
European Journal of Economic and Social Systems 14 N° 1 (2000) 81-91

© EDP Sciences 2000

Non-linear financial time series forecasting –

Application to the Bel 20 stock market index

A. LENDASSE1, E. DE BODT2, V. WERTZ1 AND M. VERLEYSEN3

Abstract. – We developed in this paper a method to predict time series
with non-linear tools.  The specificity of the method is to use as much information
as possible as input to the model (many past values of the series, many exogenous
variables), to compress this information (by a non-linear method) in order to obtain
a state vector of limited size, facilitating the subsequent regression and the general-
ization ability of the forecasting algorithm and to fit a non-linear regressor (here a
RBF neural network) on the reduced vectors. We show that this method is able to
find non-linear relationships in artificial and real-world financial series. On a diffi-
cult task, which consists in forecasting the tendency of the Bel 20 stock market
index, we show that this method improves the results compared both to linear
models and to non-linear ones where the non-linear compression is not used. 

1. Introduction

1.1. Financial analysis background

Forecasting a time series is a common problem in many domains of science (electricity,
hydrology, etc.), and has been addressed for a long time by statisticians.  Predicting a
financial series, as a stock market index or an exchange rate, remains however a very
specific task.

The study of the behaviour of stock market prices has begun since a long time now in
finance. Already in 1965, Fama (1965) clearly put to light the highly stochastic nature of
their behaviour. 

It seems that Bachelier (1914) was the first to propose the theory of random walk to
characterise the changes of security prices through time. Fama (1965) analyses the distri-
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bution on a large (at least at this time) data set (the thirty stocks of the Dow-Jones Indus-
trial Average during the period 1957-1962). He shows that empirical evidence seems to
confirm the random walk hypothesis: a series of price changes has no memory ("the past
can not be used to predict the future in any meaningful way1"). The main theoretical
explanation that lies behind this observation is the efficient market hypothesis (EMH).
While a detailed explanation of this concept is beyond the scope of this paper, the main
ideas are the following. If a statistically significant serial dependence exists within time
series of financial security prices, the community of financial analysts will immediately
exploit it.  Security price changes can therefore be only explained by the arrival of new
information, which, by definition, can not be forecasted.  The EMH has received a lot of
empirical support in the academic literature during the seventies and the eighties. This
line of thought has always been received with a lot of scepticism, not to say some irony,
in the professional community, which led to the use of charts and technical analysis
rules2. Professionals have always claimed that classical statistical tests are mainly linear
and therefore, unable to capture the complex patterns the price changes exhibit. But
things seem to have changed (at least partially) during these last years. As stated by
Campbell et al. (1967), "several authors signal a growing interest in technical analysis
among financial academics, and so it may become a more active research area in the near
future". The work that we propose here can be viewed as a contribution to this field of
research. We apply non-linear statistical tools (we hope in a clever way) to see they can
"break" the random walk hypothesis.

1.2. Time series analysis

The succession of values in a time series is usually influenced by some external (or exo-
genous) information.  If this information is not known, only the past values of the series
itself can be used to build a model, i.e. a mathematical function of the form

. (1)

where an unknown new value xt+1 is estimated from the know current and past values ofx
(Ljung, 1997; Weigend et al., 1994).  The parameters θ of the model fθ are chosen accor-
ding to the information available, i.e. to all known values of x; this step if called learning
or fitting. 

Sometimes other information is available (for example the outside temperature when
one tries to estimate the electricity consumption in a country, or foreign stock market
indices when one tries to estimate one of these indices).  In this case, it is a good idea to
use this external information in the model, usually in the form

(2)

where the values at time t of P external (exogenous) variables are used in the model.

1. We have to mention that the main focus of the author is to test if the security price changes have a finite
variance or not.
2. Technical analysis is defined par Edward and Magee has "the science of recording, usually in graphic
form, the actual history of trading (price changes, volume of transactions…) in a certain stock or in "the
averages" and then deducting from that pictured history the probable future trend".
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Most widely known prediction tools use linear models fθ (Box and Jekins, 1976).
Artificial neural networks now offer an interesting alternative: the use of non-linear
models (Sjoberg et al., 1995).  Non-linear models are by definition more powerful, since
they give more possibilities in the choice of the input-output relation; of course non-
linear models include linear ones.  Working with non-linear models is however more dif-
ficult: the increased possibilities may be seen as supplementary degrees of freedom, lea-
ding to a better fitting of the model to the known values, but to a worst generalization
ability of the model on unknown data.  This learning-generalization dilemma, similar to
the bias-variance dilemma in statistics, is the main limitation of artificial neural
networks (ANNs).  Indeed some ANNs have the universal approximation property:
under mild conditions on the data, they can fit any data set with an arbitrary high preci-
sion, provided that there is a sufficient number of parameters in the model fθ.  However,
when there are too many parameters (compared to the number of data available), the
overfitting phenomenon appears.  The known data (used for learning) are well fitted, but
the function fθ has no sense between points used for learning.  Let us imagine how three
points could be fitted by a 10-order polynomial…  

This overfitting problem increases with the model complexity, and is thus more diffi-
cult to handle when many input variables (past values and exogenous information) are
used.  In this paper, we show how to cope with this problem: we first choose a large
number of variables, containing as much information as possible, and then reduce this
number by mathematical tools: estimation of intrinsic dimension and non-linear projec-
tion.  We illustrate the method on the prediction of the Bel 20 stock market index.

2. Time series forecasting

2.1. Non-linear regression

According to equation (2), forecasting a time series is equivalent to choosing a model fθ
and fitting its parameters to the data available (function approximation).  In the financial
example given below, we use a non-linear model f known as Radial Basis Function
(RBF).  A RBF is a model of the form

(3)

where x is the input vector including past values and exogenous variables, and
θ = { µi, σi, λi} is the parameter set of the model (respectively the center, width and
weight of Gaussian functions).  Under mild assumptions, RBFs can approximate any
data set provided that the number of Gaussian kernels M is sufficiently high (universal
approximation property) (Broomhead and Lowe, 1988). Another ANN model, the Multi-
Layer Perceptron (MLP) (Werbos, 1974; Rumelhart et al., 1986), has the same property,
and is probably more widely used.  We use RBFs in our work because the learning pro-
cess (fitting the parameters of the model) is computationally easier than with MLPs.  The
learning algorithm used for this work is described in (Verleysen and Hlavácková, 1994).
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It is based on an unsupervised clustering of data points x to choose the centers µi and the
widths σi, and on a supervised fitting of weights λi to minimize the mean square error
between known output values and estimated ones.  Fitting the three sets of parameters
independently greatly facilitates training (the only supervised step is linear, unlike lear-
ning in a MLP).

2.2. Input vector

Past values of the series and exogenous variables are used as information for the learning
process.  In a real world application, it is difficult to know how much information (in
terms of number of variables, or size of input vector x) must be used to properly learn the
dynamics of a time series. Obviously, the quantity of information increases with the
number of variables.  However, we also know that more input variables will lead to more
parameters in the function fθ, which increases the overfitting problem.  The main idea of
this work is then the following.  We first choose a large number of variables which need
to be taken into account: sufficiently (probably too many) past values of the series, and
many exogenous variables that could influence the series.  Our purpose will be to trans-
form this set of variables into another smaller set of state variables, keeping as much as
possible the information contained in the original set.  If most of the information is kept,
little will be lost during the learning process.  Furthermore if the number of state varia-
bles is sufficiently lower than the number of initial variables, we will increase the genera-
lization property of the model.

Three steps are thus necessary before fitting the model fθ:
1. select an original set of R variables;
2. estimate the minimum number S of state variables that could keep most of the infor-

mation contained in the original ones;
3. transform the initial set of R variables into a set of S state variables.

Step 1 fully depends on the series itself, and on the experience of the user, as we will see
in the examples below.  Steps 2 and 3 are separated because the dimension S of a possible
state space depends on the initial data, and not on how (by which method or algorithm)
they could be transformed into another set.

The procedure described above is somewhat standard in statistical data analysis.  In
particular, PCA (Principal Component Analysis) is widely used to reduce the number of
variables, with the same goal.  Unfortunately, PCA is a purely linear projection method
that is unable to catch non-linear relations between data.  For example, 2-dimensional
data points forming a circle cannot be projected on a 1-dimensional axis (a line) without
"flattening" the circle, i.e. projecting points from the two half-circles on the same coordi-
nates on the axis.  This is a strong drawback that is particularly restrictive when dealing
with highly non-linear data as in financial time series.  In this work we adopted a method
that can be viewed as a non-linear projection.

2.3. Intrinsic dimension

One of the key points of the method is to estimate the number S of state variables that
will be used for a good prediction.  We start with a large number of past values of the
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series.  Together with the exogenous variables, they form the initial regressor.  The size
of this vector is the regressor order of the model.  In order to determine the optimal
regressor order, we will use the notion of intrinsic dimension of a set of points.  Without
going into mathematical details, the intrinsic dimension of a data set can be defined as
the minimum number of coordinates that would be necessary to describe the data without
loss of information, if these coordinates were measured on curved axes.  For example the
intrinsic dimension of a set of points forming a string in dimension 2 (or higher) is 1, and
the intrinsic dimension of a set of points forming a non-planar surface in dimension 3
(like the well-known horseshoe distribution - see Fig. 1) is 2.

First we build a regressor of size R = N+P with the N last past values of the raw time
series and the P exogenous variables (see Eq. (2)). This vector will have to be sufficiently
large (both in N and P) to contain all information necessary to a good prediction. One
possible solution is to take the optimal regressor for an ARX linear model (Ljung, 1987).
Indeed this one is built in such a way that it contains “sufficient” information when used
with a linear prediction method, and will thus contain enough information too when used
with a potentially more powerful non-linear prediction method.  A larger vector can be
taken for more security, but will make the rest of the work more difficult. Such a
regressor is built for each known time step; the vectors are laid out as rows in a matrix
called regressor matrix (or Hankel matrix when there are no exogenous variables). 

Since it is supposed that there is an excess of information in the regressor, we will try
to reduce its dimension.  Step 2 in the above scheme consists in estimating an optimal
reduced dimension (the number S of state variables), which will be identified to the
intrinsic dimension of the set of points (the regressors) in a N+P -dimensional space.
This value will be further referred as the intrinsic dimension of the regressor matrix. It
can be interpreted as the number of "non-linearly independent" columns of this matrix:
there is a non-linear transformation that makes it possible to rebuild entirely the initial
matrix from S columns.

To estimate the intrinsic dimension of the regressor matrix, we use the Grassberger and
Procaccia method (Grassberger and Procaccia, 1983); many other methods can however
be used to estimate an intrinsic dimension (Takens, 1983; Theiler, 1990; Alligood et al.,
1997).  It must be mentioned that the concept itself of non-linear dependency is difficult
to define.  Therefore the intrinsic dimension found by these methods can vary; in difficult

Fig. 1. Horseshoe distribution.
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situations, it may be worthwhile to use several methods in order to assess their results.
The intrinsic dimension can be a non-integer value; in the following, we will use the
integer value nearest to the intrinsic dimension as an approximation of the regressor
order defined above.

2.4. State vector

The next step consists in building a reduced state vector of size S from each of the ori-
ginal N+P -dimensional regressors.

The set of points defined by the rows of the original regressor matrix form a S-surface
in a N+P -dimensional space.  If we unfold this S-surface by projecting the N+P -dimen-
sional space onto a S-dimensional one, keeping the topology of the initial set, we obtain a
S-dimensional regressor matrix that can be used for further prediction.

Many non-linear “projection” methods exist.  Kohonen’s self-organising map is pro-
bably the most widely known example (Kohonen, 1995).  Yet in our experiments we will
use another method, the Curvilinear Component Analysis (CCA) (Demartines and
Hérault, 1997); unlike the Kohonen maps, this method does not make any assumption on
the shape of the projection space, and was found to give better results in our application.

The reduced S-dimensional state vector is then used as input vector x in the RBF model
defined by equation (3).  

3. An artificial example

In order to test the above method, we build an artificial time series from the non-linear
equation

(4)

Obviously, the non-linear regressor order of this time series is 2 (it is generated from 2
past values). Let us note the lack of a xt-1 term, as well as the presence of a noise εt (about
10% of the maximum value of the series).  The series does not contain any exogenous
variable (P = 0), and is shown in Figure 2.

Fig. 2. Artificial time series generated according to equation (4).

xt 1+ axt
2 bxt 2– εt.++=
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We begin by looking at the results of a forecasting by a linear (auto-regressive - AR)
model on this series. Figure 3 shows the sum (on 1000 points) of the quadratic errors
obtained with a linear AR model of increasing order.  Obviously, the error decreases with
the order.  However, it is also evident from Figure 3 that a linear model cannot catch the
non-linear dynamics with a low regressive order (although only two past values are used
to build the series).

We then proceed by using the non-linear methodology described above. To ensure that
the whole dynamics of the series is collected, we build an initial regressor matrix of order
6.  The Grassberger-Procaccia algorithm to estimate the intrinsic dimension of the series
gives 2.12, which is close to the exact value 2.  Note that the noise εt added to the series
inevitably increases the intrinsic dimension.

The following step of the method is the projection of the set of the points (rows of the
regressor matrix) from R6 to R2. The dimension of the final regressor vector is thus 2.  

In a next step we uses this 2-dimensional regressor as input to a non-linear prediction
model.  As an example, we use a Multi-Layer Perceptron with one hidden layer and five
hidden units; other non-linear models could be used.  The sum of quadratic errors
obtained with this MLP is around 5 (on 1000 points), which is significantly lower than
the errors illustrated in Figure 3 (linear model).

We also compare this result to the error obtained with a similar Multi-Layer Percep-
tron, where the input vector is the set of N last values from the raw series.  Figure 4
shows this error as a function of N.  The horizontal dotted line corresponds to the error
obtained with our method; we conclude that we obtain (for this example) an error similar
to a result obtained by trial and error on several non-linear (MLP) models, which was the
goal of our investigation.  This easiness of implementation will be valuable when dealing
with a “real-size” data set for which the non-linear regressor order is unknown.

4. Application to the BEL 20 stock market index

An interesting example of time series in the field of finance is the Belgian Bel 20 index.
As stressed in the introduction, the application of time series forecasting to financial

Fig. 3. Sum of quadratic errors (on 1000 test points) obtained with an AR model
for different values of the regressor order.
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market data is a real challenge. The efficient market hypothesis (EMH) remains up to
now the most generally admitted one in the academic community, while essentially chal-
lenged by the practitioners. Under EMH, one of the classical econometric tools used to
model the behaviour of stock market prices is the geometric Brownian motion. If it does
represent the true generating process of stock returns, the best prediction that we can
obtain of the future value is the actual one (they follow a random walk). Results pre-
sented in this section must therefore be analysed with a lot of caution.  

To succeed in determining the variations of the Bel 20 index, other variables that could
be of influence are included as inputs (exogenous variables).  We selected international
indices of security prices (SBF 250, S&P500, Topix, FTSE100, etc), exchange rates
(Dollar/Mark, Dollar/Yen, etc.), and interest rates (T-Bills 3 months, US Treasury Cons-
tant Maturity 10 years, etc.).  

We used 2600 daily data of the Bel 20 index over 10 years to have a significant data
set.  The problem considered here is to forecast the sign of the variation of the Bel 20
index at time t+5, from available data at time t.

According to Refenes et al. (1997) and Burgess (1995), we use 42 technical indicators
directly resulting from the inputs and the exogenous variables, for example:

• xt , xt-10, xt-20, xt-40, …, yt , yt-10, …: returns;

• xt - xt-5, xt-5 - xt-10, …, yt - yt-5, …: differences of returns;

• K(20), K(40), … : oscillators;

• MM(10), MM(50), … : moving averages;

• MME(10), MME(50), … : exponential moving averages;

• etc.

If we carry out a Principal Component Analysis (PCA) on these 42 variables, we note
that 95% of the original variance is kept with the first 25 principal components: 17 varia-
bles can be removed without significant loss of information.  The PCA is used to facili-
tate the subsequent processing by the CCA algorithm (lower computational load and
better convergence properties).

The time series of the target variable, xt+5, whose sign has to be predicted, is illustrated
in Figure 5.

Fig. 4. Sum of quadratic errors (on 1000 points) obtained with a MLP network for different
values of the regressor order.  The horizontal line corresponds to the result of the proposed method.
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This variable has to be predicted using the resulting 25 variables selected after PCA.
The interpolator we use is a Radial-Basis Function (RBF) network as described in
Section 2.1. Our interest goes to the sign of the prediction only, which will be compared
to the real sign of the target variable. 

The procedure described in Section 2.3 is used to estimate the intrinsic dimension of
the data set; we obtain an approximate value of 9.  We then use the CCA algorithm to
project the 25-dimensional data (after PCA) on a 9-dimensional space.  The RBF inter-
polator is used on the resulting 9-dimensional input vectors.

The network is trained with a moving window of 500 data.  Each of these data consists
in a 9-dimensional input vector (see above) and a scalar target (variation of the Bel 20
index).  We use 500 data as a compromise between 

• a small stationary set but insufficient for a successful training, and
• a large but less stationary training set.  
For each window, the 500 input-target pairs form the training set, while the test set

consists in the input-target pair right after the training set.  This procedure is repeated for
2100 moving windows. On average, we obtain 60.3% correct approximations of the sign
of the series on the training sets, and 57.2% on the test sets.  

These results are encouraging.  Moreover, it can be seen that better results are obtained
during some periods and worst results during others.  The first ones correspond to time
periods where the series is more stationary.  Figure 6 represents a moving average on
90 days on the results of the prediction. It clearly shows that the prediction results them-
selves do not form a random series: when the forecasting is correct over several consecutive
days, the probability that it will be correct at the next time step is high.

To quantify this idea, we filter the results with the following rule.  We look at the
average of sign predictions (correct – not correct) over the last 5 days.  If this average
increases or remains constant at time t, then we keep the forecasting at time t+1.  If it
decreases, then we disregard the forecasting at time t+1.  With this method, we keep
75.4% of the forecasts; the average score of correct prediction raises to 65.3% (about

Fig. 5. Time series of the target variable. 
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70% of increases and 60% of decreases).  This way of working a first attempt to use our
mathematical procedure in a real-world financial context.

5. Conclusion

We developed a method to predict time series with non-linear tools.  The specificity of
the method is: 

• to use as much information as possible as input to the model (many past values of 
the series, many exogenous variables);

• to compress this information (by a non-linear method) in order to obtain a state vec-
tor of limited size, facilitating the subsequent regression and the generalization abi-
lity of the forecasting algorithm;

• to fit a non-linear regressor (here a RBF neural network) on the reduced vectors.
We show that this method is able to find non-linear relationships in artificial and real-

world financial series.  On a difficult task, which consists in forecasting the tendency of the
Bel 20 stock market index, we show that this method improves the results compared both to
linear models and to non-linear ones where the non-linear compression is not used.  

From the financial point of view, the results seem sufficiently strong to question the
random walk hypothesis (such conclusions are, for example, also reached by Brock et al.
(1992) by using a set of classical technical analysis rules).  However a lot of work
remains to be done. In particular, the statistical significance of the results should be care-
fully evaluated; a bootstrap procedure like the one proposed by Sullivan et al. (1999)
(reality check bootstrap) to take into account the real danger of data snooping (Lo, 1990)
could be used. From a theoretical point of view, it is not so clear that the results challenge
the EMH hypothesis. Neural networks and independent component analysis are really
new statistical tools that were not available to the financial communities (at least the Bel-
gian one) during the analysed period. If the EMH hypothesis holds, the forecasting
power observed during the past period (if proved to be statistically significant) would be
washed out with its diffusion in the financial community. 

Fig. 6. Percentage of correct approximations on a 90-days moving set.
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