recognize the presence of fa-

tigue cracks [5]. 
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An asymmetrically cracked beam vibrating in bending will have a bilinear stiffness depending 

whether the crack is open or closed. In addition, typically the faces of the crack, or clearance, will have 

nonzero relative velocity on closure, leading to an impulsive effect. From this point of view, few re-

sponse analyses of cracked structures have taken into account the effect of the alternation of crack 

opening and closure [8-10]. 

Aim of this paper is to identify the distinguishing features of the dynamic response associated 

with the existence of a fatigue crack. The simplest of excitations - that of sinusoidal form - would gen-

erate rich response behaviour and the study of sub- and super-harmonic phenomena would probably be 

the most fruitful area of experimental interest. To this end, a cantilever beam which contains one sin-

gle-side edge fatigue crack (Fig. 1a) has been subjected to a sinusoidal excitation at its free end. 

Cracked beam finite elements, being one-dimensional, cannot model the stress field near the 

crack tip; thus, a frictionless contact model for a breathing crack with two-dimensional finite elements 

is used here which avoids computing the stress intensity factors separately. It should be mentioned that 

a frictionless contact model for a breathing crack is used, and a non propagating crack assumption is 

made in the following discussion; in other words, it is assumed that in the present loading history the 

crack remains stable and does not grow further. 

Analyses are carried out in both time and frequency domains, for a given position and depth of 

the crack; the forcing frequency has been assumed as a parameter and its influence on the steady state 

response of the cracked beam has been systematically studied within a broad range with respect to the 

first natural frequency of the system. The response is described in terms of displacement and velocity 

fields as well as contact forces at the crack interfaces, and have been presented in the form of Fourier 

spectra, phase plane portraits, bifurcation diagrams and time-histories of the relevant quantities. 

In this paper, a sample application has been worked out which refers to a single crack with as-

signed severity and position. The authors intend to investigate the dynamic response of the beam for 

different values of the above mentioned parameters in a future work the goal of which will be to quali-

tatively and quantitatively relate the nonlinear features of the beam motion to the damage detection.  
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2. System model 

2.1 Generalities 

This problem physically represents a straight beam of length L which contains one single-side edge 

fatigue crack of depth a and has a rectangular uniform cross-section of height h and width b (Fig. 1a); 

the cantilever beam is clamped at the left end and free at the right end. The crack is located at the upper 

edge of the beam at a distance d from the fixed end and p =d/L is the dimensionless crack position; the 

severity s =a/h of the crack is expressed in terms of the ratio between the depth to the height of the 

cross-section. Linear isotropic stress-strain material properties are assumed.  

The breathing crack is modelled as a contact problem between the crack interfaces: the contac-

tor (elastic) edge on the free end side and the target (rigid) edge on the fixed end side, i.e. contact ocurs 

at a point between a rigid and a flexible body; the contact model will be described in the next section. 

While the beam is vibrating, the state of the crack section varies from detachment to compres-

sion, i.e. the crack opens and closes with time. This results in a modification of the crack section stiff-

ness, the extremal values being the stiffness of the open crack and that of the intact beam. Thus, the 

nonlinear behaviour of the closing crack introduces the characteristics of the nonlinear systems. How-

ever, for many practical applications, the system can be considered bi-linear, and the fatigue crack can 

be introduced in the form of the so-called “breathing crack” model which opens when the normal strain 

near the crack tip is positive, otherwise it closes [11]. Distinction should be made between the first 

natural frequencies ω1=2π/T1 and ω2=2π/T2, of the two constituent sub-models (open crack (1) and 

closed crack (2)) and the first natural frequency ω0 of the system, the so-called bilinear frequency [6]: 

 ω0 = 4π/(T1+T2) = 2ω1ω2/(ω1+ω2)  (1) 

where T1 and T2 are the natural periods of the two sub-models. Equation (1) strictly holds for a single-

degree-of–freedom oscillator with a bilinear stiffness; as it will be seen in Subsect. 4.1, Equation (1) 

approximates with good accuracy the first natural frequency of the beam with breathing crack. 

Herein, the plane-stress elastodynamic response of an edge cracked panel is studied via a con-

tact model for a breathing crack associated with two-dimensional finite element discretization [12], 

using the code ADINA 8.1 [13]. A 2-D solid (plane stress) nine-node isoparametric element was cho-

sen to discretize the body and the finite element mesh consisted of 3559 degrees-of-freedom (Fig. 1b). 

A consistent mass matrix is used with implicit time integration, provided that the Newmark method and 
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full Newton iteration are used. Two-dimensional contact surfaces are specified to model planar contact 

behaviour between solid elements at the crack interfaces (Fig. 1d).  

 

2.2 Contact modelling 

Contact surfaces are defined as surfaces that are initially in contact or are anticipated to come into con-

tact during the response solution. Two-dimensional contact surfaces are formed of a series of linear 

contact segments and each segment is bounded by two nodes, Fig. 1c. A distinction should be made 

within these two surfaces between the contactor surface and the target surface, in as much, in the con-

verged solution, the target nodes can overlap the contactor body and not vice-versa; in other words, 

according to the contact condition, the contactor nodes cannot be inside the target body, but the target 

nodes can be inside or outside the contactor body. A node of the contactor surface can come into con-

tact with a segment of the target surface. 

In frictionless contact, the possible states of the contactor nodes and/or segments are: (i) the 

gap between the contactor node and target segment is open (no-contact); (ii) formerly closed gap has 

opened; a tensile force onto the contactor node is not possible (tension release); (iii) the gap between 

the contactor node and the target segment is closed; a compression force is acting onto the contactor 

node. 

The finite element approach is used to discretize the governing continuum mechanics equa-

tions and the contact conditions. To exemplify the formulation of the governing finite element equa-

tions, let us consider the two-dimensional case of contactor and target bodies shown schematically in 

Fig. 1c, where the target segment corresponding to contactor node k is defined by nodes k1 and k2. The 

target point kt is the closest point of the target segment k1-k2 to the contactor node k. By assembling for 

all contactor nodes the nodal point force vectors, the discretization of the continuum mechanics equa-

tions corresponding to the conditions at time t+∆t gives [13]: 

 fi(u) = fe - fc(u, λ) (2a)

 cc(u, λ) = 0 (2b)

where u, λ are the solution variables, namely the nodal point displacements u and the normal traction 

components λ; fi is the vector of internal nodal forces equivalent to element stresses; fe is the vector of 

applied external nodal forces; fc is the nodal force vector, which is obtained by assembling for all con-
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tactor nodes the nodal point force vectors due to contact; cc is the vector of contact conditions the com-

ponents of which are as many as the contactor nodes. 

The incremental finite element equations of motion including contact conditions for solution of Eqs. (2) 

are obtained by linearization about the last calculated state at time t : 
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where ∆u and ∆λ are the increments in the solution variables u and λ, KT is the usual tangent stiffness 

matrix including geometric nonlinearities, not including contact conditions; Kuu
c, Kuλ

c, Kλu
c, Kλλ

c are 

the contact stiffness matrices. It is worth to be noticed that the vector fe is evaluated at current time 

t+∆t, while the other matrices and vectors are evaluated at the previous time t. 

In order to simplify the notation, the following relations are understood to refer to any contac-

tor node k. Using the definition of the “gap function” g, that is the (signed) distance from the node k to 

the target point kt, the conditions for normal contact can be stated as the Signorini’s in displacements 

conditions [14]: 

 g ≥ 0, (4a) 

 λ ≥ 0, (4b) 

 g λ = 0 (4c) 

Note that the contact force and gap function are of course expressed in terms of the nodal displace-

ments. 

Equations (4) can be interpreted by considering the following cases: 

1) no contact: if g>0, the equality in Eq. (4c) implies λ=0; when there is no contact, all contact trac-

tions must be zero; 

2) sticking contact: if  λ >0, the equality in Eq. (4c) implies g=0. 

Accordingly, any component of the vector cc which refers to any contactor node k can be written as 

 ( )λ,ˆc gwc w =  (5)

and the following constraint function can be used [13]: 

 
( ) N
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where εN is very small but larger than zero. Equation (6) defines a suitable function of g and λ such that 

the solutions of ( ) 0,ˆ =λgw satisfy the conditions (4) within a reasonable accuracy. 

 

2.3 Solution of nonlinear equations of motion 

The solution of the nonlinear dynamic response of the finite element system at hand is obtained using 

the incremental formulation presented in Subsect. 2.2, an iterative solution procedure and a time inte-

gration algorithm. For notation’s conciseness, the following symbols are introduced: 
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The solution of the equilibrium at time t+∆t requires an iteration procedure: by linearizing the response 

of the finite element system about the conditions at time t+∆t, iteration (i-1), the following equations 

are obtained: 

 )1()1i( −
∆+∆+

− −=∆ i
tttt RFF  (7a) 

 )1i()i()1( −−
∆+ ∆=∆ FUK i

tt  (7b) 
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∆+∆+

i
tt

i
tt  (7c) 

In each iteration an out-of-balance load vector is calculated, Eq. (7a) and an increment in displacements 

is given by Eq. (7b): this leads to update K and R. The iteration proceeds until the out-of-balance load 

vector ∆F(i-1) or the displacement increments ∆U(i) are sufficiently small.  

Newmark’s method with δ =1/2 and α =1/4 is used for time integration and the robustness of the nu-

merical procedure has been checked in all the performed analyses.  

 

3. Impulsive dynamics 

3.1 Model data 

A cracked cantilever beam (Fig. 1a) of length 300 mm and cross-section 20×20 mm2 was tested and 

studied by Rizos et al. [15]; the material is mild steel having Young’s modulus 206.8 GPa, Poisson 

ratio 0.3, and mass density 7850 kg/m3. The vibration frequencies and mode shapes of the same linear 

beam containing an open edge-crack of various sizes at different positions along the beam were ex-

perimentally obtained by Kam and Lee [16] while a finite element analyses has been performed in [17]. 
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3.2 Impulsive loading 

Free vibrations of the cracked beam after impulsive excitation have been numerically analysed under 

instantaneous loading. An impulsive force of 2 KN has been transversally applied for a very short 

while (∆t ≅0.02 T0) at the end of the cracked beam (Fig. 1a) and the amplitude of the end transverse 

displacement has been recorded as soon as a steady state has been attained. It has been assumed that the 

forced system reaches its steady state when the maximum displacement amplitude of the transient re-

sponse varies to an extent less than 0.1%. The frequency content of the y-displacement time-history of 

the loaded point has been determined via spectral analysis in order to evaluate the lowest three natural 

frequencies of the beam with breathing crack. It is worth noting that the vibration amplitude does not 

affect the natural frequencies due to the bilinear character of the nonlinearity of the problem at hand 

[18]; as a consequence the magnitude of the applied load does not affect the frequency content and the 

relative importance of the harmonic components of the system response, that is confirmed by numerical 

tests performed via finite element 2D model of cracked beam. 

Filled contour maps of Fig. 2 [19] pictorially and simultaneously illustrate the combined in-

fluence of crack position and severity on the lowest three natural frequencies of the cracked beam. The 

two dimensions of each rectangular domain are the length of the beam and the largest crack depth 

(a=0.75h). Fill attributes are assigned so that there is a gradation change of colour from the minimum 

to maximum contours. Moreover, a colour scale shows the fill assigned to each colour on a filled con-

tour map and the numerical value for each level are displayed. The values measure (in percentage) the 

difference between the frequencies fu of the uncracked beam and the reduced frequencies fc of the 

cracked beam, with respect to the former value fu, i.e. (fu-fc)/fu%. For given position and severity of the 

crack, the frequency reduction can be estimated on the contour map. As can be seen, the effect of posi-

tion and severity of the crack in the three modes is quite different. The reduced frequencies are, as ex-

pected, intermediate between open crack and intact beam [19]. 

 

4. Harmonically forced Response 

4.1 Generalities 
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The following non-dimensional parameters are found to be significant: (i) the severity of the crack 

s=a/h depth-to-height ratio, (ii) the position of the crack p=d/l distance-to-length ratio, and the excita-

tion-to-system frequency ratio, η=Ω /ω0, where Ω  is the frequency of the harmonic excitation and ω0 is 

the first natural frequency of the system. 

The cantilever response depends on the above listed parameters. A detailed features of the re-

sponse is studied for a damage scenario characterized by a severity factor s = 0.5, a position factor p = 

0.27 (see Fig. 1a), while the driven frequency η is step-varied in the range 0.1-1 and only η=2 is con-

sidered above 1. For this damage, the analysis conducted in [19] allows the following values to be 

found out: ω1=160 Hz for the open crack beam, ω2=183.3 Hz for the uncracked beam, and ω0=170 Hz 

for the breathing crack beam, which coincides with the value given by Eq. (1). The amplitude A = 0.4 

KN is considered for the sinusoidal load applied at the beam tip. The time step taken is about (1/60) 

times the time-period 2π/ω0, i.e. 0.0001 s. The Discrete Fourier Transform (DFT) is used to perform 

spectral analysis of the dynamic response. 

For different values of η, the Fourier spectra of the displacement time-histories of the load 

point (FSR) have been depicted in Fig. 3, in the form of 2-D histograms. The frequency content is re-

ported in terms of Ω, and its integer multiples (n) and sub-multiples (1/n). Whatever the driving fre-

quency, the response fundamental component Ω, i.e. n=1, attains the largest amplitude in all the cases 

but Ω = ω0 /2 and Ω = 2ω0; furthermore, the exhibited behaviour is quite complex, characterized by 

even and odd super- and sub-harmonic frequencies, and non-integer multiples depending on the forcing 

frequency. The amplitude of the other components is evaluated in percentage with respect to the ampli-

tude of the fundamental component, and has been discarded when smaller than 1%.  

 

4.2 Detailed description 

The forced response of the cracked beam has been investigated for different value of η; herein, 

only the most characterising results of the performed analysis have been reported, namely η = 1/4, 1/3, 

1/2, 1, 2, and more few cases slightly shifted with respect to the above mentioned values of η are stud-

ied to test the robustness of some phenomena. 

As far as η = 1/4 is concerned (Fig. 3a), the forced response has even and odd components at 

frequencies 2, 3, 4, 5 and 6Ω; the exact coincidences ω0-Ω =3Ω , ω0+Ω =5Ω and ω0+2Ω =6Ω deserve 

to be emphasized, as already observed in [6]. The amplitude of FSR gets its maximum – if the funda-
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mental component is excluded - at the fourth harmonic, which coincides with the system bilinear fre-

quency (ω0=4Ω ); this harmonic gets here its absolute maximum, 70% of the Ω -component, throughout 

the whole range considered for η, as can be seen in Fig. 5a, where the amplitudes of the 2nd, 3rd, and 4th 

at the different driven frequencies are reported. 

For a value of η ≅ 2 / 7 slightly larger than 1/4, Fig. 3b, the expected sub-harmonic ω0 -3Ω  , 

which in this case coincides with Ω /2, leads to a period doubling. The response is characterized by a 

high number of super-harmonics; in particular the harmonic (7/2)Ω  ≅ ω0 gets the largest amplitude, 

except the fundamental harmonic. 

When η = 1/3, Fig. 3c, the forced response has small even components and one expected im-

portant odd component at 3Ω=ω0, which coincides with the system frequency; moreover, this harmonic 

gets here its absolute maximum throughout the whole frequency range and is comparable to the funda-

mental component. In the phase plane of the load point P2 (Fig. 1b), two wiggles appear (Fig. 4a) due 

to rebounding during the contact phase. For a value η = 0.327 close but different of 1/3, the wiggles 

disappear as the contact comprises only one expansion-compression phase; the phase plane portrait is 

characterized by a “figure-of-eight” shape, Fig. 4b, due to the fact that the component 3Ω is just out-

side the narrow super-harmonic resonance range and is much less important. 

At η =1/2, Figs. 3d and 4c, the forced response has two even components at frequency 2Ω =ω0 

and 4Ω  = 2ω0. It should be pointed out that the 2nd harmonic gets its maximum amplitude (Fig. 5a), 

and is even larger than the fundamental one Ω  = ω0 /2. 

The coincidence of the harmonic ω0 - Ω  with the sub-harmonic Ω
 /2 at half the driving fre-

quency should be noted (Fig. 3e) for η = 2/3. The phase plane portrait of the load point P2 (Fig. 1b) is 

plotted in Fig. 6a, where the y-trajectory of the load point has been sampled at the driving frequency 

and the two clusters of points of the relevant Poincaré sections are evidenced. As already observed in 

experimental studies [20], the period-two (Ω /2) sub-harmonic (Fig. 3e) is associated with a bifurcation, 

as shown in Fig. 6b, where the frequency-amplitude pairs have been reported, with reference to the y-

displacement of point P2. Analogously, Figure 6c shows two cycles of forcing which correspond to one 

cycle of response. It is worth noticing that this period doubling persists only within a small range 

η∈[0.6454, 0.6781]. For the other values of η  up to resonance, the forced response has only one small 

even component at frequency 2Ω, and all the response plots in the phase plane become similar ovals. 
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Finally, the frequency η = 2 (Fig. 3f) induces a forced response which has the fundamental 

component at frequency Ω  = 2ω0, and exhibits a prevailing sub-harmonic Ω
 /2 = ω0 at half the driving 

frequency, which paramountly overcomes the fundamental one, the phase portrait tending to an oval 

with a very small wiggle (Fig. 4d) representative of the small driving component Ω. 

Generally speaking, the importance of the harmonics on the frequency axis change with a 

change in exciting frequency as illustrated by Figs. 5a and 5b; the 3-D histograms report the amplitude 

of the harmonics in terms of η and the multiples and sub-multiples of the driving frequency Ω . The 

amplitude of any harmonic increases in the vicinity of the bilinear frequency ω0, and then it gradually 

decreases away from ω0. Thus, it can be stated that if the forcing frequency is such that any one of its 

multiples (n =2,3,4,…) and sub-multiples (n=1/2,1/3,1/4,…) is close to the first natural frequency of the 

system, then that order of the harmonic will have a high amplitude in spite of the fact that the ampli-

tudes of the higher harmonics are usually small. 

It is noteworthy that the 3rd component is strong enough also at ω0 +Ω =3Ω  (Fig. 3d), i.e. for 

an excitation at η = 1/2; in this case the neighbouring 2nd harmonic, being very close to the system fre-

quency, is very large and hence it strongly influences the 3rd harmonic in spite of the latter  being fur-

ther away from the system natural frequency. 

Finally, it can be observed that the periodicities of the composite model extinguish those of 

the alternating constituents; in other words, the steady state response is characterized by ω0, Ω   and by 

other minor components, which are exactly (2n-1)Ω away (n =…-2,-1,0,1,2,…) from ω0, as predicted 

by the closed-form solution [6]. 

 

4.4 Impulsive behaviour of crack closing 

For the lower frequencies in the range η ∈ [0.123, 0.288], evidence of multiple impacts emerges. They 

become clear in the phase plane portraits of relative velocity versus relative displacement (relative 

phase plane) in the z direction at the upper edge of the crack interfaces. Typically the faces of the crack 

will have nonzero relative velocity on closure, leading to an impact. The relative phase plane portrait at 

the crack interfaces in z direction for the response to η =1/2 is shown in Fig. 7 to illustrate the phe-

nomenon. This figure shows a sharp change in relative velocity, whilst relative displacement at the ori-

gin is almost unchanged. Such very steep portions of the plot are revealing of a “quasi-impulsive” be-

haviour. In the vicinity of the origin there is an emphatic impulsive event; the relative displacement at 
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the crack interface, the relative velocity and the contact force are respectively drawn in Figs. 8a,b,c for 

two impulsive events. The contactor body rebounds against the target body without loosing contact, i.e. 

detachment is almost grazed during the compressive half-cycle (Fig. 8c); this behaviour is reflected by 

the “wiggle” exhibited in the y-direction phase plane of the tip response (Fig. 4c). The η = 2/7 excita-

tion too shows the strongest evidence of multiple impacts within the periodic trajectory, illustrated in 

Figs. 8d,e,f. Figures 8c,f could explain the meaning of the term “quasi-impulsive”: the contact model of 

the crack allows for full detachment and closure under elastic response of the contacting interfaces; the 

very short duration of the contact phase and the very large values of the contact forces exchanged dur-

ing this phase strongly resemble an impact event and therefore an impulsive-like behaviour may be 

recognized in the cracked beam response. 

 The complexity of the above mentioned behaviour during contact had been already pointed 

out as far as SDOF oscillators with hysteretic motion-limiting stop were concerned [21]: the time range 

between the contact phases got shorter until the contact duration were so long that the mass oscillated 

when attached to the stop; simultaneously the responses showed repeated reversals where several sub-

sequent compression and expansion paths alternated during the same contact phase. Furthermore, an 

analogous phenomenon could be observed in the stick-slip vibrations of friction oscillators [22,23] with 

short interruptions of the stick mode being possible; pushed by spring forces the mass slowed down 

with respect to the moving belt, while re-entering the stick mode after a small wiggle. 

 

4.6 One degree of freedom system 

As already observed, one can qualitatively see that the global stiffness of the cracked beam depends on 

whether the crack is open or closed. Moreover, due to boundary conditions, loading type and crack 

location the first mode of the cracked beam’s response is primarily involved, that can be reasonably 

studied by a simple system with bilinear stiffness. 

In the past [6,24,25] and more recently Chati, Rand and Mukherjee [26] modelled the cracked 

beam as a bilinear single degree of freedom system (Fig. 9). The system consists of a lumped mass m 

which makes contact with the linear spring k1 when x<0 and with the linear spring k2> k1 when x>0. 

The equations of motion for the system are 

 0i =+ xkxm ,  i=1 for for x<0 and i=2 for x>0 (8)
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where the dot indicates differentiation with respect to time. The effective natural frequency ω0 of this 

bilinear single degree of freedom system (BSDOF) is given by Eq. (1). 

Identifying the BSDOF properties on the basis of the beam characteristics leads to the follow-

ing values (see Subsect. 4.1): ω1 = 160.0 Hz (open crack), ω2 = 183.3 Hz (closed crack), ω0 = 170.0 Hz 

(breathing crack), k2 = 1.0, m = k2/(ω2)2, k1 = m(ω1)2, k0 = m(ω0)2, F= k0xst ≅ k0(xst
c- xst

o)/2 (the apices 

“o” and “c” mean “open crack” and “closed crack” respectively); the symbols xst
o<0, xst

c>0 refer to the 

deflections of the beam tip loaded by a statically applied force with the same amplitude of the sinusoi-

dal excitation; in the first case the force downloads to open the crack, whereas in the second case it 

uploads to close the crack (Fig. 1a); xst is the equivalent static displacement of the BSDOF. 

 The steady state forced response of the BSDOF has been analyzed and the phase plane por-

traits have been depicted for η =0.284, 0.327, 0.654, and 2. By comparing thin red curves (BSDOF re-

sponses) with thick blue curves (cracked beam responses) in Fig. 10, a good agreement between the 

corresponding phase plots relevant to the cracked beam and to BSDOF is found. 

 The effectiveness of the BSDOF oscillator which is somehow equivalent to the breathing 

crack beam can be useful firstly to explore a wide range of problem parameters with low computational 

efforts, then to capture interesting features of the dynamic response in order to investigate in more de-

tail these findings by means of the more complex tool of the 2D FE model, which accounts for inter-

mediate stages of crack closing and local effects of contacting surfaces and the contribution of higher 

modes. 

 

5. Conclusions 

The main effort of this paper has been devoted to the characterization of the nonlinear response of a 

cantilever cracked beam to a harmonic loading, adopting a 2D finite element formulation, which is ca-

pable to simulate the behaviour of a breathing crack via a frictionless contact model of the interacting 

surfaces. To this aim a systematic investigation has been performed assuming the driving frequency as 

a control parameter. The results of the analyses allowed to find out some interesting phenomena that 

characterize the nonlinear features of the motion of the cracked beam. 

The presence of an unsymmetrical breathing crack in the beam makes the system strongly 

nonlinear with unsymmetrical restoring force characteristics, resulting in bilinear stiffness. In addition, 
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because of the peculiar nonlinearity, the frequency does not change with the oscillation amplitude, 

whilst the steady state response is very rich of sub- and super harmonic components. In this connection 

when the forcing frequency coincides with or is close to any one of the integer sub-multiples (1/n) of 

the first system frequency ω0, then the nth harmonic component of the forcing frequency, which is 

close to ω0, will be significantly exalted. Moreover, within the super-harmonic resonance ranges, in the 

cases η =1/4, 2/7, 1/3, 1/2 the phase plane portraits are characterized by significant wiggles due to im-

pacts between the crack edges.  

Furthermore, whenever the forcing frequency Ω is much smaller than both the natural fre-

quencies of the sub-systems, minor components appear exactly (2n-1)Ω away from the major compo-

nents at ω0, as predicted by the closed-form solution for a bilinear oscillator [6], and the response ex-

hibits bifurcation phenomena. In the case studied, a period doubling arises in small windows in the 

range of η <1, namely in the neighbours of η = 2/7,  η = 2/3, and η = 2; in the latter case, the response 

shows a sub-harmonic component, Ω /2=ω0, which very largely prevails on the fundamental Ω  = 2ω0.  

In a large range of low frequency a “quasi-impulsive” event is revealed by sharp changes in 

the relative velocity between the crack interfaces on closure; this behaviour produces a rich variety of 

super-harmonics and hence “wiggles” in the phase plane plots, which can be related to repeated “im-

pacts” without detachment, as for η = 1/2 .  

Finally, since the cracked beam excited in the region of primary resonance mainly vibrates in its 

first mode, it is shown that an equivalent bilinear oscillator strongly resembles, at least in the examined 

cases, some of the fundamental aspects of the periodic response, namely the frequency content of the 

response, without exhausting the variety of the beam motions. So, it seems reasonable to get informa-

tion about the more complex response of the cracked beam via the much simpler bilinear single-degree-

of-freedom system; in particular, easily and fast analysing the response of the BSDOF within wide 

ranges of driving frequencies could guide the research towards the richer features of the cracked beam. 

In particular the beam model retains information on the crack location, that is fundamental in the dam-

age detection. 

The main features of the cracked beam response have been here highlighted; in particular when the 

excitation frequency is approximately 1/n or n of the first system frequency, the amplitude of the (1/n)th 

or nth harmonic becomes appreciably large and hence detectable; then, a future study of their depend-
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ence on position and severity of the crack should open interesting perspectives towards sub- and super-

resonant diagnostics for detection of a breathing crack in a beam. 
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