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Abstract

The drill-string dynamics is difficult to predict due to the nonlinearities and
uncertainties involved in the problem. In this paper a stochastic computa-
tional model is proposed to model uncertainties in the bit-rock interaction
model. To do so, a new strategy that uses the nonparametric probabilistic
approach is developed to take into account model uncertainties in the bit-
rock nonlinear interaction model. The mean model considers the main forces
applied to the column such as the bit-rock interaction, the fluid-structure
interaction and the impact forces. The nonlinear Timoshenko beam theory
is used and the nonlinear dynamical equations are discretized by means of
the finite element method.

Key words:

drill-string dynamics, bit-rock probabilistic model, nonlinear stochastic
dynamics, nonparametric probabilistic approach.

1. Introduction

Drill-strings are slender structures used to dig into the rock in search of
oil and their dynamics must be controlled to avoid failures [1]. A general
vibration perspective of the oil and gas drilling process can be found in [2].
We are particulary concerned with a vertical drill-string that may reach some
kilometers. When the drill-string is that long, it turns out that the vibration
control is harder for the following reasons: the nonlinearities are important,
the sensors may not work properly and uncertainties increase.
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The drill-string is composed by thin tubes called drill-pipes that together
measure some kilometers and some thicker tubes called drill-collars that to-
gether have some hundred meters. The region composed by the thicker tubes
is called Bottom-Hole-Assembly (BHA). Figure 1 shows the general scheme
of the system analyzed. The forces taken into account are the motor torque
(as a constant rotational speed at the top Ωx), the supporting force fhook,
the torque tbit and force fbit at the bit, the weight of the column, the fluid
forces, the impact and rubbing between the column and the borehole, the
forces due to the stabilizer, and also the elastic and kinetic forces due to the
deformation and to the motion of the structure.

There are some ways to model the nonlinear dynamics of a drill-string,
e.g. [3, 4, 5, 6, 7, 8, 9, 10]. These models are able to quantify some effects
that occur in a drilling operation (such as the stick-slip oscillations) but they
cannot predict correctly the dynamical response of a real system. This is
explained since, first, the above models are too simple compared to the real
system and, second, uncertainties are not taken into account. Each author
uses a different approach to the problem: [3, 4] use a one-mode approximation
to analyze the problem, [8, 9, 10] use the Euler-Bernoulli beam model with
the Finite Element Method, while [6, 7] use the Cosserat theory.

A fluid-structure interaction that takes into account the drilling fluid that
flows inside and outside the column is not considered in any of the above
works. In the present paper, the fluid-structure interaction model proposed
in [11] is employed in the analysis.

To model the column, the Timoshenko beam model is applied and the
Finite Element Method is used to discretize the system. Moreover, finite
strains are considered with no simplifications (what couples axial, torsional
and lateral vibrations).

In a drilling operation there are many sources of uncertainties such as
material properties (column and drilling fluid), dimensions of the system
(especially the borehole), fluid-structure interaction and bit-rock interaction.
The uncertainty analysis of the present paper is focused on the bit-rock
interaction because it seems to be one of the most important sources of
uncertainties in this problem. There are few articles treating the stochastic
problem of the drill-string dynamics, in especial we may cite [12, 13]. In
[12], stochastic lateral forces are analyzed at the bit, and in [13], a random
weight-on-bit is analyzed using a simple two degrees of freedom drill-string
model.

The bit-rock interaction model used in the analysis is the one developed
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in [7]. This model is able to reproduce the main phenomena and describes
the penetration of the bit into the rock. Thus, it allows the analysis of the
rate of penetration (ROP). Usually, the bit is assumed to be fixed [9, 10] or
an average rate of penetration is assumed [14, 5].

The nonparametric probabilistic approach [15, 16, 17] is used to model the
uncertainties in the bit-rock interaction, which is represented by a nonlinear
operator. It should be noticed that a new strategy is developed to take into
account uncertainties for a local nonlinear operator.

The paper is organized as follows. In Section 2 the mean model is pre-
sented then, in Section 3, the probabilistic model of the bit-rock interaction
model is developed. The results are shown in Section 4 and the concluding
remarks are made in Section 5.

2. Mean model

In this Section the equations used to model the problem are presented.
The strategy used in this work is, in some respects, similar to the one used
in [9], but there are several important additional features, such as (1) impact
and rubbing between the column and the borehole, (2) shear (Timoshenko
beam model), (3) fluid-structure interaction and (4) a bit-rock interaction
model that allows the simulation of the bit penetration.

To derive the equations of motion, the extended Hamilton Principle is
applied. Defining the potential Π by

Π =

∫ t2

t1

(U − T − W )dt , (1)

where U is the potential strain energy, T is the kinetic energy and W is the
work done by the nonconservative forces and any force not accounted in the
potential energy. The first variation of Π must vanish:

δΠ =

∫ t2

t1

(δU − δT − δW )dt = 0 . (2)

2.1. Finite element discretization

In the discretization by means of the Finite Element Method a two-node
approximation with six degrees of freedom per node is chosen (see Fig. 2).
The nodal displacement is written as
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ue = Nuue , ve = Nvue , we = Nwue , (3)

θxe = Nθx
ue , θye = Nθy

ue , θze = Nθz
ue , (4)

where N is the shape function (see Appendix A), ue, ve and we are the
displacements in x, y and z directions, θxe, θye and θze are the rotations
about the x, y and z-axis (see Fig. 2).
The element coordinate is ξ = x/le and

ue =
(

u1 v1 θz1 w1 θy1 θx1 u2 v2 θz2 w2 θy2 θx2

)T
, (5)

where (·)T means transpose.
The Total Lagrangian formulation is used, the stress tensor is the sec-

ond Piola-Kirchhoff tensor and finite strains are considered (Green-Lagrange
strain tensor). We are assuming axi-symmetry about the x-axis, small lat-
eral displacements (v and w) and small rotations (θy and θz), and a linear
stress-strain relationship.

2.2. Kinetic energy

The kinetic energy is written as

T =
1

2

∫ L

0

(ρAvTv + ρωT [It]ω) dx , (6)

where ρ is the mass density, A is the cross sectional area, L is the length of
the column, [It] is the cross sectional inertial matrix, v is the velocity vector
and ω the angular velocity vector. The three following quantities v, [It] and
ω are written as

v =

⎛

⎝

u̇
v̇
ẇ

⎞

⎠ , [It] =

⎛

⎝

Ip 0 0
0 I 0
0 0 I

⎞

⎠ , ω =

⎛

⎝

θ̇x + θyθ̇z

cos(θx)θ̇y − sin(θx)θ̇z

sin(θx)θ̇y + cos(θx)θ̇z

⎞

⎠ , (7)

where the time derivative (d/dt) is denoted by a superposed dot. The angular
velocity ω is derived by first rotating the inertial frame about the x-axis θx,
then rotating the resulting frame about the y-axis θy and, finally, rotating
the resulting frame about the z-axis θz. It is written in the inertial frame
and it is assumed small rotations θy and θz . Developing the expression of the
kinetic energy yields

T =
1

2

∫ L

0

[ρA(u̇)2 + ρA(v̇)2 + ρA(ẇ)2+
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+ρI(θ̇y)
2 + ρI(θ̇z)

2 + ρIp(θ̇x)
2 + 2ρIp(θ̇xθy θ̇z)]dx . (8)

The first three terms of Eq. (8) are related to the translational inertia, the
next three terms are related to the rotational inertia and the last term is the
coupling term. In rotor-dynamics analysis the coupling term (2ρIp(θ̇xθy θ̇z))
yields the gyroscopic matrix which does not introduce a nonlinearity into
the system as θ̇x ∼ cte (see, for instance, [18]). In our case this is not true,
therefore, it yields a nonlinear formulation. The first variation of the kinetic
energy, after integrating by parts in time, may be written as

δT = −
∫ L

0

[

ρAüδu + ρAv̈δv + ρAẅδw + ρIθ̈yδθy + ρIθ̈zδθz + ρIpθ̈xδθx+

+ (ρIp(−θy θ̈zδθx − θ̇y θ̇zδθx + θ̇xθ̇zδθy − θ̇xθ̇yδθz − θy θ̈xδθz))
]

dx . (9)

For convenience the energy is divided in two parts. The first one is

δT1 = −
∫ L

0

[

ρA(üδu + v̈δv + ẅδw) + ρI(θ̈yδθy + θ̈zδθz) + ρIpθ̈xδθx

]

dx ,

(10)
which yields the constant mass matrix [M ]. The second part is

δT2 = −
∫ L

0

[

(ρIp(−θy θ̈zδθx − θ̇y θ̇zδθx + θ̇xθ̇zδθy − θ̇xθ̇yδθz − θy θ̈xδθz))
]

dx ,

(11)
which yields the vector fke that is incorporated in the nonlinear force vector
fNL (see Eq. (31)). Note that this force couples the axial, torsional and lateral
motions.

2.3. Strain energy

The strain energy is given by

U =
1

2

∫

V

ǫTSdV , (12)

where V is the domain of integration, ǫ = (ǫxx 2γxy 2γxz)
T is the Green-

Lagrange strain tensor and S is Second Piola-Kirchhoff tensor (written in
Voigt notation). Substituting S = [D]ǫ and computing the first variation of
the strain energy yields

δU =

∫

V

δǫT

⎛

⎝

E 0 0
0 ksG 0
0 0 ksG

⎞

⎠ ǫdV . (13)
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The Timoshenko beam model (where the cross sectional area remains plane
but not necessarily perpendicular to the neutral line, i.e, shear effects are
considered) is used because it is more general than the Euler-Bernoulli model,
what gives more flexibility for the applications. If there is no shear, the
equations reduce to the Euler-Bernoulli model.

The components of the Green-Lagrange strain tensor may be written as

ǫxx =
∂ux

∂x
+

1

2

(

∂ux

∂x

∂ux

∂x
+

∂uy

∂x

∂uy

∂x
+

∂uz

∂x

∂uz

∂x

)

,

γxy =
1

2

(

∂uy

∂x
+

∂ux

∂y
+

∂ux

∂x

∂ux

∂y
+

∂uy

∂x

∂uy

∂y
+

∂uz

∂x

∂uz

∂y

)

,

γxz =
1

2

(

∂uz

∂x
+

∂ux

∂z
+

∂ux

∂x

∂ux

∂z
+

∂uy

∂x

∂uy

∂z
+

∂uz

∂x

∂uz

∂z

)

.

(14)

The displacements written in the undeformed configuration are

ux = u − yθz + zθy ,

uy = v + y(cos(θx) − 1) − z sin(θx) ,

uz = w + z(cos(θx) − 1) + y sin(θx) ,

(15)

in which u, v and w are the displacements of the neutral line. Note that
cos (θx) and sin (θx) have not been simplified in the above expression. Eq.
(13) may be written as

δU =

∫

V

(Eδǫxxǫxx + 4ksGδγxyγxy + 4ksGδγxzγxz)dV . (16)

The linear terms yield the stiffness matrix [K] and the higher order terms
yield the geometric stiffness matrix [Kg] and the vector fse that is incorpo-
rated in the nonlinear force vector fNL (see Eq. (31)). Note that due to the
finite strain formulation, the axial, torsional and lateral vibrations are all
coupled.

2.4. Impact and rubbing

The forces generated by the impact and rubbing between the column and
the borehole are modeled by concentrated forces and torques. The radial
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forces are modeled as an elastic force governed by the stiffness parameter kip

[N/m] such that

Fr ip

{

= 0 , if (r − Rch − Ro) ≤ 0
= −kip(r − Rch − Ro) , if (r − Rch − Ro) > 0

(17)

where r =
√

v2 + w2, Rch is the radius of the borehole and Ro is the outer
radius of the column. The rubbing between the column and the borehole is
simply modeled as a frictional torque governed by the frictional coefficient
µip and is such that

Txip

{

= 0 , if (r − Rch − Ro) ≤ 0

= −µipFr ipRo sign(θ̇x) , if (r − Rch − Ro) > 0
(18)

where µip is the frictional coefficient.

2.5. Fluid-structure interaction model

The drilling fluid (mud) is responsible for transporting the cuttings (drilled
solids) from the bottom to the top to avoid clogging of the hole. It also plays
an important role in cooling and stabilizing the system [19]. The rheological
properties of the mud are complex, see [20] for instance. There is no doubt
that the drilling fluid influences the dynamics of a drill-string, but solving
the complete problem would be extremely expensive computationally. There
are some works that are strictly concerned with the drilling fluid flow, e.g

[21, 22, 23]. We use a linear fluid-structure coupling model similar to [24, 11].
In this simplified model there are the following hypotheses,

1. For the inside flow the fluid is taken as inviscid; for the outside as viscous.

2. The flow induced by the rotational speed about the x-axis is not consid-
ered in this first analysis.

3. The pressure varies linearly with x.
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The element matrices are presented in Eq. (19). These equations are an
extension and an adaptation of the model developed in [11].

[Mf]
(e) =

∫ 1

0

(Mf + χρfAo) (NT
wNw + NT

v Nv)ledξ ,

[Kf]
(e) =

∫ 1

0

(

−MfU
2
i − Aipi + Aopo − χρfAoU

2
o

)

(N′T
wN′

w + N′T
v N′

v)
1

le
dξ+

+

∫ 1

0

(

−Ai
∂pi

∂x
+ Ao

∂po

∂x

)

(NT
θy
Nθy

+ NT
θz
Nθz

)ledξ ,

[Cf]
(e) =

∫ 1

0

(−2MfUi + 2χρfAoUo) (NT
θy
Nθy

+ NT
θz
Nθz

)ledξ+

+

∫ 1

0

(

1

2
CfρfDoUo + k

)

(NT
wNw + NT

v Nv)ledξ ,

f
(e)
f =

∫ 1

0

(

Mfg − Ai
∂pi

∂x
− 1

2
CfρfDoU

2
o

)

NT
u ledξ .

(19)
in which, Mf is the fluid mass per unit length, ρf is the density of the fluid,

χ =
(Dch/Do)

2 + 1

(Dch/Do)2 − 1
(> 1), Dch is the borehole (channel) diameter, Di, Do

are the inside and outside diameters of the column, Ui, Uo are the inlet and
outlet flow velocities, pi, po are the pressures inside and outside the drill-
string, Ai, Ao are the inside and outside cross sectional area of the column,
Cf, k are the fluid viscous damping coefficients.

As pointed out before, it is assumed that the inner and the outer pressures
(pi and po) vary linearly with x

pi = (ρfg)x + pcte , (20)

po =

(

ρfg +
Ffo

Ao

)

x , (21)

where pcte is a constant pressure and Ffo is the frictional force due to the
external flow given by

Ffo =
1

2
Cfρf

D2
oU

2
o

Dh

. (22)
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In the above equation, Dh is the hydraulic diameter (4Ach/Stot) and Stot

is the total wetted area per unit length (πDch+πDo). Note that the reference
pressure is po|x=0 = 0. Another assumption is that there is no head loss when
the fluid passes from the drill-pipe to the drill-collar (and vice-versa). The
head loss due to the change in velocity of the fluid at the bottom (it goes
down and then up) is given by

h =
1

2g
(Ui − Uo)

2 . (23)

If the geometry and the fluid characteristics are given, only the inlet flow
at x = 0 can be controlled as the fluid speed is calculated using the continuity
equation and the pressures are calculated using the Bernoulli equation.

Examining Eq. (19), it can be noticed that the fluid mass matrix is
the usual added mass that, in our case, represents a significant value. For
example, using representative values, the added mass is approximately 50%
of the original mass, what changes the natural frequencies in about 20%.

The fluid stiffness matrix depends on the speed of the inside and outside
flow as well as on the pressure and on the pressure derivatives. Analyzing
the signs in the equation (Eq. 19) it can be noticed that the outside pressure
tends to stabilize the system while the inside pressure and the flow tends
to destabilize the system. The term (−piAi + poA0) plays a major role on
the stiffness of the system because, even though pi is close to po, in the drill
collar region (at the bottom) A0 is around ten times Ai what turns the system
stiffer at the bottom.

The fluid damping matrix depends on the flow velocity as well as on the
viscous parameters of the fluid which have not well established values. A
detailed analysis of the damping is not addressed in the present paper.

Finally, the fluid force vector ff is a constant axial force induced by the
fluid and it is the only fluid force in the axial direction.

2.6. Bit-rock interaction model

The model used in this work is the one developed in [7], which can be
written as

u̇bit = −a1 − a2fbit + a3ωbit ,
tbit = −DOC a4 − a5 ,

DOC =
u̇bit

ωbit

,
(24)
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where fbit is the axial force (also called weight-on-bit), tbit is the torque about
the x-axis and a1, . . . , a5 are positive constants that depend on the bit and
rock characteristics as well as on the average weight-on-bit. Note that u̇bit

(=ROP) depends linearly on fbit and on ωbit (=θ̇bit), and tbit depends linearly
on the depth-of-cut (DOC). Note also that these forces couple the axial and
torsional vibrations. Equation (24) is rewritten as

fbit = − u̇bit

a2Z(ωbit)2
+

a3ωbit

a2Z(ωbit)
− a1

a2
,

tbit = − u̇bita4Z(ωbit)
2

ωbit

− a5Z(ωbit) ,

(25)

where Z(ωbit) is the regularization function:

Z(ωbit) =
ωbit

√

(ωbit)2 + e2
. (26)

Z is such that tbit is continuous and when ωbit approaches zero, tbit and u̇bit

vanish. The regularization function is plotted in Fig. 3. Figure 4 shows how
the torque varies with ωbit.

The models usually applied for the bit-rock interaction are based on [14],
see [5, 10, 9], for instance. In [10, 9] the bit can not move and the torque at
the bit is essentially given by:

tbit = µbitfbit

[

tanh(ωbit) +
α1ωbit

1 + α2ω2
bit

]

, (27)

where µbit is a factor that depends on the bit cutting characteristics and
α1, α2 are constants that depend on the rock properties. Figure 5 shows a
comparison of the torque at the bit for the models given by Eqs. (25) and
(27). It shows that they are close to each other for fbit = −100 kN (value
used in the simulations), α1 = α2 = 1 and µbit = 0.04 (data used in [10]).

The response of the system is calculated in the prestressed configura-
tion, therefore the initial reaction force at the bit must be subtracted in the
expression of fbit.

2.7. Boundary and initial conditions

As boundary conditions, the lateral displacements and the rotations about
the y and z-axis are zero at the top. The lateral displacements at the bit are
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also zero. A constant rotational speed about the x-axis Ωx is imposed at the
top.

To apply the boundary conditions above, the lines and rows corresponding
to the mentioned degrees of freedom are eliminated from the full matrices
and the forces corresponding to the imposed rotational speed at the top are
considered in the right hand side of the equation.

In drilling operations there are stabilizers in the BHA region that help
to decrease the amplitude of lateral vibrations. Stabilizers are considered as
elastic elements:

Fy|x=xstab

= kstab v|x=xstab
and Fz|x=xstab

= kstab w|x=xstab
, (28)

where xstab is the stabilizer location and kstab is the stabilizer stiffness.
As initial conditions, all the points move with constant axial speed and

constant rotational speed about the x-axis, and the column is deflected lat-
erally.

2.8. Initial prestressed configuration

Before starting the rotation about the x-axis, the column is put down
through the channel until it reaches the soil. At this point the forces acting
on the structure are: the reaction force at the bit, the weight of the column,
the supporting force at the top and a constant fluid force. In this equilibrium
configuration, the column is prestressed (see Fig. 6). There is tension above
the neutral point and compression below it.
The initial prestressed state is calculated by:

uS = [K]−1(fg + fc + ff) . (29)

where fg is the gravity, fc is the reaction force at the bit and ff is the fluid
axial force.

2.9. Final discretized system of equations

After assemblage and considering the prestressed configuration (Eq. (29)),
the final discretized system is written as

([M ]+[Mf])ü+([C]+[Cf])u̇+([K]+[Kf]+[Kg(uS)])u = fNL(t,u, u̇, ü) , (30)

in which u = u−uS. The response u is represented in a subspace Vm ⊂ R
m,

where m equals the number of degrees of freedom of the system. [M ], [C] and
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[K] are the usual mass, damping and stiffness matrices, [Mf], [Cf] and [Kf]
are the fluid mass, damping and stiffness matrices, ff is the fluid force vector,
[Kg(uS)] is the geometric stiffness matrix and fNL(t,u, u̇, ü) is the nonlinear
force vector that is written as

fNL(t,u, u̇, ü) = fke(u, u̇, ü) + fse(u) + fip(u) + fbr(u̇) + g(t) . (31)

where fke is composed by the quadratic terms of the kinetic energy (see
Section 2.2), fse is composed by the quadratic and higher order terms of the
strain energy (see Section 2.3), fip is the force vector due to the impact and
rubbing between the column and the borehole (see Section 2.4), fbr is the
force vector due to the bit-rock interactions (see Section 2.6) and g(t) is the
force that corresponds to the Dirichlet boundary condition (rotational speed
imposed at the top).

2.10. Reduced model

Usually the final discretized FE system have big matrices (dimension
m × m) and the dynamical analysis may be time consuming, which is the
case of the present analysis. One way to reduce the system is to project the
nonlinear dynamical equation on a subspace Vn, with n << m, in which Vn

is spanned by an algebraic basis of Rn. In the present paper, the basis used
for the reduction corresponds to the normal modes projection. The normal
modes are obtained from the following generalized eigenvalue problem

([K] + [Kf] + [Kg(uS)])φ = ω2([M ] + [Mf])φ , (32)

where φi is the i-th normal mode and ωi is the i-th natural frequency. Using
the representation

u = [Φ]q , (33)

and substituting it in the Eq. (30) yields

([M ]+[Mf])[Φ]q̈+([C]+[Cf])[Φ]q̇+([K]+[Kf]+[Kg(uS)])[Φ]q = fNL(t,u, u̇, ü) .
(34)

where [Φ] is a (m×n) real matrix composed by n normal modes. Projecting
Eq. (34) on the subspace spanned by these normal modes yields

[Mr] q̈(t) + [Cr] q̇(t) + [Kr]q(t) = [Φ]T fNL(t,u, u̇, ü) , (35)
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where

[Mr] = [Φ]T ([M ] + [Mf])[Φ], [Cr] = [Φ]T ([C] + [Cf])[Φ] ,

[Kr] = [Φ]T ([K] + [Kf] + [Kg(uS)])[Φ] (36)

are the reduced matrices.

3. Probabilistic model for the uncertain bit-rock interaction model

The parametric probabilistic approach allows physical-parameter uncer-
tainties to be modeled. It should be noted that the underlying deterministic
model defined by Eq. (25) exhibits parameters a1, a2, a3, a4 and a5 which
do not correspond to physical parameters. Consequently, it is difficult to
construct an a priori probabilistic model using the parametric probabilis-
tic approach. For instance, there is no available information concerning the
statistical dependence of these parameters. Then, we propose to apply the
nonparametric probabilistic approach to model uncertainties [15] which con-
sists in modeling the operator of the constitutive equation (Eq. (25)) by a
random operator. Such an approach allows both system-parameters uncer-
tainties and modeling errors to be globally taken into account.

The nonparametric probabilistic approach has been applied for linear op-
erators [17]. Recently it was extended [25] but the type of problem studied
in the present paper is completely different from the geometrically nonlinear
dynamical system studied in [25]. We are dealing with a nonlinear operator
(related to a local nonlinearity). Therefore, it requires a different methodol-
ogy. Let fbit(ẋ) and ẋ be such that

fbit(ẋ) =

(

fbit(ẋ)
tbit(ẋ)

)

and ẋ =

(

u̇bit

ωbit

)

. (37)

In the fist step of the methodology proposed, we look for a symmetric
positive-definite matrix [Ab(ẋ)] depending on ẋ such that the virtual power
of the bit-rock interactions be written as

δPbit(ẋ) = < fbit(ẋ), δẋ > = − < [Ab(ẋ)]ẋ, δẋ > , (38)

and such that force fbit(ẋ) be given by:

fbit(ẋ) = ∇δẋ δPbit(ẋ) , (39)
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Equation (25) can be rewritten as

fbit(ẋ) = −[Ab(ẋ)]ẋ = −

⎛

⎜

⎜

⎜

⎝

a1

a2
+

u̇bit

a2Z(ωbit)2
− a3ωbit

a2Z(ωbit)

a4Z(ωbit)
2u̇bit

ωbit

+ a5Z(ωbit)

⎞

⎟

⎟

⎟

⎠

. (40)

From Eqs. (38) to (40) it can be deduced that

[Ab(ẋ)]11 =
a1

a2u̇bit

+
1

a2Z(ωbit)2
− a3ωbit

a2Z(ωbit)u̇bit

,

[Ab(ẋ)]22 =
a4Z(ωbit)

2u̇bit

ω2
bit

+
a5Z(ωbit)

ωbit

,

[Ab(ẋ)]12 = [Ab(ẋ)]21 = 0 .

(41)

It can be seen that for all ẋ belonging to its admissible space C, [Ab(ẋ)] is
positive-definite.

The second step consists, for all deterministic vector ẋ belonging to
C, in modeling matrix [Ab(ẋ)] by a random matrix [Ab(ẋ)] with values
in the set M

+
2 (R) of all positive-definite symmetric (2 × 2) real matrices.

Note that matrix [Ab(ẋ)] should be written as [Ab(ẋ(t))] which shows that
{[Ab(ẋ(t))], t > 0} is a stochastic process with values in M

+
2 (R). Thus, for

all ẋ in C, the constitutive equation defined by Eq. (40) becomes a random
constitutive equation which can be written as

Fbit(ẋ) = −[Ab(ẋ)]ẋ . (42)

The third step consists in constructing the probability distribution of
random variable [Ab(ẋ)] for all fixed vector ẋ in C. The available information
is [17]:

1. Random matrix [Ab(ẋ)] is positive-definite almost surely,

2. E{[Ab(ẋ)]} = [Ab(ẋ)] ,

3. E{||[Ab(ẋ)]−1||2F} = c1 , |c1| < +∞ ,

in which E{·} is the mathematical expectation, || · ||F denotes the Frobenius
norm such that ||[A]||F = (tr{[A][A]T})1/2 and [Ab(ẋ)] is the matrix of the
mean model. Following the methodology of the nonparametric probabilistic
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approach and using the Cholesky decomposition, the mean value of [Ab(ẋ)]
is written as

[Ab(ẋ)] = [Lb(ẋ)]T [Lb(ẋ)] , (43)

and random matrix [Ab(ẋ)] is defined by

[Ab(ẋ)] = [Lb(ẋ)]T [Gb][Lb(ẋ)] . (44)

In the above equation, [Gb] is a random matrix satisfying the following avail-
able information:

1. Random matrix [Gb] is positive-definite almost surely,

2. E{[Gb]} = [ I ] ,

3. E{||[Gb]
−1||2F} = c2 , |c2| < +∞ ,

in which [ I ] is the identity matrix. It should be noted that, in the construc-
tion proposed, random matrix [Gb] neither depends on ẋ nor on t. Let the
dispersion parameter δ be such that

δ =

{

1

2
E{||[Gb] − [I]||2F}

}
1
2

. (45)

Taking into account the above available information and using the Maximum
Entropy Principle [26, 27, 28] yield the following probability density function
of [Gb] [17],

p[Gb]([Gb]) = 1
M

+
2 (R)([Gb])CGb

det([Gb])
3

(1−δ2)

2δ2 exp

{

− 3

2δ2
tr([Gb])

}

, (46)

where det(·) is the determinant, tr(·) is the trace. The constant of normal-
ization is written as

CGb
=

(

3
2δ2

)3/(2δ2)

(2π)1/2Γ
(

3
2δ2

)

Γ
(

3
2δ2 − 1

2

) , (47)

where Γ(z) is the gamma function defined for z > 0 by Γ(z) =
∫ +∞

0
tz−1e−tdt.

The random generator of independent realizations of random matrix [Gb]
for which the probability density function defined is by Eq. (46) is given in
Appendix B. Deterministic Eqs. (30) and (31) are rewritten as

LNL(u(t), u̇(t), ü(t)) = fbr(u̇(t)) , (48)
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where LNL represents all the terms in Eqs. (30) and (31) except the bit forces
fbr. The nonzero components of fbr are related to the axial and torsional de-
grees of freedom at the bit and are represented by fbit defined by Eq. (40).
For stochastic modeling, fbit is replaced by Fbit defined by Eq. (42). Conse-
quently, Eq. (48) becomes a nonlinear stochastic differential equation which
is such that

LNL(U(t), U̇(t), Ü(t)) = Fbr(U̇(t)) , (49)

where U is the random response and Fbr is the random force at the bit that
depends on Fbit(Ẋ) in which Ẋ is the random velocity vector of the bit and
where Fbit(ẋ) is given by

Fbit(ẋ) = −[Lb(ẋ)]T [Gb][Lb(ẋ)]ẋ . (50)

For stochastic calculation, let

[Gb(s1)], . . . , [Gb(sns
)] (51)

be ns independent realizations of random matrix [Gb]. For each realization
sj (j = 1, .., ns), we have to solve the deterministic equation

LNL(U(t, sj), U̇(t, sj), Ü(t, sj)) = Fbr(U̇(t, sj), sj) , (52)

in which Fbr(U̇(t, sj), sj) only depends on Fbit(Ẋ(t, sj), sj) which is calculated
(see Eq. (50)) by

Fbit(Ẋ(t, sj), sj) = −[Lb(Ẋ(t, sj))]
T [Gb(sj)] [Lb(Ẋ(t, sj))] Ẋ(t, sj) . (53)

4. Numerical results

The drill-string is discretized with 56 finite elements. For the construction
of the reduced dynamical model, 158 lateral modes, 4 torsional modes, 3
axial modes and also the two rigid body modes of the structure (axial and
torsional) are used. The columns of matrix [Φ] are made up of 167 modes.
The number 167 has been chosen after several numerical experiments in order
to get convergence. For the time integration procedure, the implicit Newmark
integration scheme [29] has been implemented with a predictor and a fix point
procedure to equilibrate the system response at each time step. The data used
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for computations are representative values that are found in the literature
[5, 7, 9, 10] (see Appendix C). All the numerical results presented below
correspond to the forced response (deterministic case) and to the stationary
response (stochastic case) for which the transient part of the response induced
by the initial conditions has vanished. The results presented are the time
response and the frequency spectrum defined as the modulus of its Fourier
transform. The nonzero eigenfrequencies of the linearized system around
the prestressed configuration (see Eq. 32) are given in Table 1. The lateral
eigenfrequencies appear in pairs due to the symmetry about the x-axis.
The dynamical system is excited by a constant rotational speed about the
x-axis at the top and with value 0.83 Hz. Note that for such an excitation, if
there is no bit-rock interaction and no initial displacement in the lateral di-
rection, there is no vibration in the forced response for the linearized system
(there is only a rigid body displacement in rotation). In the presence of the
nonlinear bit-rock interaction and without initial displacement in the lateral
direction, the forced response does not exhibit lateral vibration and there
are only coupled torsional and axial vibrations with a broad frequency spec-
trum. The results presented below correspond to the case with the nonlinear
bit-rock interaction and an initial displacement in the lateral direction. Con-
sequently, the forced response exhibits coupled torsional, axial and lateral
vibrations on a broad band frequency spectrum. In fact, due to the non-
linearities induced by the bit-rock interactions forces an by the geometrical
nonlinearities the frequency spectrum exhibits responses on a broad band for
all components of the displacements.

4.1. Convergence of the stochastic solution

Let [U(t, sj)] be the response of the stochastic dynamical system calculated
for each realization sj. The mean-square convergence analysis with respect
to the number ns of independent realizations is carried out studying the
function ns �→ conv(ns) defined by

conv(ns) =
1

ns

ns
∑

j=1

∫ tf

0

||U(t, sj)||2dt . (54)

where tf is the simulation time. Figure 7 shows that the mean-square con-
vergence is reached for 150 simulations.
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4.2. Stochastic response

The stochastic response is computed for three values of δ which are 0.001,
0.01, 0.1. Figure 8 displays the random ROP for δ = 0.001. This figure
shows the response of the mean model together with the mean response of
the stochastic model and the 95% envelope (which means that the confi-
dence region is constructed with a probability level of 0.95). The upper and
lower envelopes of the confidence region are calculated using the method of
quantiles [30].

Fig. 8(b) shows that the dispersion of the random ROP is already signifi-
cant in the high part of the frequency band. However, the stochastic response
in the low part of the frequency band is robust for the level of uncertainties
considered. Figure 9 shows the random weight-on-bit and torque-on-bit. It
should be noted that, for each time t, the coefficients of variation of the ran-
dom weight-on-bit and of the random torque-on-bit are small (∼ 5 × 10−3).
Nevertheless, although this dispersion is small, it induces a significant disper-
sion on the stochastic response (∼ 0.15 for the coefficient of variation of the
random ROP, for instance). Figure 10 shows the random rotational speed
of the bit and Fig. 11 shows the random radial displacement at x = 700 m
(middle point of the drill pipe). It can be seen that the lateral vibrations are
also affected by the probabilistic model of the bit-rock interaction.

As δ increases the stochastic response gets more uncertain with wider
statistical envelopes. Figure 12 shows the random ROP and Fig. 13 shows
the random rotational speed of the bit (ωbit) for δ = 0.01. Note that some
other peaks appear in the frequency spectrum. Figure 14 shows the random
radial displacement. As shown in Fig. 14(a), there are some realizations
where impacts occur between the column and the borehole.

Figure 15 shows the random rotational speed of the bit for δ = 0.1. It can
be noted that, for this level of uncertainty, the dispersion of the stochastic
response is significant for all the frequency band analyzed. Figure 16 shows
some Monte Carlo realizations of the stochastic ROP. The arrows in Fig. 16
indicate that, for some realizations, the bit loses contact with the soil.

The probabilistic model proposed for the bit-rock interaction model allows
us to simulate cases such as the bit losing contact with the soil and the column
impacting the borehole. The nonparametric probabilistic approach permits
both parameters and modeling errors to be taken into account for the bit-rock
interaction model.
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5. Concluding remarks

A computational nonlinear dynamical model taking into account uncer-
tainties has been developed to simulate the drill-string dynamics and it has
been shown to be well suited to describe the problem. A probabilistic model
has been proposed to model uncertainties in the bit-rock interaction model.
Since the parameters of the mean model of the bit-rock interaction do not
correspond to physical parameters, these parameters are not adequate to
the use of the parametric probabilistic approach. Then, the nonparametric
probabilistic approach has been used. This corresponds to a completely novel
approach to take into account model uncertainties in a nonlinear constitu-
tive equation. Since the dynamical system is globally nonlinear, an adapted
strategy has been developed to implement a stochastic solver.

The nonlinear Timoshenko beam model has been used and the main forces
that affect the dynamics of the drill-string have been considered such as the
bit-rock interaction, the fluid-structure interaction and the impact forces.

The parametric numerical analysis performed shows that the nonlinear
dynamical responses of this type of mechanical system is very sensitive to
uncertainties in the bit-rock interaction model. In addition, these uncertain-
ties play an important role in the coupling between the axial responses and
the torsional one, and consequently, play a role in the lateral responses.
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A. Shape functions

Linear shape functions are used for the axial and torsional displacements
and the shape functions for the lateral displacements are derived by calcu-
lating the static response of the beam [31, 32]:
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Nu = [(1 − ξ) 0 0 0 0 0 ξ 0 0 0 0 0] ,

Nv = [0 Nv1 Nv2 0 0 0 0 Nv3 Nv4 0 0 0] ,

Nw = [0 0 0 Nv1 − Nv2 0 0 0 0 Nv3 − Nv4 0] ,

Nθx
= [0 0 0 0 0 (1 − ξ) 0 0 0 0 0 ξ] ,

Nθy
= [0 0 0 − Nθ1 Nθ2 0 0 0 0 − Nθ3 Nθ4 0] ,

Nθz
= [0 Nθ1 Nθ2 0 0 0 0 Nθ3 Nθ4 0 0 0] ,

where:

Nv1 = 1
1+ϕ

(1 − 3ξ2 + 2ξ3 + ϕ (1 − ξ)) ,

Nv2 = le
1+ϕ

(

ξ − 2ξ2 + ξ3 + ϕ
2

(ξ − ξ2)
)

,

Nv3 = 1
1+ϕ

(3ξ2 − 2ξ3 + ϕξ) ,

Nv4 = le
1+ϕ

(

−ξ2 + ξ3 + ϕ
2

(ξ2 − ξ)
)

,

Nθ1 = 1
(1+ϕ)le

(−6ξ + 6ξ2) ,

Nθ2 = 1
1+ϕ

(1 − 4ξ + 3ξ2 + ϕ (1 − ξ)) ,

Nθ3 = 1
(1+ϕ)le

(6ξ − 6ξ2) ,

Nθ4 = 1
1+ϕ

(−2ξ + 3ξ2 + ϕξ) ,

in which ϕ =
12EI

ksGAl2e
. Where E is the elasticity modulus, I is the area

moment of inertia (y-z plane), ks is shearing factor, G is the shear modulus,
A is the cross sectional area and le is the length of an element.
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B. Algorithm for the realizations of the random germ [G]

Random matrix [G] can be written as [G] = [LG]T [LG] in which [LG] is
an upper triangular real random matrix such that:

1. The random variables {[LG]jj′, j ≤ j′} are independents.

2. For j < j′ the real-valued random variable [LG]jj′ = σVjj′, in which
σ = δ3−1/2 and Vjj′ is a real-valued gaussian random variable with zero
mean and unit variance.

3. For j = j′ the real-valued random variable [LG]jj = σ(2Vj)
1/2. In which

Vj is a real-valued gamma random variable with probability density func-
tion written as
pVj

(v) = 1R+(v) 1

Γ( 3
2δ2

+ 1−j
2 )

v
3

2δ2
−

1+j
2 e−v.

C. Data used in the simulation

Ωx = 0.83 Hz (rotational speed about the x-axis at the top),
Ldp = 1400 m (length of the drill pipe),
Ldc = 200 m (length of the drill collar),
Dodp = 0.127 m (outside diameter of the drill pipe),
Dodc = 0.2286 m (outside diameter of the drill collar),
Didp = 0.095 m (inside diameter of the drill pipe),
Didc = 0.0762 m (inside diameter of the drill collar),
Dch = 0.3 m (diameter of the borehole (channel)),
xstab = 1400 m (location of the stabilizer),
kstab = 17.5 MN/m (stiffness of the stabilizer per meter),
E = 210 GPa (elasticity modulus of the drill string material),
ρ = 7850 kg/m3 (density of the drill string material),
ν = 0.29 (poisson coefficient of the drill string material),
ks = 6/7 (shearing correcting factor),
kip = 1 × 108 N/m (stiffness per meter used for the impacts),
µip = 0.0005 (frictional coefficient between the string and the borehole),
uin = 1.5 m/s (flow speed in the inlet),
ρf = 1200 kg/m3 (density of the fluid),
Cf = 0.0125 (fluid viscous damping coefficient),
k = 0 (fluid viscous damping coefficient),
g = 9.81 m/s2 (gravity acceleration),
a1 = 3.429 × 10−3 m/s (constant of the bit-rock interaction model),
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a2 = 5.672 × 10−8 m/(N.s) (constant of the bit-rock interaction model),
a3 = 1.374 × 10−4 m/rd (constant of the bit-rock interaction model),
a4 = 9.537 × 106 N.rd (constant of the bit-rock interaction model),
a5 = 1.475 × 103 N.m (constant of the bit-rock interaction model),
e = 2 rd/s (regularization parameter).
The damping matrix is constructed using the relationship [C] = α([M ] +

[Mf]) + β([K] + [Kf] + [Kg(uS)]) with α = 0.01 and β = 0.0003.
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Figure 1: General scheme of the drill-string system.

Figure 2: Degrees of freedom of an element.
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Figure 6: Initial prestressed configuration of the system.
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Figure 7: Typical mean square convergence curve.

29



210 220 230 240
0.5

1

1.5

2

2.5

3

x 10
−3

time (s)

s
p
e
e
d
 [
m

/s
]

Stochastic response, ROP

 

 

Mean model

Mean of the Stoch. Model

95% confidence limits

(a)

0.5 1 1.5 2

10
−8

10
−6

10
−4

Frequency spectrum

frequency (Hz)

s
p
e
e
d
 [
m

/s
]

 

 

mean model

mean of the stoch model

95% envelope

(b)

Figure 8: Stochastic response for δ = 0.001. ROP (a) and its frequency spectrum (b).
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Figure 9: Stochastic response for δ = 0.001. (a) weight-on-bit, (b) torque-on-bit.
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Figure 10: Stochastic response for δ = 0.001. Rotational speed of the bit (a) and its
frequency spectrum (b).
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Figure 11: Stochastic response for δ = 0.001. Radial displacement at x = 700 m (a) and
its frequency spectrum (b).

33



210 220 230 240 250

0.5

1

1.5

2

2.5

3

3.5

x 10
−3

time (s)

s
p
e
e
d
 [
m

/s
]

Stochastic response, ROP

 

 

Mean model

Mean of the Stoch. Model

95% confidence limits

(a)

0.5 1 1.5 2
10

−8

10
−6

10
−4

Frequency spectrum

frequency (Hz)

s
p
e
e
d
 [
m

/s
]

 

 

mean model

mean of the stoch model

95% envelope

(b)

Figure 12: Stochastic response for δ = 0.01. ROP (a) and its frequency spectrum (b).
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Figure 13: Stochastic response for δ = 0.01. Rotational speed of the bit ωbit (a) and its
frequency spectrum (b).
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Figure 14: Stochastic response for δ = 0.01. Radial displacement at x = 700 m and its
frequency spectrum (b).

36



200 210 220 230 240
−5

0

5

10

15

time (s)

s
p
e
e
d
 [
rd

/s
]

Stochastic response, ω
bit

 

 

Mean model

Mean of the Stoch. Model

95% confidence limits

(a)

0.5 1 1.5 2
10

−6

10
−4

10
−2

10
0

Frequency spectrum

frequency (Hz)

s
p
e
e
d
 [
m

/s
]

 

 

mean model

mean of the stoch model

95% envelope

(b)

Figure 15: Stochastic response for δ = 0.1. Rotational speed of the bit ωbit (a) and its
frequency spectrum (b).
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Figure 16: Random ROP for δ = 0.1.

Rank Eigenfrequency Type
1-2 0.0372 Hz Lateral
3-4 0.0744 Hz Lateral
5-6 0.1065 Hz Lateral
7-8 0.1117 Hz Lateral
9-10 0.1488 Hz Lateral
11-12 0.1860 Hz Lateral
13 0.2144 Hz Torsional
14-15 0.2160 Hz Lateral
16-17 0.2234 Hz Lateral
18-19 0.2605 Hz Lateral
... ... ...
76 1.1105 Hz Torsional
... ... ...
81 1.2018 Hz Axial
... ... ...
163-164 3.2671 Hz Lateral
165 4.6761 Hz Axial

Table 1: Eigenfrequencies of the linearized system.
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