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Abstract

In the last decade, non-linear dynamical transport in semiconductor superlattices (SLs) has

witnessed significant progress in theoretical descriptions as well as in experimentally observed

non-linear phenomena. However, until now, a clear distinction between non-linear transport

in strongly and weakly coupled SLs was missing, although it is necessary to provide a detailed

description of the observed phenomena. In this review, strongly coupled SLs are described

by spatially continuous equations and display self-sustained current oscillations due to the

periodic motion of a charge dipole as in the Gunn effect for bulk semiconductors. In contrast,

weakly coupled SLs have to be described by spatially discrete equations. Therefore, weakly

coupled SLs exhibit a more complex dynamical behaviour than strongly coupled ones, which

includes the formation of stationary electric field domains, pinning or propagation of domain

walls consisting of a charge monopole, switching between stationary domains, self-sustained

current oscillations due to the recycling motion of a charge monopole and chaos. This review

summarizes the existing theories and the experimentally observed non-linear phenomena for

both types of semiconductor SLs.
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1. Introduction

In 1970, Esaki and Tsu [1] invented an artificial crystal, which they called a semiconductor

superlattice (SL), in order to develop a device that exhibits Bloch oscillations. A SL in its

simplest form contains a large number of periods, with each period consisting of at least two

layers, which are semiconductors or insulators with different energy gaps, but with similar

lattice constants, e.g. GaAs and AlAs. These SLs are synthesized by molecular-beam epitaxy

or related epitaxial growth techniques in the vertical direction [2]. The conduction band

edge of an infinitely long ideal SL is modulated so that in the vertical direction it looks like a

one-dimensional crystal, which is formed by a periodic succession of a quantum well (GaAs)

and a barrier (AlAs). An electron inside the SL subject to a constant electric field F can

perform Bloch oscillations with frequency ωB = eF l/h̄, where l denotes the SL period, e the

elementary charge and h̄ Planck’s constant. These coherent Bloch oscillations can be observed,

if their frequency is larger than the inverse scattering time (of the order of picoseconds) which

yields experimentally achievable electric-field strengths of 104–105 V cm−1 for an SL period

l = 10 nm [3]. While the original idea by Esaki and Tsu [1] was to devise a Bloch oscillator

based on a strongly coupled SL, which exhibits wave functions that are extended over many

periods, it took more than 20 years to demonstrate the existence of Bloch oscillations in SLs [4].

This happened because a lot of the initial research on SLs including the early experimental

work of Esaki and Chang [5] was actually performed on weakly coupled SLs. In this type

of SL, the wave function extends at most over two adjacent wells, and the transport through

the SL is dominated by sequential resonant tunnelling [6] and not by miniband transport [7]

as in strongly coupled SLs. Many early experiments on these weakly coupled SLs indicated

the existence of interesting non-linear phenomena. Typical experiments of vertical charge

transport use an undoped or doped SL of finite length placed in the central part of a diode

(forming a p–i–n or n+–n–n+ structure) with respective contacts at either end of the diode.

Depending on the bias condition, the SL configuration, the doping density, the temperature or

other control parameters, the current through the SL and the electric field distribution inside

the SL display a great variety of non-linear phenomena such as pattern formation, current

self-oscillations and chaotic behaviour.

To describe and understand non-linear charge transport in SLs, it is essential to distinguish

between weakly coupled and strongly coupled SLs. Weakly coupled SLs contain rather thick

barriers separating the SL quantum wells, i.e. the barrier width is much larger than the typical

electron wavelength inside the barrier. Therefore, a description of the electronic properties

of weakly coupled SLs can be based on the subband structure of the corresponding isolated

quantum well together with resonant tunnelling across the barrier of two adjacent wells. In

contrast, the quantum wells of strongly coupled SLs are separated by thin barriers so that the

electronic properties of strongly coupled SLs can be described in terms of extended states such

as Bloch functions. The simplest mathematical models applied to a SL give rise to balance

equations involving mesoscopic quantities such as the electric field, the electron density and the

drift velocity. The task of deriving these equations from first principles is far from being

completed. In this review, we shall summarize the current situation and point out what needs

to be done to carry out the necessary first-principle derivations. However, our main task is

to describe and study the non-linear dynamics of the charge and field distribution in SLs in

terms of tractable models. In dealing with non-linear phenomena, deriving equations in poorly

understood limiting cases is often less useful than understanding the qualitative behaviour of

different models and the phenomena that can be described by their governing equations.

A fundamental difference between weakly and strongly coupled SLs is that the former are

governed by spatially discrete balance equations, whereas the latter are governed by spatially
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continuous equations. Both types of equations may have solutions whose electric field profiles

display regions of high electric field coexisting with regions of low electric field. The resulting

dynamical behaviour is very different for these two types of equations. For strongly coupled

SLs, which are described by continuous balance equations, the field profile consists of a

charge dipole moving with the flow of electrons, which resembles closely the Gunn effect in

bulk semiconductors [8]. Under dc voltage bias, this basic motion results in self-sustained

oscillations of the current through the SL due to the periodic movement of dipole domains. In

contrast, in weakly coupled SLs, which are described by discrete balance equations, electric-

field domains (EFDs) are separated by a domain wall, which consists of a charge monopole.

The domain wall in a weakly coupled SL may move with or opposite to the electron flow

or is pinned, depending on the value of the current [9]. This pinning of the domain wall

occurs only in the discrete models. Under dc voltage bias, the non-linear behaviour of a

weakly coupled SL is more complex than for strongly coupled SLs: formation of stationary

EFDs, multistability of the current–voltage characteristics, current self-oscillations and high-

frequency spikes due to discreteness effects. Pinning of domain walls in weakly coupled SLs

for values of the current in certain intervals explains the periodic structure of the conductance

in highly doped, weakly coupled SLs, which was initially observed by Esaki and Chang [5],

and the current–voltage characteristics containing as many current branches as periods in

the SL [10]. In the continuum limit described by continuous balance equations, the pinning

interval shrinks to a point or completely disappears. Domain walls, which are wave front

solutions of spatially discrete models, also occur in very different physical systems such as

dislocations [11, 12], crack propagation and friction in solids [13] and propagation of nerve

impulses along myelinated fibres [14].

Previously published reviews on this subject covered the theory of electric transport

in SLs discussing miniband conduction, Wannier–Stark hopping, and sequential tunnelling,

their relation to each other and a comparison with a quantum transport model based on

non-equilibrium Green’s functions [15]. Moreover, this work reviewed the occurrence of

inhomogeneous electric field distributions, yielding either a characteristic sawtooth shape of

the current–voltage characteristic or self-sustained current oscillations, and the effect of an

additional ac-voltage in the terahertz range, demonstrating the existence of absolute negative

conductance, photon-assisted tunnelling, the possibility of gain and a negative tunnelling

capacitance. Another review, which appeared about the same time, presented the theory of non-

linear charge transport, wave propagation and self-oscillations in weakly coupled SLs modelled

by discrete equations and boundary conditions [16]. The focus of this work was the formation

of EFDs, pinning or propagation of domain walls, self-sustained oscillations of the current and

chaos. More recently, a review on photon-assisted transport in semiconductor nanostructures

has appeared, which focuses on electronic transport through semiconductor nanostructures

driven by ac fields [17]. This work includes the available experimental information on different

nanostructures, such as resonant tunnelling diodes, SLs or quantum dots, together with different

theoretical techniques used in the study of photon-assisted transport. The present review differs

from the previous ones since it presents both theoretical and experimental results with similar

weight and covers both weakly and strongly coupled SLs.

2. Vertical transport

2.1. General theoretical approach

Let us consider an n-doped SL formed by periodic alternation of two different semiconductors

such as GaAs (quantum well, W) and AlAs (barrier, B). The SL cross section, S, is much larger
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than l2, the square of the SL period. For n-doped SLs, we can restrict ourselves to studying

electronic transport in the conduction band of the SL. We shall assume that the SL is under a

dc voltage bias, which is equivalent to an external electric field directed along the SL growth

direction. The corresponding Hamiltonian is

H = H0 + He–e + Hsc. (1)

We have separated the electron–electron interaction, He–e, and other scattering processes

(impurity, phonon, etc), Hsc, from the one-electron Hamiltonian, H0. Typically, the electron–

electron interaction is treated in the Hartree approximation. Then we can find the spectrum

of the Hamiltonian H0 + He–e by solving a non-linear stationary Schrödinger–Poisson system

of equations. Their solutions yield a basis in which quantum kinetic equations describing the

scattering processes out of equilibrium can be written, as shown below. The envelope wave

function is [18]

ϕν(x, k) ≡ ϕν(x, x⊥, k, k⊥) =
1

√
S

eik⊥· x⊥ϕν(x, k, k⊥). (2)

At zero external field, ϕν satisfies
[

Ec + Vc(x) − eW(x) −
h̄2

2

∂

∂x

1

m(x)

∂

∂x
+

h̄2k2
⊥

2 m(x)

]

ϕν = Eν(k) ϕν, (3)

ε(x)
∂2W

∂x2
= e[n0 − N3D(x)]. (4)

Here −e is the charge of the electron, Ec is the conduction band edge of material W (GaAs,

well), l = dB + dW is the SL period, W(x) is the electric potential due to the electron–

electron interaction, N3D(x) = ND/l is the three-dimensional doping density (ND is the

two-dimensional doping density) and

m(x) =
{

mW if x corresponds to a quantum well W,

mB if x corresponds to a barrier B,
(5)

ε(x) =
{

εW if x corresponds to a quantum well W,

εB if x corresponds to a barrier B
(6)

are the masses and permittivities of the well and barrier. If Vc corresponds to the conduction-

band offset between the well and barrier material, we have

Vc(x) =
{

0 if x corresponds to a quantum well W,

Vc if x corresponds to a barrier B.
(7)

Moreover, the three-dimensional equilibrium electron density is

n0(x) =
1

Sl

∑

ν,k,k⊥

|ϕν(x, k, k⊥)|2nF(ν, k, k⊥), (8)

where nF denotes the Fermi function of the miniband ν. The boundary conditions at the

well–barrier interfaces are that ϕν and m(x)−1∂ϕν/∂x are both continuous. The electronic

spectrum is continuous, consisting of minibands of energies Eν(k; k⊥) with ν = 1, 2, 3, . . .

(doubly degenerate because of spin) with an associated basis of spatially extended Bloch wave

functions ϕν(x, k; k⊥) = eikxuν(x, k; k⊥) [18]. A more complete discussion of electronic

states in SLs can be found in the book by Bastard [18].

Although we can discuss the effects of scattering using the previous basis of electronic

states that solve a non-linear Schrödinger–Poisson system, we will for simplicity ignore the
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difference in mass and permittivity between barriers and wells and assume that the doping

density is uniform. Then the model (equations (3)–(7)) becomes the Kronig–Penney model

with mW = mB = m∗, εW = εB = ε and N3D(x) = N3D (constant). The Schrödinger–Poisson

problem is simply [H0 − Eν(k)]ϕν(x, k) = 0 with n0 = N3D, and its solutions have the form

ϕν(x, k) =
1

√
S

eik⊥· x⊥ϕν(x, k), Eν(k) =
h̄2k2

⊥
2m∗ + Eν(k). (9)

The Bloch functions are 2π/l-periodic in k, satisfying the orthogonality condition
∫ ∞

−∞
ϕ∗

µ(x, k)ϕν(x, k′) dx = δµνδ(k − k′) (10)

and the closure condition
∫ ∞

−∞
ϕ∗

µ(x, k)ϕν(x
′, k) dk = δµνδ(x − x ′), (11)

provided the integral of |ϕν |2 over one SL period is unity. Equivalently, a basis of orthogonal

Wannier functions, each localized in a different quantum well, can be constructed from Bloch

states with different wavenumbers [19, 20]. The Wannier function localized in the mth SL

period is χν(x − ml), in which

χν(x) =
l

2π

∫ π/l

−π/l

ϕν(x, k) dk (12)

is the zeroth harmonic in the Fourier series of the Bloch function considered as a function of k.

The orthogonality property is
∫ ∞

−∞
χ∗

µ(x − rl)χν(x − sl) dx = δµνδrs . (13)

For weakly coupled SLs, the subbands of an isolated quantum well provide a convenient set

of basic states, which approximate properly constructed Wannier functions [20], and it is used

in sequential tunnelling theories as a useful alternative.

In the particular case of a non-zero constant applied electric field E = −F (we prefer

to write our equations in terms of F = ∂W/∂x, which is the negative of the electric field,

instead of the proper electric field, E = −∂W/∂x), the periodic part of the potential energy,

−eFx, can be included in the periodic potential, Vc(x), and the solutions of the stationary

Schrödinger equation are field-dependent Bloch or Wannier states. In this case, a third set

of electron states, the Wannier–Stark (WS) states, is obtained from either the Bloch or the

Wannier basis. The key observation to find them is that a wave function 	0(x) with energy E0

generates a set of states 	0(x −j l) with energies E0 − jeFl (note that l denotes the SL period).

Then, an infinite ladder of states is formed for each bound state of a single quantum well. This

periodic energy spectrum is usually referred to as the WS ladder. The WS wave functions

extend over several SL periods if the WS levels of neighbouring wells are in resonance. In

this case, the electrons can tunnel between adjacent wells and spread coherently over a certain

distance 
. The condition for coherent tunnelling between two wells separated by a distance

jl is jeFl < �, in which the miniband width, �, gives a measure of the energetic broadening of

the basic quantum well state. Then 
 = j l = �/(eF ). Thus, the WS states become extended

over the whole SL for vanishing fields (the same as for zero-field Bloch functions), whereas

they become localized in one well if eF l > �.

Scattering different from electron–electron scattering is usually treated by writing

equations for the density matrix [21,22], its Wigner transform [23–25] or the non-equilibrium

Green’s function (NGF) [15, 26, 27]. Whatever the chosen formulation, the equations for
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the one-electron functions depend on two-electron and higher functions, and we have the

usual infinite hierarchy of coupled equations, which is well known in classical kinetic

theory. Typically, the hierarchy is closed by assuming some dependence of the two-electron

functions on one-electron functions, which is suggested by perturbation theory in the limit

of weak scattering [27]. Assuming weak scattering, the differences between the equations

corresponding to the different formulations are small. The trouble is that the kinetic equations

are often used in the opposite hydrodynamic limit, in which collisions due to scattering are

dominant. Then the results of using different formalisms are not equivalent, which has resulted

in some discussion and confusion. In this review, we shall not discuss the difference between

formulations in a precise way. Instead, we shall write kinetic equations for the one-electron

matrix density or Wigner function, leaving unspecified the collision terms as much as we can,

and discuss how to obtain reduced theories for electric field, electron density and current and

so on. These theories are easier to analyse and to solve numerically, and they are the ones

commonly used to understand non-linear phenomena in SLs.

To find a kinetic equation, we start writing equations for the coefficients aν,k(t) in the

expansion of the wave function

ψ(x, t) =
∑

ν,k

aν,k(t)ϕν(x, k) ≡
∑

ν

ψν(x, t). (14)

If we ignore the scattering term Hsc in equation (1), the coefficients aν,k(t) become

ih̄
∂

∂t
aν,k = Eν(k)aν,k − e

∑

ν ′,k′

〈νk|W |ν ′k′〉aν ′,k′ . (15)

The equations for the band wave functions ψν of equation (14) can be obtained from this

equation after some algebra:

ih̄
∂

∂t
ψν = −

h̄2

2m∗
∂2

∂x2
⊥

ψν +

∞
∑

m=−∞
Eν(m)ψν(x + ml, x⊥, t)

− e
∑

ν ′

∫

	ν(x, x′)W(x′)ψν ′(x′, t) dx′, (16)

	ν(x, x′) =
∑

k

ϕν(x, k)ϕ∗
ν (x

′, k), (17)

Eν(k) =
∞

∑

m=−∞
Eν(m) eimkl . (18)

Note that equation (2) implies

	ν(x, x′) = δ(x⊥ − x′
⊥)φν(x, x ′),

φν(x, x ′) =
∑

k

ϕν(x, k)ϕ∗
ν (x

′, k) (19)

and the closure condition in equation (11) yields
∑

ν

	ν(x, x′) = δ(x − x′). (20)

Thus 	ν(x, x′) can be considered as the projection of the delta function δ(x − x′) onto the

band ν.

After second quantization, the band density matrix is defined by

ρµ,ν(x, y, t) = 〈ψ†
µ (x, t)ψν(y, t)〉, (21)
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so that the two-dimensional electron density is (the factor 2 is due to spin degeneracy)

n(x, t) = 2l
∑

µ,ν

〈ψ†
µ (x, t)ψν(x, t)〉 = 2l

∑

µ,ν

ρµ,ν(x, x, t). (22)

Using equations (21) and (22), we can derive the following evolution equation for the band

density matrix

ih̄
∂

∂t
ρµ,ν +

h̄2

2m∗

(

∂2

∂y2
⊥

−
∂2

∂x2
⊥

)

ρµ,ν

−
∞

∑

m=−∞
[Eν(m)ρµ,ν(x, y + ml, y⊥, t) − Eµ(m)ρµ,ν(x − ml, x⊥, y, t)]

+ e
∑

ν ′

∫

W(z)[	ν(y, z)ρµν ′(x, z, t) − 	µ(z, x)ρν ′ν(z, y, t)] = Q[ρ], (23)

with Q[ρ] ≡ 0 in the absence of scattering. The Hartree potential satisfies the Poisson equation

ε
∂2W

∂x2
=

e

l
(n − ND). (24)

When considering scattering, the right-hand side of equation (23) is equal to a non-zero

functional of the band density matrix Q[ρ], whose form depends on the closure assumption

we have made to close the density matrix hierarchy. In the semiclassical limit, the kernel

of the collision term Q[ρ] is usually found by using leading order perturbation theory in the

impurity potential, electron–phonon interaction, etc. For the time being, we shall not try to

formulate collision models. Instead and in order to make contact with the kinetic equations in

the semiclassical limit, we shall rewrite equation (23) in terms of the band Wigner function

wµ,ν(x, k, t) =
∫

ρµ,ν

(

x +
1

2
ξ, x −

1

2
ξ, t

)

eik·ξ dξ. (25)

The symmetry properties of the density matrix imply that the Wigner matrix is Hermitian,

w∗
µ,ν(x, k, t) = wν,µ(x, k, t). (26)

The evolution equation for the Wigner function is

∂

∂t
wµ,ν +

h̄k⊥

m∗
∂

∂x⊥
wµ,ν +

i

h̄

∞
∑

m=−∞
eimkl

[

Eν(m)wµ,ν

(

x +
ml

2
, x⊥, k, t

)

−Eµ(m)wµ,ν

(

x −
ml

2
, x⊥, k, t

)]

+
ie

h̄

∑

ν ′

∫ [

W

(

z +
1

2i

∂

∂k
, x⊥

)

×φµ(z, x) eik(x−z)wν ′,ν

(

x + z

2
, x⊥, k, t

)

− W

(

z −
1

2i

∂

∂k
, x⊥

)

×φν(x, z) e−ik(x−z)wµ,ν ′

(

x + z

2
, x⊥, k, t

)]

dz = Qµ,ν[w] (27)

in which the collision term is again left unspecified. Note that the two-dimensional electron

density is

n(x, t) =
2l

8π3

∑

µ,ν

∫

wµ,ν(x, k, t) dk (28)
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because of equation (22) and the definition in equation (25). From equations (27) and (28),

we obtain the charge continuity equation,

e

l

∂n

∂t
+

∂

∂x
· J = 0, (29)

J⊥ =
2e

8π3

∫

h̄k⊥

m∗

∑

µ,ν

wµ,ν(x, k, t) dk, (30)

∂J

∂x
=

ie

4π3h̄

∑

µ,ν,m

∫

eimkl

[

Eν(m)wµ,ν

(

x +
ml

2
, x⊥, k, t

)

−Eµ(m)wµ,ν

(

x −
ml

2
, x⊥, k, t

)]

dk, (31)

provided our collision model satisfies
∫

∑

µ,ν Qµ,ν dk = 0.

A related formulation of the band Wigner functions (without collision terms) is due

to Demeio et al [28]. One difficulty with our formulation is that the Wigner function in

equation (25) is not 2π/l-periodic in k. This can be corrected by using the following definition:

fµ,ν(x, k, t) ≡
∞

∑

s=−∞
wµ,ν

(

x, k +
2πs

l
, k⊥, t

)

=
∞

∑

j=−∞
eijkl l

∫

ρµ,ν

(

x +
j l

2
, x⊥ +

1

2
ξ⊥, x −

j l

2
, x⊥ −

1

2
ξ⊥, t

)

eik⊥·ξ⊥ dξ⊥.

(32)

To derive this equation, we have used the identity

∞
∑

j=−∞
δ(ξ − j l) =

1

l

∞
∑

s=−∞
ei2πξs/l, (33)

together with the definition of equation (25). From equations (28) and (32), we obtain the

two-dimensional electron density in terms of fµ,ν :

n(x, t) =
2l

8π3

∑

µ,ν

∫ π/l

−π/l

∫

fµ,ν(x, k, t) dk dk⊥. (34)

Similarly, the transversal current density can be obtained from equations (30) and (32):

J⊥ =
2e

8π3

∫ π/l

−π/l

∫

h̄k⊥

m∗

∑

µ,ν

fµ,ν(x, k, t) dk dk⊥. (35)

The current density along the growth direction has the form

J =
2eh̄

8π3m∗

∑

µ,ν,s

∫ π/l

−π/l

∫ (

k +
2πs

l

)

wµ,ν

(

x, k +
2πs

l
, k⊥, t

)

dk dk⊥ (36)

from which we can also derive equation (31).

The definition of the periodic band Wigner function is related to that adopted by Bechouche

et al [29]. These authors have rigorously proved that the collisionless Wigner–Poisson

equations for a crystal become the crystal Vlasov–Poisson equations in the semiclassical limit,

assuming that the initial conditions are concentrated in isolated bands. Scattering other than

electron–electron scattering is not considered in these works.
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Further progress can be made specifying models for the collision terms. It is convenient

to distinguish two cases:

(a) miniband transport corresponding to field values, for which only the first miniband of the

SL is populated, and

(b) transport in several minibands.

Strongly coupled SLs at relatively low fields are well described by case (a), whereas weakly

coupled SLs typically require consideration of case (b). In both cases, non-linear phenomena

are better described by reduced equations for moments of the Wigner functions, such as

the electron density, the electric field and the electron average momentum and energy. For

miniband transport, we can find these reduced equations using singular perturbation methods

if we start from a sufficiently simple quantum kinetic equation. We shall describe this work in

the following subsection and also indicate related approaches found in the literature. The study

of transport in several minibands is less advanced. An important limiting case corresponds to

sequential resonant tunnelling in weakly coupled SLs, which we shall describe in section 2.3.

We shall see that a distinctive feature of a weakly coupled SL (supported by experiments) is that

pinning and motion of EFDs may occur in them. Electric-field domains are pinned for values

of the current in entire intervals. This is a characteristic feature of spatially discrete equations,

which is absent in spatially continuous equations. Not surprisingly, discrete models have been

used to describe non-linear phenomena in weakly coupled SLs, whereas continuous models

are typically associated with strongly coupled SLs, for which EFDs always move except for

single values of the current [16].

2.2. Miniband transport

Our goal in this subsection is to derive a reduced quantum drift–diffusion equation (QDDE)

from the Wigner–Poisson equation for a SL with only one populated miniband, following the

approach of Bonilla and Escobedo [30]. The resulting reduced QDDE will describe many non-

linear phenomena in strongly coupled SLs. Let us first find an appropriate Wigner–Poisson

description of transport in a single miniband. To this end, we sum all the Wigner equations (27)

over the band indices and use the closure condition in equation (20), so as to find an equation

for w(x, k, t) =
∑

µ,ν wµ,ν(x, k, t):

∂

∂t
w +

h̄k⊥

m∗
∂

∂x⊥
w +

i

h̄

∞
∑

m=−∞
eimkl

∑

µ,ν

[

Eν(m)wµ,ν

(

x +
ml

2
, x⊥, k, t

)

−Eµ(m)wµ,ν

(

x −
ml

2
, x⊥, k, t

)]

+
ie

h̄

[

W

(

x +
1

2i

∂

∂k
, x⊥

)

−W

(

x −
1

2i

∂

∂k
, x⊥

)]

w =
∑

µ,ν

Qµ,ν[w]. (37)

Let us now assume that only the first miniband is populated and that there are no transitions

between minibands, w(x, k, t) ≈ w1,1(x, k, t). Then equation (37) becomes

∂

∂t
w +

h̄k⊥

m∗
∂

∂x⊥
w +

i

h̄

∞
∑

m=−∞
eimklE1(m)

[

w

(

x +
ml

2
, x⊥, k, t

)

− w

(

x −
ml

2
, x⊥, k, t

)]

+
ie

h̄

[

W

(

x +
1

2i

∂

∂k
, x⊥

)

− W

(

x −
1

2i

∂

∂k
, x⊥

)]

w = Q1,1[w]. (38)
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This yields the following equation for the periodic Wigner function in equation (32):

∂

∂t
f +

h̄k⊥

m∗
∂

∂x⊥
f +

i

h̄

∞
∑

m=−∞
eimklE1(m)

[

f

(

x +
ml

2
, x⊥, k, t

)

− f

(

x −
ml

2
, x⊥, k, t

)]

+
ie

h̄

[

W

(

x +
1

2i

∂

∂k
, x⊥

)

− W

(

x −
1

2i

∂

∂k
, x⊥

)]

f = Q[f ]. (39)

The dispersion relation E1(k) is an even periodic function of k with period 2π/l that can

be written as E1(k) = �1[1 − cos(kl)]/2 plus a constant in the tight-binding approximation

(�1 denotes the width of the first miniband). Moreover, the field F = ∂W/∂x (note that the

real electric field is −F) satisfies

ε

(

∂F

∂x
+

∂

∂x⊥
F⊥

)

=
e

l
(n − ND), (40)

n(x, x⊥, t) =
l

4π3

∫ π/l

−π/l

∫ ∞

−∞

∫ ∞

−∞
f (x, x⊥, k, k⊥, t) dk dk⊥. (41)

We want to explicitly derive reduced balance equations from the kinetic equation. For

this purpose, we need a sufficiently simplified description of scattering. Scattering processes

such as phonon scattering change the energy and momentum of the electrons, leading the

distribution function towards thermal equilibrium. We can describe these processes using a

Bhatnagar–Gross–Krook (BGK) collision model [31]:

Qen[f ] = −νen(f − f FD), (42)

f FD(k; n) =
∫ ∞

0

Ŵ/π

[E − E(k) − h̄2k2
⊥/2m∗]2 + Ŵ2

dE

1 + exp((E − µ)/kBT )
, (43)

n(x, t) =
l

4π3

∫ π/l

−π/l

∫ ∞

−∞

∫ ∞

−∞
f FD(k, k⊥; n) dk dk⊥. (44)

Here Ŵ measures the finite width of the spectral function in thermal equilibrium due to

scattering [15]. As Ŵ → 0, the first factor in equation (43) becomes a delta function, and

we recover the usual Fermi–Dirac distribution function with a chemical potential µ. As shown

in figure 1, the chemical potential µ = µ(x, x⊥, t) is a function of the exact electron density,

n, of equation (41) that is calculated by solving equation (44). With these definitions, the

integral of Qen[f ] over momentum vanishes, and the equation of charge continuity holds, as

we shall show below. Other processes, such as impurity scattering, conserve the energy of the

electron, change only its momentum and also preserve charge continuity. Gerhardts [32] used

the following model,

Qimp[f ] = −
ν̃imp

4π3

∫ π/l

−π/l

∫ ∞

−∞

∫ ∞

−∞
δ[E(k, k⊥) − E(k′, k′

⊥)][f (k, k⊥) − f (k′, k′
⊥)] dk′ dk′

⊥,

(45)

which can be rewritten as Qimp[f ] = −νG(f − 	f [E(k, k⊥)]), provided 	f [E] =
∫

δ[E −
E(k′)]f (k′) d3k′/[4π3g(E)], g(E) =

∫

δ[E − E(k′)]f (k′) d3k′/(4π3) is the density of states

and νG = ν̃impg(E). Note that we have dropped the dependence of the Wigner function on

space and time. This collision term couples the vertical motion of the electron to the lateral

degrees of freedom. If we assume that the variation of the energy in the lateral direction is
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Figure 1. Electron density, n/ND, versus chemical potential, µ/kBT , for 10 K (M = 25.59kBT )

and 300 K (M = −0.45kBT ) with Ŵ = 0. From [34].

negligible, E(k, k⊥) − E(k′, k′
⊥) ≈ E(k) − E(k′) and therefore

Qimp[f ] ≈ −
ν̃imp

2π

∫ π/l

−π/l

δ[E(k) − E(k′)][f (k) − f (k′)] dk′

= −
ν̃imp

π�1l sin kl
[f (k) − f (−k)] ≡ −

νimp

2
[f (k) − f (−k)], (46)

f (x, k, t) =
1

2π2S

∫∫

f (x, x⊥, k, k′
⊥, t) dk′

⊥ dx⊥. (47)

The approximate collision term in equation (46) was introduced by Ktitorov et al [33]. In

terms of the one-dimensional Wigner function in equation (47), the following one-dimensional

BGK–Poisson system of equations (independent of x⊥ if we assume that the initial Wigner

function does not depend on x⊥) can be derived from equations (39)–(47):

∂f

∂t
+

i

h̄

∞
∑

j=−∞
eijklE1(j)

[

f

(

x +
j l

2
, k, t

)

− f

(

x −
j l

2
, k, t

)]

+
ie

h̄

[

W

(

x +
1

2i

∂

∂k
, t

)

− W

(

x −
1

2i

∂

∂k
, t

)]

f

= −νen

(

f − f FD
)

− νimp

f (x, k, t) − f (x, −k, t)

2
, (48)

ε
∂2W

∂x2
=

e

l
(n − ND), (49)

n =
l

2π

∫ π/l

−π/l

f (x, k, t) dk =
l

2π

∫ π/l

−π/l

f FD(k; n) dk, (50)

f FD(k; n) =
m∗kBT

π2h̄2

{

tan−1

(

Ŵ

E(k)

)

+

∫ ∞

0

Ŵ

[E − E(k)]2 + Ŵ2
ln

[

1 + exp

(

µ − E

kBT

)]

dE

}

.

(51)



590 L L Bonilla and H T Grahn

The semiclassical limit of these equations has been analysed in [34] in order to derive a reduced

drift–diffusion model in the hydrodynamic limit. Particular solutions of the semiclassical

model have been found by different authors. Ignatov and Shashkin [35] and Ignatov et al [36]

found the stationary, space-independent semiclassical solution of equation (48) for a Boltzmann

distribution function, the Boltzmann limit of equation (51). The integral of v(k) times this

solution was then used to find the SL drift velocity. The linear stability of this semiclassical,

stationary, x-independent solution to plane wave disturbances in the field was studied by

Ignatov and Shashkin [35]. The same equation with an additional source term modelling

injection with a precise momentum was considered by Ryndyk et al [37]. These studies are

relevant when we consider Bloch oscillations later on in this section.

Before we proceed, it is convenient to derive the charge continuity equation and a form of

Ampère’s law for the current density from equation (48). Since the Wigner function is periodic

in k, we can write the second and third terms on the right-hand side of equation (48) in terms

of its Fourier series:

f (x, k, t) =
∞

∑

j=−∞
fj (x, t) eijkl . (52)

We have

W

(

x ±
1

2i

∂

∂k
, t

)

f =
∞

∑

j=−∞
W

(

x ±
j l

2
, t

)

fj eijkl (53)

and therefore

W

(

x +
1

2i

∂

∂k
, t

)

f −W

(

x−
1

2i

∂

∂k
, t

)

f =
∞

∑

j=−∞

[

W

(

x +
j l

2
, t

)

−W

(

x −
j l

2
, t

)]

fj eijkl

=
∞

∑

j=−∞
j l〈F 〉j fj eijkl . (54)

Here we have defined the average

〈F 〉j (x, t) =
1

j l

∫ j l/2

−j l/2

F(x + s, t) ds. (55)

Note that differentiating an average, we obtain a finite difference

∂

∂x
〈g〉j =

〈

∂g

∂x

〉

j

=
g(x + j l/2) − g(x − j l/2)

j l
. (56)

Then the second term in equation (48) is

i

h̄

∞
∑

j=−∞

[

f

(

x +
j l

2
, k, t

)

− f

(

x −
j l

2
, k, t

)]

E1(j) eijkl =
∞

∑

j=−∞

ij l

h̄
eijklE1(j)

∂

∂x
〈f 〉j ,

(57)

which in the case of the tight-binding dispersion relation E1(k) = �1(1 − cos kl)/2 becomes

v(k)∂〈f 〉1/∂x, with the usual miniband group velocity,

v(k) ≡
1

h̄

dE1

dk
=

�1l

2h̄
sin(kl). (58)
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Inserting equations (54) and (57) into equation (48), we obtain the following equivalent form

of the Wigner equation, which is particularly suitable for treating SL problems:

∂f

∂t
+

∞
∑

j=−∞

ij l

h̄
eijkl

(

E1(j)
∂

∂x
〈f 〉j + e〈F 〉jfj

)

= −νen(f − f FD) − νimp

f (x, k, t) − f (x, −k, t)

2
. (59)

We now integrate this equation over k, thereby getting the charge continuity equation:

∂n

∂t
+

∂

∂x

∞
∑

j=1

2j l

h̄
〈Im(E1(−j)fj )〉j = 0. (60)

We can eliminate the electron density from equation (60) by using the Poisson equation (49)

and integrating the result over x, thereby obtaining the non-local Ampère’s law:

ε
∂F

∂t
+

2e

h̄

∞
∑

j=1

j〈Im(E1(−j)fj )〉j = J (t). (61)

Here J (t) is the total current density. Equations (59)–(61) are spatially non-local versions

of the corresponding semiclassical equations. The charge continuity and Ampère’s equations

have their traditional form as derived from semiclassical Boltzmann equations, except that

the electron current is averaged over the SL periods. This non-locality will be transmitted to

the QDDE.

Large-signal studies of the Wigner–BGK–Poisson problem in equations (59) and (61) are

lacking. A first step in this direction is to derive a QDDE for the electron density coupled with

the Poisson equation for the electric field. To do so, we shall follow the Chapman–Enskog

approach of Bonilla and Escobedo [30] (see also [34] for the semiclassical limit) and assume

that the electric field contribution in equation (59) is comparable with the collision terms.

Moreover, the electric-field contribution and the collision terms dominate over all other terms,

which is known as the hyperbolic limit because the lowest-order approximation of the resulting

reduced equation for the electric field is hyperbolic [34]. Let vM and FM denote the electron

velocity and field scales, respectively, typical of the macroscopic phenomena described by

the sought-after balance equation; for example, let them be the positive values at which the

(zeroth order) drift velocity reaches its maximum. In the hyperbolic limit, the time t0 it takes an

electron with speed vM to traverse a distance x0 = εFMl/(eND), over which the field variation

is of order FM, is much longer than the mean time between collisions, ν−1
en ∼ h̄/(eFMl) = t1.

Note that 1/t1 is of the order of the Bloch frequency. We therefore define the small parameter

η = t1/t0 = h̄vMND/(εF 2
Ml2) and formally multiply the first two terms on the left-hand side

of equation (48) or (59) by η [34]. After obtaining the number of desired terms, we set η = 1.

The solution of equation (59) for η = 0 is the stationary space-independent solution that

is easily found as a Fourier series,

f (0)(k; n) =
∞

∑

j=−∞
f

(0)
j eijkl, f

(0)
j =

1 − ijF/τe

1 + j 2F2
f FD

j (62)

in which

F =
〈F 〉1

FM

, FM =
h̄
√

νen(νen + νimp)

el
, τe =

√

νen + νimp

νen

. (63)

Since f FD is an even function of k, its Fourier coefficient, f FD
j , is real. Note that equation (50)

implies f
(0)

0 = f FD
0 = n.
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The Chapman–Enskog ansatz consists of writing the distribution function as an expansion

in powers of the book-keeping parameter η (recall that we have to set η = 1 after retaining the

desired number of terms):

f (x, k, t; η) = f (0)(k; F) +

∞
∑

m=1

f (m)(k; F)ηm, (64)

ε
∂F

∂t
+

∞
∑

m=0

J (m)(F )ηm = J (t). (65)

The coefficients f (m)(k; F) depend on the ‘slow variables’ x and t only through their

dependence on the electric field and the electron density (which are related through the Poisson

equation). The field obeys a reduced evolution equation (65), in which the functionals J (m)(F )

are chosen so that f (m)(k; F) are bounded and 2π/l-periodic in k. Differentiating Ampère’s

law in equation (65) with respect to x, we obtain the charge continuity equation. Moreover

the condition
∫ π/l

−π/l

f (m)(k; n) dk =
2πf

(m)

0

l
= 0, m � 1 (66)

ensures that f (m) for m � 1 does not contain contributions proportional to the zero-order

term f (0). Note that the insertion of equation (64) in Ampère’s law in equation (61) yields

J (m) =
2e

h̄

∞
∑

j=1

j〈Im[E1(−j)f
(m)
j ]〉j , (67)

which is also obtained by means of the above-mentioned boundedness condition.

Inserting equations (64) and (65) into equation (59) and equating all coefficients of ηm in

the resulting series to zero, we find the hierarchy

Lf (1) = −
(

∂

∂t
+ v(k)

∂

∂x

)

f (0)

∣

∣

∣

∣

0

, (68)

Lf (2) = −
(

∂

∂t
+ v(k)

∂

∂x

)

f (1)

∣

∣

∣

∣

0

−
∂

∂t
f (0)

∣

∣

∣

∣

1

(69)

and so on. We have defined

Lu(k) ≡
eF

h̄

du(k)

dk
+

(

νen +
νimp

2

)

u(k) +
νimpu(−k)

2
(70)

and the subscripts 0 and 1 in the right-hand side of these equations mean that ε∂F/∂t is replaced

by J − J (0)(F ) and by −J (1)(F ), respectively.

The linear equation Lu = S has a bounded 2π/l-periodic solution, provided
∫ π/l

−π/l
S dk =

0. Equation (68) and this solvability condition yield equation (67) for m = 0. The solution of

equation (68) is

f (1)(k; F) =
∞

∑

j=−∞

Re S
(1)
j + iτ−2

e Im S
(1)
j − ijFS

(1)
j /τe

(1 + j 2F2)νen

eijkl, (71)

in which S
(1)
j is the j th Fourier coefficient of the right-hand side of equation (68). Using

equation (71), we can now explicitly write two terms in equation (65), thereby obtaining the

following QDDE for the field and the electron density given by the Poisson equation (49) (with
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∂2W/∂x2 = ∂F/∂x). For the tight-binding dispersion relation, the QDDE is

ε
∂F

∂t
+

eND

l
N

(

F,
∂F

∂x

)

= ε

〈

D

(

F,
∂F

∂x
,
∂2F

∂x2

)〉

1

+

〈

A

(

F,
∂F

∂x

)〉

1

J (t), (72)

A = 1 +
2evM

εFMl(νen + νimp)

1 − (1 + 2τ 2
e )F2

(1 + F2)3
nM, (73)

N = 〈nV M〉1 + 〈(A − 1)〈〈nV M〉1〉1〉1 −
lτe�1

FMh̄(νen + νimp)

〈

B

1 + F2

〉

1

, (74)

V (F) =
2F

1 + F2
, vM =

lI1(M)�1

4h̄τeI0(M)
, (75)

D =
l2�2

1

8h̄2(νen + νimp)(1 + F2)

(

∂2〈F 〉1

∂x2
−

4h̄vMτeC

l�1

)

, (76)

B =
〈

4F2nM2

(1 + 4F2
2 )2

∂〈F 〉2

∂x

〉

1

+ F

〈

nM2(1 − 4F2
2 )

(1 + 4F2
2 )2

∂〈F 〉2

∂x

〉

1

−
4h̄vM(1 + τ 2

e )F(nM)′

lτe(1 + F2)�1

〈

nM
1 − F2

(1 + F2)2

∂〈F 〉1

∂x

〉

1

, (77)

C =
〈

(nM2)
′

1 + 4F2
2

∂2F

∂x2

〉

1

− 2F

〈

(nM2)
′F2

1 + 4F2
2

∂2F

∂x2

〉

1

+
8h̄vM(1 + τ 2

e )(nM)′F

lτe(1 + F2)�1

〈

(nM)′F

1 + F2

∂2F

∂x2

〉

1

.

(78)

M

(

n

ND

)

=
I1(µ̃)I0(M)

I0(µ̃)I1(M)
, M2

(

n

ND

)

=
I2(µ̃)I0(M)

I0(µ̃)I1(M)
, (79)

Im(µ̃) =
1

π

∫ π

−π

cos(mk)

[

tan−1

(

Ŵ̃/δ

1 − cos k

)

+

∫ ∞

0

Ŵ̃

(Ẽ − δ + δ cos k)2 + Ŵ̃2
ln(1 + eµ̃−Ẽ) dẼ

]

dk. (80)

Hereg′ denotes dg/dn, δ = �1/(2kBT ), µ̃ = µ/(kBT ), Ŵ̃ = Ŵ/(kBT ) andn = ND at the value

µ̃ = M , as indicated in figure 1. Figure 2 shows the coefficients A(F, 0), V(F, 0) and D(F, 0)

for a GaAs/AlAs SL with dW = 4.0 nm, dB = 0.9 nm, ND = 1.47×1011 cm−2, �1 = 67 meV,

νen = νimp = 1013 Hz and Ŵ = 0 [38]. If the electric field and the electron density do not

change appreciably over two SL periods, 〈F 〉j ≈ F , the spatial averages can be ignored and

the non-local QDDE (72) becomes the local generalized DDE (GDDE) obtained from the

semiclassical theory [34]. The boundary conditions for the QDDE (72), which contains triple

spatial averages, need to be specified for the intervals [−2l, 0] and [Nl, Nl + 2l], and not just

at the points x = 0 and x = Nl (N denotes the number of SL periods), as in the case of

the parabolic semiclassical GDDE. Similarly, the initial condition has to be defined on the

extended interval [−2l, Nl + 2l].

Equation (72) contains both differences and differentials, and it is strongly non-linear

because M(n/ND) and M2(n/ND) depend non-linearly on ∂F/∂x through their definitions

and the Poisson equation (49). Despite its formidable appearance, the QDDE (72) is

(in dimensionless units) a small perturbation of the drift equation ε∂F/∂t = J − J (0),
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Figure 2. Coefficients A(F, 0), V(F, 0)/[vMA(F, 0)] = V (F/FM), and D(F, 0)/D0 with

D0 = �2
1l

2/[8h̄2(νen + νimp)] appearing in equation (72) versus electric field, F/FM, for (a) 10 K

and (b) 300 K. We have considered the semiclassical limit and Ŵ = 0.

analysed in studies of the Gunn effect [39]. In the Boltzmann limit, M(n/ND) = 1

and M2(n/ND) = I2(δ)/I1(δ), in which In(δ) denotes the modified Bessel function of

the nth order. Then, the Esaki–Tsu drift velocity in equation (76) has a maximum at

vM = lI1(δ)�1/[4h̄τeI0(δ)] for a temperature-independent value of the field, FM, given by

equation (63) [36]. If νimp = 0 and local averages are ignored (semiclassical limit), the

diffusion coefficient in equation (76) becomes D(F, 0, ∂2F/∂x2) ≡ D(F )∂2F/∂x2, with

D(F ) = [v2
0/(2νen)][1 + (I2/I0)(2F2 − 1)/(4F2 + 1) − 4(I1/I0)

2F2/(F2 + 1)2], where

v0 = l�1/(2h̄), which coincides with the expression derived by Ignatov and Shashkin [40] from

the dispersion relation for the BGK kinetic equation (cf their equation (3)). Experimentally,

FM depends on temperature, and Gerhardts [32] showed that the correct dependence is obtained

by using the collision term in equation (45) to model elastic impurity scattering. By using the

Chapman–Enskog method, it should be possible to derive a QDDE from the corresponding

three-dimensional BGK–Poisson system of equations at the price of technical complications.

A common alternative, implemented by Wacker in figure 8 of his review, is to fit temperature-

dependent collision frequencies to equation (59) so that the resulting drift velocity mimics

the result of Monte Carlo simulations of the three-dimensional semiclassical Boltzmann

equation [15].

An interesting point is that the GDDE (semiclassical limit of the QDDE) becomes the usual

Kroemer DDE with the Esaki–Tsu drift velocity in equation (76) and a diffusion coefficient

obeying the Einstein relation

ε
∂F

∂t
+

2vMF

1 + F2

(

eND

l
+ ε

∂F

∂x

)

= J (t) +
2kBT vMε

eFM(1 + F2)

∂2F

∂x2
(81)

only in the limit of large temperatures kBT ≫ max(�1, πh̄2ND/m∗) in addition to the limit

as η → 0. This limit is not very realistic for many strongly coupled SLs, even at room

temperature [34]. Figure 3 depicts the ratio R(F) = eFD(F )/[kBT N (F, 0)] at two different

temperatures, thereby showing how the Einstein relation breaks down. Note that the difference

|R(F) − 1| becomes smaller as the temperature increases. However, a numerical solution

of the GDDE yields self-oscillations of the current, whose frequency agrees very well with

experiments [34]. More phenomenological DDEs were used by Le Person et al [41].
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Figure 3. Ratio R(F) = eFD(F )/[kBT N (F, 0)] for (a) 10 K and (b) 300 K. (c) Relative error of

the Boltzmann limit result with respect to using the Fermi–Dirac distribution. We have considered

the semiclassical limit and Ŵ = 0. From [34].

In this subsection, we have described a one-dimensional Wigner–BGK–Poisson system

of equations with a BGK collision term and a simplified description of impurity scattering.

Then, we have used a systematic Chapman–Enskog method to derive a quantum drift–diffusion

equation. In the limit of high temperatures, this equation becomes a DDE with the Esaki–Tsu

drift velocity and a diffusivity that obeys the Einstein relation.

How can we generalize these results? In the general quantum description of single-

miniband SLs, collision terms corresponding to many different scattering processes have been

modelled within the NGF formulation [15,26,27,42]. In this formulation, closed equations for

the one-electron NGFs are found by treating weak scattering processes up to second order in

the scattering potential, thereby obtaining the Kadanoff–Baym equations [26,27]. Additional

approximations yield closed equations for Wigner functions, although more work connecting

both the NGF and the Wigner function approaches seems desirable [27]. Related work is due

to Bryksin and coworkers. Bryksin and Firsov [43–45] derived a system of coupled equations

for the two-point electron correlation function and the scattering transition probability, both

written in the Wannier representation. More recently, Bryksin and Kleinert [25] extended

the same formulation to obtain the drift velocity and the diffusion coefficient for constant

applied electric fields. These transport coefficients are obtained by approximating the two

first moments of the Wigner transform of the two-point correlation function. They have been

used in a linear stability analysis of simple homogeneous field profiles [46]. Formulations

using density matrices can be found in [21,22], and comparison between non-equivalent NGF

and density matrix descriptions of single-miniband SLs can be found in appendices A and B

of [15]. Laikhtman and Miller [47] derived equations for the NGF and subsequently for

the density matrix of a single-miniband SL using the Wannier representation. Later, they

calculated different approximations of the tunnelling current density (for high temperatures,

considering hopping between next-neighbour WS states and SLs with two minibands) and
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studied the stability of the uniform field profile in an infinite SL. These authors calculated

space-dependent electric field profiles via the Poisson equation and formulated a semidiscrete

model, which treated the low- and high-field domains separately [48]. Lake et al [49] and

Datta [42] have given a detailed self-consistent treatment within an NGF formulation for

shorter devices such as the resonant tunnelling diode and a short n+–n–n+ diode, respectively.

A general theory of self-consistent NGF for SLs with several minibands and realistic scattering

mechanisms is still missing.

Within the semiclassical approach, we could improve the description of collision terms

and then numerically solve the resulting Boltzmann equation using the Monte Carlo procedure

[50–53] or using particle methods [54]. Thus, transport coefficients can be obtained and

inserted in a model DDE, which results in an uncontrolled approximation unless we have a

reasonable derivation of the reduced model. It is more difficult to implement a Chapman–

Enskog method for non-local collision kernels and derive a GDDE, but, assuming that elastic

processes are dominant, progress has been achieved in certain cases [55].

For general collision kernels, it is possible to derive a hydrodynamic model which is

more general than DDEs. In the context of single-miniband SLs, Büttiker and Thomas [56]

and later Lei and collaborators [57–64] have exploited the use of balance equations based on

hydrodynamic variables. Lei [61] writes moment equations for the electron density, its average

velocity and its average energy directly from a quantum theory. These equations are part of an

infinite hierarchy, which is closed by assuming that the distribution function is a three-parameter

Fermi–Dirac distribution depending on the electron density, an electron temperature and a

moving wave vector within the lowest miniband described in the tight-binding approximation

[64]. Balance equations are harder to study or solve numerically than DDEs but yield better

quantitative results. The distribution function may be poorly described by hydrodynamic

methods if it departs significantly from local equilibrium [15]. It might be interesting to

investigate more general BGK collision models with local Fermi–Dirac distribution functions

that depend on the exact electron density, average current density and energy and to derive

hydrodynamic equations in the hyperbolic limit. In this limit, the electric field terms are of

the same order as the collision operators, and the resulting zeroth-order distribution function

(equivalent to the one in equation (62)) may be quite different from local equilibrium.

The experimental work on miniband transport in strongly coupled SLs has been reviewed

by Sibille [7].

2.3. SLs with several minibands and sequential resonant tunnelling

Electronic transport in an SL with several minibands has been much less studied than the

case of an SL with one miniband. In particular, reduced non-local QDDEs corresponding to

equation (72) have not been derived for SLs with several minibands. Known results involve

definitions of the current density that are not equivalent to equation (31) and therefore do

not exactly satisfy the charge continuity equation (29). Bryksin et al [65] use a low-density

approximation of the current density introduced by Bryksin and Firsov [43]: the current operator

is determined by the density times the time derivative of the dipole moment. In a related

definition of Kazarinov and Suris [66], the average current is the trace of the velocity operator

times the density matrix multiplied by e (a similar definition is used in [47]). Wacker’s

definition of ‘total current density well to well’ does not even depend on the position x

(cf equation (148) in [15]), and therefore its relation to the space-dependent current density in

the charge continuity equation (29) is unclear.

The general quantum kinetic theory of electron transport in strongly or weakly coupled SLs

with several minibands is not yet developed to the point in which systematic approximations
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to reduced balance equations are known. However, different calculations of approximate

stationary current–field relations for weakly coupled SLs have been incorporated in ad hoc

discrete balance equation models with great success in predicting and interpreting non-linear

phenomena. Discrete equations are plausible candidates for reduced descriptions of weakly

coupled SLs due to two reasons. First, the non-local QDDE describing single-miniband SLs

contains finite differences, which are used in discrete equations. Second and more importantly,

weakly coupled SLs display multistability of stationary field profiles having pinned domain

walls (monopoles) separating different electric field domains, and this pinning occurs for entire

intervals of the current. As we shall see later, pinning of domain walls is typical of discrete

equations but not of continuous equations having differentials instead of differences.

An initial approach to calculating a stationary current–field relation for a weakly coupled

SL is due to Kazarinov and Suris [67]. It is based on sequential resonant tunnelling of electrons

between neighbouring wells of the SL. Kazarinov and Suris [66, 67] treated scattering within

a density matrix formulation that used Wannier states as a basis. They considered a constant

applied electric field and calculated an approximate stationary current density in different

limits: close to resonance and far away from it. For fields close to resonant fields between

different subbands of adjacent wells, their work shows that the current density is a Lorentzian

function of the applied field. However, this formula is not applicable for hopping between the

first subbands of adjacent wells. In what follows, we shall describe models involving discrete

balance equations for weakly coupled SLs (whose main transport mechanism is sequential

tunnelling) and explain why calculations of the stationary current density are important to

completing the equations of these models. The limiting case of weakly coupled SLs is well

understood in physical terms, and its description will probably play an important role in

checking a future theory for all types of SLs.

In weakly coupled SLs, which contain wider barriers, the miniband widths, �ν , are small

compared with the broadening of the energy levels due to scattering, h̄/τsc, and to the typical

values of the electrostatic energy per SL period, eFl. Thus, the escape time from a quantum

well τesc ∼ l/vM ∼ h̄/�ν is much larger than the scattering time, τsc. This implies that

the electron distribution in the wells is in local equilibrium [68]. Moreover, the dielectric

relaxation time τdi ∼ Nldi/vM ∼ NεFMτesc/(eND) (N is of the order of the number of SL

periods), in which the current density across the SL reacts to sudden changes in the electric field

profile, is typically larger than the escape time. Therefore, we can assume that the tunnelling

current density between quantum wells is stationary on the longer timescale of the dielectric

relaxation time [68]. A minimal theory of charge transport in weakly coupled SLs should

therefore specify (i) which slowly varying magnitudes characterize the local Fermi–Dirac

equilibrium distribution function in the wells (at least the electric field and the electrochemical

potential), (ii) the equations relating these magnitudes (e.g. the charge continuity and the

Poisson equation) and (iii) how to close these equations by calculating the necessary relations

between magnitudes (e.g. the stationary tunnelling current between adjacent wells).

In 1974 itself, Esaki and Chang [5] explained their observation of periodic structures in

the conductance of an SL with increasing dc voltage by the formation of two EFDs inside the

SL. According to their interpretation, the electric field is very small in the low-field domain

(LFD), and electronic transport is actually due to well-to-well hopping and not miniband

conduction as originally assumed, since their SL was weakly coupled. However, the field in

the high-field domain (HFD) has the appropriate value to almost align the first subband of

one well with the second subband of the adjacent well. Thus, the transport process in the

HFD consists of resonant tunnelling from the first subband across the barrier into the second

subband in the adjacent well, followed by rapid scattering of the electrons out of the second

subband into the first subband in the same well: sequential resonant tunnelling. The extent
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of the EFDs depends on the applied voltage across the SL. Esaki and Chang also recognized

that the discrete nature in the expansion of the HFD yields the observed oscillatory behaviour

of the conductance. Note that a little earlier Suris [69] had proposed a discrete model of

charge transport in weakly coupled SLs that could have been used to explain the formation of

EFDs. Instead, Suris discussed whether the homogeneous field and electron profiles could be

unstable to the formation of moving dipole domains as in the Gunn effect or to the formation

of a static inhomogeneous structure, whose period was twice the SL period [70]. Thus, the

application of discrete models to the study of static domains in SLs did not occur until the

work of Korotkov et al [71] and Laikhtman [72]. Korotkov et al [71] considered that quasi-

zero-dimensional SLs of small lateral extent (quite different from the SLs considered in this

work) were analogous to a one-dimensional array of metallic tunnel junctions studied earlier

by Likharev et al [73]. Electronic transport in these structures was due to single-electron

tunnelling events and coexistence between Bloch oscillations, and oscillations due to single-

electron tunnelling was predicted. Laikhtman [72] wrote a discrete balance equation for the

current through an equivalent circuit formed by a succession of capacitors and non-linear

resistors in parallel. The current through each resistor played the role of the tunnelling current,

and it was a function of the voltage drop therein but not of the electron density in adjacent

wells. This unrealistic feature (absent in Suris’s model) produced non-monotonic field profiles

and was corrected in later models [47, 48, 68, 74, 75].

Following earlier work for undoped weakly coupled SLs [68], Bonilla [75] proposed a

simple discrete model for non-linear charge transport in a doped, weakly coupled SL. This

discrete drift model combines the discrete charge continuity and Poisson equations with a

drift-type constitutive relation for the tunnelling current density across a barrier: the tunnelling

current is equal to the product of the electron density at the well before the barrier and a

non-linear function of the local electric field. Instead of working with the charge continuity

equation, it is better to use an equivalent discrete Ampère equation that explicitly includes

the total current density [68, 75]. The discrete drift model is the high electric-field limit of

many other discrete models, and therefore it successfully describes phenomena occurring in

the second and higher plateaus of the I–V characteristic.

Finding the constitutive relation requires calculation of the stationary tunnelling current

across a barrier, which, according to the pioneering calculations of Kazarinov and Suris [66,67],

is simply a Lorentzian function of (Eν − E1 − eF l) for fields comparable with or above the

first resonant field. Knowing that the field profile in undoped SLs is uniform, one can fit

the corresponding current–voltage characteristic with the stationary carrier density times a

Lorentzian function of the electric field, as done by Bonilla et al [68]. When the Poisson

equation is used to eliminate the electron density in Ampère’s equation, the resulting discrete

drift model for the field is first order in the spatial differences (unlike the higher-order model of

Suris [69]). Instead of fitting data with Lorentzian functions, it is possible to find the discrete

drift velocity by calculating the matrix element in the tunnelling current formula of Kazarinov

and Suris [66]. Then, the resulting drift velocity can be inserted in the discrete drift model. This

approach has been followed by other authors to analyse the coexistence between more than

two EFDs [76] and the dependence of non-linear transport on an applied magnetic field [77].

In order to improve the simple discrete drift model, we need to add a contribution for

low-field values to the tunnelling current formula. If the electric field is small, the tunnelling

current across a barrier depends on the electron density in both wells, which are separated by

the barrier. A useful analytical formula for this tunnelling current is derived in appendix A

of the review by Bonilla [16] and given in equations (99) and (100). Wacker [15] gives an

alternative formula for equation (100), which was also used by Amann et al [78]. The resulting

constitutive relation yields a more elaborate modified discrete model for the field profile, which
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contains second-order differences, not just first-order differences as in the original discrete drift

model. To systematically derive the modified discrete model (or a related one) from a quantum

kinetic equation is an open problem.

Until 1998, Schöll and collaborators used a more elaborate discrete model to describe

transport by sequential resonant tunnelling at low fields. Originally proposed by Prengel,

Wacker and Schöll (PWS) [74], the PWS model consists of rate equations for the electron

densities of the two first subbands of each quantum well plus a Poisson equation for the local

electric field. The tunnelling rates in the PWS model are strongly non-linear functions of the

subband populations. Simpler tunnelling rates appear in a later paper by Kastrup et al [79].

They combine expressions from miniband transport for tunnelling between the first subbands

of adjacent wells with Lorentzian functions for resonant tunnelling between the first subband

of one well and the second subband of the next well. The equations of the PWS model could

have been simplified because the population of the first subband is always much larger than the

one of the second subband for the usual weakly coupled SLs (which could be used to simplify

the equations). More importantly, the Poisson equation in the PWS model contains forward

differences instead of backward differences as in the discrete drift model. Thus, the PWS model

in the limit of large fields (in which the tunnelling current becomes drift-like and therefore

involves only first-order differences) requires an additional (and artificial) boundary condition

at the last barrier of the SL, in addition to the boundary condition at the injecting region.

A different discrete model that describes sequential tunnelling for all field strengths is due

to Aguado et al [80]. The model considers different electric field values in barriers and wells

and describes the contact regions more precisely. The stationary tunnelling currents across

the inner barriers and across the barriers confining the SL are calculated using the transfer

Hamiltonian method. In this model, the stationary tunnelling current depends on the fields

in the barrier and the neighbouring wells, which is more precise than the mere dependence

of the tunnelling current on the average field in one SL period, as prescribed by the discrete

drift model and related ones. The same can be said for the tunnelling current in the boundary

conditions [81, 82]. This model is harder to analyse and solve numerically than the simple

discrete models we describe in this review, but it has been used to derive the simpler discrete

drift–diffusion equations [82] and the sequential tunnelling model explained later [16].

The sequential tunnelling discrete model that we describe here has been extended to

predicting the formation of static spin domains in n-doped II–VI semiconductor SLs [83] and

the undriven self-oscillations of the current under dc voltage bias in the same materials [84].

Kholod et al [85] have used a discrete model with forward differences in the Poisson equation

to predict current self-oscillations in semiconductor–insulator SLs with localized states in the

insulator barriers. Based upon their quantum kinetic calculations [47], Miller and Laikhtman

[48] proposed a semidiscrete model to analyse static EFDs in weakly coupled SLs. They

considered a semi-infinite SL and different equations for the LFD and the HFD.

Let us describe the discrete sequential tunnelling model for an SL with N + 1 barriers and

N wells. The zeroth barrier separates the injecting region from the first SL well, whereas the

N th barrier separates the N th well from the collecting region. Assume that Fi is the average

field across one SL period (note that the actual electric field is −Fi), consisting of the ith well

and the (i − 1)th barrier. Similarly, ni is the two-dimensional electron density at the ith well,

concentrated in a plane perpendicular to the growth direction inside the ith well. Then, the

Poisson equation (averaged over the ith period) and the charge continuity equation are

Fi − Fi−1 =

e

ε
(ni − ND), (82)

e
dni

dt
= Ji−1→i − Ji→i+1. (83)
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Here Ji→i+1 is the tunnelling current density across the ith barrier, i.e. from well i to well i + 1

with i = 1, . . . , N .

Differentiating equation (82) with respect to time and inserting the result into equation (83),

we obtain

ε
dFi

dt
+ Ji→i+1 = J (t) (84)

in which the total current density, J (t), is the same function for all i. Equation (84) is a discrete

version of Ampère’s equation. We shall now assume that Ji→i+1 depends on Fi , ni and ni+1.

The tunnelling current across the ith barrier clearly depends on the electrochemical potentials

of the adjacent wells, thereby depending on ni and ni+1. That Ji→i+1 depends on Fi , but not

on Fi+1, is a simplifying assumption [82]. We complete our description by adding the voltage

bias condition,

1

N + 1

N
∑

i=0

Fi =
V (t)

(N + 1)l
, (85)

for the known voltage V (t).

Our discrete system of equations consists of equation (82) for i = 1, . . . , N , equation (84)

for i = 0, . . . , N and equation (85). In total, we have (2N + 2) equations for the unknowns

n1, . . . , nN , F0, . . . , FN and J (t). We need to derive the constitutive relations J0→1 (tunnelling

from the injecting region to the SL), Ji→i+1 (tunnelling across an inner barrier of the SL) and

JN→N+1 (tunnelling from the SL to the collecting region). Equation (84) evaluated for i = 0

and i = N determines the boundary conditions.

We now indicate how to calculate the functions Ji→i+1 = J (Fi, ni, ni+1). We can

consider the energy states of isolated quantum wells or subbands Eν(k⊥) = Eν + h̄2k2
⊥/(2m∗),

where Eν is now independent of k, as reasonable building blocks. First-order time-dependent

perturbation theory indicates that the tunnelling rate through the ith barrier (from the µ subband

of the ith well to the ν subband of the (i + 1)th well) is given by Fermi’s golden rule,

P
µ,ν

i,i+1 =
2π

h̄
|Mµ,ν

i,i+1|
2δ(Eµ(k⊥,i) − eφi l − Eν(k⊥,i+1) + eφi+1l) (86)

assuming conservation of energy during tunnelling. Here φi l =
∑i

n=0 Fn is the electric

potential at the ith well. The matrix element M
µ,ν

i,i+1 can be calculated by means of the transfer

Hamiltonian method (THM) [86] or using Green’s functions [87]. Here, we shall follow

appendix B of Sánchez’s PhD thesis [87] and choose the THM. Then

M
µ,ν

i,i+1 =
h̄2

2m∗

∫

S

(ψi∇ψ∗
i+1 − ψ∗

i+1∇ψi) dS (87)

in which ψi(x, x⊥) is the wave function of an isolated well with energy Eµ(k⊥,i) and lateral

momentum k⊥,i . The surface integral in equation (87) is over any lateral surface inside the

ith barrier that is perpendicular to the growth direction. Choosing the plane at the end of the

barrier, an elementary calculation yields

|Mµ,ν

i,i+1|
2 =

πh̄4

2m∗2
Bi−1,iBi,i+1Ti δ(k⊥,i − k⊥,i+1), (88)

Bi,i+1 =
ki+1

w + α−1
i + α−1

i+1

, (89)

Ti =
16kiki+1α

2
i e−2αidB

(k2
i + α2

i )(k
2
i+1 + α2

i )
. (90)
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Here ki and αi are the wave vectors at the ith well and barrier, respectively, while Ti is the

transmission coefficient through the ith barrier. To obtain the tunnelling current, we multiply

eP
µ,ν

i,i+1 by a factor of 2 due to spin degeneracy and by the difference between the Fermi–Dirac

distribution functions of the two wells. Then, we sum over energies and states in both wells.

When transforming the sums over the lateral momenta and energies into integrals, we should

include broadened densities of states for both wells due to scattering. To simplify matters,

we can assume that the broadening functions do not depend on the lateral momentum. The

result can be further simplified by noting that the lateral momentum is conserved according to

equation (88) and that the integral over k⊥ affects only the distribution functions. We obtain

Ji→i+1 =
h̄kBT

2m∗

nmax
∑

ν=1

∫ ∞

0

A1(ǫ)Aν(ǫ + eFi l)Ti(ǫ) ln

[

1 + e(µi−ǫ)/kBT

1 + e(µi+1−eFi l−ǫ)/kBT

]

dǫ. (91)

In this formula, nmax is the number of subbands in the wells. The integral extends from the

bottom of the ith well to infinity, and the bottom of the ith well is the origin of all the energies

and the electrochemical potentials [82]. Then, µi and µi+1 − eFi l are the electrochemical

potentials of wells i and (i + 1), respectively. µi is the chemical potential of the ith well

referred to its bottom. It depends uniquely on the electron density, ni , through the formula

ni(µi) =
m∗kBT

πh̄2

∫ ∞

0

A1(ǫ) ln[1 + e(µi−ǫ)/kBT ] dǫ, (92)

which is similar to equation (50) for miniband transport. The broadening due to scattering is a

Lorentzian function centred at the energy of the νth subband, whose width is proportional to

the inverse of the scattering time:

Aν(ǫ) =
γν/π

(ǫ − Eν)2 + γ 2
ν

. (93)

Moreover, Ti(ǫ) is

Ti(ǫ) = Ti(ǫ)Bi−1,i(ǫ)Bi,i+1(ǫ) (94)

and the wave vectors appearing in these formulae are

h̄ki =
√

2m∗ǫ, h̄ki+1 =
√

2m∗[ǫ + e(dW + dB)Fi],

h̄αi−1 =

√

2m∗
[

eVb + e

(

dB +
dW

2

)

Fi − ǫ

]

,

h̄αi =

√

2m∗
(

eVb −
edWFi

2
− ǫ

)

,

h̄αi+1 =

√

2m∗
[

eVb − e

(

dB +
3dW

2

)

Fi − ǫ

]

.

(95)

Green’s function calculations also yield equation (91), except that Ti(ǫ) is given by a different

formula, and the broadening depends on the lateral momentum [78].

The same type of argument leading to equation (91) yields the following formulae for the

tunnelling current through the first and last barriers of the SL:

J0→1 =
h̄kBT

2h̄

nmax
∑

ν=1

∫ ∞

0

Aν(ǫ)B0,1(ǫ − eF0l)T0(ǫ) ln

[

1 + e(εF+eF0l−ǫ)/kBT

1 + e(µ1−ǫ)/kBT

]

dǫ, (96)

JN→N+1 =
h̄kBT

2h̄

∫ ∞

0

A1(ǫ)BN,N+1(ǫ + eFN l)TN (ǫ) ln

[

1 + e(µN −ǫ)/kBT

1 + e(ε′
F−eFN l−ǫ)/kBT

]

dǫ (97)
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in which ǫ = 0 corresponds to the bottom of the first well in equation (96) and to the bottom

of the N th well in equation (97). εF and ε′
F are the Fermi energies of the injecting and the

collecting regions, respectively.

The integrals in equations (91), (92), (96) and (97) can be approximately calculated in the

limit of a scattering broadening that is small compared with subband energies and chemical

potentials, thereby yielding explicit formulae. For example, the formulae for the electron

density and for the tunnelling current across an inner barrier are [16]

ni =
m∗kBT

πh̄2
ln[1 + e(µi−E1)/kBT ], (98)

Ji→i+1 =
ev(f )(Fi)

l

{

ni −
m∗kBT

πh̄2
ln[1 + e−(eFi l/kBT )(e(πh̄2ni+1/m

∗kBT ) − 1)]

}

, (99)

v(f )(Fi) =
nmax
∑

ν=1

h̄3l

2m∗2

(γ1 + γν)Ti(E1)

(E1 − Eν + eFi l)2 + (γ1 + γν)2
. (100)

Note that the forward drift velocity, v(f )(Fi), is a sum of Lorentzians centred at the resonant

field values Fν = (Eν − E1)/(el). The tunnelling current is a linear function of ni , but it is a

strongly non-linear function of ni+1. Moreover, Ji→i+1 ∼ ev(f )(Fi)ni/l, for Fi of the order of

the first resonant value or larger. For such values, the resulting tunnelling current density has

the same shape as assumed in the original discrete drift model [68, 75].

In the limit kBT ≫ πh̄2ni+1/m∗ ≈ πh̄2ND/m∗, we can approximate equation (99) by

Ji→i+1 =
v(f )(Fi)

l
(ni − ni+1 e−(eFi l/kBT )). (101)

This equation can be rewritten as a discrete drift–diffusion electronic current density,

Ji→i+1 =
eniv(Fi)

l
−

eD(Fi)

l2
(ni+1 − ni), (102)

v(Fi) = v(f )(Fi)(1 − e−(eFi l/kBT )), (103)

D(Fi) = v(f )(Fi)l e−(eFi l/kBT ) (104)

in which v(f )(Fi) is given by equation (100). Note that the drift velocity in equation (103)

is somewhat similar to the Lorentzian dependence given by the simpler theory of Kazarinov

and Suris [66]. The additional prefactor in equation (100) yields a more complicated field

dependence in our formulae. Our drift velocity is also similar to the escape time formula used

by Rogozia and Grahn [88] to give an estimation of the frequency of current self-oscillations,

provided that more precise expressions for Ti with different electron masses for the wells and

barriers are used (cf section 5.2.2).

In the opposite limit kBT ≪ πh̄2ni+1/m∗ ≈ πh̄2ND/m∗, equation (99) becomes

Ji→i+1 =
ev(f )(Fi)

l

[

ni −
(

ni+1 −
m∗eFi l

πh̄2

)

θ

(

ni+1 −
m∗eFi l

πh̄2

)]

. (105)

Here θ(x) denotes the Heaviside unit step function, and we have ignored an exponentially

small term for ni+1 < m∗eFi l/(πh̄2).

We will use discrete model equations in sections 3–5 to describe EFD formation, switching

of domains and current self-oscillations in weakly coupled SLs, respectively.

The experimental work on sequential resonant tunnelling in weakly coupled SLs has been

reviewed by Grahn [89].
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2.4. Wannier–Stark hopping

The WS states become increasingly localized as the applied constant electric field increases.

For sufficiently high fields, each WS state is localized in a different well of the SL. Then, a

master equation describing transitions between WS states due to scattering yields a description

of non-resonant tunnelling, provided that only the lowest miniband is used as the basic state.

Including more minibands, it is possible to describe resonant tunnelling as well [53, 90].

Historically, Tsu and Döhler [91] gave a description of WS hopping as a basis of calculating

the electron drift velocity. They considered a basic state with only one miniband, hopping

transitions between the first and the second neighbouring WS states, phonon scattering with

an equilibrium distribution and an electron Fermi–Dirac distribution function at the lattice

temperature. Later, Calecki et al [92] and Suris and Shchamkhalova [93] showed that the

same formulae could be derived from a density matrix formulation using the WS states as a

basis.

Transport by WS hopping is a very good counterpart of the Boltzmann description of

miniband transport at constant electric field. At very low electric field values, the miniband

quantitatively describes charge transport in strongly coupled SLs, whereas WS hopping gives

an unphysical divergence of the electron drift velocity (∝1/F as F → 0). At high field

values, deep in the region of negative differential conductivity (NDC), the miniband description

becomes worse than WS hopping. Common to both descriptions is the possibility of a

very accurate description of scattering processes using Fermi’s golden rule of evaluating the

scattering rates and good numerical tools [53]. Recently, Rott [53] and Rott et al [90,94] have

extended WS hopping to lower field values so as to give a precise kinetic theory of charge

transport in strongly coupled SLs (over a range of applied constant electric fields that overlaps

with the outer field range, for which miniband transport holds). They assume that scattering

times are much larger than tunnelling times, which is the opposite situation to sequential

tunnelling in weakly coupled SLs. Rott [53] has considered the effects of electron heating

by finding the stationary solution of the master equation for WS hopping transport and by

using it to calculate the electron drift velocity. The results improve the ones obtained with a

Fermi–Dirac distribution function [53].

The experimental work on WS localization and Bloch oscillations in strongly coupled SLs

has been reviewed by Agulló-Rueda and Feldmann [3].

2.5. Bloch oscillations

Bloch oscillations are spatially homogeneous (coherent) self-oscillations of the electron

distribution in an SL. The electric field profile inside the SL is independent of space during

Bloch oscillations, and therefore electron transport can be seen as hopping between WS levels.

The existence of these transitions between WS levels has been demonstrated experimentally

by Feldmann et al [4]. From a theoretical perspective, there is some confusion due to the

different theories and regimes that describe electron transport in SLs. Thus, it is better to

rephrase the question about the existence of Bloch oscillations in a way that can be answered

mathematically. Is there a spatially homogeneous, time-periodic oscillation of the electron

distribution that is stable? This question should be posed and answered within the framework

of a quantum kinetic theory for SLs with several minibands. Since this does not seem possible

at the time of writing this paper, let us pose this question in the framework of semiclassical

miniband transport. We would like to find a stable solution of the Boltzmann–Poisson system

of equations

∂f

∂t
+

1

h̄

dE1

dk

∂f

∂x
+

eF

h̄

∂f

∂k
= −νen(f − f FD) − νimp

f (x, k, t) − f (x, −k, t)

2
(106)
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together with equations (49)–(51), for appropriate boundary conditions that are spatially

homogeneous or almost homogeneous and time-periodic.

Boundary conditions (BCs) corresponding to contact regions can be posed for DDEs and

then translated to BCs for the Boltzmann equation by using the ideas of Cercignani et al [95].

Let us start with a BC fixing the electron density at the collector to be NDc at x = L = Nl.

If we define f + to be the distribution function at x = L for k > 0 and similarly define f −,

equation (50) and the following BC,

f + =
f (0)

(l/2π)
∫ π/l

0
f (0) dk

(

NDc −
l

2π

∫ 0

−π/l

f − dk

)

(107)

yield n(L, t) = NDc. The meaning of this BC is that the electrons that enter the contact, having

a distribution f +, become ‘thermalized’ to the leading order distribution in equation (62) with

a factor that ensures charge neutrality at the contact doping density.

We would like to impose a BC at the injecting contact that is compatible with commonly

used BCs for DDEs. In many studies of self-oscillations, the electronic current density is

assumed to be a linear function of the electric field, according to Ohm’s law, i.e.

e

2π

∫ π/l

−π/l

v(k)f dk = σF (108)

in which σ is the contact conductivity. We can recover this BC from the following one for the

distribution function at x = 0:

f − = −
2πh̄σF

e�1

−
f (0)

∫ 0

−π/l
v(k)f (0) dk

∫ π/l

0

v(k)f + dk. (109)

Now the mathematical question on whether the Bloch oscillations can be obtained within

the semiclassical miniband formulation can be phrased as follows. Can we find a stable

solution of the Boltzmann–Poisson system of equations (106) and (49)–(51), satisfying the BCs

of equations (107)–(109) and the bias condition
∫ L

0
F dx = V , that is spatially homogeneous

or almost homogeneous and time-periodic?

Within the semiclassical Boltzmann–Poisson framework, there has been no attempt to

answer this question as we have formulated it here. However, incomplete answers can be

gathered from previous work. Typically, previous authors have studied the linear stability of

the stationary solution of equation (62) with constant electric field, disregarding BCs. They

have also studied the response of the distribution function (and therefore of the current) to a

small ac field superimposed on a large constant external field. These studies are relevant to

deciding whether there exist stable space-independent high-frequency oscillations, once the

BCs are included in studies of the appropriate solutions and their stability. Ktitorov et al [33]

found that the real part of the high-frequency conductivity, σ(ω), is negative, until the frequency

reaches the Bloch frequency ωB = eF l/h̄, and then it becomes positive. σ(ω) has a negative

and sharp minimum close to ωB, which may be important for designing a Bloch oscillator

device [96]. Related work by Ignatov and Shashkin [35, 97], Ignatov et al [36] and Ryndyk

et al [37] also ignores BCs, although Kroemer has pointed out the importance of studying the

influence of BCs in deciding whether high-frequency, space-independent self-oscillations may

occur in realistic devices.

In the framework of WS hopping transport, the question on the stability of Bloch

oscillations cannot be answered because the mere existence of WS states already assumes

that the electric field is space independent. To find out whether such states are stable, we

should allow spatially inhomogeneous disturbances of the electron distribution function and

see whether they become spatially homogeneous. The same can be said about density matrix
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theories that use accelerated Bloch states: such states presuppose a homogeneous electric field.

This is not surprising: WS and accelerated Bloch states are equivalent bases of a Hamiltonian

for an electron in the presence of a spatially periodic potential and a space independent electric

field. WS states correspond to a representation of the electric field by means of a scalar

potential, whereas accelerated Bloch states correspond to the representation by means of the

vector potential [98, 99].

In the framework of sequential tunnelling theories, electron tunnelling is not coherent by

definition. Therefore, the question of coherent oscillations does not make sense. However,

we can investigate whether a stable space-independent and time-periodic field profile exists.

The corresponding mathematical question and the related question about the existence of a

driven space-independent oscillation can be answered by analysing equations (82), (84), (85),

(91), (96) and (97) for different values of voltage and doping density. Although this general

analysis has not been carried out, we can get an idea of the answer by examining previous

work on simpler models. In principle, the field profile is almost uniform only if there is very

little charge in the SL. Undriven, space-independent oscillations are possible only for small

SLs or for large SLs with biases very close to the voltage threshold at which the stationary

uniform profile ceases to be stable [100, 101]. Under these conditions, the frequency of the

resulting undriven oscillations is not much larger than the one corresponding to monopole or

even dipole recycling. We shall come back to these questions in sections 5 and 6.

3. Static domains

3.1. Pinning of wave fronts, static domains and theoretical considerations

The non-linear phenomenon in weakly coupled SLs are dominated by the formation and motion

of EFDs. Domain walls separating two EFDs may be pinned because of the spatially discrete

structure of a weakly coupled SL, thereby producing multistable branches of static EFDs under

voltage bias conditions. By switching the voltage, we can probe the motion of domain walls

and observe the complex non-linear behaviour of the EFDs.

This type of phenomenon does not occur in strongly coupled SLs, where the non-linear

phenomena due to motion of EFDs are undriven, and driven self-oscillations of the current,

which are akin to the Gunn effect in bulk semiconductors and will be reviewed in section 5.

In strongly coupled SLs, the current self-oscillations are due to the periodic motion of charge

dipoles (which are smooth pulses of the electric field) on an EFD. The multistable static

domains studied in the remainder of this section occur only in weakly coupled SLs.

Typically, EFDs are regions of a weakly coupled SL having a uniform (or almost uniform)

value of the electric field. An EFD is bounded by either a domain wall that connects it to a

different domain or by the SL boundaries. To characterize the behaviour of EFDs, we should

investigate the behaviour of their domain walls. Mathematically speaking, these domain walls

are stable travelling wave front solutions for the chosen model equations describing the SL, in

the absence of any boundaries and under dc current bias conditions. Wave fronts are transition

regions, in which the electric field varies monotonically from its value in one EFD to its value in

the other EFD. An increasing field profile corresponds to a charge accumulation layer (CAL),

while a decreasing field profile corresponds to a charge depletion layer (CDL). Even pulses of

the electric field can be described by the motion of two wave fronts, a CAL and a CDL, which

form their leading and trailing edges.

What is the role of these idealized wave fronts in finite, voltage-biased SLs? In finite SLs,

boundary conditions modify the extent and shape of EFDs, but wave fronts are still useful for

describing their field profile. The reason for this is that static EFDs in a voltage-biased SL
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Figure 4. Velocities of wave fronts shown in the inset versus current bias, I . The parameters of

the GaA/AlAs SL are dW = 9 nm, dB = 4 nm, ND = 1.5 × 1011 cm−2 and S = 1.13 × 10−4 cm2

(courtesy of A Wacker).

occur naturally with constant current, and boundary conditions affect very small regions near

the ends of a long SL. If the current is changing with time in a long voltage-biased SL, its

envelope changes on timescales that are much longer than the dielectric relaxation time. Then,

the electric field profile adjusts adiabatically to the instantaneous value of the average current.

Such a profile can then be approximated by EFDs and by CALs or CDLs, defined as wave

fronts of an infinite SL with a constant value of the current. This behaviour will be explained

in more detail in sections 4 and 5.

3.1.1. Pinning in current-biased, infinite SLs. Let us consider the theory of wave fronts in

current-biased, infinite SLs. The main difference between wave fronts of spatially discrete

and continuous autonomous equations (no imperfections or spurious time- or space-dependent

coefficients) is the phenomenon of pinning. Roughly speaking, wave fronts of continuous

equations have to move (except at single values of a control parameter that characterizes their

non-linearities), whereas wave fronts of discrete equations can be pinned for entire intervals of

their control parameter [14,102,103]. In weakly coupled SLs, for appropriate values of the dc

voltage, two stationary EFDs can coexist separated by a domain wall pinned at any given SL

period [9]. This fact itself suggests that spatially discrete equations describe weakly coupled

SLs. The absence of static EFDs in strongly coupled SLs very likely indicates that spatially

continuous equations describe them well.

The pinning and the motion of wave fronts (domain walls) are illustrated in figures 4 and 5.

The results shown in these figures have been obtained from stable solutions of the discrete

model, with tunnelling currents given by equation (99) for figure 4 and its approximation in

equation (101) for figure 5. Figure 4 depicts the velocity of a wave front moving at constant

speed in a doped, infinite SL under constant current-bias conditions. For the doping density

of this SL, wave fronts having a spatially decreasing profile of the electric field move from

left to right, i.e. downstream, following the motion of individual electrons for any value of

the current. These wave fronts correspond to moving CDLs. The behaviour of wave fronts

having an increasing field profile, and thus corresponding to CALs, is more interesting. Below

a first critical current, the wave front moves downstream too. There is an interval of currents,

between the first and the second critical currents, in which the wave front has zero velocity: it is

pinned in a well, whose position depends on the initial conditions of the numerical simulation.
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Figure 5. Critical currents, J1 and J2 (in units of eNDvM/l), versus logarithm of the dimensionless

doping density ν = eND/(εFMl). The dashed lines indicate the theoretical bounds ν1b(J ) and

ν+
2b(J ). From [9].

For currents larger than the second critical current, the wave front moves upstream, against the

motion of single electrons. These properties have been proven by Carpio et al [9]. Near the

critical currents, the evolution of the electric field in a single well or in several wells determines

the pinning/depinning transition according to the active well theory described in [16,103,104].

As the current approaches one of its critical values from the side corresponding to moving

fronts, the electric field profile acquires a step-like appearance. The steps become infinitely

long, and the wave front is pinned at the critical currents [104]. The critical exponent of the

transition, c ∝ |I − Ic|γ , is γ = 1
2

for perfect SLs and γ = 3
2

if the doping density in the wells

fluctuates weakly and randomly about its mean value [105].

Figure 5 shows that the existence of wave front pinning depends on the SL doping density.

Below a first critical doping density, all CALs move downstream (just as in continuous models

of strongly coupled SLs or in the Gunn effect). A useful lower bound for the first critical

doping density is [9, 101]

ND >
ε(Fm − FM)

e

vm

vM − vm

, (110)

provided that the local maximum and minimum of the drift velocity as a function of the field

are (FM, vM) and (Fm, vm), respectively. To obtain a lower bound of the doping density, above

which pinning of CDLs is possible, we have to substitute vM instead of vm in the numerator

of equation (110) [15, 101]. Between the first and a second critical doping density, CALs can

be pinned or move downstream, depending on the current. Lastly, above the second critical

doping density, the wave fronts may also move upstream [9]. Note that the pinning interval

increases with an increasing SL doping density.

In discrete equations that are second order in the spatial differences, the nature of the

pinning/depinning transition depends on the dynamics. Discrete SL models are dissipative

and behave according to our previous discussion. The wave fronts of these equations

either move or are pinned [102], depending on the value of the control parameter (the

current in current-biased SLs). In models with inertia (such as chains of non-linear

oscillators), the pinning/depinning transition may be much more complicated and involve

the coexistence between moving and pinned wave fronts for some intervals of the control

parameter [106].



608 L L Bonilla and H T Grahn

3.1.2. Static domains and current spikes in voltage-biased SLs. We shall see in sections 4

and 5 that many non-linear phenomena in real SLs can be understood by analysing the motion

of wave fronts in ideal current-biased, infinite SLs [16]. In finite, weakly coupled SLs under

voltage bias, the motion and pinning of wave fronts leave two distinct traces in the experiments:

I–V characteristics containing as many current branches as periods in the SL and current spikes

as a CAL moves. These two features are absent in strongly coupled SLs. Both features occur

in spatially discrete autonomous equations and not in spatially continuous equations, which

help us select the correct SL theory for each case. Solutions of discrete models based on

next-neighbour tunnelling currents and Poisson equations seem to have the same qualitative

behaviour, notwithstanding the different scattering mechanisms or physical effects considered

in the models. These mechanisms will be important when seeking quantitative agreement with

experimental observations, precise control of devices, etc.

High-frequency current spikes accompany the well-to-well hopping motion of a CAL

through the SL. They are observed in numerical simulations of discrete SL models and in

experiments on relocation of EFDs (section 4) or self-sustained oscillations of the current

(section 5). The number of spikes in a given time trace of the current tells us how many wells

a mature CAL has traversed inside the SL [81, 107]. This is of fundamental importance for

interpreting experimental results because the field profile inside the SL cannot be observed

directly. In order to understand relocation of EFDs and self-oscillations in finite SLs under

voltage bias, we shall describe in sections 4 and 5 how to use the adiabatic motion of wave

fronts under slow variations of the current and the influence of the boundary conditions.

The simplest solutions of discrete models for doped, weakly coupled SLs under dc voltage

bias are time-independent solutions. Their shape depends on the voltage range, the SL

configuration (dW, dB) and the doping density. If the tunnelling current of the uniform field

profile Fi = F , ni = ND and Ji→i+1 = J (F, ND, ND) has several peaks corresponding to

resonances between different subbands, the current–voltage characteristic of the SL exhibits

different regions between peaks called plateaus. Restricting ourselves to a voltage range in

one plateau, we need to consider a region with only a single maximum and a single minimum

of the forward drift velocity in equation (100). In the second and successive plateaus, the

tunnelling current is approximately proportional to the forward drift velocity times the electron

density, and therefore we have the discrete drift model, which is first-order in the differences

and easy to solve graphically [68, 75]. Equations (82), (84) and (102) with D ≡ 0 yield

lJ/e = v(Fi)[ND + ε(Fi − Fi−1)/e], from which

Fi−1 = Fi +
eND

ε
−

lJ

εv(Fi)
≡ f (Fi; J ) (111)

for i = 1, . . . , N . In order to determine the field, F0, at the injecting contact, we equate

the tunnelling current at the boundary to the total current density, i.e. J0→1(n1, F0) = J ,

in which n1 = ND + ε (F1 − F0)/e according to equation (82) for i = 1. Solving this

equation, we obtain F0 as a function of F1 and of J . Many calculations have assumed simpler

boundary conditions, n1 = (1 + c)ND (constant electron density) [68, 101], or Ohm’s law,

J0→1(n1, F0) = σF0 [15, 78].

The first-order difference equation (111) is easy to solve graphically once F0 is known.

Note that uniform field distributions solve v(F ) = εlJ/(eND). Therefore, there are three such

solutions for vm < εlJ/(eND) < vM. These solutions, F (1)(J ) < F (2)(J ) < F (3)(J ), are the

fixed points of the mapping in equation (111), which provides Fi as a multivalued function of

Fi−1. Only F (1)(J ) and F (3)(J ) are stable solutions under the discrete dynamics generated

by the mapping. Let us see now how to construct solutions of equation (111) that start from

F0 given by the boundary condition. If we are looking for solutions with an increasing field

profile, we locate F0, for example, on the first branch of f (Fi; J ) defined in equation (111), and
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graphically solve the mapping. Rapidly, Fi tends towards the stable fixed point of the mapping

F (1)(J ) as i increases. One possible solution is therefore a single EFD with Fi = F (1)(J ),

except in a small region near the cathode needed to accommodate the boundary condition. This

is the solution having an almost uniform field profile, and it corresponds to an LFD covering

the whole SL. The corresponding voltage is small. Are there other solutions having the same

voltage?

Since Fi is a multivalued function of Fi−1 according to equation (111), we find other

solutions by allowing a jump from F (1)(J ) (or its neighbourhood) towards a different branch of

the mapping at any given SL period, i = i0. Such jumps are possible only if the local minimum

of the mapping f (Fi; J ) is smaller than f (F (1)(J ); J ), which occurs for sufficiently large

doping densities. Below a critical doping density, which can be estimated using equation (110),

the only stable static solution is the almost uniform one [75, 101]. For larger values of the

doping density, jumps between branches of the discrete mapping in equation (111) are possible

and give rise to different static solutions having the same J . Their field profile consists of two

EFDs separated by a CAL. The second EFD has a field value Fi = F (3)(J ), provided that the

SL has a sufficient number of periods for the mapping to reach its second stable fixed point.

Note that for a weakly coupled SL with small broadening due to scattering the value F (1)(J )

in the LFD is close to a resonance, while the value F (3)(J ) in the HFD can be quite far from

resonance if the current at the second resonant peak of the plateau considered is much larger

than the current at the first peak.

It turns out that only solutions with no jumps (corresponding to a single EFD) or with jumps

from the first to the third branch of the mapping are stable solutions of the time-dependent

problem. Solutions with one jump have one LFD and one HFD separated by a CAL that can be

located at any i = i0. The corresponding field profiles have the sameJ , but different voltages, as

indicated by equation (85). In a diagram of J versus voltage, these stable solutions of the time-

dependent problem form N disconnected curves that can be observed in the current–voltage

characteristic of the SL. The branches of stable solutions are connected (at JM = eNDvM/l and

at some Jmin = eNDvmin/l depending on the doping density) to branches of unstable solutions,

whose field profile displays one intermediate jump from the first to the second branch of the

mapping [75,101]. It is also clear that, by including more than two peaks of the drift velocity

in our construction and choosing the appropriate SL doping density, we can construct solutions

with more than two EFDs [76,108]. For a sufficiently large doping density, solutions including

CDLs can be similarly constructed [101]. For undoped weakly coupled SLs, Bonilla et al [68]

constructed static domain solutions using similar theoretical ideas, but with the density of

photoexcited carriers playing the role of the doping density in doped SLs.

For lower voltages on the first plateau, the term containing ni+1 in equation (99) cannot

be ignored, and the stationary solutions solve a second-order difference equation. In this case,

it is more convenient to numerically solve the time-dependent equations and find the stable

stationary profiles. The results are similar for different discrete models, and the corresponding

field profiles and current–voltage characteristics are similar to the ones obtained with the

mapping in equation (111) for plateaus with higher voltages. The only qualitative difference

is that the maximum current for field profiles in the first plateau is smaller than the current,

JM, corresponding to a uniform profile with ni = ND and Fi = F . Note that, except for small

regions close to the boundaries, the constructed static solutions coincide with wave fronts

pinned at the SL period i = i0 corresponding to the CAL. Prengel et al [74] numerically

solved a discrete model for voltages on the first plateau, and Kastrup et al [109] compared

these solutions with experimental data. Similar results can be obtained with the tunnelling

current in equation (99) as shown in figure 24 of [15], using an expression for the forward drift

velocity slightly different from the one in equation (100).
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F
F

Figure 6. Schematic diagram of the distribution of the low- (FLFD) and high-field domain (FHFD)

in a weakly coupled SL.

For all plateaus, plotting the current–voltage diagram of the stable solution branches

yields a succession of disconnected curves, all having the same maximum and minimum

values of the current. For a given voltage, two or more stable stationary solutions having

different current values are possible. They are found by solving the time-dependent problem

with different step-like initial conditions. One simple way of finding these branches is to

follow in the numerical simulations the same procedure as in the experiments: sweep up or

down systematically the current–voltage characteristic [109]. If we want to determine the

influence of external parameters (doping density, temperature, etc) on the stable stationary

or time-dependent solutions and their current–voltage diagram, it is better to use numerical

continuation algorithms [80, 110].

3.2. Field distribution and I–V characteristics

The initial observation of the formation of static EFDs in semiconductor SLs goes back to

the early days of molecular-beam epitaxy (MBE). The conductance of a doped GaAs/AlAs

SL showed periodic structures as a function of the applied voltage [5]. Note that, although

Esaki and Chang were searching for Bloch oscillations [1], which were discovered only in

the early 1990s in strongly coupled SLs [4], they observed a very different effect, since they

were investigating a weakly coupled SL. Static EFDs can be introduced either by doping the

SL or using an undoped one under photoexcitation [111]. We will only discuss undoped and

n-doped SLs, but not p-doped ones, since for holes the picture becomes more complicated due

to the more complex structure of the valence band.

Under static EFD formation, the spatial distribution of the electric field inside the SL breaks

up into two regions as shown in figure 6: the LFD consists of a region of a lower uniform electric

field on the injecting contact side forming the emitter of the SL, while the HFD is formed by a

region of a higher uniform electric field on the receiving contact side representing the collector.

These two domains are separated by a domain boundary in the form of a CAL. The domain

boundary is essentially confined to a single SL period, i.e. to one quantum well of the SL,

since the SL is weakly coupled and charge can only reside in the wells and not in the barriers.

When the applied bias sweeps across a discontinuity from one current branch to the next, the

domain boundary moves by precisely one SL period [75]. The distribution for a given electric

field can also contain three domains simultaneously as discussed by Grahn et al [108] and

Mityagin et al [76]. If the doping density becomes larger than the charge density of the CAL

at the domain boundary, it is also possible that a CDL is formed inside the SL in addition

to the CAL. The spatial distribution of EFDs has been investigated using photoluminescence

spectroscopy, varying the excitation energy in order to change the penetration depth of the

light, as well using by cathodoluminescence spectroscopy and imaging. For typical carrier
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densities in the 1017 cm−3 range and not too large electric-field strengths, the HFD is always

located near the anode, i.e. the collector [112–114]. At the same time, a detailed analysis of

the cathodoluminescence spectra [113] as well as cathodoluminescence images [114] proved

that there is only a single CAL in the SL.

After the initial observation of EFDs in semiconductor SLs in 1974, it took about a decade

before the subject was taken up again by Furuta et al [115] and Kawamura et al [116]. In

both cases, weakly coupled SLs were investigated. Furuta et al [115] observed a splitting

of the photoluminescence spectra in a doped GaAs/(Al,Ga)As SL. This splitting indicates

the presence of two regions with different field strengths, since due to the quantum-confined

Stark effect [117] the energy gap of a quantum well decreases with increasing electric field.

Kawamura et al [116] investigated the transport properties of an (In,Ga)As/(In,Al)As SL

grown lattice-matched on InP with the undoped SL embedded in a p–i–n-structure. This

system showed EFD formation under forward bias. The voltage region where EFDs were

observed increased with an increasing number of periods. Choi et al [118] also reported a

correlation of the number of conductance peaks with the number of SL periods for a weakly

coupled GaAs/(Al,Ga)As SL. Subsequently, it was realized that this topic is very important

for devices based on weakly coupled SLs or multiple-quantum-well structures [119, 120].

Kawamura et al [121] and Vuong et al [122] reported the formation of EFDs due to higher

electronic subbands, i.e. originating from resonant tunnelling between the first and second

subbands (LFD) as well as between the first and third subbands (HFD). Choi et al [123]

investigated the effect of a parallel and perpendicular magnetic field on the EFD formation,

which will be discussed in more detail in section 3.4. Electric-field screening phenomena under

photoexcitation were studied by Cavicchi et al [124] and Snow et al [125]. Further evidence

for EFD formation was observed by Helm et al [126], Kawamura et al [127], Vuong et al [128],

Helgesen and Finstad [129], Helm et al [130] and Helgesen et al [131]. By the early 1990s,

EFDs had been identified in the systems GaAs/AlAs, GaAs/(Al,Ga)As, (In,Ga)As/(In,Al)As on

InP and (In,Ga)As/InP. A comparison between EFD generation by doping and photoexcitation

may be found in Grahn et al [111].

A direct proof for the coexistence of two or more regions with very different field

strengths was derived from photoluminescence measurements in undoped SLs [108, 132].

In these experiments, the LFD and HFD were identified through separate PL lines, which

did not change their position, but only their intensity, when the electric field was increased.

Subsequently, electronic Raman scattering experiments showed that the intensity of the

intersubband transition between the first and second subbands increases linearly with increasing

electric field due the expanding HFD domain, while it remains nearly constant in the region of

a single domain [133]. A splitting of the Raman line by intersubband excitations was reported

by Murugkar et al [134] in the coexistence region of two EFDs of an undoped GaAs/AlAs SL

under photoexcitation. Additional PL and Raman experiments directly demonstrated that the

field strength of the LFD is very close to its resonance value, while the field strength of the

HFD is significantly lower than the corresponding resonance field strength [135, 136]. The

transport mechanism in the LFD is therefore sequential resonant tunnelling, while in the HFD

the dominating transport mechanism is non-resonant tunnelling.

In 1991, Grahn et al [10] demonstrated that the I–V characteristics of highly doped,

weakly coupled SLs exhibit as many well-defined branches on a current plateau as there are

periods in the SL due to the formation of static domains. Two adjacent branches are separated

by a discontinuous jump in the current level. The inset of figure 7 shows the I–V characteristic

of a GaAs/AlAs SL with 40 periods, dW = 9.0 nm, dB = 4.0 nm and a doping density of

3 × 1017 cm−3, corresponding to a sheet concentration of ND = 1.5 × 1011 cm−2 per well

recorded at 6 K for both sweep directions. The current plateau between 0.4 and 5 V



612 L L Bonilla and H T Grahn

0.4 0.6 0.8 1.0

60

80

100

120

54321

C
u

rr
e

n
t 

(µ
A

)

Applied voltage (V)

0 1 2
0

40

80

C
u

rr
e

n
t 

( µ
A

)

Applied voltage (V)

Figure 7. I–V characteristics of the first five branches (1, 2, 3, 4 and 5) for up and down sweeps

as indicated by the arrows at 5 K. Inset: full I–V characteristics. From [184].

originates from EFD formation, where the LFD is associated with miniband transport or

sequential resonant tunnelling between the ground-state subbands in adjacent wells and the

HFD corresponds to sequential resonant tunnelling between the ground state of one well and

the second subband in the adjacent well, as described by Grahn et al [10, 132] and Kastrup

et al [109]. The domains are separated by a domain boundary in the form of a charge monopole,

i.e. a negatively charged CAL. For every current jump in the up sweep, the CAL moves by one

period towards the emitter. Figure 7 shows an enlarged section of the full I–V characteristic

in the inset. The variations in the current minima and maxima are due to small fluctuations

(below 5%) of the doping level between the different wells, while interface roughness and

well width fluctuations result in a much smaller modulation of the branches [137–142]. The

theoretical and experimental investigation of an intentionally perturbed SL, which has a single,

significantly wider barrier in the 32nd period out of 40, demonstrated the impact of such a

perturbation on the overall I–V characteristics [143]. When (Al,Ga)As contact layers are used

as window layers for optical excitation, the actual voltage for the onset of EFD formation as

well as for a particular current jump may shift between different measurements, especially after

heating the sample to room temperature, due to the presence of DX centres in these contact

layers [144].

The motion of the CAL through the SL has also been identified using capacitance–voltage

measurements [145, 146], which allow determination of the charge density of the CAL at the

domain boundary [147]. The two-dimensional charge density, n2d, at the domain boundary

can be estimated from Poisson’s equation,

n2d = εε0

�F

e
, (112)

where ε and ε0 denote the dielectric constants of the material and of vacuum, respectively, and

�F is the electric field change at the domain boundary. For a field difference of �F = 120 mV

per 13 nm and an average dielectric constant ε ∼ 12 for GaAs and AlAs, we obtain a carrier

density of n2d = 6.1×1011 cm−2 for a fully developed CAL. A typical nominal doping density

of the GaAs wells corresponds to n2d = 1.5 × 1011 cm−2, which is about a factor of 4 smaller

than the carrier density necessary to form the domain boundary within a single well. Since

the number of jumps in the I–V characteristic is correlated with the number of SL periods,
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the domain boundary in the static case is formed by a CAL within a single well. In contrast,

a CDL would extend over at least four wells because the positive charge density is limited by

the doping concentration.

The EFD formation is usually observed because of resonant coupling between the first

subband in one well and the second, third or fourth subband in the adjacent well of the SL

structure [108, 132]. However, in the investigations by Helm et al [126, 130], Stoklitskii

et al [148], Mityagin and Murzin [149], Mityagin et al [76] and Rasulova et al [150], the wells

were extremely wide, so that EFDs were formed due to resonant coupling not only between

the first and the second, third and fourth subbands, but also between the first and the fifth,

sixth, and in some cases even the seventh subbands. Xu et al [151] and Schneider et al [152]

reported the observation of EFDs due to the coupling between a bound and a continuum state in

n-doped multiple quantum wells with only a single bound state inside the wells. Han et al [153]

investigated the formation of EFDs in a graded-gap SL, i.e. the GaAs well width increased

from 3.0 to 9.5 nm in steps of 0.5 nm, while the (Al,Ga)As barrier width remained constant

at 10.0 nm. Since the energy separation between the first and second subbands of the GaAs

wells decreases with increasing well width, the separation of the current branches increases

with increasing field.

All observations of EFDs discussed so far are based on sequential resonant tunnelling

between Ŵ-states in adjacent wells. However, in GaAs/AlAs SLs with sufficiently narrow

wells, the transport through the SL can also be dominated by Ŵ–X–Ŵ transfer from the GaAs

well into the AlAs barrier and back to the GaAs well. Zhang et al [154] reported the observation

of EFD formation in GaAs/AlAs SLs, where the ground state of the X band in the AlAs barrier

is located between the first and second subbands of the GaAs well. The HFD in this system

is due to resonant transfer from the ground state in the GaAs well to the lowest X state in the

AlAs barrier and back via real-space transfer to the ground state in the next GaAs well. Sun

et al [155] identified a transition for EFD formation as a function of pressure. Below a critical

pressure, the HFD is due to sequential resonant tunnelling between Ŵ states, while above the

critical pressure it is due to Ŵ–X transfer. Mimura et al [156] investigated a type-II SL, where

the lowest electron state in the conduction band is the X state in the barrier. Here, the static

domain formation is a result of resonant transfer between the first excited X state in the AlAs

barrier and the ground Ŵ in the GaAs well.

3.3. Bi- and multistability

For a given applied voltage, the number of periods in the LFD and HFD is not uniquely

determined. The current can vary between the maximum velocity of the LFD and the

minimum velocity of the HFD. Therefore, the I–V characteristics exhibit a hysteresis or

multistability [109] as already shown in figure 7. Another example with four stable operating

points is shown in figure 8 for a GaAs/AlAs SL with 40 periods, dW = 9.0 nm, dB = 4.0 nm

and a three-dimensional doping density of 1 × 1018 cm−3. These four operating points can be

reached by reversing the sweep direction of the voltage at different points. They correspond

to four different locations of the domain boundary in the SL as shown in figure 9. For the

operating point with the highest current (point 1 in figures 8 and 9), the electric-field strengths

in the LFD and HFD are highest. At the same time, the LFD has the largest spatial extent. The

situation is reversed for the operating point with the lowest current value (point 4 in figures 8

and 9), for which the electric-field strengths in the LFD and HFD are lowest and the HFD has

the largest spatial extent. Rasulova et al [150] claim that the observation of bistability is related

to a different spatial extent of the domain boundary, i.e. in the high-current state, the domain

boundary is confined to more or less a single well, while for the low-current state it extends



614 L L Bonilla and H T Grahn

3.4 3.5 3.6 3.7

420

440

460

480

500
(c)

4

3

2

1

Applied voltage (V)

420

440

460

480

500

(b)

4

3

2

1

C
u

rr
e

n
t 

( �
A

)
420

440

460

480

500

(a)

4

3

2

1

Figure 8. Enlarged section of the I–V characteristic of a doped, weakly coupled GaAs/AlAs SL

with dW = 9.0 nm, dB = 4.0 nm and a volume doping density of Si in the wells of 1 × 1018 cm−3

under static domain formation showing multistability. The graphs in (a), (b) and (c) differ in the

voltage position for reversing the sweep direction. From [109].
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Figure 9. Voltage distribution for different locations of the domain boundary for a fixed applied

voltage. The numbers indicate the location with respect to the operating points in figure 8.

over several periods. However, this may be just an additional side effect of the bistability

in their particular system, which has a very small doping density in the SL. Mityagin and

Murzin [149] showed that the extent of the domain boundary increases with decreasing doping

concentration. Nevertheless, the main effect of the bistability is due to a different location of

the CAL forming the domain boundary and not the extent of the domain boundary.

This bi- or multistability also exists in undoped, photoexcited SLs as already predicted

theoretically by Bonilla et al [68] and observed experimentally by Tomlinson et al [157].

A different kind of bistability is observed when the sample exhibits current self-oscillations
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[158], which will be discussed in section 5. Furthermore, a bistability between the static and

oscillating states of EFDs is also possible [159] and will also be discussed in section 5.

3.4. External control parameters

There are several external control parameters which can influence the formation of EFDs in

weakly coupled SLs. These are the carrier density, which can be varied within the same sample

by photoexcitation, the temperature and a magnetic field applied perpendicular or parallel to

the layers.

3.4.1. Carrier density. The first control parameter is the carrier density. For extremely

low carrier densities, the field will be homogeneously distributed throughout the SL so that no

domains are formed, while for very high carrier densities the EFDs will form as described in the

previous subsections. In the intermediate density regime, the field distribution will become

unstable. In this regime, current self-oscillations occur, which are reviewed in section 5.

For investigating the carrier density dependence of EFD formation, optical excitation of an

undoped structure has the advantage of a continuous variation of the electron density in the

SL. In the case of doped structures, a large number of SL devices have to be fabricated,

which still may be slightly different in some other parameter such as well and barrier width

or composition. At very low carrier densities, tunnelling resonances between the different

subbands are observed with increasing electric field strength. For intermediate carrier densities,

the I–V characteristics contain plateaus, which do not exhibit any branch-like fine structure as

shown in figure 7. This is the regime of unstable domain formation, i.e. current self-oscillations

appear due to a recycling motion of the domain boundary (cf section 5). Finally, at very large

carrier densities, we recover an I–V characteristic similar to the one shown in figure 7. This

scenario has been confirmed by theoretical studies of undoped [68] and doped [75] SLs using

the discrete drift model.

There have been several attempts to experimentally study the carrier density dependence

of EFD formation. Grahn et al [108] varied the carrier density by changing the photoexcitation

density in an undoped p–i–n structure with the SL forming the intrinsic layer. The homogeneous

field distribution at low intensities can be identified through a single photoluminescence (PL)

line, which is located between the two PL lines observed at high intensities, indicative of two

regions of very different electric field. Hirakawa et al [160] and Shimada and Hirakawa [161]

investigated two differently doped SLs. The SL with the higher doping density did not exhibit

domain formation in the first plateau region, while both SLs exhibited domain formation

in the second plateau. The results were interpreted in terms of an interplay between the

tunnelling rate and the supply function for the electrons between adjacent quantum wells,

which depends on the doping density. Hosoda et al [162] performed a detailed analysis of the

EFD formation process in an undoped GaAs/AlAs SL under photoexcitation, in particular the

regime of intermediate carrier densities. They showed how the field distribution inside the SL

may evolve from the homogeneous field distribution at very low carrier densities to the two-

domain picture at very high carrier densities. Using photoluminescence spectroscopy, they

were able to obtain information about the field distribution, in particular for intermediate carrier

densities. Detailed theoretical studies of stable field profiles as a function of the carrier density

have used the discrete drift model to describe doped SLs [110] and undoped photoexcited

SLs [163]. They confirm the transition from uniform field profiles to self-oscillations due to

domain wall recycling, and then to static two-domain solutions as the carrier density increases.

3.4.2. Temperature. Another external control parameter is the sample temperature. With

increasing temperature, the tunnelling resonances are gradually broadened [6]. At the same
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time, the peak velocity is lowered due to thermally activated transport mechanisms such as

diffusion and thermionic emission above the barriers. As a result, static EFD formation is much

more difficult to observe at room temperature than at liquid He or liquid N2 temperatures.

Kastrup [164] showed that the characteristic branches of static EFD formation disappear

in a moderately doped GaAs/AlAs SL for temperatures above about 100 K. Xu et al [151]

demonstrated that for a strongly doped GaAs/(Al,Ga)As multiple-quantum-well structure the

formation of static EFDs is quenched above about 50 K. Wang et al [165] and Li et al [166]

performed a detailed study of the temperature dependence of the I–V characteristics for a

moderately doped GaAs/AlAs SL. In the investigation by Wang et al [165], there is a strong

change in the shape of the I–V curves between 140 and 145 K. The fine structure of the I–V

characteristics completely disappears above 156 K. At the same time, current self-oscillations

as discussed in section 5 are already observed at 145 K so that a transition from static to dynamic

EFD formation takes place between 140 and 156 K. In the investigation by Wang et al [167]

and Li et al [166], who apparently used an identical structure, the fine structure in the I–V

characteristics disappears above 170 K, and current self-oscillations appear for temperatures

of 180 K and higher. Subsequently, Sánchez et al [168] performed a theoretical analysis of the

temperature dependence of domain formation, which confirmed the breakdown of stationary

EFDs in SLs above a certain temperature. We will return to the temperature dependence of

the transition between dynamic and static domains in section 5.

3.4.3. Magnetic field. A magnetic field, which can be applied either parallel or perpendicular

to the layers, i.e. perpendicular or parallel to the electric field, respectively, is very different

external control parameter. Choi et al [123] demonstrated that a magnetic field applied

perpendicular to the layers, which condenses the electrons in each well into Landau levels, does

not have a significant influence on the formation of static EFDs. However, a magnetic field

applied parallel to the layers, i.e. perpendicular to the electric field, causes several significant

changes. It increases the onset voltage for the occurrence of the NDC structures, causes

a splitting of these structures, suppresses them for large magnetic fields and increases the

tunnelling current. The destruction of the branch-like structures in the I–V characteristics for

a magnetic field parallel to the layers was confirmed by Grahn et al [10]. The onset of domain

formation was shown to exhibit a quadratic dependence on the magnetic field, B. Shimada

and Hirakawa [169] observed the formation of static EFDs in a magnetic field perpendicular to

the layers for a GaAs/(Al,Ga)As SL with δ-doping at the centre of the (Al,Ga)As barriers. The

spacing of the branches in the I–V characteristics varied with magnetic field, indicating that

the field strengths of the domains are determined by resonant tunnelling between Landau levels

of the lowest conduction subband, although the observed voltage spacings are systematically

smaller than the cyclotron energy. However, for a GaAs/(Al,Ga)As SL with doping in the GaAs

wells, Schmidt et al [170] showed that the EFD formation is governed by the subband spacing

rather than by the cyclotron energy for magnetic fields up to 29 T, which again are applied

perpendicular to the layers. The different observations by Shimada and Hirakawa [169] on the

one hand and by Schmidt et al [170] on the other hand may be a result of the very different way

of doping the SL structure, i.e. modulation doping with a δ-layer versus direct doping of the

wells. At intermediate magnetic field strengths, additional resonances appear due to scattering-

assisted inter-Landau-level tunnelling at the domain boundary [170]. The appearance of

these additional structures was subsequently confirmed in the calculations of Aguado and

Platero [171]. Sun et al [77], Wang et al [167, 172] and Sun et al [173] reported a quenching

of the branch-like structures in the I–V characteristics due to static EFD formation with

increasing magnetic field perpendicular to the layers. They interpreted their observation as

a magnetic-field induced transition from a static to an oscillating electric-field distribution,
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which was supported by time-resolved measurements of the current. We will discuss this

oscillation regime in more detail in section 5. Finally, Luo et al [174] observed that the typically

irregular branch-like structure in the I–V characteristics becomes more regular with increasing

magnetic field. A detailed analysis of the branches showed that the fluctuations for most of the

branches are completely removed by a magnetic field of 9 T, indicating that the irregularities

are connected to the non-resonant tunnelling process at the domain boundary. More theoretical

investigations are necessary to clearly identify the effect of an external magnetic field on static

domain formation.

4. Formation and switching of static domains

4.1. Formation

The formation times of static EFDs can be investigated experimentally in two ways. The first

one takes an undoped SL under bias, which exhibits a homogeneous field distribution, and

excites carriers inside the SL with an intense ultrashort light pulse. The evolution of a broad,

single PL line, originating from the homogeneous field distribution, into two well-defined PL

lines due to the presence of an LFD (PL line at higher energies) and HFD (PL line at lower

energies) is monitored using time-resolved photoluminescence spectroscopy. The formation

time for a weakly coupled GaAs/AlAs SL with dW = 14.4 nm and dB = 3.4 nm amounts to a

few nanoseconds, indicating that the necessary space charge for forming the domain boundary

is accumulated on a timescale much shorter than the characteristic transport time for electrons

through the whole SL [175]. This rather short formation time can only be observed as long as the

SL is biased in the region of NDC [176]. It increases by about one order of magnitude when the

SL is biased in the positive differential conductivity region. Experiments performed with

a step-like optical excitation of an undoped SL revealed current self-oscillations [177] since

the excited carrier density for step-like excitation is about two orders of magnitude smaller than

for excitation with an ultrashort light pulse so that static EFD formation could not be achieved.

The second way uses a doped SL and applies a short voltage pulse from zero field to

a finite field strength in the static EFD region. Dynamical simulations showed that two

formation mechanisms occur [79, 178]. When the SL is biased in the NDC regime, the

domain boundary forms in place within a few microseconds for a doped, weakly coupled

GaAs/AlAs SL with dW = 9.0 nm and dB = 4.0 nm, while for a bias in the region of positive

differential conductivity the formation process consists of a well-to-well hopping starting from

the cathode [79, 178]. The well-to-well hopping appears in the current-versus-time traces as

small spikes. With increasing bias, the formation time decreases almost linearly in the positive

differential conductivity region, because the distance from the cathode to the final position of

the domain boundary decreases. Since the well-to-well hopping time depends on the coupling

between adjacent wells, i.e. the barrier width and height, more strongly coupled SLs should

exhibit formation times in the nanosecond time range. Subsequent measurements by Shimada

and Hirakawa [179] confirmed the well-to-well hopping transients for the second and third

plateau of the I–V characteristics of a doped GaAs/Al0.3Ga0.7As with dW = 25.0 nm and

dB = 10.0 nm. An analysis of the formation time demonstrated that it can be described as the

product of the capacitance of a single tunnelling barrier and the intrinsic tunnelling resistance

in the LFD [179].

4.2. Theory of switching dynamics

While it is simple to find stable stationary solutions of discrete SL models containing two

EFDs, a study of the transients in reaching them from certain initial conditions reveals many
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Figure 10. Schematic diagram of the current–field characteristics of the emitter contact and the

SL. From [236].

important features of the dynamics of domains. Moreover, fluctuation phenomena, which

we have ignored so far, can modify the predictions of the discrete models in ways that are

experimentally observable. The theory of switching between different branches of stable

static solutions in the first plateau of weakly coupled SLs is due to Amann et al [78,180], and

the effects of shot noise have been studied by Bonilla et al [181] using a stochastic discrete

drift–diffusion model. These theoretical studies were motivated by experiments reported later

in this section [182–185] and explained the observed experimental results quite well.

Let us explain in some detail the numerical simulations of the model based on

equations (82) and (84), corresponding to discrete versions of Poisson’s and Ampère’s

equations including the tunnelling current of equation (99). The calculations of Amann

et al [78] use a forward drift velocity similar to equation (100), but with a different factor,

Ti(E1), which is obtained from Green’s function theory. The current densities at the boundaries

are chosen as

J0→1 = σF0, JN→N+1 = σFN

nN

ND

. (113)

These functions are particular cases of tunnelling currents from the injecting contact to the

SL and from the SL to the collecting contact [82]. The contact conductivity, σ , is selected

as follows. Let us consider the tunnelling current density Ji→i+1 = J (Fi, ni, ni+1) given

by equations (99) and (100) with nmax = 2 and evaluate it at ni = ni+1 = ND for a fixed

Fi = F . The curve J (F, ND, ND) is N-shaped: it has two local maxima, the first one at

F = FM and JM, and a local minimum at F = Fm and Jm. We select σ so that the straight

line J = σF intersects J (F, ND, ND) on its second decreasing branch at a point (Fc, Jc)

with FM < Fc < Fm. This condition is presented in figure 10, in which the homogeneous

current–field characteristic, SJ (F, ND, ND), is depicted, and Icrit = SJc is explicitly shown.

As we shall see, this condition allows the formation and motion of HFDs bounded by a CAL

and a CDL (i.e. charge dipole waves). The key facts are as follows. The stationary field profile

near the emitter corresponds to a CDL if its current is lower than Icrit = SJc, because the

field in the LFD is smaller than in the emitting contact (cf figure 11(a)). This CDL contains a

lower carrier density than the one at the domain boundary because the field change between

the emitter and the LFD is much smaller than the field difference between the LFDs and HFDs.
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SL. From [236].

Figure 10 indicates that if the current is raised above Icrit during a short time interval, the field at

the emitter would tend to increase as we move inside the SL. An embryonic CAL then appears

near the emitter. However, the field in the LFD is still much lower, and therefore a CDL is still

interposed between the emitter CAL and the LFD. The CDL will immediately begin to move

into the SL (cf figure 11(b)), and this situation triggers a dipole formed by a CAL and a CDL

if it persists long enough. The same result as in figure 10 can be obtained by appropriately

modifying the contact doping density in the general expression of J0→1 [81, 82]. The factor

nN/ND in the expression for JN→N+1 avoids negative electron densities at the collector. The

parameters in the numerical solution of the discrete model reported by Amann et al [78]

correspond to the GaAs/AlAs SL studied by Luo et al [182] with 40 periods, dB = 4.0 nm,

dW = 9.0 nm, ND = 1.5 × 1011 cm−2, a cross section S = 15 000 µm2 and T = 5 K.

Broadening due to scattering is taken into account using γν = 8 MeV (independent of the

subband index ν), and the conductivity, σ , is assumed to be 0.01 (� m)−1.

The stationary current–voltage characteristic for this doping density has the typical

sawtooth pattern of figure 12, with the upper and lower branches corresponding to an up- and

down-sweep of the external voltage, respectively. In the simulations, we start from the stable

field configuration corresponding to a point on the upper branch of the first plateau of the I–V

characteristic at Vdc = 0.75 V. Then, we change the voltage to a final voltage Vf = Vdc + Vstep

and record the solution of the discrete model. We expect that the current evolves towards

the value for one of the stable stationary solutions on the I–V characteristic at voltage Vf (in

general there are several such branches due to the multistability as explained in section 3.3).

We find that the final stationary current is on the upper branch if Vstep = 0.1 V, while it is

on the lower branch if Vstep = 0.18 V as indicated by the arrows in figure 12(a). Thus, fast

switching allows us to reach the lower branch just by a sufficient increase in the voltage. This

is a striking result. For conventional up- and down-sweeps, the point on the lower branch at

0.93 V can only be reached by increasing the voltage to more than 1.1 V and then decreasing

it to 0.93 V.

In figure 13(a), we depict the current response to different positive values of Vstep versus

time. For Vstep < Vcrit with Vcrit ≈ 0.175 V, the current first increases abruptly and then

relaxes monotonically to its final value. There is a fundamentally different current response if

Vstep � Vcrit. Instead of relaxing monotonically after reaching a sharp peak, the current first

drops to a level well below the lower stationary branch. Then, the current response exhibits a

fast repetitive double peak pattern until about 3 µs. Subsequently, following one larger spike,

only single peaks occur. The spiky structure ends about 7 µs after the voltage switch, and the
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Figure 12. (a) Simulated sawtooth current–voltage characteristic of a GaAs/AlAs SL with N = 40,

dW = 9.0 nm and dB = 4.0 nm. The upper branches correspond to a voltage up sweep, the lower

branches to a down sweep. The arrows indicate the starting and end points of the voltage steps

discussed in the text. (b) Enlarged section of the I–V characteristic in (a) indicating the initial

operating point (�) and different final points (◦). From [78].

current evolves to a stationary value on the lower branch. The total number of peaks is roughly

equal to the number of wells in the SL. The frequency of the peak burst is about 15 MHz.

This behaviour does not change significantly, provided Vstep � Vcrit, even for very different

values of Vstep. This effect is very similar to the experimental observations by Luo et al [182],

except that the experimental total relaxation time is only about 2 µs. Better agreement can be

achieved by choosing a larger scattering width γν ≈ 20 MeV.

How can we explain this behaviour? The key lies in the motion of wave fronts, CALs

and CDLs, at constant J studied in section 3.1. Consider the tunnelling current density,

J (F, ND, ND), of the uniform field profile and let F (1)(J ), F (2)(J ), as well as F (3)(J ) be

the solutions of J (F, ND, ND) = J , with J = I/S ordered from smaller to higher field

values. The velocities of CALs and CDLs as a function of the current are c+(J ) and c−(J ),

respectively, as depicted in figure 4. The current interval (Il, Iu), corresponding to stationary

CALs, depends on the location and size of the maximum and minimum values of the sequential

tunnelling current. The point in figure 4 where the velocities of accumulation and depletion

fronts intersect is of special interest. This point determines the velocity and current, at which

a dipole wave consisting of a leading CDL and a trailing CAL can move rigidly [186].

Let us now consider a switching process with 0 < Vstep < Vcrit. The dynamical evolution

of the electron densities, ni , is depicted in figure 14(a) for Vstep = 0.1 V. We observe that the

CAL (light region) is shifted within a short time of 0.1 µs upstream towards the emitter, which
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Figure 13. Current response versus time for various (a) positive and (b) negative voltage steps at

t = 0. For t < 0, the initial voltage, Vin, is 0.75 V. The curves are shifted vertically in units of

20 µA in (a) and 30 µA in (b) for clarity. From [78].
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Figure 14. Evolution of the electron densities in the quantum wells during the switching process

for various voltage steps, Vstep, as indicated on the top, starting at t = 0 from Vin = 0.75. The

CALs (CDLs) are indicated by white (black) areas. In the grey area, the electron density is close

to ND. Well #1 is located at the emitter, well #40 at the collector. From [78].

explains the observed fast monotonic relaxation of the current after reaching its sharp peak. The

switching to a higher external voltage has the effect that all fields in the SL are increased, and

the current instantaneously rises above Iu to allow the upstream motion of the CAL. According

to figure 4, the CAL moves with a negative velocity, consistent with the numerical results.
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If Vstep � Vcrit, the situation is more complicated. For Vstep = 0.18 and 0.50 V, the

evolution of the electron density profile is depicted in figures 14(b) and (c), respectively.

Before switching Vstep, there is one CAL inside the sample, separating two coexisting EFDs.

After switching the voltage, we observe four different dynamical phases: (1) upstream shift of

the CAL and generation of new fronts at the emitter, (2) coexistence of three fronts (two CALs

and one CDL) in downstream motion, (3) downstream motion of two fronts (one CAL and one

CDL) and (4) pinning of the CDL at the collector, while the CAL moves until it reaches its

final position. This relocation process involving two CALs and one CDL will be referred to

as the tripole/dipole relocation scenario, and its four phases will now be described in detail.

Phase 1. Shortly after switching the voltage step, the initial CAL moves upstream towards the

emitter. Simultaneously, a charge dipole wave appears at the emitter. Its leading CDL moves

towards the collector, while its width increases. The trailing CAL of the dipole is pinned at

the first SL well. Why and how can the charge dipoles be generated at the injecting contact?

In a stationary situation, the current through the injecting barrier is equal to the current

through the first SL barrier. The field at the emitter can be calculated from equation (113).

With our small contact conductivity, F0 > F1 if 0 < J < Jc, the Poisson equation predicts

electron depletion, n1 < ND. If we could suddenly change the current to a value larger than

Jc, the field, F1, would increase according to equation (84), trying to attain a value on the third

branch of J (F, ND, ND). This would produce a CAL at this well, followed by the CDL that

was there before changing J . The net outcome of this mechanism would be the creation of

a dipole. As seen in figure 4, a depletion layer separated from the contacts moves towards

the collector with a velocity c−(J ). The CDL leaves a HFD in its wake that extends all the

way to the injecting region. The width of this HFD increases as its leading edge (the CDL)

advances. Since the total voltage is constant, the extra area gained by this region has to be

compensated by lowering the current (since both the LFD and the HFD occur in a region of

positive differential conductivity). Once the current has become smaller than Jc, the field in the

immediate neighbourhood of the injecting region should correspond to another CDL, which

implies that a CAL forming the back of the dipole wave has been created. Now the dipole is

fully detached from the injecting region and a new phase starts.

The following observation about the contact conductivity is of paramount importance.

Suppose that σ is so large that the line J = σF does not intersect J (F, ND, ND). The

field profile of a stationary solution having F0 = J/σ needs to increase to the bulk value,

F (1)(J ), and therefore there is always a CAL near the injecting contact. This type of boundary

condition can inject only CALs inside the SL for J > Jc = JM. Then, the relocation of EFDs

is quite different as discussed by Amann et al [78]. Similar considerations are well known in

asymptotic studies of the Gunn effect [186, 187].

Phase 2. After about 0.2 µs, the current has dropped below Il, and all fronts have positive

velocities according to figure 4. Let us ignore the fast timescale responsible for the current

spikes in figure 13(a) and try to find an equation for the envelope of the current time trace [16].

Then, we can consider that the field profile adjusts adiabatically to the instantaneous value

of the envelope of the current time trace, J (t), which evolves slowly. For an instantaneous

value of J (t) = J , CALs move with velocity c+(J ), whereas CDLs move with velocity c−(J ).

The electric field profile consists of an advancing HFD with field F (3)(J ) (bounded by a CAL

centred at i = m
(1)
+ (t) and a CDL centred at i = m

(1)
− (t)) and a CAL at i = m

(2)
+ (t) that

encroaches on a HFD with F = F (3)(J ) near the collector contact. We can mark the centre of

a CAL at a time t as the well, at which there is a local maximum (or minimum in the case of a

CDL) of the charge. Then the functions m
(j)
± (t) are integer valued because the charge inside the
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wave front peaks at different wells as time changes. Consider the lifetime of a given wave front

and denote the times at which m
(j)
± (t) changes by t1, t2, . . . . We may define a local velocity

by ci
± = [m

(j)
± (ti+1)−m

(j)
± (ti)]/(ti+1 − ti). Let us assume that we average these ci

± over a time

interval that is short compared with the timescale typical of wave front motion, but sufficiently

long compared with the mean value of (ti+1 − ti) for the wave front to have advanced over

many wells. Moreover, as the envelope of the current time trace varies slowly, the average of

ci
± can be approximated by c±(J ) (J is the instantaneous value of the envelope of the current

time trace). The average wave front velocities are

〈

dm
(j)
+

dt

〉

= c+(J ),

〈

dm
(j)
−

dt

〉

= c−(J ), j = 1, 2. (114)

We can now easily calculate the voltage, V , corresponding to the field profile considered

above (sometimes called a tripole—one pulse or charge dipole and one CAL, all of them

advancing toward the collector). Ignoring transition regions and the contact voltage, F0l, in

equation (85), we obtain for the average field 	 = V/(Nl)

	 =
1

N

N
∑

j=1

Fi = F (1)(J ) + [F (3)(J ) − F (1)(J )]

(

N − m
(2)
+

N
+

m
(1)
− − m

(1)
+

N

)

. (115)

We now differentiate this equation with respect to t , use d	/dt = 0, average over short time

intervals as indicated above and use equations (114) and (115) to simplify the result. Then we

obtain

dJ

dt
=

2c+(J ) − c−(J )

N

[F (3)(J ) − F (1)(J )]2

(F (3)(J ) − 	)/J
(1)

F + (	 − F (1)(J ))/J
(3)

F

,

J
(i)

F ≡
∂J

∂F
(F (i), ND, ND), i = 1, 3.

(116)

Note that, if we had started from a field profile comprising n+ moving accumulation wave fronts

and n− depletion wave fronts, the same arguments would lead to the more general equation

dJ

dt
=

n+c+(J ) − n−c−(J )

N

[F (3)(J ) − F (1)(J )]2

(F (3)(J ) − 	)/J
(1)

F + (	 − F (1)(J ))/J
(3)

F

. (117)

J evolves on the timescale t/N , which is slow, provided N is large. Clearly, J given by

equation (116) changes until it reaches a value J† such that 2c+(J ) = c−(J ), marked as

I2 = SJ† in figure 4. Then, ignoring transients, this means that the two CALs of the tripole

start advancing towards the collector with the same velocity, c+(J
†), while the CDL advances

at a higher velocity, c−(J†). Numerical simulations of different discrete models [78, 81, 107]

show that each time a CAL advances by an SL period, a spike appears in the current. An

asymptotic theory explaining this fact is still missing. If we accept it at face value, the double

peak structure observed in the numerical simulation of figure 13(a) means that two CALs exist

during that part of the period. Note that the transient region, where the current exhibits double

spikes, has a flat appearance, indicating the constant mean value of the current density, J†.

This is further corroborated by figures 14(b) and (c). In these figures, time traces of the

positions of all wave fronts are recorded. Velocities are the reciprocal of the slopes. Note that

the velocity of the CDL c−(J ) is larger than the velocity of the two CALs in the tripole during
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a short time interval after the newly formed CAL leaves the injecting contact. Thus, the area

lost by the shrinking HFD near the collector is gained by the growing HFD corresponding to

the advancing dipole. When the rightmost CAL arrives at the collector, phase 2 ends and a

new phase 3 starts.

Phase 3. After the HFD closest to the collector has disappeared at to ≈ 3 µs, only one CAL

and one CDL, forming an advancing dipole, exist. Then the current response has a single-spike

structure as depicted in figure 13(a). The same arguments as in phase 2 lead us to equation (117)

with n+ = n− = 1. After a short transient, the velocities of the CAL and the CDL become

equal, c+(J ) = c−(J ). This occurs at a current density J = J ∗ = I1/S, corresponding to the

crossing point of the two front velocities in figure 4. In comparison with phase 2, the velocity

of the CAL has almost doubled, while the velocity of the CDL is slightly decreased as shown

in figures 14(b) and (c). This third stage ends when the CDL reaches the collector.

Phase 4. The CDL is pinned at the collector while the CAL advances to its final position,

which it reaches in a short time. During this stage, the current increases, as described by

equation (117), with n+ = 1, n− = 0. This short phase was apparently overlooked in

earlier works [16,78], although careful inspection of figures 13(a) and 14(c) clearly reveals its

existence.

After these four stages of its evolution, the CAL finally reaches a stable stationary state: it

becomes the domain wall separating two stationary EFDs. Of all possible stationary solutions

having a voltage Vdc + Vstep, the one having a CAL closer to the emitter is reached. Its current

is lower than the initial one. This final situation can also be reached by conventional down-

sweeping of the current–voltage characteristic. In the latter case, the CAL also moves towards

the collector.

For Vstep < 0, the CAL always travels towards the collector and stops at a position

corresponding to the domain wall separating the two EFDs of a stationary solution. This

solution can also be reached by down-sweeping to the final voltage as shown in figure 14(d).

Figure 13(b) shows that the current has to decrease below its lower critical value so as to

allow the downstream motion of the CAL with positive velocity. Note that the number of

current spikes indicates the number of SL periods traversed by the CAL before reaching its

final position. In contrast with the case of positive Vstep, the resulting current response shows

no threshold-like behaviour as in figure 13(a). Since all fields decrease during the switching

process, no dipole wave can be generated at the emitter.

4.3. Switching between static branches

Switching experiments between static domains were initially reported by Rasulova et al [150].

A difference in the timescale for current jumps from a smaller to a larger current value versus

from a larger to a smaller current value was found, which was about one order of magnitude

longer for jumps to higher current values. However, a detailed analysis of switching across a

single current discontinuity was not performed in this investigation.

Switching experiments investigating the relocation dynamics of the domain boundary over

one or several periods were performed by Luo et al [182]. The transition process from one

branch to the next was studied by adding a bias step with different amplitudes to a dc bias and

recording the time-resolved current. A bias step increasing the applied dc voltage is referred to

as an up jump, while a bias step decreasing the applied dc voltage is called a down jump. It was

shown that the relocation time of the domain boundary for up jumps (down jumps) depends

exponentially on the difference between the final static current and the maximum (minimum)
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Figure 15. Ensemble-averaged current transients for switching from the third to the fifth branch

(A) and from the tenth to the 13th branch (B) of the I–V characteristic. From [184].

current value of the initial branch. A universal scaling relationship between the relocation time

and the current difference was found.

4.3.1. Voltage pulses decreasing or increasing the dc voltage. For down jumps, the relocation

process of the domain boundary proceeds via a direct motion of the CAL in the direction of

electron flow. This behaviour is confirmed by single-shot time traces of the current response:

for values of the final voltage away from regions of bistability, there is an initial displacement

current spike, after which the current rapidly switches to the stable value. Furthermore, when

the final voltage is close to the bistable region, there is an additional intermediate period, in

which the current fluctuates about a metastable value for a stochastically varying delay time τd

before rapidly switching to the stable value in a time τs [182,183]. However, for up jumps, the

charge monopole at the domain boundary would have to move against the electron flow, and

this is only possible for small-amplitude up jumps. Therefore, a different and more complex

relocation scenario must apply for larger up jumps.

Figure 15 shows two current transients for the case of larger amplitude up jumps, i.e. from

the third branch to the fifth branch (curve A) and from the tenth to the 13th branch (curve B).

After the initial peak (phase 1), an interval of spikes with rather irregular amplitudes (phase 2)

follows, which is terminated by a larger spike. The duration of phase 2 depends mainly on

the final voltage, V1. After this larger spike, a series of regular spikes (phase 3) appears with

a lower current level, before the current rises (phase 4). The traces are ensemble averages of

about 100 measurements for obtaining a better signal-to-noise ratio, i.e. the position of the

individual spikes is essentially deterministic.

The separation of the regular spikes in region 3 is about 50 ns, which corresponds to a

frequency of 20 MHz. This frequency falls into the same range of frequencies for the spikes of

10–20 MHz present in current self-oscillations, which have been observed in the same sample

for opposite polarity [100,188,189] and will be discussed in section 5.3. This strongly suggests

that these regular oscillations are due to the deterministic motion of the CAL over successive

periods of the SL.

Several sets of measurements were performed to vary the number of regular spikes in

phases 3 and 4. For each set, a starting voltage V0 is selected on a particular initial branch

(N0), and the final voltage V1 is varied to lie on different final branches (N1) of the I–V curve.

In these measurements, the number of regular spikes, Nrs, in phases 3 and 4 can be estimated by

Nrs ≈ NSL − N0 − N1 (118)
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Figure 16. Schematic evolution of the electron densities in the quantum wells during the switching

process via (a) the simple monopole and (b) the tripole/dipole relocation process for a jump from

the eighth to the ninth branch. The CALs (CDLs) are indicated by white (black) areas. The labels

1, 2, 3 and 4 on the right-hand side refer to the phases in figure 15. From [184].

as long as N0 + N1 < NSL. The difference between the left- and right-hand sides of

equation (118) varies typically between 1 and 3. Also, for jumps with N0 + N1 > NSL,

phases 3 and 4 are not observed. These observations provide further support for the theoretical

picture of a complex yet deterministic relocation scenario as described in section 4.2.

4.3.2. Comparison with theoretical results. According to the theoretical work of Amann et al

[78,180] described in section 4.2, the larger up jumps exhibit the more complex tripole/dipole

relocation scenario. Figures 16(a) and (b) show the electron densities as a function of time

and space for the simple monopole and the tripole/dipole relocation process, respectively.

White and black areas depict CALs and CDLs, respectively. The simple monopole relocation

displayed in figure 16(a) corresponds to a small up jump. The larger up jumps contain

four different phases of the tripole/dipole relocation process. Phase 1 occurs during the initial

displacement current peak. During this time, the CAL between the LFD and HFD tries to move

upstream towards its final position. At the same time, the CDL at the emitter begins to move

as described above, leaving an HFD behind, which grows with increasing time (cf region 1 in

figure 16(b)). Since the number of SL periods in the HFD increases, while the applied voltage

remains constant, the effective field strengths in both LFD and HFD must decrease, which

implies a reduction in current level according to the homogeneous current–field characteristic.

Phase 2 begins after τp, when the current has dropped below a certain value. At this point

in time, there are three travelling layers separating the low- and high-field regions in the SL

(cf phase 2 in figure 16(b)). As explained in section 4.2, both CALs move with the same

velocity towards the collector. Because of the constant total voltage, the number of periods

under a high field at the average current density, which is quasistationary and approximately

equal to J†, must now remain constant. Therefore, the sum of the velocities of the two CALs

has to be the same as the velocity of the CDL, i.e. 2vCAL = vCDL. Since the average current

should have a value for which the CDL has twice the velocity of the CALs [78], a rather low

current value, SJ†, is observed in figure 15. The jumps of the two CALs across individual

quantum wells appear as irregular spikes within region 2 in figure 15 so that the details of

their motion are not synchronized. This latter feature is different from the numerical results

displayed in figure 13(a) and could be due to small fluctuations of the doping density or to

imperfections in the different wells traversed by the two CALs.
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After the original CAL reaches the collector, which is indicated by a larger spike in

figure 15, the tripole reduces to a dipole and phase 3 begins (cf figure 16(b)). The velocities of

the CAL and CDL are now the same. Since the CDL extends over several periods, the current

transients are dominated by the motion of the CAL, which now appears as regular spikes in

figure 15. When the CDL reaches the collector, phase 3 is completed.

In phase 4, only a CAL is present in the SL. Since now the number of periods in the HFD

decreases with increasing time, the field strengths of the LFD and HFD must both increase,

resulting in an increase in the current. The CAL continues to move towards its final position.

After reaching the well adjacent to its final position, the situation becomes exactly the same as

for the down jumps described earlier. As discussed by Rogozia et al [183], the current remains

constant for a stochastically varying delay time, τd, in this well, before abruptly switching to

the stable value.

4.4. Switching stochastics

4.4.1. Stochastic theory. In section 4.2, we have focused on the complex yet deterministic

switching behaviour associated with domain boundary relocation. Another striking aspect of

the switching behaviour is the statistical distribution of the relocation times. As explained

below in section 4.5, experiments reveal that the relocation time it takes the CAL to relocate to

its stable static position fluctuates randomly for 0 < Vstep ∼ VM −Vdc, in which (VM, IM) is the

point on the same branch of the current–voltage characteristic as the initial point that has the

maximum possible value of the voltage. At this point, the corresponding stationary solution

of the discrete model ceases to be stable. Typically, this point is a turning point, and the slope

of the current–voltage characteristic becomes infinite there. There are no detailed studies

in the literature clarifying this issue. Figure 5 in [80], obtained using a discrete sequential

tunnelling model by using a numerical continuation algorithm, suggests that the turning point

and the maximum of the I–V characteristic can be very close. For these SLs, the slope of the

I–V characteristic varies considerably near the end of the stable static branch. At the turning

point, one stable and one unstable branch of stationary solutions coalesce via a saddle–node

bifurcation [190].

The effect of fluctuations is greater near bifurcation points, and therefore the described

situation is not surprising. The origin of fluctuations in the present case of weakly coupled

SLs at low temperatures is most likely shot noise. So far we have ignored the condition that

the charge present in the SL should be an integer multiple of the electron charge, i.e. that only

an integer number of electrons can tunnel. The obvious justification is that the number of

electrons is very large due to the large cross section, S, of the SL. The strength of shot noise is

small, but it will affect the dynamical behaviour, when it becomes comparable with VM − Vf

in appropriate units. A theoretical study of shot noise effects on switching is due to Bonilla

et al [181], although general considerations on shot noise [191] and a theory of switching times

in double-barrier structures [192] are relevant.

The theory of Bonilla et al [181] simply adds Poissonian shot noise to the equations and

boundary conditions of one’s favourite deterministic discrete SL model. According to Blanter

and Büttiker [191], this strategy has explained most of the relevant physics in many mesoscopic

systems. The stochastic model consists of equations (82), (84) and (85) as well as expressions

for the tunnelling currents across the inner and outer barriers of the SL. For an inner barrier, the

tunnelling current density contains an additional random term besides the one in equation (99),

Ji→i+1 =
ev(f )(Fi)

l

{

ni −
m∗kBT

πh̄2
ln[1 + e−(eFi l/kBT )(e(πh̄2ni+1/m

∗kBT ) − 1)]

}

+ J
(r)

i→i+1(t)

(119)
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for i = 1, . . . , N − 1. Here J
(r)

i→i+1 represents the random current, which satisfies

〈J (r)

i→i+1〉 = 0, (120)

〈J (r)

i→i+1(t) J
(r)

j→j+1(t
′)〉 =

e2

Sl
δijδ(t − t ′)

×
{

niv
(f )(Fi) +

m∗kBT

πh̄2
ln[1 + e−(eFi l/kBT )(e(πh̄2ni+1/m

∗kBT ) − 1)]

}

. (121)

The idea behind this form of random tunnelling current is that uncorrelated electrons are

arriving at the ith barrier with a distribution function of time intervals between arrival times

that is Poissonian. Moreover, the correlation time is of the same order as the tunnelling time,

so that it is negligible on the longer timescale of dielectric relaxation.

Only numerical calculations of the high temperature limit in equations (99) and (121) have

been reported [181]. They correspond to the discrete DD model given by equation (101). The

tunnelling currents at the boundaries have the simplified form

J0→1 = j (f )
e (F0) −

en1w
(b)(F0)

l
+ J

(r)

0→1, (122)

JN→N+1 =
enNw(f )(FN )

l
+ J

(r)

N→N+1 (123)

in which the noise has zero mean and correlations

〈J (r)

0→1(t)J
(r)

0→1(t
′)〉 = e

j
(f )
e (F0)l + en1w

(b)(F0)

Sl
δ(t − t ′), (124)

〈J (r)

N→N+1(t)J
(r)

N→N+1(t
′)〉 =

e2nNw(f )(FN )

Sl
δ(t − t ′). (125)

The emitter current density, j
(f )
e , the emitter backward velocity, w(b), and the collector forward

velocity, w(f ), are functions of the electric field depicted in figure 3 of Bonilla et al [82].

For parameter values corresponding to the SL studied in the experiments [182], a

dimensionless measure of the noise amplitude is a =
√

e/(εFMS) ≈ 3.232×10−4. The

numerical simulations broadly confirm the experimental findings of Luo et al [182] and Rogozia

et al [183]. Among them is the exponential dependence of the relocation time on the current

difference, |I − IM|, as τreloc ∝ eb|I−IM|/IM . Moreover, the distribution of switching times is a

symmetric Gaussian density,

W(t, τ̄ , σ ) dt =
1

σ
√

2π
exp

(

−
(t − τ̄ )2

2σ 2

)

dt (126)

with τ̄ = τreloc denoting the mean relocation time for Vf far from VM and σ its width, or an

asymmetric first passage time (FPT) distribution,

W(t, y ′, β) dt =
√

y ′ 2β

π
exp

(

−
βy ′z2

2

)

dz, (127)

in which

y ′ =
y2

0

D
and z =

1
√

exp(2βt) − 1
(128)

for Vf close to VM. The parameters β and y2
0/D are derived from the Fokker–Planck equation

that describes a one-dimensional Brownian particle [193, 194].
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The numerical findings have the natural uncertainty due to fitting noisy numerical data to

presumed functional forms. In the particular case of the mean relocation time, an argument

for choosing a different functional form is as follows. At the point (VM, IM), the branch of

deterministic stationary solutions containing the initial point becomes unstable via a saddle–

node bifurcation. If the bifurcation parameter, α = (Vf − VM)/(FMNl), becomes comparable

with the noise amplitude, a, the stochastic amplitude equation of the saddle–node bifurcation

equation is

dϕ

dt
= αµ + νϕ2 + aβξ(t). (129)

In this expression, ϕ is proportional to I − IM and ξ(t) corresponds to zero-mean, delta-

correlated white noise. The positive parameters µ, ν and β can be calculated using projection

methods [190], but their precise form does not matter for the argument we want to make. Note

that equation (129) has two stationary solutions with |I − IM| ∝ |Vf − VM|1/2 if a = 0.

For Vf < VM, equation (129) describes the escape of a Brownian particle from a potential

well corresponding to the cubic potential U(ϕ; α) = αµϕ + νϕ3/3. Provided the height of

the barrier is large compared with the noise strength, the reciprocal of the mean escape time is

proportional to the equilibrium probability density P = e−U/a2

/Z evaluated at the maximum

of the potential [195], i.e.

τreloc ∝ exp

(

2|µα|3/2

3a2
√

ν

)

. (130)

Thus, it seems that there exists a relatively large voltage interval |α|3/2 ≫ a2 over which

the logarithm of the relocation timescales superlinearly with |α|. In terms of the current,

ln(τreloc) ∝ |I − IM|3. Therefore, it seems that fitting the numerical results for the relocation

time to a linear function of |I − IM| would not test these theoretical results [181].

Tretiakov et al [192] have derived the Fokker–Planck equation associated with

equation (129) by analysing a master equation that models sequential tunnelling transport in a

double-barrier structure. They assume tunnelling of one electron and carry out the Kramers–

Moyal expansion of their equation in powers of the reciprocal cross section, S−1 [195]. The

potential term in the Fokker–Planck equation is cubic near a turning point, which is then used

to simplify the equation to a form equivalent to equation (129). Tretiakov et al [192] then

infer that ln(τreloc) ∝ |α|3/2 ∝ |I − IM|3, unless the inhomogeneous in-plane diffusion of the

electrons in the well is considered. A saddle-point analysis of a functional Fokker–Planck

equation modelling this motion yields ln(τreloc) ∝ |α| ∝ |I − IM|2 for samples with large S.

The authors conclude that ln(τreloc) ∝ |α|ζ ∝ |I − IM|2ζ , with ζ = 3
2

for structures of small

cross section so that the electron density does not depend on the in-plane coordinates, and

ζ = 1 for structures of large cross section such as SLs. A crossover for intermediate cross

section values is predicted.

While the arguments of Tretiakov et al [192] are very interesting and deserve further study,

we are interested in the validity of equation (130) for weakly coupled SLs. The condition

for equation (129) to hold is that all its terms must be of the same order. The balance

between the two first terms of the right-hand side in equation (129) yields ϕ = O(|α|1/2),

and the balance with the left-hand side provides a rescaling of time to τ = |α|1/2t . As

δ(t) = |α|1/2δ(τ ), the balance of the noise term with the others gives a = O(|α|3/4). This

means |Vf − VM|/(FMNl) = O([e/(εFMS)]2/3). According to this argument, the exponent in

equation (130) is of the order of |α|3/2/a2 = 1 in the parameter region, where all the terms in

equation (129) are of the same order. This implies that the scaling exponent ζ = 3
2

describes the

behaviour of the relocation time in a voltage interval such that |α| ≫ a3/4 (in which the barrier

height is large compared with the noise). Whether the approximation also holds for |α| ≈ a3/4
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depends on the particular value of the unspecified numerical constants in the equation. At

the turning point α = 0, the barrier vanishes, and the approximation of equation (129) breaks

down. These arguments do not determine the extent of the inner critical region, in which

equation (129) no longer holds, nor the critical exponent there.

Recapitulating, the critical exponent, 3
2
, for the relocation time in discrete models of

weakly coupled SLs that do not consider lateral motion of electrons seems to hold in an annular

voltage region, a2 ≪ |α|3/2 ≪ K . The constant K > 0 characterizes the extension of the

region, in which the current–voltage characteristic near the turning point can be approximated

by a parabola. Unfortunately, such a region seems to be very narrow in known numerical

calculations of I–V characteristics that include both stable and unstable branches. For example,

figure 5 of [80] shows that the maximum and the turning point of the I–V characteristic are

extremely close for all branches. In this case, it may very well happen that K ≪ 1, or even

that K ≪ a2. In the first case, the interval of voltages for which the critical exponent is 3
2
,

is very narrow, which could very well mean that the experiment is probing a voltage region

not described by the amplitude equation (129). Then the critical exponent, 3
2
, would not be

observed. In the second case, the region in which the critical exponent is 3
2

does not exist.

What happens in such cases is not known at the present time.

The previous arguments indicate that the study of the effects of shot noise on voltage

switching and relocation of EFDs is wide open from the theoretical point of view. The

following additional theoretical studies seem necessary: (i) characterization of the turning

points of discrete sequential tunnelling models for realistic parameter values using numerical

continuation methods that find both stable and unstable static solution branches; (ii) study of

the case K ≪ 1, in which the parabolic region near the turning point is so narrow that the

amplitude equation (129) breaks down (this case might be better approximated by analysing

the effect of shot noise on a spiky turning point, at which the slope of the I–V characteristic

is discontinuous, with a simple argument yielding ln(τreloc) ∝ α2 ∝ |I − IM|2); (iii) study

of the case |α|3/2 ≪ a2; and (iv) study of the effect of possible in-plane electron motion

on relocation times in SLs. Comparison of the conclusions of these studies with existing

and future experiments would greatly clarify the precise influence of shot noise on domain

relocation after voltage switching.

4.4.2. Measured time distributions. In this subsection, we consider the experimentally

observed statistical distribution of the relocation times. In order to analyse the switching

times in terms of their statistics, the distribution functions have been directly measured using

the built-in functions of a fast, digitizing oscilloscope. Two examples are shown as insets in

figure 17. There is a very pronounced change in the shape of the distribution function going

from larger to smaller values of the final voltage, |V1|. The main part of figure 17 shows the

ensemble-averaged switch times, τ̄ (dots), and the respective widths, σ (open squares), of the

distributions on a logarithmic scale as a function of V1. Both strongly increase with decreasing

|V1|. For values of V1 far away from the current jump, the distribution function is very narrow

(cf inset for V1 = −752.5 mV in figure 17) and exhibits a Gaussian shape. However, for

values of V1 close to the current jump, the distribution function has a completely different,

asymmetric shape with a steep increase at shorter times and a broad tail at longer times (cf inset

for V1 = −732.0 mV in figure 17). Also, the timescale has changed by more than one order

of magnitude.

As against the deterministic switching behaviour discussed in section 4.3, we are now

interested in the switching time distribution and its dependence on the final voltage, V1. When

V1 is located on the adjacent higher branch, the domain boundary first remains in the same

well. The current increases beyond the maximum of the initial branch of the I–V characteristic.
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Figure 17. Average value, τ̄ (·) and width, σ (�), of the distribution of the relocation times for

switching from V0 = −650 mV on branch 3 to different final voltages on branch 4. The insets show

two examples of the distribution functions measured at voltages of V1 = −732.0 and −752.5 mV.

From [183].

The field and charge profiles first begin to change without any spatial relocation of the CAL

itself. However, the centre of mass of the total charge distribution moves upstream. During

this time, the current remains almost constant. This intermediate state is metastable because

the centre of mass of the charge distribution and the position of the CAL are located in different

wells of the SL. When the distance between the centre of mass of the charge distribution and

the accumulation layer reaches a critical value, the CAL moves almost instantaneously to the

adjacent well.

The time to reach this critical charge distribution depends on stochastic processes of the

system, primarily current shot noise. For large voltage jumps, the change in the electric-field

distribution in the sample is relatively large, so that the centre of mass of the charge distribution

is strongly affected and the critical charge distribution is reached rapidly. The resulting delay

time is short and the corresponding time distribution is Gaussian. However, for values of V1

close to the current jump, the field does not deviate very much from a stable distribution, and the

centre of mass of the charge distribution will be affected much less; the system is quite sensitive

to fluctuations [191], and both the mean value and the width of the distribution increase. The

final abrupt switching event occurs when the critical charge distribution is reached for the

first time. We consider a distribution function that describes the probability of a Brownian

particle reaching y = 0 starting from y0 for the first time in a time between t and t + dt by

a one-dimensional random walk [193], commonly referred to as the first-passage time (FPT)

distribution function. In this analogy, the variable y corresponds to the charge density in the

quantum well associated with the domain boundary.

After normalizing the measured time distributions (area equal to 1), we fit them at large

values ofV1 with the Gaussian function of equation (126) using τ̄ andσ as the fitting parameters.

The resulting distribution function is shown in the inset of figure 17 for V1 = −752.5 mV.

Note that a Gaussian distribution would be expected when there is an effective Brownian

potential that has only one local minimum. The motion towards that minimum is essentially

deterministic and fast.

For small values of V1 close to the current jump, we used the FPT distribution function of

equation (127). The resulting distribution function is asymmetric and contains a steep initial

increase and a broad tail as shown in the inset of figure 17 for V1 = −732.0 mV. Increasing
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function for down (�, ) and small up jumps (◦, •). The dotted line in the I–V characteristic

depicts a possible form of the unstable branch. From [185].

β results in a narrower distribution, which at the same time is shifted to shorter times. An

increase in y ′ mainly shifts the peak of the distribution to longer times in our parameter range.

For each measured distribution, we determined the quadratic deviation, χ2, from the

respective least square fits. If the ratio χ2
r = χ2

Gauss/χ
2
FPT is larger (smaller) than 1, the

FPT (Gaussian) distribution fits the data points better. Figure 18 shows the experimentally

determined χ2
r as a function of V1 for down jumps (squares) and small up jumps (circles). In

the case of down jumps, the ratio is considerably larger than 1 for V1 > 678 mV, indicated

by the open squares. The shaded area marks the region where the FPT distribution fits the

measured distribution better. The dashed line indicates χ2
r = 1.

The abrupt change in χ2
r at 678 mV in figure 18 indicates the existence of an unstable

branch in the shaded voltage region (with approximate width �V1 = 45 mV). For voltages

below 678 mV, this unstable branch is not present. Small sections of the unstable branch have

recently been extracted directly from time-trace data [185], and these are indicated in the I–V

characteristic of figure 18 by the two short white segments. These values correspond to the

instantaneous current level at the end of the stochastic time delay and just prior to the abrupt

jump to the new stable current value. The short white segments correspond to the only values

of the final voltage for which this current level can be determined from time traces using this

technique. The dotted line indicates how the full unstable branch might connect with the stable

parts of the characteristic. The extraction of the full unstable branch from time-trace data is

an important objective, which needs further investigation.

For small up jumps, the voltage range for the unstable branch is only 4 mV (open circles

in figure 18), which is much smaller than the one for down jumps. This is probably due to the

different curvature of the homogeneous current-field characteristic in the field region for up

and down jumps.

5. Current self-oscillations

5.1. Monopole versus dipole oscillations

Self-sustained oscillations of the electric current occur in both strongly and weakly coupled

SLs. They can be best described by studying the simple non-linear models of section 2 and



Non-linear dynamics of semiconductor superlattices 633

then, if necessary, extending the analysis to more complex models. As explained before, the

main difference between strongly and weakly coupled SLs is that strongly coupled SLs are

described by spatially continuous equations, whereas weakly coupled SLs are governed by

spatially discrete equations. Let us first describe self-sustained current oscillations due to

dipole domains in strongly coupled SLs.

5.1.1. Dipole oscillations in strongly coupled SLs. The simplest description of self-

oscillations in strongly coupled SLs uses DDEs. Neglecting the different physical origin of

NDC (Bragg reflection due to the periodicity of the dispersion relation in SLs versus intervalley

transfer of electrons in bulk GaAs), these equations are the same as the ones describing the

Gunn effect in bulk n-GaAs, and therefore their analysis can go along the same lines. An

early review of the Gunn effect was published by Kroemer [8]; Volkov and Kogan [196]

as well as Shaw et al [197] are useful supplements. The main analytical results on self-

oscillations in Gunn diodes are the following: (i) the description of a single charge dipole

wave moving in an infinite sample under constant current bias conditions (e.g. the equal-area

rule of Butcher [198] and the shock wave approximations of dipole waves of Knight and

Peterson [39] as well as monopole waves of Murray [199]); (ii) linear stability (small signal)

analysis of the inhomogeneous stationary field profile for a piecewise linear drift velocity [197]

and for a general drift velocity in the limit of large samples [200]; (iii) bounds on the minimal

device length necessary for self-oscillations [8]; (iv) characterization of the effect of different

boundary conditions on self-oscillations [8, 197]; (v) analysis of the onset and end of the

self-oscillations by means of amplitude equations [201]; and (vi) asymptotic analysis of self-

oscillations mediated by charge monopole and dipole waves in the limit of samples that are

large with respect to the spatial extent of the dipole [186,187]. These later studies considered

N-shaped drift velocities, which are very much related to weakly coupled SLs.

An early theoretical prediction (supported by analysis of model equations) of current

self-oscillations due to Bragg reflections in single-band semiconductors is due to Büttiker and

Thomas [56]. Their phenomenological hydrodynamic model has a relationship between a

constant electric field and the current density it produces with the same functional dependence

as the Esaki–Tsu drift velocity for strongly coupled SLs. Apparently these authors thought

that their mechanism could be more important for the weakly coupled SLs studied by Esaki

and Chang [5]. Many years later, simpler DDEs were used by Le Person et al [41] to model

self-oscillations induced by picosecond light pulses in an undoped, strongly coupled SL and by

Hofbeck et al [202] for the same purpose in a doped, strongly coupled SL. Cao and Lei [203]

have described self-oscillations in doped, strongly coupled SLs by means of hydrodynamic

balance equations.

In order to describe self-oscillations in a strongly coupled SL under dc voltage bias, we

shall use the DDE (81)

ε
∂F

∂t
+ v(F )

(

eND

l
+ ε

∂F

∂x

)

= J (t) + D(F)ε
∂2F

∂x2
, (131)

v(F ) =
2vMF

1 + F2
≡ vMV (F), D(F ) =

2kBT vM

eFM(1 + F2)
, (132)

1

L

∫ L

0

F(x, t) dx =
V

L
(133)

in which F = F/FM and L = Nl is the SL length.

We derived equation (131) in section 2 as a high-temperature limit of the more realistic

QDDE (72) (or its semiclassical limit, the GDDE [34]) that does not satisfy the Einstein relation
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Figure 19. (a) Current (J0 = evMND/l) versus time during self-oscillations for a 100-period

SL at 300 K as described by the GDDE in the Boltzmann limit (——) and by the DDE (- - - -).

(b) Comparison between the dipole wave for the GDDE (1) and the dipole wave for the DDE (2).

From [34].

(This figure is in colour only in the electronic version)

between drift velocity and diffusion coefficient. There are quantitative differences between

the simulations of self-oscillations using the GDDE and the DDE as shown in figure 19.

These differences are greater for lower temperatures as explained in section 2. However, the

qualitative features of the self-oscillations are similar, and we shall analyse the simpler DDE in

this section to avoid technical complications. The DDE (131) is a particular case of the model

commonly used to describe the one-dimensional Gunn effect in bulk n-GaAs. Therefore, many

ideas that are already known for the case of the Gunn effect can be applied to our DDE. It is

convenient to rewrite it in the following dimensionless form:

∂F

∂t̃
+ V (F)

(

1 +
∂F

∂x̃

)

= J + δD̃(F)
∂2F

∂x̃2
, (134)

V (F) =
2F

1 + F2
, D̃(F) =

2

1 + F2
, (135)

1

L

∫ L

0

F(x̃, t̃) dx̃ = φ. (136)

The variables, reference scales and typical numerical values (at 300 K) are listed in table 1.

The dimensionless units are chosen so that the dimensionless drift velocity has a maximum

at F = 1 with V (1) = 1 (cf equation (75)) and the doping density, ND, is the unit of the

electron density. We also use δ = kBT ND/(εF 2
Ml) = 0.61, L = NeND/(εFM) = 43 and

φ = V/(FMNl) as dimensionless parameters. Dimensionless space and time variables are

denoted by a tilde over the dimensional variables. To restore dimensional units, we multiply

a given magnitude by its unit in table 1. Equations (134)–(136) contain three dimensionless

parameters, L, φ and δ, in addition to the dimensionless variables x̃, t̃ , F and J .

We now need to specify the boundary conditions. The boundary condition at x = 0

(the cathode) greatly affects the oscillation features as it determines the mechanism by which

waves are injected into the SL. Three common boundary conditions are described in table 2,
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Table 1. Variables, reference scales and typical numerical values used in the drift–diffusion model

for a strongly coupled SL with l = 5 nm at 300 K [213] and for the first plateau of a weakly coupled

SL with l = 13 nm at 4 K [100].

x (nm)
εFMl

eND
11.62 3.98

t
εFMl

eNDvM
0.375 ps 2.55 ns

F (kV cm−1) FM 14 6.92

n (cm−2) ND 0.4 × 1011 1.5 × 1011

v vM 31 km s−1 1.56 m s−1

D (cm2 s−1)
kBT vM

eFM
5.73 vMl = 2.03 × 10−4

J (A cm−2)
eNDvM

l
3.97 × 104 2.88

Table 2. Boundary conditions for the cathode.

Boundary Injected charge

Cathode conditions density waves

Current–field characteristics jc(F ) = J (t) − ε
∂F

∂t
Dipoles (small σ )

(Ohmic) jc(F ) = σF Monopoles (large σ

and N-shaped v(F ))

n+ region −Lc < x < 0 ε
∂F

∂t
+ µF

(

eN+
3D + ε

∂F

∂x

)

− Dε
∂2F

∂x2
= J (t),

with
∂F

∂x
(−Lc, t) = 0

Low mobility J = eN+
3DµF for constant J , F Dipoles

(high-resistivity cathode)
(

for µN+
3DLc <

NDvM

FM

)

Doping notch −Lc < x < 0 ε
∂F

∂t
+ v(F )

(

eN+
3D + ε

∂F

∂x

)

− εD(F)
∂2F

∂x2
= J (t)

with
∂F

∂x
(−Lc, t) = 0

If N+
3D ≪ ND/l J ∼ eN+

3Dv(F ) ∼ 2evMN+
3D

F
FM

Dipoles

(low-conductivity cathode)

which provide a similar injection of waves at the cathode and can be analysed in the same

way. As in section 4.1, we shall examine the simplest one, the Ohmic cathode current–field

characteristics,

∂F(0, t̃ )

∂ t̃
+ σ̃F(0, t̃ ) = J , (137)

∂F(L, t̃ )

∂ t̃
+

(

1 +
∂F(L, t̃ )

∂x̃

)

σ̃F(L, t̃ ) = J (138)

in which σ̃ = σFMl/(evMND) is the dimensionless contact conductivity.

The asymptotic description of self-oscillations for an N-shaped drift-velocity is known in

the limit L ≫ 1, in which the spatial extent of the wave fronts, CALs and CDLs or pulses

(charge dipoles) are small compared with the SL length [186]. Let us describe what happens
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for the Esaki–Tsu drift velocity in equation (135). Typically, for small dc bias, 0 < φ < φα ,

equations (134)–(136) have a stable stationary solution. To construct this simple solution and

more complicated ones, we proceed to rescale space and time in equations (134)–(136) as

ξ ≡
x̃

L
=

x

Nl
, τ ≡

t̃

L
=

vMt

Nl
, ς ≡

1

L
=

εFM

eNDN
≪ 1. (139)

The result is

J − V (F) = ς

(

∂F

∂τ
+ V (F)

∂F

∂ξ

)

− ς2δ D̃(F)
∂2F

∂ξ 2
, (140)

∫ 1

0

F(ξ, τ ) dξ = φ. (141)

As ς → 0, equation (140) yields V (F) = J . This equation has two solutions for

0 < J < 1, F1(J ) and F2(J ) with 0 < F1(J ) < F2(J ) for the Esaki–Tsu drift velocity in

equation (135). Clearly F2(J ) is unstable, so that we should construct the appropriate solution

satisfying boundary and bias conditions by correcting F = F1(J ). The stationary field profile

is F(x) ∼ F1(J ), except in a narrow boundary layer near the contact regions that we choose

to ignore for the time being. The bias condition in equation (141) yields φ ∼ F1(J ), and

therefore the current density corresponding to the average field, φ, is

J ∼ V (φ). (142)

This implies that the static current–voltage characteristic increases following the first branch of

the drift velocity. Does the current increase all the way up to the end of the first branch of the drift

velocity atφ = 1? It depends on the boundary condition at the injecting contact. Let us go back

to the original scaling of space and time as in equation (134) and consider the case of low contact

conductivity, so that σ̃F intersects V (F) on the second branch thereof. As in figure 16, the

corresponding point (Fc, Jc) defines the critical values of field and current with σ̃F2(Jc) = Jc.

For 0 < J < Jc, F(0) > F1(J ), and there is a CDL whose field profile solves the time-

independent equation (134) with F(0) = J /σ̃ and F(∞) = F1(J ). A similar layer joins

F1(J ), with the other boundary value given by the mixed boundary condition in equation (138).

These solutions can be constructed by using phase plane techniques as in [204]. The boundary

layers yield corrections of the order of ς = 1/L to the current in equation (142) that we ignore.

A linear stability analysis of this stationary solution shows that it loses stability at

φα = F1(Jc) + O(ln[L]/L), if σ̃ < 1, and at φ ∼ 1, if σ̃ > 1 [200]. The intuitive reason

is that, for F1(Jc) < φ < Fc, the static field profile for J ∼ Jc consists of a flat region

near the cathode, where F ∼ F2(J ), and a CDL, at some x̃ = X, that marks the transition

to F1(J ) and solves φ = F1(Jc) + [Fc − F1(Jc)]X. The cathode field region has negative

impedance, and any disturbance gets amplified and drifted towards the stable region x̃ > X.

At a critical value X = O(ln L), the disturbances have sufficient space to generate a dipole

wave that can move towards the anode. Note that J > Jc yields F(0) > F2(J ). Phase plane

considerations show that there is no stationary solution decaying from this cathode value to

F1(J ) as x̃ → ∞. Stationary solutions having φ > Fc can be constructed assuming that the

current is slightly greater than Jc. Their profile comprises a flat region with F ∼ F2(J ), going

from the cathode to a point x̃ = X, and a CAL having a field profile F ∼ Fc exp[Jc(x̃−X)/2].

The CAL is logarithmically close to the anode, (L − X) ∼ (2/Jc) ln[(φ − Fc)JcL/(2Fc)].

These stationary solutions become stable above a certain bias φω > F2(Jc), but no asymptotic

calculation of φω exists. On the basis of previous results of Bonilla et al [200], we expect

φω = F2(Jc) + O(ln[L]/L).

In the absence of an explicit calculation of φω, several authors [205, 206] use a heuristic

argument due to Guéret [207]. According to this argument, φω corresponds to a uniform field
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profile F0 such that

e|v′
0|ND

εl
=

v2
0

4D0

(143)

in which v′
0 = v′(F0), v0 = v(F0) and D0 = D(F0). Let us insert F = F0 + ϕ eλt+ikx

and J = J0 in equation (131) and ignore terms of the order of ϕ2 in the result. We obtain

the dispersion relation λ = −iv0k − v′
0eND/(εl) − D0k

2. The uniform stationary state is

unstable to an oscillatory state (Gunn oscillation) if v′
0 < 0 and k = 0 (convective instability).

If we write k = β1 + iβ2, the dispersion relation becomes

λ = v0β2 −
v′

0eND

εl
− D0(β

2
1 − β2

2 ) − iβ1(v0 + 2D0β2). (144)

Bifurcation to stationary states requires real values of λ, which in turn happens provided

that β2 = −v0/(2D0) for all values of β1. Then λ = −v2
0/(4D0) − v′

0eND/(εl) − D0β
2
1 ,

and the homogeneous stationary state becomes unstable (absolute instability) at F0, given by

equation (143). Guéret [207] concludes from this calculation that the corresponding field

profile F = F0 + ϕ ev0x/(2D0) eλt eventually gives rise to a stationary field profile having a CAL

near the anode. Conclusions extracted from this argument and its usage should be examined

with care.

If the sample length is small, i.e. L < Lm, the stationary solution is stable for all

bias values: written in dimensional units, a necessary condition for self-oscillations is that

NDL > εFMLm/e, L = Nl, which is related to the usual N–L criterion for the Gunn effect [8].

For L > Lm, the stationary state is linearly unstable in a bias interval φα < φ < φω. At φα and

φω, time-periodic solutions (which are current self-oscillations) are created from the stationary

solution via sub- or supercritical Hopf bifurcations, depending on the value of L [201].

Near the bifurcation voltages, self-oscillations can be approximated by solving amplitude

equations [201]. Far from bifurcation points, we can find the self-oscillations numerically or,

in the limiting case L ≫ 1, using asymptotic methods, that we shall now describe.

The Esaki–Tsu drift velocity yields a non-linear source term in the DDE that has a single

stable constant solution, not three as in the case of N-shaped velocity. The asymptotics of

the latter case is well known in full detail [186, 208]. The case of a single stable constant

field profile is novel and presents interesting aspects from the point of view of non-linear

mathematics. We shall follow in our description recent work on a piecewise model related to

the Gunn effect [209]. Let us assume that F1(Jc) < φ < F2(Jc) and that the stationary state

is unstable. As we know, the self-oscillations are due to a periodic motion of a charge dipole

through the whole structure, i.e. from the cathode to the anode. The key of the asymptotic

description is that the current varies slowly, on times of the order of t̃ = L or t̃ =
√

L, and the

field profile follows adiabatically the evolution of J . We shall divide our description into three

stages: (i) there is a single dipole far from the boundaries that advances towards the anode;

(ii) the dipole arrives at the anode, and the increase in the current destabilizes the boundary

layer at the cathode, that injects a new dipole; and (iii) the new dipole grows and moves towards

the anode, while the old one disappears. After stage (iii), we return to stage (i), and one period

of the oscillations has been completed.

Stage (i). The dipole is a pulse of the electric field comprising two wave fronts moving

at different speeds. Its back is a wave-front solution advancing at speed c+, F = F(χ +

X+; J , c+, Fmax), χ = x̃ − c+ t̃ , F(0; J , c+, Fmax) = 1, such that F(−∞; J , c+, Fmax) =
F1(J ) and F(X+; J , c+, Fmax) = Fmax. The leading front of the pulse is a wave-front solution

advancing at speed c−, F = F(ξ − X−; J , c−, Fmax), χ = x̃ − c− t̃ , F(0; J , c−, Fmax) = 1,

such that F(−X−; J , c+, Fmax) = Fmax and F(∞; J , c−, Fmax) = F1(J ). Fmax is the
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maximum value of the field in the pulse. According to equation (134), the wave fronts solve

−c
∂F

∂χ
+ V (F)

(

1 +
∂F

∂χ

)

− δD̃(F)
∂2F

∂ξ 2
= J (145)

with appropriate boundary conditions. This equation has the following phase plane,

∂F

∂χ
= G,

∂G

∂χ
=

V (F) − J

δD̃(F)
+

V (F) − c

δD̃(F)
G

(146)

or, equivalently,

∂G

∂F
=

V (F) − J

δD̃(F)G
+

V (F) − c

δD̃(F)
. (147)

In terms of the phase plane and for fixed values of J and Fmax, G+(F) is the trajectory having

G > 0 that leaves the saddle point F = F1(J ), G = 0 and reaches F = Fmax, G = 0. These

two requirements are satisfied for a unique value of the front velocity, c = c+. Similarly,

G−(F) is the separatrix with G < 0 that enters the saddle point F = F1(J ), G = 0 having

left F = Fmax, G = 0. Again these requirements uniquely determine the front speed c = c−.

Equation (145) implies that the pulse comprising these two wave fronts has a continuous

second derivative with respect to χ for all values −∞ < χ < ∞. On a slowly varying

timescale, J and Fmax vary, and the pulse changes its size adiabatically to accommodate their

instantaneous values (see below). The pulse width is

X− − X+ =
∫ 0

−X−

dχ −
∫ X+

0

dχ =
∫ Fmax

1

(

1

|G−(F)|
−

1

G+(F)

)

dF . (148)

It is possible to derive equations for c± as follows. Let us rewrite equation (147) as

Gδ

1 + G

∂G

∂F
=

V (F) − c

D̃(F)
+

c − J

D̃(F)(1 + G)
. (149)

Using G(F1) = 0, this equation yields

δ[G − ln(1 + G)] =
∫ F

F1

V (E) − c

D̃(E)
dE + (c − J )

∫ F

F1

dE

D̃(E)[1 + G(E)]
. (150)

Since G(Fmax) = 0, we obtain
∫ Fmax

F1

V (E) − c±

D̃(E)
dE + (c± − J )

∫ Fmax

F1

dE

D̃(E)[1 + G±(E)]
= 0. (151)

In the particular case where c− = c+, we have a rigidly moving pulse that is a homoclinic

orbit in the phase plane, leaving (F1, 0) for G > 0 and entering the same saddle point for

G < 0. In such a case, we can subtract equation (151) for G− from the same equation for G+

with c− = c+ = ch. The result is

(ch − J )

∫ Fmax

F1

(

1

1 + G−(E)
−

1

1 + G+(E)

)

dE

D̃(E)
= 0. (152)

The integral in this expression is clearly positive, so that we have ch = J and therefore
∫ Fmax

F1

v(E) − J

D̃(E)
dE = 0, (153)

G − ln(1 + G) =
1

δ

∫ F

F1

V (E) − J

D̃(E)
dE (154)

two well-known results in the Gunn effect literature [198].
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Let us come back to the problem of finding J and Fmax that determine uniquely the pulse.

A relation between these variables can be obtained from the bias condition in equation (141).

Ignoring contact layers, the bias condition becomes

φ ∼ F1 +
1

L

[∫ 0

−∞
(F − F1) dχ +

∫ ∞

0

(F − F1) dχ

]

= F1 +
1

L

∫ Fmax

F1

(

1

G+(E)
+

1

|G−(E)|

)

(E − F1) dE. (155)

Once c± are known as functions of J and Fmax, this equation determines Fmax as a function

of J and the bias, φ. From equations (151) and (155), we obtain the functions

c± = γ±(J ; φ), Fmax = EM(J ; φ). (156)

Inserting these functions in equation (148), we obtain the pulse width as a function of J :

X− − X+ = 
(J ; φ). (157)

An equation for J is easily found by time-differentiating this equation and using dX±/dt̃ = c±
and dφ/dt̃ = 0,

dJ

dt̃
=

c+ − c−

−(∂
/∂J )(J ; φ)
. (158)

If φ is also slowly varying, a term proportional to dφ/dt̃ appears on the right-hand side of this

equation. According to equation (158), the pulse evolves towards the homoclinic pulse with

c+ = c− = J which satisfies the bias condition in equation (155).

The previous description becomes explicit in the limit δ ≪ 1. In such a case, G+ = O(1/δ)

and G− = −1 with c− = J from equations (150) and (151). The pulse is approximately a

straight isosceles triangle with height (Fmax − F1) ∼ Fmax because Fmax ≫ 1. This is

consistent with equation (148) which yields X− −X+ = Fmax − 1 + O(δ) ∼ Fmax, from which

dFmax/dt̃ = c− −c+. Equation (151) then yields the weighted equal-area rule condition for c+,
∫ Fmax

F1

V (E) − c+

D̃(E)
dE = 0 (159)

up to O(δ) terms. The bias condition in equation (155) gives

φ ∼ F1 +
(Fmax − F1)

2

2L
, (160)

Fmax ∼ F1 +
√

2L(φ − F1) ∼
√

2L(φ − F1), (161)

which is of the order of
√

L ≫ 1. Taking into account the fact that V (F1) = J implies

dF1/dJ = 1/V ′(F1), the last equation together with dFmax/dt̃ = c− − c+ yields

dJ

dt̃
= (c+ − J )

V ′
1

√
2(φ − F1)√

L
, V ′

1 = V ′[F1(J )]. (162)

This equation describes the evolution of the current density on a slowly varying timescale

t̃/
√

L. Equations (159)–(162) also hold in the large field case Fmax = O(
√

L) ≫ 1, δ = O(1).

Then F = O(
√

L) (inside the pulse), G+ = O(L), G− ∼ −1, c+ ∼ 3/Fmax for the Esaki–Tsu

velocity in equation (135), J = O(1/
√

L) ≪ 1.

Note that the current density tends exponentially to

J = c+ ∼
3

Fmax

∼
3

√
2φL

, (163)
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which corresponds to the homoclinic pulse described in detail in the Gunn effect literature

[198]. This asymptotic description shows how a dipole moves and changes its shape, until it

approaches its limiting form for constant current and speed. It also shows that the homoclinic

pulse is stable under voltage bias. For a drift velocity with only two branches, this stability

property of the dipole was assumed in previous work [187].

Stage (ii). The pulse moves until it reaches x̃ = L and it starts disappearing. The

description of this stage is more technical, and we shall give it for the large field case

only. If the cathode has a very low conductivity, the critical current is small, the dipoles

are very tall once they are detached from the boundary, and the simple description that

follows is accurate except during short time intervals. The bias condition in equation (136)

yields

φ ∼ F1 +
(Fmax − F1)

2

2L
−

(Fmax − F1 − L + X+)
2

2L
(164)

and therefore

L − X+ ∼ Fmax − F1 −
√

(Fmax − F1)2 − 2L(φ − F1) ∼ Fmax −
√

F 2
max − 2Lφ. (165)

Time-differentiating equation (164), using dFmax/dt ∼ J −c+ and equation (165) in the result

to eliminate X+, we obtain

dJ

dt̃
∼

V ′
1Fmax(c+ − J )

L
+

V ′
1J

L

√

F2
max − 2Lφ. (166)

In this stage, J = O(1/
√

L), Fmax = O(
√

L), c+ ∼ 3/Fmax and timescales as L. Then dJ /dt̃

is much smaller than the other terms in equation (166), and we get

J ∼
3

Fmax −
√

F2
max − 2Lφ

(167)

because we have used c+ ∼ 3/Fmax. Then dFmax/dt̃ ∼ J − c+ ∼ J − 3/Fmax and equation

(167) yield

dFmax

dt̃
∼

3

Fmax −
√

F2
max − 2Lφ

−
3

Fmax

. (168)

Thus Fmax and J increase until a new wave is injected at the cathode. This occurs when the

boundary layer at the cathode becomes unstable.

A simple way of determining the current at which this happens is as follows. The

quasistationary boundary layer at the cathode solves equation (134) with ∂F/∂t̃ = 0,

F(0) = J /σ̃ and F(∞) = F1. As explained earlier, this problem has a unique solution

if J < Jc (which is a CDL) and no solution if J > Jc. Before the current reaches J = Jc,

there is a quasistationary CDL at the cathode that changes adiabatically with the instantaneous

value of J . Immediately after surpassing Jc, the field at the cathode tries to increase from its

value at x̃ = 0, which would give rise to a CAL. This CAL has to join smoothly the existing

large CDL that ends at F = F1. The resulting situation is a dipole whose trailing CAL is

pinned at the cathode. This developing dipole gains area, the current decreases below Jc, and

the trailing CAL of the dipole has to be detached from the cathode boundary layer, which is

again a CDL. A description of the actual injection of a dipole wave after J has surpassed Jc

uses the ideas of Bonilla et al [208] and will be omitted.
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Stage (iii). A short time after J has first surpassed Jc, there are two dipoles in the SL, one at

the cathode, the other disappearing at the anode. Provided the critical current, Jc, is sufficiently

small, the new pulse created at the cathode acquires a triangular shape soon after its birth. Then

the bias condition in equation (134) becomes

φ ∼ F1 +
(Fmax,n − F1)

2

2L
+

(Fmax − F1)
2

2L
−

(Fmax − F1 − L + X+)
2

2L
(169)

and therefore

L − X+ ∼ Fmax − F1 −
√

(Fmax − F1)2 + (Fmax,n − F1)2 − 2L(φ − F1), (170)

where the subscripts n refer to the newly created pulse. Wave heights and locations obey

dFmax

dt̃
= J − c+ ∼ J −

3

Fmax

, (171)

dFmax,n

dt̃
= J − c+n ∼ J −

3

Fmax,n

, (172)

dX−n

dt̃
= J , X+n = X−n − (Fmax,n − F1). (173)

Time-differentiating equation (170) yields

L

V ′
1

dJ

dt̃
∼ 6 − J Fmax − J Fmax,n + J

√

F2
max + F 2

max,n − 2Lφ. (174)

Provided that J = O(1
√

L), Fmax = O(
√

L) = Fmax,n and timescales as L, the right-hand

side of this equation can be set equal to zero, which gives

J ∼
6

Fmax + Fmax,n −
√

F2
max + F2

max,n − 2Lφ
. (175)

Equations (171) and (172) together with equation (175) form a planar dynamical system that

describes the evolution of the two pulses during the stage of their coexistence.

This stage ends when X+ = L, the old pulse exits at the anode and we are back at the

initial stage with only one pulse. Thus, a period of the current oscillation under dc voltage bias

is completed. The longest stage is (i), so that the frequency of the oscillations is approximately

J /L ∼ 3/
√

2φL or, in dimensional units,

f ≈

√

9εF 2
Ml

2eV ND

vM

Nl
. (176)

Thus, the frequency is proportional to the peak velocity divided by the SL length, vM/(Nl). The

prefactor is the dimensionless velocity of the homoclinic dipole, ch ∼ 3/
√

2φL < 1, which

is weakly dependent on the voltage, the SL doping density and the scattering frequencies

through FM. Table 3 compares the frequencies of self-oscillations measured experimentally

with the ones calculated by solving numerically the GDDE for different strongly coupled

SLs. We observe that the numerical solution of the GDDE reproduces very well the observed

frequencies but that the numerical solution of the DDE and equation (176) give reasonable

estimations thereof. By including the faster stages of the annihilation of a dipole at the anode

and of the creation of the new dipole at the cathode, the period of the self-oscillation should

decrease, and therefore it should improve the estimation given by equation (176) in table 3.

The observation of Gunn-like dipole oscillations in a strongly coupled SL was initially

reported by Le Person et al [41]. They investigated the photocurrent of an undoped GaAs/AlAs

SL excited with a picosecond light pulse and detected photocurrent self-oscillations of about
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Table 3. Numerical values of the oscillation frequencies f GDDE
ν , f DDE

ν and f
(176)
ν according to

the asymptotic formula in equation (176) in comparison with the experimental values, f
exp
ν , for

five strongly coupled SLs investigated by Schomburg et al [213]. dW denotes the well width, dB

the barrier width, ND/l the three-dimensional doping density and V the corresponding applied

voltage.

dW dB ND/l f
exp
ν f GDDE

ν f DDE
ν f

(176)
ν V

(nm) (nm) (1016 cm−3) (GHz) (GHz) (GHz) (GHz) (V)

5.13 0.87 14 19.44 19.5 21.8 16.73 0.95

4.80 0.90 8 29.12 29.1 34.16 24.75 1.07

4.00 1.00 8 46.35 46.5 52.96 38.77 1.2

3.64 0.93 10 52.79 52.8 62.35 42.33 1.24

3.54 0.96 9 65 65 70.32 54.00 1.73

20 GHz in real time. The frequency changed significantly when the applied bias or the

photoexcited carrier density was varied. Hofbeck et al [202] reported the observation of current

self-oscillations in doped, strongly coupled SLs with a frequency of 6 GHz. In a subsequent

publication, the same group showed that these oscillations are due to a travelling dipole

domain [210], i.e. Gunn-like domains. After the initial observation of current self-oscillations

in a doped, strongly coupled SL by Hofbeck et al [202], the same group increased the frequency

from 9 GHz [210] over 65 GHz [211] to 103 GHz [212] in GaAs/AlAs SLs. The dependence

of the frequency on the miniband width was discussed by Schomburg et al [213], which we

will return to in section 5.2. For (In,Ga)As/(In,Al)As SLs, the maximum frequency for current

oscillations is expected to be considerably larger than for GaAs/AlAs SLs, since the electron

mobility and therefore the domain velocity are higher in the (In,Ga)As/(In,Al)As materials

system. The reported frequencies for (In,Ga)As/(In,Al)As SLs started at 55 GHz [214] and

finally reached 147 GHz [215]. Note that all reported measurements on doped, strongly coupled

SLs discussed earlier have been performed in the frequency domain.

5.1.2. Monopole and dipole oscillations in weakly coupled SLs. Self-sustained oscillations

of the current in weakly coupled SLs have been studied extensively by solving numerically and

asymptotically different discrete models. As in the case of DDEs describing strongly coupled

SLs, the boundary condition at the injecting contact region selects the type of waves associated

with self-oscillations. For example, the simple Ohmic condition F(0) = J /σ̃ (dimensionless

units) with the Esaki–Tsu drift velocity V (F) = 2F/(1 + F2) selects dipole self-oscillations

for poor contacts, σ̃ < 1, and monopole self-oscillations for good contacts, σ̃ > 1 [187].

Experimental evidence in strongly coupled SLs supports dipole self-oscillations. Therefore,

we did not describe monopole self-oscillations in DDEs in the previous subsection. On the

contrary, theory and experiments seem to support the idea that both monopoles and dipoles

play an important role in electron dynamics in weakly coupled SLs. Consequently, we shall

describe both types of self-oscillations in this subsection.

The theory of self-oscillations in long, doped, weakly coupled SLs under a dc voltage

bias is now well understood in its main features, although many aspects merit further study.

At a fixed temperature and an appropriate doping density (below the first critical doping

density of section 4.1), there is an almost homogeneous stationary field profile that becomes

unstable for one or more intervals of dc voltage. The analysis of the corresponding oscillatory

instability can be performed using bifurcation theory, and the bifurcating branches can be

found using numerical continuation methods [110]. These methods, or less exhaustive

numerical simulations, give an idea of the influence of other parameters, such as doping
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density [110, 216], temperature [217], photoexcitation [68, 163] or magnetic fields [77, 173],

on the self-oscillations. The dependence of the oscillation frequency on the SL parameters

varies with the SL configuration and the plateau of the current–voltage diagram we study.

These aspects will be discussed later in this section. However, an asymptotic analysis yields a

physical picture of the fully developed self-oscillations that is worth keeping in mind and will

be now described for the discrete model with the tunnelling current of equation (99).

As for relocation of EFDs, the key to describing self-oscillations lies in understanding

wave front motion. In section 4, we indicated that whenever a CAL advances one SL period

in a dc-voltage-biased, doped SL, a current spike appears. This fact is well documented by

numerical simulations of different models [78, 81], although a mathematical understanding is

lacking to this day. In the existing asymptotic theory, the current spikes are ignored, and the

evolution of the current usually refers to a slow evolution of the envelope of the current traces as

in section 4.1. Our task is simplified because self-oscillations occur only for a sufficiently low

doping density, and fully developed waves, CALs, CDLs and dipoles can be seen unmasked

by boundary effects, provided the SL is long. Thus, we can study weakly coupled SLs in the

formal limit eND/(εFM) ≡ ν → 0, N → ∞, so that L ≡ Nν ≫ 1. In this limit, we can

define x̃ = iν as a continuous dimensionless space variable varying from x̃ = 0 to x̃ = L.

The resulting spatially continuous theory can then be adopted as a first-order approximation

and be corrected by including the effects of discretization later [16, 75, 104, 218].

It is convenient to start by removing the dimensions from the model equations. Self-

oscillations occurring at average fields larger than the first resonant field (in plateaus of the I–V

characteristic higher than the first one) are described by the discrete drift model with a tunnelling

current proportional to the electron density times a non-linear function of the local field. If

the average field is smaller than the first resonant field, the tunnelling current is described

by the strongly non-linear function in equation (99). Then the limiting, spatially continuous

equation is a first-order hyperbolic equation with a strong non-linearity, and its analysis is

a challenging mathematical problem. However, one would expect that the main qualitative

features of self-oscillations appear in the discrete model that uses the high-temperature limit

of equation (101), with nmax = 2 in equation (100), as the tunnelling current. The resulting

discrete DDE is easier to study [16]. Thus, we shall restrict our field values to the first plateau

of the SL and denote by FM and as vM the values of field and current at the first local maximum

of the drift velocity in equation (103). We shall define the reference scale of the dimensionless

variables as in table 1. The resulting dimensionless equations are

dFi

dt̃
+ ṽ(Fi)ñi − D̃(Fi)(ñi+1 − ñi) = J , (177)

Fi − Fi−1 = ν(ñi − 1). (178)

The dimensionless velocity and diffusivity are denoted by ṽ and D̃, respectively. To restore

dimensional units, we just multiply each dimensionless quantity by its corresponding unit in

table 1. With these definitions, the first local maximum of the drift velocity is ṽ(1) = 1,

whereas the local minimum is vm, located at F = Fm. Drift velocity and diffusion are related

by ṽ(f )(F) = ṽ(F) + D̃(F), D̃(F) = ṽ(f )(F) e−βF , with β = eFMl/(kBT ). For the first

plateau of the GaAs/AlAs SL with dW = 9.0 nm and dB = 4.0 nm at T = 5 K, ν = 3 and

β = 21. In the continuum limit, equations (177), (178) and (85) yield the following hyperbolic

equation and bias condition,

∂F

∂t̃
+ ṽ(F)

(

1 +
∂F

∂x̃

)

= J , (179)

1

L

∫ L

0

F(x̃, t̃ ) dx̃ = φ, (180)
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up to order 1 in terms of the dimensionless doping density, ν. Appropriate boundary conditions

are equations (137) and (138), or equivalent ones. The hyperbolic equation (179) may have

shock waves, i.e. moving discontinuities at x̃ = X(t̃) such that the field becomes F± as

x̃ → X(t̃) ± 0. The shock velocity is [16, 104]

V (F+, F−) =
∫ F+

F−
(ṽ(E)/ṽ(f )(E)) dE

∫ F+

F−
(dE/ṽ(f )(E))

. (181)

This formula can be corrected by using the trapezoid rule to evaluate integrals, which typically

reduces the discrepancy with direct numerical solutions of the discrete model to a maximum

error of 3% [104].

Equation (179) is the same equation that describes the DDE for the Gunn effect in the

absence of diffusion [39,186,187]. The only difference from the well-known asymptotic theory

for the Gunn effect with an N-shaped velocity is the different shock condition in equation (181).

Thus, we can directly use the description of self-oscillations for the Gunn effect with this

different shock velocity. Rescaling equation (179) according to equation (139), we obtain

J − ṽ(F ) = ς

[

∂F

∂τ
+ ṽ(F)

∂F

∂ξ

]

. (182)

For ς = 0, this equation has three solutions in the interval vm < J < 1, F (1)(J ), F (2)(J ) and

F (3)(J ), ordered from smaller to higher field values. The main ingredients of the asymptotic

theory are CALs and CDLs.

CDLs. We construct them by using the exact solution F = A + J t̃ − x̃ of equation (179) to

join F (3)(J ) to F (1)(J ). The regularization of the resulting corners should be done by means

of the original discrete model. Clearly, CDLs are regions depleted of electrons that move with

velocity J .

CALs or ‘monopoles’. The description of CALs for the DDE with vanishing diffusivity is

due to Murray [199] in the case of the Gunn effect. We follow here Bonilla [16]. There is

only one value of J = J ∗, such that V = J with F− = F (1)(J ) and F+ = F (3)(J ). For

J ∗, the unique shock joining F (1)(J ) and F (3)(J ) moves with the same speed, J , as a CDL.

For vm < J < J ∗, a CAL joining F (1)(J ) to F (3)(J ) consists of a shock wave having

F+ = F (3)(J ), and F− such that V (F (3)(J ), F−) = ṽ(F−). Furthermore, to the left of the

shock wave, there is a tail region moving rigidly, with the shock wave described by

[ṽ(F) − V ]
∂F

∂χ
= J − ṽ(F) (183)

for negative χ = x̃ − V t̃ and F(−∞) = F (1)(J ), F(0) = F−. This whole structure (shock

wave and tail region) is called a monopole with left tail [186]. Similarly, for J ∗ < J < 1, a

CAL joining F (1)(J ) to F (3)(J ) becomes a monopole with right tail. This monopole consists

of a shock wave having F− = F (1)(J ) as well as F+ such that V (F+, F (1)(J )) = ṽ(F+) and

a tail region satisfying equation (183) for positive χ with the boundary conditions F(0) = F+

and F(∞) = F (3)(J ) [186]. Thus, the velocity of a CAL as a function of J is determined by

the following equations:

C(J ) = V (F (3)(J ), F−), with ṽ(F−) = V (F (3)(J ), F−), if vm < J < J ∗, (184)

C(J ) = V (F+, F (1)(J )), with ṽ(F+) = V (F+, F (1)(J )), if J ∗ < J < 1. (185)
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Figure 20. (a) Time evolution of the electric field profile in the SL using the velocity curve shown

in the inset. (b) Charge density profiles (n − 1 = ∂E(x, t)/∂x) showing the location of the wave

front for different times. The total current density versus time is shown in the left inset, in which

we have marked the times corresponding to the profiles depicted in (a). The right inset clearly

shows a monopole with a right tail. From [218].

Monopole self-oscillations. Using CALs and CDLs as building blocks, we can now describe

asymptotically one time period of the current self-oscillation starting from a given field

configuration inside the SL. Let us start with the case of high contact conductivity, in which the

Ohmic boundary condition selects monopoles (CALs) as the only waves responsible for the

self-oscillations. This case was studied in detail by Bonilla et al [218], who used an equivalent

boundary condition with a fixed electron density to trigger the monopoles. The initial profile

will evolve with time following the current adiabatically, and our first goal will be to find an

evolution equation for J . As shown by the numerical solution depicted in figure 20, the easiest

imaginable dynamic situation as an initial field profile is that of a single monopole inside the

SL, at x̃ = X+(t̃ ) (equivalently, at ξ = X+/L = �+). Then, the bias in equation (180) is

given by

φ ∼ F (1)(J ) �+ + F (3)(J ) (1 − �+). (186)

If we time-differentiate this equation and use dX+/dt̃ = d�+/dτ = C(J ) together with

equation (186), we obtain

dJ

dτ
=

[F (3)(J ) − F (1)(J )]2

(F (3)(J ) − φ)/ṽ′(F (1)(J )) + (φ − F (1)(J ))/ṽ′(F (3)(J ))
C(J ). (187)

Since C(J ) > 0, the current increases as the monopole moves. Note that the dimensionless

equation (187) is a particular case of equation (117) with n+ = 1, n− = 0, J ↔ J , c+ ↔ C(J )

and t/N ↔ τ .
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Near the injecting contact at x̃ = 0, we have a boundary layer, where the field profile

follows J (τ ) adiabatically according to

∂F

∂x̃
∼

J

ṽ(F)
− 1, F(0, τ ) =

J (τ )

σ̃
. (188)

Note that we have ignored ∂F/∂t̃ = ς ∂F/∂τ ≪ 1. If σ̃ > 1 and j = σ̃F does not

intersect j = ṽ(F), the field profile near the cathode becomes that of a quasistatic CAL joining

F(0, τ ) = J (τ )/σ̃ to F(∞, τ ) = F (1)(J ). As J surpasses unity, a new monopole is triggered

at the cathode, it moves to the anode, and J decreases again below unity. The field profile in the

resulting situation comprises a new monopole joining F (1)(J ) to F (2)(J ) and the old monopole

that now joins F (2)(J ) to F (3)(J ). Depending on the bias, the new monopole catches the old

one, or the current drops to vm, so that F (2)(J ) = F (3)(J ), and only one monopole remains.

The situation is the same as during the first stage, and a period of self-oscillations is completed.

It is interesting that a developing monopole takes a long time to grow to a mature size (having

a shock wave and a tail) [218]. During this time, the monopole moves towards the anode.

Consequently, in numerical simulations one gets the erroneous impression that monopoles are

nucleated well inside the SL. This impression has an experimental backing too because only the

well-to-well hopping motion of a mature monopole produces the characteristic current spikes

detected in the experiments. The details of the monopole nucleation, its growth to mature size

and the monopole coexistence are too technical to reproduce here, although the simplicity of

equation (179) provides an analytical description [218]. The numerical solution of the discrete

models can be interpreted with the help of the asymptotic description as shown by Kastrup

et al [100] for the simple discrete drift model.

Dipole self-oscillations. In weakly coupled SLs, the field profile of a moving dipole comprises

a HFD with F = F (3)(J ), a trailing CAL and a leading CDL, all moving towards the

anode. To fix our notation, the position of the trailing CAL is x̃ = X+(t̃ ) (equivalently,

ξ = X+/L = �+(τ )), and the position of the leading CDL is ξ = �−(τ ). In a starting

situation of a single dipole in the SL, the bias condition in equation (180) yields

φ ∼ F (1)(J ) + [F (3)(J ) − F (1)(J )](�− − �+). (189)

If we time-differentiate this equation and use d�+/dτ = C(J ) and d�−/dτ = J together

with equation (189), we obtain the dimensionless equation

dJ

dτ
=

[F (3)(J ) − F (1)(J )]2

(F (3)(J ) − φ)/ṽ′(F (1)(J )) + (φ − F (1)(J ))/ṽ′(F (3)(J ))
[C(J ) − J ], (190)

which is a particular case of equation (117) with n+ = n− = 1, J ↔ J , c+ ↔ C(J ), c− ↔ J

and t/N ↔ τ . Now the current evolves towards J = J ∗ such that C(J ∗) = J ∗. We

observe that the dipole moves at constant current with velocity given by the equal-area rule in

equation (181), V (F (1), F (3)) = J . After �− = 1, there is only one monopole in the SL, and

we are back at equation (187). Again, the current increases as the monopole moves.

Let us assume that the cathode conductivity satisfies 1 < σ̃ < vm/Fm. Then the boundary

line j = σ̃F intersects the second branch of the drift velocity at a point (Fc, Jc) with

σ̃F (2)(Jc) = Jc, which defines the critical current and critical field at the cathode. As in

the case of strongly coupled SLs, the current increases until it reaches Jc. Then a dipole wave

is injected by the same mechanism, but an analytical description is possible using the simple

first-order equation (179) [186]. This description can be used to calculate the time it takes to

have a dipole detached from the cathode from the time J first surpasses Jc.
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Until now, the asymptotic description of dipole self-oscillations in strongly and weakly

coupled SLs has been the same. The fact that the drift velocity of weakly coupled SLs has a

third branch introduces qualitatively new features. Let us look at them now. After a new wave

is created, J decreases. Using the bias condition to derive an equation for the current rate,

we again deduce equation (117) with n+ = 2, n− = 1, J ↔ J , c+ ↔ C(J ), c− ↔ J and

t/N ↔ τ , corresponding to a charge tripole. The stable fixed point of this equation, J = J †,

satisfies 2C(J ) = J . Depending on the contact conductivity, we can have (i) J † < Jc, if

1 < σ̃ < J †/F (2)(J †) or (ii) J † > Jc, if J †/F (2)(J †) < σ̃ < vm.

In case (i), J stays at the value J † until the old monopole leaves the sample, and we are

back at the initial situation. We have thus completed a period of the self-oscillation in a way

very similar to that of self-oscillations in strongly coupled SLs. In case (ii), the current, J †,

is above the critical value and a new dipole is triggered. Once detached from the cathode and

assuming a sufficiently large voltage bias, the situation is described by equation (117) with

n+ = 3, n− = 2, J ↔ J , c+ ↔ C(J ), c− ↔ J and t/N ↔ τ , corresponding to a charge

quintupole. As the CALs all move at the same speed and the same happens to the CDLs, this

strange situation can occur during a finite time. There is again a different fixed point, J ‡,

and different cathode conductivities, which allow the triggering of more dipoles. Numerical

simulations have confirmed this picture in models of bulk semiconductors such as ultrapure

p-Ge, whose local current–field relation is N-shaped [208]. For this material, undriven chaos

results from chaotic firing of dipoles at the cathode [219]. Cantalapiedra et al [219] used the

equivalent of equation (117) together with an estimate of the delay it takes to inject a dipole to

formulate and check a discrete model of this undriven chaos. The same type of undriven chaos

can be expected for weakly coupled SLs because the monopole dynamics in semiconductors

with N-shaped current–field characteristics under dc voltage bias and described by scalar

equations is universal [220]. This has been confirmed by numerical simulations of the discrete

model with the tunnelling current of equation (99) [221], and the same ideas can be used as

a basis of a discrete mapping model of this undriven chaos [222]. So far, the prediction of

undriven chaos for average fields on the first plateau of a weakly coupled SL has not received

experimental confirmation.

It is important to stress the far-reaching difference between monopole- and dipole-

mediated self-oscillations we have mentioned earlier: dipoles are created fast and therefore

contain noticeable charge accumulation and depletion layers that travel through the whole SL.

However, monopoles are also created at the injecting contact, but the charge accumulation

in them becomes noticeable only after a certain buildup time. This means that monopoles

apparently traverse part of the SL during an oscillation period, whereas dipoles traverse the

whole SL. Obviously this difference has important consequences that may be experimentally

tested: monopole-mediated oscillations have higher frequencies. Furthermore, numerical

simulations of discrete models show that each time a CAL jumps from well-to-well, a current

spike is produced. Therefore, the number of current spikes per oscillation period (seen in

simulations of discrete models, not in the continuum limit) is smaller for monopole self-

oscillations than in the case of dipole self-oscillations as discussed in the numerical results of

Sánchez et al [81].

The initial observation of current self-oscillations in weakly coupled SLs dates back to

1995, when Kwok et al [177] investigated an undoped SL under photoexcitation. Due to the

excitation condition, the oscillations were damped. The frequency and the functional form of

the time-resolved photocurrent exhibited a strong bias dependence. The initial report on current

self-oscillations in a doped weakly coupled SL also appeared in 1995, when the authors directly

showed by time-resolved photoluminescence measurements that the current oscillations are

due to an oscillation of the field distribution inside the SL [223]. In the same year, it was shown
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that the frequency can vary within a single sample by more than one order of magnitude on

increasing the bias voltage from the first to the second plateau [224]. By looking at different

samples, the frequency could initially be varied by about one order of magnitude [225]. A more

detailed discussion of the frequency dependence is given in section 5.2.2. Several years later,

Rasulova [226] reported the observation of damped current self-oscillations with a frequency

below 100 kHz in a weakly coupled GaAs/(Al,Ga)As SL with extremely wide wells.

Subsequently, undamped self-oscillations of the photocurrent in undoped SLs were

observed for a type-II GaAs/AlAs [227, 228] and for a direct-gap GaAs/AlAs SL [229, 230].

For the type-II SL, the domain formation is due to resonant coupling between X states in the

barrier. For the type-I SL, at least the transport in the LFD occurs by resonant tunnelling

between Ŵ states, while the HFD is due to a resonant coupling between the lowest Ŵ state

in the well and an X state in the barrier. However, the undamped nature of the photocurrent

oscillations in these two systems may be connected with the rather long lifetime of electrons in

the X state of the AlAs barrier, which at least for the HFD occurs in both samples. Tomlinson

et al [231] detected undamped photocurrent oscillations in an undoped GaAs/Al0.3 Ga0.7As

SL, where the transport in the LFD as well as HFD is governed by resonant tunnelling between

Ŵ states. Theoretical and experimental investigations of multiple-quantum-well structures have

shown that under optical excitation with infrared light, which excites carriers from the lowest

conduction subband into continuum states, periodic EFDs are formed due to the excitation of

recharging waves [232–234].

Zhang et al [158] observed a bistability between different oscillation modes in a

GaAs/AlAs SL, when the bias was swept in different directions. This bistability at the

beginning of the oscillation regime is probably due to subcritical Hopf bifurcation. Kastrup

et al [100] presented an oscillator based on doped weakly coupled SLs that reaches the gigahertz

range. In addition, a number of different oscillation modes were discussed, which depend on the

detailed shape of the drift velocity versus electric field relation and the doping level. Finally,

Amann et al [235] have discussed the existence of tripole oscillations in weakly coupled

SLs, mimicking the discussion in [186] for the Gunn effect and in [208] for ultrapure p-Ge.

According to [236], there may be some experimental evidence for these tripole oscillations.

5.1.3. Effect of SL doping density on monopole self-oscillations. To determine the effect that

the configuration and SL doping density have on the static and oscillatory solutions of a discrete

model, it is convenient to draw a doping density–voltage phase diagram as in figure 21. This

is a diagram for the second plateau, i.e. zero diffusivity, of a 20-period SL, assuming a cathode

condition n(0, t) = 1 + c with c = 10−4 [110]. Besides this diagram, other comparable work

for doped SLs is due to Patra et al [216], who solved the PWS discrete model for the first

plateau with a doping density that fluctuated randomly about a constant value. Their results

are similar to the ones of Moscoso et al [110] only if the random doping density is included;

otherwise they differ qualitatively. Whether this difference is due to the different model used

by Patra et al [216] can only be decided by calculating the phase diagram for the first plateau

of a weakly coupled SL with the discrete model in equation (84) and the tunnelling current in

equation (99).

Let us explain the phase diagram of figure 21 for the simpler discrete drift model. For

a dimensionless doping density, ν, lower than the minimum of the solid line, the stable field

profile is stationary and almost uniform. For larger doping densities, with ν < νTB, the

almost uniform stationary state is linearly stable outside a certain bias interval of average

dimensionless field values (φα, φω). At the end points of this interval, a branch of self-

oscillations stably bifurcates (supercritically), starting with zero amplitude and non-zero

frequency (Hopf bifurcation). For ν > νTB, a horizontal line of constant doping density
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Figure 21. Total phase diagram of the model for N = 20 and c = 10−4. The dotted lines are

curves of stationary saddle nodes. For the sake of clarity, we have plotted only the main line

of homoclinic orbits, which originates from the Takens–Bogdanov point, TB (thin solid line; at

a Takens–Bogdanov point, lines of Hopf bifurcations, saddle–node bifurcations and homoclinic

orbits intersect tangentially). We have not shown other homoclinic orbits, although there is one

curve of homoclinic orbits for each Hopf curve. From [110].

intersects a number of different curves: (i) Hopf bifurcations (ii) saddle–node bifurcations and

(iii) homoclines.

The intersection of the horizontal line with several Hopf bifurcation curves may indicate

that there are intervals of self-oscillations alternating with intervals, in which the stable solution

is a stationary state with two EFDs as described in section 3. There may be at most N intervals

of stable stationary states, and the CAL separating the LFD and the HFD is pinned at a different

well, i, in each different voltage interval. Let us consider the bias interval of self-oscillations

located between intervals, whose corresponding static CALs are pinned at wells i and (i + 1).

The field profile for these oscillatory states corresponds to a recycling and motion of a CAL

about the ith well. In some of the interior regions observed for such doping densities, there

may be coexisting multistable states.

The interval of self-oscillations with largest bias ends at a homocline, i.e. the oscillation

frequency tends to zero, while the amplitude remains finite. Another interesting feature of the

phase diagram is the dashed line of Hopf bifurcations above the point marked DH. On this

line, the Hopf bifurcation is subcritical, i.e. an unstable branch of self-oscillations bifurcates

for φ < φα . Typically this branch coalesces with a branch of stable oscillations at a smaller

bias, φLP. Then there is a bias interval of bistability, in which both self-oscillations of finite

amplitude and frequency and a stationary state are stable. Driving the bias adiabatically, we can

obtain a hysteresis cycle. Finally, for a sufficiently large doping density, the self-oscillations

disappear, and the result is multistability of stationary solutions corresponding to coexistence

of EFDs separated by a pinned CAL.

The phase diagram in figure 21 may change substantially if we change the number of

SL periods or c. For example, the branch of self-oscillations may disappear at the high-bias

region either at a Hopf bifurcation (finite frequency) or at a homoclinic orbit (zero frequency),

depending on the values of these parameters. The frequency may decrease or increase with

increasing bias, as shown in the numerical results of Kastrup et al [100]. The first situation was

observed in the experiments of Kastrup et al [100], while the second situation was reported

by Wang et al [237], but for different weakly coupled SLs. Wang et al [237] claimed that

an increase in the self-oscillation frequency with bias is anomalous, despite the explanation
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Table 4. Sample parameters and oscillation frequencies for strongly coupled SLs [212–215]. �

denotes the miniband width, dW the well width, dB the barrier width, L the total thickness of

the SL, N3D the three-dimensional doping density, vM the measured peak velocity and f the

measured oscillation frequency. Except for the samples 4.05/1.23 and 4.40/0.90, which are

(In,Ga)As/(In,Al)As SLs grown lattice matched on InP, all other SLs are GaAs/AlAs.

� dW dB L N3D vM f

(meV) (nm) (nm) (µm) (1017 cm−3) (105 cm s−1) (GHz)

16 3.10 1.96 0.55 0.8 2 2

22 4.86 1.30 0.74 1.3 9 9

43 5.13 0.87 0.60 1.4 20 20

46 4.80 0.90 0.57 0.8 27 29

55 4.00 1.00 0.50 0.8 31 46

72 3.64 0.93 0.64 1.0 41 53

160 4.05 1.23 0.53 0.8 50 55

72 3.54 0.96 0.45 0.9 34 65

120 4.00 0.60 0.60 0.9 75 103

— 4.40 0.90 0.64 0.8 150 147

to the contrary and numerical evidence of the earlier publication of Kastrup et al [100].

However, this conclusion was based on a discrete model of Laikhtman [72] and Wang and

Niu [238], in which the stationary tunnelling current did not depend on the electron density.

The transition between dynamic and static domain formation with increasing carrier density

was experimentally investigated using undoped SLs under photoexcitation by Sun et al [239]

and Ohtani et al [240–243]. It will be discussed in more detail in section 5.4.2.

5.2. Frequency dependence

5.2.1. Strongly coupled superlattices. The measured frequencies of current self-oscillations

for strongly coupled SLs investigated by Schomburg et al [212–215] are summarized in

the last column of table 4 for samples with different miniband widths, �ν . The table also

includes the well, dW, and barrier, dB, widths the total thickness of the SL, L, the three-

dimensional doping density, N3D, and the measured peak drift velocity, vM. According to a

simple transit time argument, the oscillation frequency, f , for travelling dipole domains is

determined by

f =
ch

L
. (191)

Here, ch denotes the velocity of the dipole domain advancing at constant speed towards the

anode, when the current takes on the flat minimum value of its time trace during a period of

oscillation. This velocity is always smaller than the peak drift velocity, vM, so that f = svM/L,

where s is a scaling factor, the dimensionless velocity of the uniformly moving dipole, which

is smaller than 1. According to equation (176), s is equal to

√

9εF 2
Ml/(2 eV ND). When

we plot the measured frequencies versus the ratio vM/L as shown in figure 22, we obtain a

value for s of 0.65, which is somewhat smaller than the value of 0.7 quoted by Schomburg

et al [213]. However, first of all, they plotted f versus vM, which is not very sensible. Second,

we included some more recent data in figure 22, which was published after the publication

by Schomburg et al [213] appeared. Since the peak drift velocity increases with increasing

miniband width, we conclude that the dipole domain oscillation frequency increases for SLs

with a larger miniband width. This analysis supports the idea that the current self-oscillations



Non-linear dynamics of semiconductor superlattices 651

0 100 200
0

50

100

150
f = 0.65 v

M
/L + 4.0

f 
(G

H
z
)

v
M
/L (GHz)

Figure 22. Current oscillation frequencies for strongly coupled SLs according to table 4 as a

function of vM/L ( ). The dashed line indicates a least square fit of the data points to a linear

function.

in strongly coupled SLs are due to travelling dipole domains, which traverse the complete SL

from cathode to anode.

5.2.2. Weakly coupled superlattices. The measured frequencies of current self-oscillations

for weakly coupled SLs investigated by Rogozia and Grahn [88] are summarized in the last

column of table 5 for samples with different well, dW, and barrier, dB, widths. The table

also includes the number of periods, N , the energy of the involved sub- or minibands, Eν , as

well as their widths, �ν , which have been calculated using the Kronig–Penney model. The

miniband width, �ν , which is a measure of the resonant coupling between adjacent wells, is

used in table 5 to order the samples from top to bottom. The index, ν, refers to the mini- or

subband index. From table 5, in particular for the set of samples with a constant well width

of 15 nm and different barrier widths (0.9, 1.7, 2.9 nm), it appears that the frequency of the

current self-oscillations depends exponentially on the barrier width. The simplest approach

to obtaining such a frequency dependence is to consider the coupling between different wells

in the Wentzel–Kramers–Brillouin (WKB) approximation. In this case, the dominant term

determining the tunnelling probability T (Eν) between adjacent wells is given by

T (Eν) = exp

(

−
2dB

h̄

√

2m∗
B(V0 − Eν)

)

, (192)

where m∗
B denotes the effective electron mass in the barrier and V0 the conduction band offset

between the well and barrier material. The difference, V0 − Eν , is a measure of the effective

barrier height, which decreases with increasing electric field. This very simple model was used

to demonstrate that the frequency dependence of the current oscillations in weakly coupled

SLs is dominated by the exponential dependence on the barrier width as well as on the effective

barrier height [244].

In order to calculate not only the tunnelling probability, but also the frequency of the

current oscillations, we introduce the classical round trip time, τrt, for an electron in a potential

well of width dW,

τrt(E1) =
2dW

v(E1)
= 2dW

√

m∗
W

2E1

, (193)
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Table 5. Sample parameters and oscillation frequencies for weakly coupled SLs. dW denotes the

well width, dB the barrier width, N the number of SL periods, ν the index of the corresponding

plateau of the I–V characteristic, Eν the energy and �ν the width of the νth sub- or miniband

and fν the measured oscillation frequency. All SLs consist of 40 periods except for the 13.3/2.7

sample, which has 50 periods. The symbols are used in figures 23 and 24 to distinguish different

samples. Solid symbols refer to weakly coupled SLs, open symbols to more strongly coupled SLs.

Except for the 10.0/4.0 sample (∗), which is an (In,Ga)As/(In,Al)As SL grown lattice matched on

InP, all other SLs are GaAs/AlAs. From [88].

dW dB Eν �ν fν

(nm) (nm) Symbol ν (meV) (meV) (MHz)

9.0 1.4 � 1 44.3 4.5 5000

9.0 1.5 ♦ 1 44.5 3.7 1500

15.0 0.9 △ 1 18.6 3.7 2500

10.1 1.4 ▽ 1 36.7 3.4 1800

10.0 4.0 ∗ 1 48.0 2.0 1800

15.0 1.7 • 1 18.8 0.7 500

2 75.8 2.8 8000

20.0 2.0 � 1 11.3 0.2 —

2 45.3 0.7 600

3 102.2 1.7 1200

4 182.4 3.2 2300

13.3 2.7 � 1 23.3 0.1 25

2 93.0 0.6 500

3 211.0 1.6 1200

15.0 2.9 � 1 19.0 <0.1 45

2 75.8 0.3 500

3 171 0.8 1700

4 305 1.9 4000

9.0 4.0 1 44.4 <0.1 1

2 180.0 0.1 20

where m∗
W denotes the effective electron mass in the well. For the energy, we use the value

of the first subband, E1, because for the applied doping concentrations the injecting level is

always the ground level. The tunnelling probability through a rectangular barrier is given

by [18]

T (Eν) =
1

1 + 1/4 (x + x−1)2 sinh2(κdB)
, (194)

where κ =
√

2m∗
B(V0 − Eν)/h̄ and

x =

√

m∗
BEν

m∗
W(V0 − Eν)

. (195)

The escape time, τesc(Eν), for a single well is determined by the round trip time, τrt(E1),

divided by the tunnelling probability, T (Eν), through the barrier [245]:

τesc(Eν) =
τrt(E1)

T (Eν)
. (196)

For the energy in the tunnelling probability, we use the value of the subband, Eν , calculated

within the Kronig–Penney model at zero electric field.

The frequency of the current oscillations, which is derived from this escape time model, is

determined by the inverse of the product of the escape time and the number of periods, which
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Figure 23. Measured (fν ) versus calculated (fcal) frequency for the weakly coupled SLs listed in

table 5. The same symbols connected with dotted lines indicate oscillations within a single sample

in different plateaus. The dashed line indicates the condition fcal = fν , the solid line is a least

square fit to the solid data points. From [88].

are covered by the current oscillations. For weakly coupled SLs the recycling motion of the

domain boundary includes only about 30% of all periods [188] so that Nosc = 0.3 × N and

fcal =
1

Noscτesc(Eν)
. (197)

The oscillation frequencies have been calculated for all samples listed in table 5 on the

basis of equation (197). The measured versus the calculated frequencies are shown in figure 23.

For weakly coupled SLs indicated by the solid symbols, the slope of the linear fit in the double-

logarithmic plot is 0.92, which is in very good agreement with the expected value of 1. In order

to directly compare the calculated and the measured values, a scaling factor s is introduced,

which is determined by the ratio of measured and calculated frequencies, i.e. s = fν/fcal. For

the weakly coupled SLs in figure 23, this factor is about 3, so that the observed frequencies

are somewhat larger than the calculated ones.

The accuracy of the escape time model is reasonable for weakly coupled SLs because we

use for the calculation of the oscillation frequency in the νth plateau of the I–V characteristic

the νth energy level. However, in the HFD, the electrons tunnel into the (ν + 1)th level.

For that reason, the actual oscillation frequency is expected to be somewhat higher than the

calculated one. Another simplification is made with regard to the shape of the barriers since

rectangular barriers are used and the energy levels are calculated within the Kronig–Penney

model without any electric field. The variation of the data points between different samples

and the consistently higher frequencies in some samples (solid triangles in figure 23) may

originate from fluctuations of the doping density in the wells. Theoretical calculations show

that the oscillation frequency increases by a factor of 5, if the doping density fluctuates by

3% in different wells [138]. Some oscillation frequencies listed in table 5 were only observed

at higher temperatures. Between 5 and 300 K, the frequencies can differ by up to a factor

of 3, resulting in some variation of the data points. Finally, another reason for the discrepancy

between fν and fcal could be the actual oscillation mode, which can vary between different

SLs [81, 100, 216].

This simple model appears to be better than the more involved transfer model of Sánchez

et al [81]. In that work, the calculated frequency, f2, for the GaAs/AlAs SL with dW = 13.3 nm

and dB = 2.7 nm is about 20 MHz. That value is more than one order of magnitude smaller

than the experimental value of 500 MHz. Our model gives 90 MHz.



654 L L Bonilla and H T Grahn

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
-1

10
0

10
1

10
2

10
3

10
4

10
5 N

osc
 = N

s = 1

f
ν
 = s ×f

cal

f ν (
M

H
z
)

f
cal

 (MHz)

s ≈ 0.3

s ≈ 9

Figure 24. Measured (fν ) versus calculated (fcal) frequency for the weakly coupled SLs listed in

table 5 and for some of the strongly coupled SLs listed in table 4 (⊙). Note that we used a different

value for Nosc in comparison with figure 23. From [88].

Note that the four most strongly coupled SLs (open symbols) were not included in the

linear fit of figure 23, which have calculated miniband widths of �1 = 3.4–4.5 MeV. For

these samples, the observed oscillation frequencies are lower than the calculated ones. In

order to verify this model for even more strongly coupled SLs, we have also calculated the

frequencies for some of the strongly coupled SLs listed in table 4. In this case, a dipole

domain travels through the entire SL. Therefore, we use Nosc = N (instead of Nosc = 0.3×N )

in equation (197). The dotted circles in figure 24 represent the measured versus calculated

frequencies for strongly coupled SLs with miniband widths of �1 = 16–140 MeV. The escape

time model also works for these samples since the fit in figure 24 also has a slope of about 1,

but the observed oscillation frequencies are now smaller (s ≈ 0.3) than the calculated ones.

We also include all weakly coupled SLs from table 5 in figure 24. However, in order to compare

the frequencies of weakly SLs with strongly ones, we now assume that the space–charge

oscillations cover all periods so that the scaling factor for weakly coupled SLs becomes about 9.

This analysis clearly shows that there is a fundamental difference in terms of the oscillation

mechanism between strongly coupled SLs (open symbols), where travelling dipole domains

are responsible for the current oscillations, and weakly coupled SLs (solid symbols), where the

transport by sequential resonant tunnelling results in a recycling motion of a monopole domain

boundary. The transition occurs for miniband widths of a few millielectronvolts, where the

transition from weakly to strongly coupled SLs is expected.

5.3. Spiking

The discrete motion of the domain boundary can also be observed in the current self-oscillations

of weakly coupled SLs. The recycling motion of the CAL usually covers 30%–40% of the

entire SL. However, one complete period of the recycling motion should also contain the

signature of the relocation process between two adjacent wells, which appears in the I–V

characteristic under static domain formation and which was discussed in detail in section 4.

This relocation of the CAL results in current spikes, which have been observed by Zhang

et al [189], Kastrup et al [100] and Kantelhardt et al [188]. Numerical simulations [188] and a

self-consistent microscopic model [81, 246] have provided a direct proof for the assertion

that a single spike corresponds to the relocation of the domain boundary by exactly one

period.
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Figure 25. Ac component of the time-resolved current oscillation of a GaAs/AlAs SL with

dW = 9.0 nm and dB = 4.0 nm at 2.77 V in the first plateau of the time-averaged I–V characteristic

recorded at 6 K. From [188].

Figure 25 shows a time trace of the current oscillations for the GaAs/AlAs SL with

dW = 9.0 nm and dB = 4.0 nm listed in table 5 recorded in the first plateau of the I–V

characteristic. In addition to the fundamental frequency of 0.66 MHz, which is due to the

monopole recycling motion, there are current spikes with a frequency of about 10 MHz [188].

The number of spikes within one period of the fundamental oscillation is directly related to the

ratio of the two frequencies, which is 15 in this case. For the same sample, current oscillations

with a fundamental frequency of 18.4 GHz are observed in the second plateau of the I–V

characteristic, which also contains spikes, but with a frequency of 233 MHz, resulting in a

ratio of 13. The number of spikes is a measure of the number of SL periods that are covered

by the recycling motion of the CAL. We therefore conclude that about 35% of the SLs are

covered by the recycling motion. Experimental results on several other samples with different

well and barrier widths as well as a different number of periods confirm this conclusion [188].

Numerical simulations of a modified discrete model have shown that a single spike

corresponds to the relocation of the domain boundary by a single period [188]. A detailed

modelling of the dynamics of domain walls using a self-consistent microscopic model of

sequential resonant tunnelling of Sánchez et al [81, 246] demonstrates that the peak of

the electron density moves by exactly one SL period during a single current spike. The

time dependence of the current is plotted in figure 26(a), while figure 26(b) shows the charge

density profile at four different times of the current spike marked in figure 26(a). The spikes

have a frequency of about 500 MHz and an amplitude of 2.5 µA. Note that the electron density

in figure 26(b) is larger than the well doping density for only three wells (40, 41 and 42)

during the times recorded in figure 26(a). The maximum of the electron density moves from

well 40 to well 41 during this time interval, so that (i) tunnelling through the 41st barrier

(between wells 40 and 41) dominates, when the total current density is increasing, whereas

(ii) tunnelling through barriers 41 and 42 is important when J (t) decreases. The contributions

of the tunnelling and displacement currents to J (t) are depicted in figures 26(c) and (d).

The spikes reflect a two-stage hopping motion—short timescale—of the domain wall: at

time (1) (minimum of the current), the charge accumulates mainly in the ith well. As time

elapses, electrons tunnel from this well to the next one, the (i + 1)th, where most of the charge

is located at time (3) (maximum of the current). This corresponds to a hop of the monopole.

As the monopole moves, it leaves a lower potential drop in its wake. The reason is that the

electrostatic field in the (i + 1)th well and barrier become abruptly flat between times (1) and
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Figure 26. (a) Enlarged section of a calculated time trace showing the spikes of the current.

(b) Electron density profiles (in units of the doping density in the wells), (c) tunnelling current and

(d) displacement current versus barrier number within the monopole at the times marked in (a).

From [81].

(3), as they pass from the HFD to the LFD. This means that a negative displacement current

has its peak at the (i + 1)th barrier, near the wells, where most of the charge resides. Between

times (1) and (3), the tunnelling current is maximal, while the displacement current is minimal

and the total current increases. After that, some charge flows to the next well (time (4)), but

both tunnelling and displacement currents are smaller than previously. This occurs because

the potential drop at barrier (i + 2) (in the HFD) is larger than the one at barrier (i + 1). Then

there is a smaller overlap between the resonant levels of nearby wells—the tunnelling current

decreases—as well as the displacement current, and eventually J (t) decreases. This stage

lasts, until well i is drained, and most of the charge is concentrated at wells (i + 1) (the local

maximum of charge) and (i + 2) (slightly smaller charge). Then, the next current spike starts.

5.4. External control parameters

External control parameters such as voltage bias, carrier density, temperature and magnetic

field have different effects on the current self-oscillations. The voltage bias can change the

frequency within a plateau and between different plateaus. The carrier density can be varied

within a single sample by photoexcitation. An increasing carrier density can induce a transition

from dynamic to static EFD formation, while an increasing temperature or magnetic field

perpendicular to the layers can induce a transition from static to oscillating domains.
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5.4.1. Voltage bias. The variation of the oscillation frequency as a function of voltage bias for

doped SLs was discussed by Kastrup et al [100]. Within a plateau region, the frequency can be

tuned in some samples by a factor of 2 to 3. This magnitude of the frequency tunability depends

on the actual oscillation mode. When the frequency is basically bias independent, the current

self-oscillation are due to the typical monopole recycling mode as described in section 5.1.2.

However, when the frequency decreases with increasing bias within the plateau, the electric-

field profile oscillates around an almost uniform stationary state [100], which is typical for a

rather low doping density. The bias dependence of the frequency for photocurrent oscillation in

undoped, photoexcited SLs was also investigated experimentally by Kwok et al [177], Hosoda

et al [227], Mimura et al [228], Ohtani et al [229, 230, 241–243] and Tomlinson et al [231].

Unfortunately, there is no unique trend observed. In many cases, the frequency decreases very

rapidly at the beginning of the plateau, remains constant for most voltages in the plateau and

increases somewhat at the end of the plateau, before the oscillations disappear.

A much larger tunability can be observed when the voltage is increased from one plateau

to the next. Table 5 lists the frequency not only for different samples, but also for different

plateaus of a single sample. For example, in the GaAs/AlAs SL with dW = 15.0 nm and

dB = 2.9 nm the frequency can be increased by almost two orders of magnitude going from

the first to the fourth plateau. This increase within one sample was already discussed in

connection with the model for the frequency dependence described in section 5.2.2. The

origin for this frequency increase is a decreasing effective barrier height due to the larger

electric field because the tunnelling current is determined by both, the barrier width, which is

constant for a given sample, and the effective barrier height, which decreases with increasing

plateau index.

5.4.2. Carrier density. The carrier density can be varied most easily by exciting electron–hole

pairs with above-band-gap light. Additional photoexcitation applied to a doped SL can result

in a decreasing frequency with increasing laser intensity, which at the time was not reproduced

by the model [224]. For photoexcitation of an undoped, type-II SL, the frequency strongly

increases for carrier densities just above the lower critical density and reaches a plateau at

higher carrier densities [227, 228]. However, for type-I SLs, there is usually little variation of

the oscillation frequency with increasing carrier density [229, 231].

The transition between dynamic and static domain formation as a function of carrier density

has been studied theoretically [68, 163] as well as experimentally for a number of undoped,

photoexcited SLs [239, 240, 242, 243]. A phase diagram of the carrier density versus bias

voltage has been constructed. It shows that the transition between dynamic and static domain

formation is not independent of the applied bias voltage. While the experiments exhibit a

certain modulation of this transition region with bias, the theoretical investigations show a

very detailed structure of this transition region, which is shown in figure 21.

Photoexcitation of undoped SLs acts qualitatively on self-oscillations in a manner similar

to that of varying the doping density for doped SLs. The discrete models become rather

complicated in this case since we have to include the two-dimensional hole density in the

Poisson equation and add a rate equation for the holes [68, 223]. In order to understand

the experimentally observed phase diagrams of photoexcited SLs, more theoretical work is

necessary.

Finally, the evolution from a static state at low carrier densities to an oscillating domain

at higher carrier densities was demonstrated in an undoped, photoexcited SL by increasing the

laser power [159]. Several distinct bifurcation scenarios were observed in connection with

a controllable bistability. In the bistable regime, the oscillations disappear via a subcritical

Hopf bifurcation with increasing reverse bias. When the bistability is absent at low (high)
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laser powers, the oscillations disappear via a supercritical Hopf bifurcation (homoclinic

connection).

5.4.3. Temperature. Temperature changes both the Fermi functions and the scattering

amplitudes in the expressions for the tunnelling currents. As a consequence, the drift velocity

and the diffusion coefficient in the DDD model can be substantially changed, which in turn

can drastically affect self-oscillations. In addition, thermionic emission above the barrier can

also alter the drift velocity. However, in contrast with an increasing doping density, which

can stabilize oscillating domains, an increasing temperature can facilitate self-oscillations.

Experiments inducing current self-oscillations by increasing the temperature have been

reported by Ohtani et al [240], Wang et al [165, 167, 172] and Li et al [166]. In most of

these experiments, the time-averaged I–V characteristics show a transition from the branch-

like modulation with increasing temperature which is typical for static EFD formation, to a

rather featureless plateau-like structure which is typically observed for current self-oscillations.

A detailed analysis of the transition region demonstrates that within a certain temperature range

there is a coexistence between static and dynamic domains [165, 237].

The temperature–voltage phase diagram is similar to the doping density–voltage diagram,

except that an increase in the doping density stabilizes the domains, while an increase in

the temperature may lead to current self-oscillations. This can be seen from the numerically

calculated current–voltage characteristics for temperatures between 110 and 150 K shown in

figure 27. It was calculated for a GaAs/AlAs SL with 40 periods, dW = 14.0 nm, dW = 4.0 nm

and a well doping density of ND = 2 × 1011 cm−2. The voltage regime shown in figure 27

corresponds to the second plateau of the SL used in the experiments of Wang et al [165].

The numerical calculations were performed by Sánchez et al [168, 217]. They are based on

the discrete drift model with a drift velocity computed directly from equation (91) by means

of the procedure reported by Bonilla et al [82]. However, in order to study the influence

of temperature, the scattering amplitude, γ , was linearly interpolated between the values

γ = 18 MeV at 1.6 K and γ = 23 MeV at 140 K, taken directly from the experimental

data as explained by Sánchez et al [217]. γ (T ) was assumed to be the same for all resonances.
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shown in figure 27. From [217].

In this SL, the first peak of the drift velocity disappears rapidly as the temperature increases

above 50 K. In the second plateau, the maximum and minimum of the resulting drift velocity

both increase with temperature, and their positions are shifted to lower field values. The

minimum drift velocity increases faster with temperature than the maximum, which tends to

wash out the difference between them [217]. This behaviour of the drift velocity is reflected in

the observed multistable static EFDs and self-oscillations. For example, multistable solution

branches of the current–voltage characteristic should also shift to lower voltages and higher

currents as the temperature increases, as observed in the experiments of Li et al [166]. These

effects could not be obtained from the fitted drift velocity used by Li et al [166]. The numerical

solution of the discrete drift model with constant electron density at the cathode shows that

the voltage intervals of static EFDs shrink as the temperature increases and disappear above

120 K as shown in figure 27. The I–V curve contains intervals in which the average current

increases with voltage, followed by intervals in which the average current decreases. At lower

temperatures, the intervals of increasing current are wider, whereas the opposite occurs at higher

temperatures. Correspondingly, the frequency of the self-oscillations in such an interval starts

increasing, but it drops to a smaller value than the initial one at the upper limit of the interval,

which is shown in figure 28. The amplitude of the self-oscillations (not shown here) vanishes

at the upper and lower limits of each voltage interval. This suggests that the branches of self-

oscillations begin and end at supercritical Hopf bifurcations. As the temperature increases, the

region of NDC in the drift velocity becomes shallower, and the frequency of the self-oscillations

increases (cf figure 28).

5.4.4. Magnetic field. The effect of an external magnetic field on the current self-oscillations

has been studied experimentally by Sun et al [77, 173] and Wang et al [167, 172]. As

with increasing temperature, an increasing magnetic field applied parallel to the layers, i.e.

perpendicular to the electric field, can induce a transition from static domains to oscillating

domains. With increasing magnetic field, the time-averaged I–V characteristic loses its

branch-like structure, which is observed at B = 0, indicating the presence of a propagating

domain wall. Increasing B both shifted the plateaus to larger voltages and diminished the

length of the branches in the I–V characteristics as well as the peak current. Above a critical

field B1, the I–V curve became flat and self-oscillations started. When a second, even higher,
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critical B2 was surpassed, the self-oscillations and the corresponding plateau disappeared again.

These observations were explained by simulations of the discrete drift model with parameters

corresponding to the second plateau of the SL [77, 173]. For the drift velocity, they used the

expression of Kazarinov and Suris [66], but with an increased Lorentzian width Ŵ(B) and

its centre, eFl, shifted to eF l − e2l2B2/(2m∗). The transitions between static and dynamic

domains as well as between dynamic and no domains at all are attributed to a magnetic-field-

induced modification of the negative differential velocity (NDV). The peak-to-valley ratio

decreases between 0 and B2, while above B2 the NDV disappears. A detailed analysis of the

effect of a magnetic field applied parallel to the electric field on the dynamics of EFD formation

is still missing. In this context, it would be interesting to compare the experimental results

with simulations based on the drift velocity given in equations (100) and (103).

6. Driven systems and chaos

6.1. Theory

Both strongly and weakly coupled SLs exhibit self-sustained oscillations of the current under

dc voltage bias, given appropriate values of doping density, well and barrier widths and material

composition. These oscillations are accompanied by a rich dynamics of EFDs, indicating the

possibility of more complex behaviour, including chaotic attractors and spatiotemporal chaos.

This possibility has been investigated by a number of authors, as reviewed in this section.

Theoretical studies predominantly interpret numerical solutions of model equations for SLs

driven by an ac voltage bias in addition to the given dc voltage difference between the SL ends

(ac + dc voltage bias). Theoretical studies of chaos in driven or undriven SLs are much less

complete than all the other non-linear phenomena so far described.

6.1.1. Weakly coupled SLs. Bulashenko and Bonilla [247] predicted chaos in driven, weakly

coupled SLs by solving the discrete drift model under ac + dc voltage bias with fixed excess

electron density in the first SL well. Their results [247–250] can be illustrated as follows. Let

the dc voltage be fixed at a value on the second plateau of the I–V characteristics of a 40-period

SL such that, in the absence of ac driving, there are self-oscillations of the current due to the

periodic monopole motion. The drift velocity is a sum of Lorentzian functions that corresponds

to the SL studied by Grahn et al [223]. Then, add a driving voltage with a frequency equal

to the natural oscillation frequency times the inverse golden mean, (1 +
√

5)/2 ≈ 1.618 (an

irrational number that is most poorly approximated by rational numbers). To find aperiodic

attractors, it is convenient to plot a measure of the amplitude of the solutions as a function of

the control parameter, the amplitude of the driving voltage. The current density or the current

corresponding to a solution is a natural measure of the amplitude of the solution, which is

easily observed in experiments. Thus, a natural bifurcation diagram depicts the current at

integer multiples of the period of the driving voltage, Td, as a function of the dimensionless

amplitude of the driving voltage, a (measured in units of FMNl). Periodic solutions with the

same frequency as that of the driving voltage (frequency-locked solutions) appear as a single

point in this diagram, solutions with twice the period Td appear as two points, etc.

Figure 29 shows that there appear windows of chaotic solutions as the amplitude of the

driving voltage increases. We see that the SL starts in a quasiperiodic state (with first Lyapunov

exponent λ1 = 0) at a = 0, as it should be for an irrational frequency ratio. Then at a ≈ 0.005,

the SL locks to a period-5 orbit (λ1 < 0) terminated by several chaotic windows at the relatively

small driving amplitude a ≈ 0.01 (λ1 > 0). After a > 0.085, period doubling cascades and

several chaotic windows can be seen. For even larger a, the solution becomes quasiperiodic
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Figure 29. (a) Bifurcation diagram of the current obtained by means of Poincaré mapping
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chaotic solutions are marked by arrows. The Lyapunov exponents are scaled to the driving

period, Td . From [248].

again (as it was at a = 0), before locking to the driving frequency, fd, at a ≈ 0.145. The chaotic

attractors are low-dimensional, and their corresponding electric field profiles show nucleation

and motion of monopoles at different places inside the SL [247]. A detailed description of

chaos and quasiperiodic attractors in the discrete drift SL model was presented by Bulashenko

et al [248], which includes Lyapunov exponents and fractal dimensions of attractors, Arnol’d

tongues in the phase diagram of driving amplitude versus driving frequency, Fourier spectra

of different attractors and first return maps of the current density at successive times mTd and

(m+1)Td. Zwolak et al [251] have recently extended this analysis to predicting chaotic transport

in dc+ac-voltage-biased arrays of quantum dots or quantum wires described by discrete drift

models.

As described in section 6.4, the experimentally observed chaos is more complex than the

one of the discrete drift model. In particular, the Fourier spectrum of the self-oscillations is

richer in the experiments. Moreover, for voltages in the second plateau of one SL, undriven

chaos has been observed (cf section 6.3). The motion of CALs in the discrete drift model

is accompanied by very small current spikes, whereas these spikes are much larger in other

models [15, 81]. The high-frequency current spikes will yield additional peaks in the Fourier

spectrum of self-oscillations, and so it is natural to study driven oscillations with these models

and to compare their numerical solutions with experimental results. Unfortunately, there are

very few studies in this direction. Sánchez et al [107] used the discrete model of Aguado

et al [80] to show that the high-frequency current spikes give rise to distorted Poincaré first

return maps of the current at successive times mTd and (m+1)Td, as observed by Luo et al [182]

(cf section 6.4). A systematic study of this model, or of the simpler discrete model with the

tunnelling current of equation (99) and realistic boundary conditions yielding both dipole and

monopole mediated self-oscillations, is still lacking.

An intriguing and unsolved question is the explanation of undriven chaos in the second

plateau of the time-averaged I–V characteristics in the GaAs/AlAs SL with dW = 9.0 nm and

dB = 4.0 nm [252]. Two possible explanations have been proposed. Kantelhardt et al [188]

suggest that non-stationary tunnelling effects may cause current spiking for high fields. They
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introduced a phenomenological time delay in the tunnelling current (which is of pure drift

type) and showed that the resulting model displays current spikes and complex dynamics as

the tunnelling delay time increases. Undriven chaos might thus be caused by frequency locking

between the slow drifting motion of monopoles and internal frequencies arising from the time

lag. No theory of the origin of time lag has been advanced, and no model of non-stationary

tunnelling current is known. Therefore, these arguments have not been substantiated by a

consistent theory.

The other explanation is based upon the mechanism of dipole self-oscillations of

section 5.1. If the contact resistivity is finely tuned, more than one dipole can be present

in the SL at a given time interval. Undriven chaos can then arise from the random creation

of dipoles at the cathode, as initially proposed by Bonilla et al [208] for a model of ultrapure

p-Ge. Using the asymptotics of wave fronts as in section 5.1 and taking into account the finite

time it takes to create a dipole at the injecting contact, Cantalapiedra et al [219] derived a

discrete model of wave front dynamics to explain these chaotic oscillations. Following this

lead, Amann et al [221] solved numerically the discrete tunnelling model with the current of

equation (99) and appropriate cathode conductivity to find undriven chaos caused by random

firing of dipoles. Further elaboration on the relation of the reduced wave front dynamics to

a tent map is due to Amann et al [222]. That these theoretical results explain the observed

undriven chaos in SLs is rather unlikely. First, undriven chaos was observed for voltages on

the second plateau of the I–V characteristic, not on the first plateau, as in the calculations of

Amann et al [221]. For the corresponding high electric fields, the tunnelling current density is

purely of drift type, for which undriven chaos has not been found. Secondly, chaotic motion of

wave fronts might be observable for voltages in the first plateau of the SL I–V characteristic.

However, this chaotic motion should be demonstrated to persist if the Ohmic cathode condition

is changed to a more realistic boundary condition, such as equation (96) or (122). The delicate

tuning of the cathode conductivity needed for chaotic motion is not a good indication of the

robustness of this mechanism as an explanation of the origin of undriven chaos in SLs.

6.1.2. Strongly coupled SLs. Chaos in strongly coupled SLs has been investigated using

numerically solving balance equation models. If the SL is driven at terahertz frequencies,

the field and electron densities may be considered spatially homogeneous. Thus, the simplest

models for this regime ignore the spatial dependence of the electric field and the electron

density and analyse chaotic and quasiperiodic oscillations of the resulting non-autonomous

(driven chaos) system of differential equations. Authors following this approach include

Alekseev et al [253, 254] and Romanov and Romanova [255].

After the prediction and observation of chaos in weakly coupled SLs, Cao and Lei [256]

characterized chaos in hydrodynamic models of strongly coupled SLs driven by gigahertz

frequencies. Cao et al [257, 258] extended this work to models of quantum dot arrays and of

terahertz-driven semiconductors with negative effective mass, respectively. In these investiga-

tions, undriven self-oscillations are due to periodic motion of charge dipoles, as in the Gunn

effect. Chaotic oscillations in driven SLs appear through complex bifurcation scenarios [256].

Simpler models based on the QDDE (72) or its semiclassical limit [34] might prove easier to

analyse. These models are similar to the ones of the Gunn effect in bulk GaAs. Numerical

studies of the Gunn effect under ac + dc voltage bias exhibiting driven chaos have been carried

out by Mosekilde et al [259,260] and by Oshio and Yahata [261]. These authors used different

drift–diffusion models with zero-charge boundary conditions at the contacts, and they included

a notch in the doping density near the cathode (which acted as a nucleation site for dipoles

(cf table 2)). It is interesting that models of the Gunn effect including dynamics of traps in

addition to the electron transport have undriven chaotic oscillations among their solutions [262].
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Figure 30. Time-averaged I–V characteristics for different driving amplitudes (a) Vac = 0 mV,

(b) 500 mV and (c) 700 mV with a frequency of 50 MHz in the GaAs/AlAs SL with dW = 9.0 nm

and dB = 4.0 nm at 6 K. The traces in (b) and (c) have been shifted by −100 µA and −200 µA,

respectively. From [189].

6.2. Quenching of current self-oscillations in weakly coupled superlattices

The current oscillations shown in figure 25 contain two timescales, the oscillation, of the order

of a microsecond, and the hopping of the domain boundary between adjacent wells, of the

order of 100 ns. If this system is driven by an oscillating voltage with a large amplitude and

a frequency much higher than the hopping frequency between adjacent wells, the domain

boundary will be localized again within a single well [189]. Under this condition, the system

should exhibit static domain formation. In figure 30, the first plateau of the time-averaged

I–V characteristics in the GaAs/AlAs SL with dW = 9.0 nm and dB = 4.0 nm is shown for

different amplitudes with a driving frequency of 50 MHz at 6 K. The trace in figure 30(a)

has been recorded without any driving signal, and the traces in figures 30(b) and (c) with an

amplitude, Vac, of 500 mV and 700 mV, respectively. While the trace in figure 30(a) does

not show any sign of static domain formation, the trace in figure 30(c) resembles to a large

extent the I–V characteristic in the inset of figure 7. The changes for the low-voltage regime

are already visible in figure 30(b). The oscillations are quenched by the driving signal with

a high frequency and large amplitude. This interpretation is confirmed when we look at the

frequency spectra recorded for different amplitudes of the driving signal. In figure 31, the

frequency spectra for the GaAs/AlAs SL with dW = 9.0 nm and dB = 4.0 nm recorded at

2.77 V are shown for Vac = 0, 200, 500, 740 and 800 mV. The fundamental frequency of the

low-frequency oscillation is denoted f0. The spectra for Vac = 0, 200 and 500 mV show many

higher harmonics with almost equal amplitude since the low-frequency oscillation in figure 25

is not sinusoidal but contains a large number of spikes. The high-frequency component from

the hopping motion is not shown on this frequency scale. A strong change in the frequency
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Figure 31. Frequency spectra of the current oscillations for an applied voltage of 2.77 V in the

GaAs/AlAs SL with dW = 9.0 nm and dB = 4.0 nm using different amplitudes of the driving

voltage, Vac, with a frequency of 50 MHz at 6 K. The spectra at Vac = 200 mV, 500 mV, 740 mV

and 800 mV have been shifted by −110 dbm, −220 dbm, −330 dbm and −440 dbm, respectively.

From [189].

spectra is observed between Vac = 500 and 740 mV. For Vac = 800 mV, the oscillations are

completely quenched. The quenching is not observed if the frequency of the driving signal is

smaller than 10 MHz, which is the hopping frequency between adjacent wells. We therefore

conclude that even in the unstable regime static domains can be observed, if the system is

driven by an ac voltage with a large amplitude and a frequency which is much higher than

the well-to-well hopping time of the domain boundary. Dynamic EFDs can be transformed

back into static EFDs by an external driving frequency with the appropriate frequency and

amplitude.

6.3. Undriven chaos in weakly coupled superlattices

In this subsection, we will look more closely at the voltage dependence of the frequency spectra

in an undriven system. In figure 32, the oscillations in the GaAs/AlAs SL with dW = 9.0 and

dB = 4.0 nm are shown for two different applied voltages, Vdc. While for Vdc = 7.6 V in

figure 32(a) the oscillations are periodic, the time trace for Vdc = 7.491 V in figure 32(b) has a

more complicated time dependence [252]. These oscillations occur in the second plateau of the

time-averaged I–V characteristic in this sample. The corresponding frequency spectrum for

Vdc = 7.6 V contains only two sharp peaks at 22 and 44 MHz, while the one for Vdc = 7.491 V

consists of a broad-band noise spectrum. We conclude that the trace in figure 32(a) corresponds

to a fully periodic regime with several higher harmonics, while the trace in figure 32(b) has

the signature of undriven chaos.

The existence of chaotic windows in the frequency spectra becomes more evident when

the power spectra for the GaAs/AlAs SL with dW = 9.0 nm and dB = 4.0 nm recorded at 30 K
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Figure 32. Current oscillations in (a) the periodic regime at Vdc = 7.6 V and (b) the chaotic regime

at Vdc = 7.941 V for the GaAs/AlAs SL with dW = 9.0 nm and dB = 4.0 nm recorded at 30 K.

From [252].

are plotted versus the applied voltage on a grey scale as in figure 33(a). Dark areas correspond

to a large amplitude of the oscillations. The corresponding time-averaged I–V characteristic

is shown in figure 33(b) on the same voltage scale at the same temperature [252, 263]. With

increasing bias, several chaotic windows exist, which are separated by periodic windows

containing only the fundamental frequency and several higher harmonics. The transition

from the chaotic to the periodic window occurs over a very narrow voltage range, e.g. at

Vdc = 7.6 V. However, the transition from a periodic to a chaotic window usually consists of a

random-enhancing process covering a broader voltage range. Comparing the voltage ranges of

the chaotic windows with the time-averaged I–V characteristic in figure 33(b), there is a clear

correlation between the existence of a chaotic window and a large NDC in the time-averaged

current. The periodic windows, however, appear for positive differential conductivity (PDC).

The sharp transitions from the chaotic to the periodic window correspond to the minimum value

of the average current, i.e. the onset of PDC. The regions with a PDC are characterized by

attractive coupling between the different degrees of freedom of the different quantum wells.

The SL behaves as a self-synchronized unit with spontaneous periodic current oscillations.

However, in the regions with a large NDC, the coupling becomes strongly repulsive. With

increasing repulsion, the synchronized oscillations become more and more destabilized, until

the SL enters a chaotic state. With increasing temperature, the chaotic windows become smaller

and smaller until they completely disappear at 60 K [252]. As the temperature increases,

other scattering mechanisms such as optic phonon scattering become more and more likely,

thereby reducing the effective non-linearity of the system. The structures in the time-averaged

I–V characteristic disappear completely for temperatures above 60 K, so that the structureless

current plateau corresponds to a large periodic window. In contrast, a magnetic field applied

perpendicular to the layers, i.e. parallel to the electric field, has the opposite effect on the chaotic

windows [264]. With increasing magnetic field, B, the chaotic windows become wider and
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Applied voltage (V)

Figure 33. (a) Frequency spectra of the spontaneous current oscillations and (b) time-averaged

current versus applied voltage for the GaAs/AlAs SL with dW = 9.0 nm and dB = 4.0 nm recorded

at 30 K. In the power spectra, dark areas correspond to large amplitudes. From [252].

the structures in the time-averaged I–V characteristics less pronounced. At B = 9 T, almost

the whole oscillatory regime exhibits chaotic oscillations. This observation was interpreted as

an equalization of the transport process over the whole SL resulting in a suppression of any

disorder effects between different periods. The undriven chaos itself is probably generated

by the presence of the finite timescale of the sequential resonant tunnelling process between

adjacent wells.

6.4. Frequency locking, quasiperiodicity and chaos driven by an external ac voltage

6.4.1. Weakly coupled superlattices. The application of an external driving voltage with

a frequency close to the intrinsic frequency of the current self-oscillations can result in a

rather complex behaviour with increasing amplitude, Vac, of the driving frequency [263,265].

Figure 34 displays the frequency bifurcation diagram (frequency spectra as a function of

Vac) of the GaAs/AlAs SL with dW = 9.0 nm and dB = 4.0 nm for a dc bias voltage,

Vdc, near the centre of the second plateau of the corresponding I–V characteristics. The

driving frequency, fd, was chosen to be (1 +
√

5)/2 × f0 = 18.4 MHz, so that the ratio fd/f0

corresponds to the golden mean. For Vac = 75 mV, 125 mV, 145 mV, 155 mV and 180 mV, the

frequency spectra indicate frequency locking at ratios 5
8
, 7

11
, 9

14
, 11

17
and 2

3
, respectively, i.e. the

winding number of the frequency-locked states increases according to (2m + 1)/(3m + 2) with

m = 2, 3, 4, 5, . . . . For very low values of Vac, the ratio 3
5

can be observed, which corresponds

to m = 1. Note that the inverse of the initial ratio, 3
5
, is numerically close to the golden mean,

with a value of about 1.618. The regions between the frequency-locked windows correspond

to quasiperiodic oscillations. This conclusion was drawn from real-time traces, which were

then used to construct Poincaré maps between the current amplitudes In+1 and In, where In
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Figure 34. Frequency bifurcation diagram for Vdc = 7.080 V and fd = 18.4 MHz for the

GaAs/AlAs SL with dW = 9.0 nm and dB = 4.0 nm recorded at 5 K. The current power spectra are

shown as density plots versus the amplitude of the driving voltage, Vac, where dark areas correspond

to large amplitudes. From [265].

is obtained by sampling the current trace, I (t), at a fixed phase (usually the maximum of the

amplitude of the driving frequency signal) in the nth period of the driving voltage [265]. The

Poincaré maps in the frequency-locked regime consist of 3m + 2 isolated points (except for

large values of m, where they contain only three isolated points), while in the quasiperiodic

regime they are closed loops [266]. Due to the presence of higher harmonics in the undriven

frequency spectrum of figure 34, the Poincaré maps of the frequency-locked (discrete set of

points) as well as quasi-periodic windows (closed loops) are highly distorted [267]. This

distortion was connected in a theoretical investigation to the presence of the high-frequency

spikes in the current traces discussed in section 5.3, which together with the much lower

driving and natural frequency yields a much richer power spectrum [107]. With increasing

Vac, the separation between frequency-locked and quasiperiodic windows becomes smaller

and smaller. For Vac between 155 and 180 mV, the frequency spectra become more and

more smeared out, indicating the presence of chaotic oscillations in this regime. The route

to chaos follows an alternation between frequency locking and quasiperiodicity, until the

chaotic state is reached, just before the system returns to the final frequency-locked state. This

bifurcation process is considered to be explosive, since the attractor dimension changes rather

abruptly [268]. When the dc bias voltage, Vdc, is changed to the beginning of the second

plateau in the corresponding I–V characteristic, the route to chaos changes completely as

evidenced by the dependence of the frequency spectra and Poincaré maps [265] as well as the

multifractal dimension [268] on Vac. It now follows the route quasiperiodicity → synchronized

chaos → frequency locking → chaos → chaos with higher complexity. This very different

route is probably due to the fact that for a voltage close to the edge of the current plateau

the driving amplitude will move the system periodically out into the static regime and back

into the oscillating regime. In contrast, when the system is biased near the centre of the

plateau, the system will completely remain in the oscillating regime for the driving amplitudes

applied.

An investigation of the bifurcation diagrams for undoped photoexcited SL also

demonstrated the existence of a transition between periodic and chaotic oscillations [269].
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However, the actual form of the bifurcation diagram depends strongly on the laser intensity,

indicating a strong effect of the carrier density on the bifurcation diagram [269].

6.4.2. Strongly coupled superlattices. The response of an ac driving voltage has also been

investigated experimentally and theoretically for strongly coupled SLs with frequencies in

the same range as the intrinsic oscillation frequency [270–272]. However, due to the much

higher intrinsic frequency for strongly coupled SLs in comparison with weakly coupled ones,

experimental results are only possible in the frequency domain and not in real time. In

particular, single-shot real time traces, which are necessary for constructing Poincaré maps,

cannot be performed for frequencies larger than 10 GHz. Nevertheless, the frequency spectra

for strongly coupled SLs, i.e. for propagating dipole domains, also indicate the presence of

synchronization, frequency locking and quasiperiodicity. The locked and disturbed dipole

domain propagation state can be described by a ‘devil’s staircase’, where in the locked state

the ratio of the external frequency and the intrinsic domain transit frequency becomes a rational

number [270]. A theoretical analysis indicates that the external ac field controls the domain

propagation by a modification of both the domain velocity and the shedding of domains from

the cathode.

A separate theoretical investigation focused on the evolution of the impedance of the SL

circuit with the frequency of the ac driving voltage [271,272], which exhibits strong variations

of its amplitude and phase. In addition, Jappsen et al [271, 272] found frequency-locked and

quasiperiodic propagating dipole domains as well as a phase synchronization of the travelling

dipole domains.

6.5. Photon-assisted domain formation

There is a very different range for the external driving frequencies, which can strongly affect

the domain formation in SLs. EFD formation induced by photon-assisted tunnelling has

been observed in a weakly coupled SL with the photon field in the terahertz regime [273].

New virtual states serve a role similar to that of unperturbed, real quantum well states in

the description of the resonant transport process underlying the domain formation. In a more

strongly coupled SL under terahertz radiation, the same authors observed dynamic localization,

absolute negative conductance and stimulated, multiphonon emission [274]. Subsequently, a

theoretical investigation by Aguado and Platero [275,276] using a self-consistent microscopic

model of sequential tunnelling through multiple quantum wells in the presence of terahertz

fields showed how the EFDs can be supported by virtual photonic sidebands due to multiple

photon emission and absorption. Very recently, the same authors [17] published a detailed

review of photon-assisted transport in semiconductor nanostructures.

The interaction of high-frequency fields with the miniband electrons has been

experimentally investigated by Winnerl et al [277] in a strongly coupled SL that shows negative

differential resistance at room temperature. They observed a field-induced reduction of the

current through the SL with a different bias dependence below and above a characteristic

frequency of 1 THz. A transition from a quasistatic to a dynamic interaction with the high-

frequency field was interpreted as a transition from a classical to a quantum response, in

analogy with a corresponding transition of irradiated SLs that showed sequential resonant

tunnelling [278]. Very recently, the action of a terahertz field on the motion of electrons

performing Bloch oscillations was investigated theoretically for a strongly coupled SL [279].

An amplification of the terahertz field can occur via phase-locked k-space bunches of Bloch

oscillating electrons for a driving frequency that is smaller than the Bloch frequency. This

study may lead to a development of a Bloch laser for terahertz radiation.
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Photo-assisted dynamical transport in highly doped, weakly coupled SLs and its

consequences for EFD formation were theoretically investigated by López et al [280, 281].

The results indicate that the terahertz field induces with increasing intensity a transition from a

stationary configuration to a dynamic state with an ac-induced recycling motion of the domain

walls, possibly via a supercritical Hopf bifurcation. The oscillation frequency lies in the

megahertz regime and is therefore much smaller than the frequency of the driving photon field.

By a further increase in the intensity of the terahertz field, the current becomes stationary again.

At the same time, the electric field is homogeneously distributed over the whole sample. The

ac field can therefore be used to induce and control oscillations. This is not done by special

triggering but rather by driving the system to a distinct dynamical state.

7. Applications

In this section, we will briefly discuss several devices such as oscillators, detectors and

quantum-cascade lasers, for which non-linear transport in SLs and its consequences for the

field distribution have a significant importance for the device performance.

7.1. Gigahertz oscillators

The original idea of semiconductor SLs of Esaki and Tsu [1] was to use this artificial structure

for the development of a Bloch oscillator. However, although Bloch oscillations have been

observed experimentally [4], there is no device which uses electrical injection based on this

original concept. Nevertheless, the existence of NDV in strongly coupled SLs due to miniband

transport resembling Bloch oscillations has led to the observation of oscillations caused by

travelling dipole domains with extremely high frequencies as summarized in section 5.2.1.

A complete device based on a strongly coupled SL was reported by Schomburg et al [282].

A millimetre wave oscillator was developed with a quasiplanar design using a GaAs/AlAs SL

built into a waveguide, which allows easy integration into a planar millimetre wave circuit.

The device was tunable by about 10% around 70 GHz with an output power of 100 µW.

Depending on the applied voltage, additional oscillation lines up to 180 GHz were observed.

(In,Ga)As/(In,Al)As SLs were used to design amplifiers and oscillators with frequencies of

up to 74 GHz [283, 284]. The advantage of this material is that it can be directly utilized

for applications above 30 GHz in connection with optical telecommunications wavelengths

(1.3–1.6 µm).

In order to develop high-power SL oscillators for submillimetre radiation, the impact of

electron heating and of the mesa size on the I–V characteristics was investigated theoretically

[285, 286] and experimentally [286, 287] for strongly coupled SLs. The relatively large

miniband width in strongly coupled SLs causes an additional heating instability, which appears

as an S-shaped I–V characteristic in addition to the conventional N-type one occurring at

lower electric fields [285]. The combination of these two instabilities alters the structure of

the dipole domain associated with the self-generated gigahertz oscillations, resulting in a more

complex dynamical behaviour [286]. Since the electron heating is much larger for strongly

coupled SLs than for weakly coupled ones, this effect is much more important for oscillators

based on travelling dipole domains. Increasing the mesa size also increases the electron

temperature by Joule heating [287]. For large mesa sizes, the current jumps in the I–V

characteristics disappear, indicating the suppression of propagating dipole domains. A proper

heat management is therefore necessary for large-area SL oscillators based on propagating

dipole domains [287].
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7.2. Detectors

There are two kinds of detectors that are based on non-linear transport in semiconductor SLs.

The first one uses strongly coupled SLs for detection of terahertz signals. The second one

is a photodetector for the infrared spectral region and is based on weakly coupled SLs or

multiple-quantum-well structures.

Winnerl et al [288,289] developed a detector and an autocorrelator for picosecond terahertz

radiation pulses based on a wide miniband GaAs/AlAs SL. The detection at room temperature

employed a terahertz field-induced change in the conductivity of the SL, while the correlation

used the non-linearity of the conductivity change at strong terahertz-field pulse powers. The

non-linear conductivity change was attributed to two effects, the dynamical localization of

miniband electrons and the ionization of deep impurity centres. This type of detector with

a frequency range up to about 5 THz was then used to characterize short terahertz pulses

with a poorly defined trigger signal [290] and to detect the emission of a copper-doped

germanium terahertz laser [291]. Subsequently, the range of the detector was extended up

to 10 THz by using a different SL with a wider miniband [292]. A detector based on an SL

with submonolayer barriers showed a dynamic range of more than six orders of magnitude,

indicating that it should be possible to reach a responsivity comparable with that of a Schottky

diode [293]. A strongly coupled SL can also lead to frequency doubling or tripling of terahertz

radiation due to the frequency modulation of damped Bloch oscillations of the miniband

electrons [294]. The non-linear response of strongly coupled GaAs/AlAs SLs to terahertz

radiation was analysed theoretically by Ignatov et al [295]. While the current responsivity

is small for the infrared-active, transverse polar-optic phonon due to dynamic screening of

the terahertz fields by the lattice, the responsivity is strongly increased at the longitudinal

polar-optic phonon frequency due to a resonant enhancement of the terahertz field inside the

SL. Strongly coupled semiconductor SLs may therefore be useful for development of ultrafast

detectors for a desired region of the terahertz frequency range.

The work on EFDs in weakly coupled SLs in the 1980s was mainly triggered by the interest

in intersubband photodetectors for the mid-infrared spectral range [119]. In a multistack

GaAs/(Al,Ga)As quantum well infrared detector, special switching properties were observed,

which were attributed to the formation and readjustment of HFDs in the structure [296].

Subsequently, Shakouri et al [297] discussed the important parameters which govern the

formation, expansion and readjustment of EFDs in multi-quantum-well structures. The

pattern of EFD formation can be manipulated by a careful design of the device. Using an

infrared photodetector based on a weakly coupled SL with bound-to-continuum transitions,

Xu et al [298] demonstrated that the electric-field strength in the HFD is below the resonant

field strength as already discussed in section 3.2. Gravé and An [299] published a more detailed

review on the switching and control of electric-field configurations along multi-quantum-well

structures.

The formation of periodic EFDs was investigated theoretically for optically excited

multi-quantum-well structures under bias triggering bound-to-continuum transitions [232].

In particular, an electric-field distribution with a period equal to twice the structure period was

shown to be possible. The origin of these periodic EFDs was associated with the excitation of

recharging waves due to a decreasing capture rate of electrons with their heating by the electric

field. The formation of periodic electric-field and charge distributions in these quantum-well

structures becomes possible when the intensity of the infrared radiation is sufficiently high

for the photoexcitation to prevail over the thermionic emission of electrons from the quantum

wells [233]. The threshold intensity of the EFD formation depends on the donor concentration

in the quantum wells and the characteristic capture and generation fields [233]. The dynamics
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of the electric-field distributions and photocurrent were found to be different for structures

with even and odd numbers of quantum wells [234].

7.3. Quantum-cascade lasers

In 1994, the inverse of the infrared photodetector based on semiconductor SLs or multiple

quantum wells, the infrared emitter, was demonstrated by Faist et al [300]. This infrared

emitter is called a quantum-cascade laser (QCL). Structurally, QCLs are SLs with typically

30 periods, in which the unit cell consists of up to 20 individual layers. In some versions of

the QCL, the unit cell contains a graded-gap or chirped SL, which is strongly coupled. At

the same time, the coupling between two periods is smaller than the coupling within a single

period. Therefore, QCLs are SLs with intermediate coupling between adjacent wells. For

a detailed review of QCLs, see Gmachl et al [301]. In a recent investigation of the carrier

transport and the carrier distribution in GaAs/(Al,Ga)As quantum-cascade structures (QCSs)

by Ohtsuka et al [302], it was shown that the dark j–F characteristics of undoped QCSs exhibit

distinct current maxima, resulting in regions of NDC, while a plateau-like feature appears under

illumination. For doped QCSs, a plateau with sawtoothlike structures appears, which are well

known from doped, weakly coupled SLs under EFD formation as described in section 3.

However, in contrast to the splitting of the PL line that is observed for doped, weakly coupled

SLs, no splitting has been observed in doped QCSs. The j–F characteristic of an undoped

QCS with thicker barriers than the original QCS exhibits a much more pronounced current

maximum in the dark. Under illumination, the j–F characteristic of this structure shows a

clear plateau-like feature, which contains additional fine structure, indicating the existence of

electric-field inhomogeneities within each period due to the separation of electrons and holes.

These results indicate that the formation of static EFDs as well as current self-oscillations

due to propagating monopole or dipole domains may also be important for the operation

of QCLs. However, there is also clear evidence that these features are strongly suppressed

in working lasers, because otherwise the lasing operation would be much more difficult to

achieve. Nevertheless, at this point in time, the influence of static as well as dynamic domain

formation on the lasing properties of QCLs has been investigated neither experimentally nor

theoretically.

8. Summary and outlook

In terms of their theoretical description of non-linear dynamics, semiconductor SLs have

to be divided into two groups, weakly and strongly coupled SLs. While the non-linear

transport in strongly coupled SLs can be described by spatially continuous partial differential

equations, the description of non-linear transport in weakly coupled SLs has to be based

on spatially discrete differential-difference equations. Due to this discreteness, non-linear

transport in weakly coupled SLs contains a rather rich spectrum of non-linear phenomena such

as the formation of stationary electric-field domains, multistability of the I–V characteristic,

complex switching scenarios between static domains including a tripole/dipole relocation

process, current self-oscillations due to a monopole recycling motion, spiking in the switching

transients and in the current self-oscillations due to the discontinuous motion of the charge

monopole between two adjacent wells, undriven chaos, frequency locking, quasiperiodicity

and chaos for an external driving voltage. In contrast, due to the continuous nature of the

underlying equations, strongly coupled SLs exhibit mainly current self-oscillations, which in

this case are due to a dipole propagating through the whole SL as in the Gunn effect, and

frequency locking. Stationary domains and multistability as well as the switching processes
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associated with stationary domains are not present in the non-linear transport of strongly

coupled SLs.

The derivation of discrete and continuous balance equations from quantum kinetic

theory is still lacking for a unified description of non-linear transport in semiconductor SLs.

Furthermore, the stability of the solutions describing Bloch oscillations and driven terahertz

oscillations against space-dependent disturbances needs additional investigation. In terms

of further experimental work, the effect of some external control parameters such as the

magnetic field on the stationary domain formation and the current self-oscillations is still

poorly understood. Furthermore, an investigation of the non-linear transport characteristics

as a function of mesa size down into the submicrometre regime seems in view of some

recent theoretical work an interesting direction for future work. The theoretical description

of the switching processes and their stochastic aspects in weakly coupled SLs clearly need

further investigation. Experimentally, the reconstruction of unstable branches from switching

experiments seems to be an interesting challenge. Open questions remaining include the

microscopic theoretical description of the spiking and the existence of undriven chaos in

weakly coupled SLs. For devices, a complete theory for non-linear transport in quantum-

cascade lasers is still lacking.
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[94] Rott S, Binder P, Linder N and Döhler G H 1999 Combined description for semiclassical and quantum transport

in superlattices Phys. Rev. B 59 7334

[95] Cercignani C, Gamba I M and Levermore C D 2001 A drift-collision balance for a Boltzmann–Poisson system

in bounded domains SIAM J. Appl. Math. 61 1932

[96] Ignatov A A, Renk K F and Dodin E P 1993 Esaki–Tsu superlattice oscillator: Josephson-like dynamics of

carriers Phys. Rev. Lett. 70 1996

[97] Ignatov A A and Shashkin V I 1983 A simplified approach to nonlinear hf response theory of superlattice

materials Phys. Lett. A 94 169

[98] Rossi F 1998 Bloch oscillations and Wannier–Stark localization in semiconductor superlattices Theory

of Transport Properties of Semiconductor Nanostructures ed E Schöll (London: Chapman and Hall)
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1995 Nonresonant carrier transport through high-field domains in semiconductor superlattices Phys. Rev. B

51 9943
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[296] Gravé I, Shakouri A, Kuze N and Yariv A 1992 Voltage-controlled tunable GaAs/AlGaAs multistack quantum

well infrared detector Appl. Phys. Lett. 60 2362
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