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Abstract: - In this paper is offered a method for non-linear still image representation based on pyramidal 

decomposition with a neural network. This approach is developed by analogy with the hypothesis for the way 

humans do image recognition using consecutive approximations with increasing similarity. A hierarchical 

decomposition, named Inverse Difference Pyramid (IDP), is used for the image representation. The 

approximations in the consecutive decomposition layers are represented by the neurons in the hidden layers of 

the neural networks (NN). This approach ensures efficient description of the processed images and as a result – 

a high compression ratio. This new way for image representation is suitable for various applications (efficient 

compression, multi-layer search in image databases, etc.). 
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1 Introduction 
The solutions of the problems concerning the 

efficient still image representation depend on the 

application: medicine, digital libraries, electronic 

galleries, geographic information systems, 

documents archiving, digital communication 

systems, etc.  

Two basic forms for digital image presentation 

are widely used – the primary (not compressed) and 

the secondary forms, obtained from the primary one 

and based on some kind of compression [1-6]. The 

primary form for digital image presentation is the 

matrix. The secondary forms are based on various 

techniques: multi-dimensional vectors, pyramids, 

linear prediction with fixed coefficients, linear 

orthogonal transforms, discrete wavelet transforms, 

fractal transforms, tree structures, algebraic models, 

models for visual information perception, etc.  

Another form is the vector representation, used 

for image compression with vector quantization and 

for image analysis and recognition based on 3-

dimensional color features, textural features, K-

dimensional color histograms, multi-dimensional 

shape features, RST-invariant features, R-tree, etc.  

The pyramidal representation describes the 

image with progressively increased resolution, 

which corresponds to the layers of the Gaussian-

Laplacian Pyramid. The derivatives of this 

representation are the Reduced Sum/Difference 

pyramid; the S-transform pyramid, the Hierarchy-

Embedded Differential Pyramid; the Least Square 

Pyramid, the Morphological Pyramid, etc. This 

group of pyramids is called over-complete because 

the data needed for the full pyramid representation 

is larger than that for the non-compressed image.  

The Orthogonal pyramids are non-over-complete: 

they are based on Wavelets or Contourlets functions 

and have higher efficiency and computational 

complexity than pyramids from the first group.  

The spectral image representation is based on 

orthogonal transforms: statistical (Karhunen-Loeve 

Transform, Principle Component Analysis, 

Independent Component Analysis, Singular Value 

Decomposition) and determined (Discrete Fourier 
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Transform, Discrete Cosine Transform, Walsh-

Hadamard Transform, Hartley Transform, Lapped 

Orthogonal Transform, Slant Transform, etc.). In 

this group could be included the new algebraic 

image transform based on 2D angular windowing 

functions, which is suitable for the synthetic shape 

local phase and orientation evaluation.  

The knowledge-based models for image 

representation are used mostly in the systems for 

Visual Information Retrieval. The main approach 

for image representation used is the pyramid model 

of 4 layers, which contain correspondingly: the 

primary matrix, the features vectors, the description 

of the relations between the features and the 

semantic image structure. One more approach for 

image representation is the perceptual one, based on 

anisotropic filtration controlled by the Human 

Visual System (HVS) visual attention model. 

The requirements on the object representation 

models are contradictory: minimum features number 

and invariability together with exact description, low 

computational complexity, etc. The methods, 

described above, solve these problems to some 

degree, but can’t achieve the best balance, because 

they are not flexible enough (they do not involve 

learning and feedback procedures). The state-of-the-

art analysis shows that there still exist unexplored 

possibilities for a wider cognitive approach in the 

creation of the object representation model and the 

context-based retrieval.  

The main disadvantages of the image 

representation methods, described above, are the 

relatively poor use of the image content knowledge 

obtained through learning, and the too complicated 

cognitive structures used.  

A group of methods for image representation, 

based on the use of artificial neural networks (NN) 

[7-15] had recently been developed. Unlike the 

classic methods, this approach is distinguished by 

higher compression ratios because the NN training 

is performed together with the coding.  The results 

already obtained show that these methods can not 

successfully compete with the still image 

compression standards, JPEG and JPEG2000 [3]. 

For example, the Adaptive Vector Quantization 

(AVQ), based on SOM NN [8, 13], requires the use 

of code books of too many vectors, needed to ensure 

high quality of the restored image and this results in 

lower compression. 

In this paper is presented one new approach for 

non-linear image representation based on pyramidal 

decomposition with neural network. This approach 

is based on the analogy with the hypothesis for the 

way humans do image representation using 

consecutive approximations with increasing 

resolution. Significant elements of the new 

representation include the use of feedback, which 

provides iterative change of the cognitive models’ 

parameters in accordance with the data similarity 

results obtained. 

 

 

2 General Principles of the IDP 

Decomposition 
Mathematically the digital halftone image is usually 

represented as a matrix of size H×V, whose 

elements j)b(i, correspond to the image pixels; i 

and j define the pixel position as a matrix row and 

column and b is the pixel brightness. The halftone 

image matrix [B(i,j)] is defined as: 


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The essence of the IDP decomposition for 8-bit 

grayscale images is presented as follows. First, the 

digital image is processed with two-dimensional 

(2D) Direct Orthogonal Transform (DOT) using a 

limited number of coefficients. The values of the 

coefficients, calculated in result of the transform, 

constitute the lowest pyramid level. The image is 

then restored with the Inverse Orthogonal 

Transform (IOT) using only the retained 

coefficients’ values. The first (coarse) 

approximation of the original image is obtained, 

which is then subtracted pixel by pixel from the 

original one. The difference image, which is of same 

size as the original, is divided into 4 sub-images and 

each is then processed again with the 2D DOT. The 

values of the so-calculated coefficients constitute 

the second pyramid layer. The processing continues 

in similar way with the next pyramid layers. The set 

of coefficients of the orthogonal transform, retained 

for every pyramid layer, can be different and define 

the restored image quality. The image 

decomposition stops when the needed quality for 

approximating the image is obtained – usually 

earlier than the last possible pyramid layer. The 

values of the coefficients obtained as a result of the 

orthogonal transform from all pyramid layers are 

then sorted in accordance with their spatial 

frequency, scanned sequentially, and losslessly 

compressed.  

The IDP decomposition used in practice, is 

usually “truncated”, i.e. it starts from some of the 

higher layers and for this, the discrete original image 
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is divided into blocks (sub-images), represented as 

matrices [B(2n)] of size m×m (m=2n). After that, 

each block is represented by an individual pyramid, 

whose elements are defined by the already described 

recursive calculations. The number р of the IDP 

layers is in the range 0 ≤ p≤ n-1. The case p = n-1 

corresponds to complete pyramidal decomposition 

of maximum number of layers, for which the image 

is restored without error (all decomposition 

components are used).   

In correspondence with the described principle, 

the matrix ]B[
0k  of one image block could be 

represented as a decomposition of (n+1) 

components: 

]E[]E
~

[]B
~

[]B[
n1p00 k

1n

1p
kkk +∑+=

−

=
−

                   (2) 

for  kp=1,2,..,4pK  and  p=0,1,...,n-1. 

Here kp is the number of the sub-matrices of size 

mp×mp (mp=2n-p) in the IDP layer р; the matrices 

]B
~

[
0k  and ]E

~
[

1pk −
 are the corresponding 

approximations of ]B[
0k  and ]E[

1pk −
; ]E[

nk  is the 

matrix, which represents the decomposition error in 

correspondence with Eq. (2), for the case, when 

only the first n components are used.  

The matrix ]E[
1pk −

 of the difference sub-block 

kp-1 in the IDP layer р is defined as:  

]E
~

[]E[]E[
2p2p1p kkk −−−

−= ,                              (3) 

for p = 2,3,..., n-1. In this case p = 1: 

]B
~

[]B[]E[
000 kkk −=                                     (4) 

The matrix ]E[
1pk −

 of the difference sub-block in 

the layer р is divided into 4pK sub-matrices ]E[
pk  

and for each is then calculated the corresponding 

approximating matrix ]E
~

[
pk . The submatrices 

]E
~

[
pk  for kp=1,2,...,4pK define the next 

decomposition component (p+1), represented by Eq. 

(2). It is necessary to calculate the new difference 

matrix for this and then perform the same operations 

again, following the already described order. 

 

 

3 Image Representation with NN-

Controlled IDP 
The new method for image representation is based 

on one modification of the IDP decomposition, in 

which the direct and inverse transforms in all layers 

are performed by using 3-layer neural networks with 

error back propagation (BPNN) [7]. A 3-layer 

BPNN structure of the kind m2 × n × m2 was chosen 

for this application, as shown in Fig. 1. The input 

layer has m2 elements, which correspond to the 

input vector components; the hidden layer has n 

elements for n < m2, and the output layer has m2 

elements, which correspond to the output vector 

components. The input m2-dimensional vector is 

obtained as a result of the transformation of the 

elements m (i, j) of each image block of size m × m 

into one-dimensional massif of length m2. 
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Fig. 1.  A 3-layer BPNN with nn < m2 neurons in the 

hidden layer and m2 neurons in the input and output 

layers 

In order to obtain higher efficiency, the processed 

image is represented by the sequence of m2-

dimensional vectors K21 X,...,X,X
rrr

 are then 

transformed into the n-dimensional corresponding                   

vectors, K21 h,...,h,h
rrr

. The components of the 

vectors kh
r

 for k=1,2,..K, correspond to the neurons 

in the hidden layer of the trained 3-layer BPNN. In 

the output NN layer, the vector kh
r

 is transformed 

back into the m2-dimensional output vector kY
r

, 

which approximates the input vector, kX
r

. The 

approximation error depends on the training 

algorithm and on the BPNN parameters. The 

training vectors, K21 X,...,X,X
rrr

 at the BPNN input 

for the decomposition layer p = 0 correspond to the 

starting image blocks. The algorithm of Levenberg-

Marquardt (LM) was chosen for training [8], which 

ensures good efficiency in cases when high 
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accuracy is not required - i.e., it is suitable for the 

presented approach.   

The parameters of the 3-layer BPNN define the 

relations between the inputs and the neurons in the 

hidden layer and between the neurons from the 

hidden and the output layers. These relations are 

represented by using weight matrices and vectors, 

which contain threshold coefficients and by 

functions for non-linear vector transforms. The 

relation between the input m2-dimensional vector 

kX
r

 and the corresponding n-dimensional vector kh
r

 

in the hidden BPNN layer for the IDP layer p = 0 is: 

 )bX]W([fh 1k1k

rrr
+=  for k =1,2,..K,             (5) 

 where, 1]W[  is the matrix of the weight coefficients 

of size m2 × n, which is used for the linear transform 

of the input vector kX
r

; 1b
r

 is the n-dimensional 

vector of the threshold coefficients in the hidden 

layer and f(x) is a linear activating sigmoid function 

defined by the relation: 

    )e1/(1)x(f x−+= .                                     (6) 

In result the network performance becomes 

partially non-linear and this dependence is stronger 

when x is outside the range [-1.5, +1.5].  

The relation between the n-dimensional vector 

kh
r

 of the hidden layer and the m2-dimensional 

BPNN vector kY
r

 from the IDP layer p = 0, which 

approximates kX
r

, is defined in accordance with Eq. 

(5) as follows: 

     )bh]W([fY 2k2k

rrr
+=  for k =1,2,..K              (7) 

where 2]W[  is a matrix of size n × m2 representing 

the weight coefficients used for the linear transform 

in the hidden layer of the vector kh
r

, and 2b
r

 is the 

m2-dimensional vector of the threshold coefficients 

for the output layer. Unlike the pixels in the halftone 

images, whose brightness is in the range ]255,0[ , 

the components of the input and output BPNN 

vectors are normalized in the range ]1,0[)k(y),k(x ii ∈  

for i=1, 2,.., m2. The components of the vector, 

which represents the neurons in the hidden layer 

]1,0[)k(h j ∈ , for j=1, 2,.., n are placed in the same 

range because they are defined by the activating 

function, ]1,0[)x(f ∈ . The normalization is 

necessary, because it enhances the BPNN efficiency 

[8]. 

The image representation with IDP-BPNN 

comprises two consecutive stages:  

1) BPNN training;  

2) Coding of the obtained output data.  

For the BPNN training in the IDP layer p = 0, the 

vectors kX
r

 are used as input and reference ones, 

which are compared to the corresponding output 

vectors. The comparison result is used to correct the 

weight and the threshold coefficients so as to obtain 

a minimum MSE (mean square error). The training 

is repeated until the MSE value for the output 

vectors becomes lower than some predefined 

threshold. 

The vectors obtained after dividing the 

difference block ]E[
1pk −

 (or sub-block) into 4pK 

sub-blocks and their transformation into 

corresponding vectors are used for the training of 

the 3-layer BPNN in the next IDP layers (p > 0). 

The BPNN training for each layer p > 0 is 

performed in the way already described for the layer 

p = 0.   

In the second stage, the vectors in the hidden 

BPNN layers for all decomposition layers are coded 

losslessly with entropy coding [6]. The block 

diagram of the pyramid decomposition for one 

block of size m×m with 3-layer BPNN for 

decomposition layers p = 0, 1, 2 and entropy 

coding/decoding is shown in Fig. 2.  

When the BPNN training is finished for each 

layer, p are defined for the corresponding output 

weight matrix [W]p and the threshold vector [b]p. 

The coded data, which are later transferred to the 

decoder, comprise the following information. 

• The vector of the threshold coefficients for the 

neurons in the output NN layer (common for all 

blocks in the layer p); 

• The matrix of the weight coefficients, which 

represents relations between the neurons in the 

hidden layer towards the output BPNN layer 

(common for all blocks in the layer p); 

• The vector of the neurons in the hidden BPNN 

layer, personal for each block in the layer p. 

In the decoder is performed the entropy decoding 

(ED) of the compressed data. After that the BPNN 

in the layer p is initialized setting the values of the 

threshold coefficients for the neurons in the output 

layer and of the weight coefficients for the neurons, 

connecting the hidden and the output layers.  

At the end of the decoding, the vector of neurons 

in the hidden BPNN layer, has each block 

transformed into the corresponding output vector. 

The so obtained output vectors are used for the 

restoration of the processed image. 
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4 IDP-BPNN Algorithm  
The IDP-BPNN algorithm for grayscale images 

comprises the steps, given below: 

Coding: 

Step 1. The input halftone image is represented 

as a matrix of size H×V, 8bpp; 

Step 2. The input image matrix is divided into K  

blocks of size m×m (m=2n). The value of m is 

selected so that to retain as much as possible the 

correlation between the block pixels (for big images 

of size 1024×1024 or larger, this block is usually 

16×16 or 32×32, and for smaller images it is 8×8); 

Step 3. The matrix of every block (sub-block) of 
p2 2/m  elements in the layer р is transformed into 

the input vector of size 1)2/m( p2 × . The so obtained 

K4p  input vectors build a matrix of 

size K4)2/m( pp2 × , which is used for the BPNN 

training and as a matrix of the reference vectors, 

which are then compared with the BPNN output 

vectors; 

Step 4. The matrix used for the BPNN training is 

normalized – transforming its range [0,255] into 

[0,1]; 

Step 5. The training function of the NN is 

defined; 

Step 6. The BPNN working function is set, i.e., 

the mse function; 

Step 7. The criterion for the end of the BPNN 

training is defined by setting the MSE threshold 

value or by setting the possible maximum number of 

training cycles. 

At the end of the training, the following information 

is saved in a special file:  

- The neurons of the hidden layer, which in 

general are different for every block (sub-block); 

- The threshold coefficients for the output layer; 

- The matrix of the weight coefficients between 

the hidden and the output BPNN layers. 

Step 8. The data, described in Step 7 is losslessly 

coded (entropy coding) and is saved in a special file, 

which contains the compressed data for each of the 

consecutive layers. 

Step 10. The decomposition stops when the 

module of the approximation error (Eq. 3) becomes 

smaller than the pre-defined threshold value, or 

when the highest possible (or set) layer is processed. 

Step 11. The coded data for all decomposition 

layers is gathered in a common file. 

Decoding: 

Step 1. The common file is loaded in the decoder; 

Step 2. The data, which corresponds to the 

consecutive layers, is separated; 

Step 3. For every decomposition layer p are 

decoded: the values of the neurons in the hidden 

layer for each block (sub-block), the threshold 

coefficients and the matrix of the weight 

coefficients for the corresponding output BPNN 

layer; 

Step 4. The components of the vector for each 

block (sub-block) in the output BPNN layer are 

restored;  

Step 5. The output BPNN vector is transformed 

into the block (sub-block) matrix; 

Step 6. The range [0, 1] of the matrix elements is 

transformed back into [0, 255]; 

Step 7. The matrices from all decomposition 

layers maxp,..,1,0p = are summed, and in result the 

restored image is obtained. 

For the image representation in accordance with 

the IDP-BPNN method was developed new format, 

which contains information about the 3 main BPNN 

components for every layer, as follows:  

• The vector of the values of the neurons in the 

hidden layer – personal for each block/sub-block;  

•  The vector of the threshold coefficients for the 

output layer – common for all blocks/sub-blocks;  

•  The matrix of the weight coefficients for the 

output layer - common for all blocks/sub-blocks.  

 

 

5  Experimental results 

The presented IDP-BPNN algorithm was simulated 

with MATLAB. The simulation (coding/decoding) 

was accomplished by following the already 

described steps. For the experiments with the IDP-

BPNN algorithm were used test images of size 

224×352, 8 bpp (i.e. 78 848 B). Some of the original 

test images are shown in Fig. 3 and the 

corresponding images obtained after the processing 

– in Fig. 4.  

In the initial IDP layer p = 0 the image was 

divided into K blocks of size 8×8 pixels, (K=1232). 

At the BPNN input for the layer p = 0 was passed 

the training matrix of the input vectors of size 

64×1232 = 78 848. In the hidden BPNN layer, the 

size of each input vector was reduced from 64 to 8.   

The restoration of the output vector in the 

decoder was performed using these 8 components, 

together with the vector of the threshold values and 

the matrix of the weight coefficients in the BPNN 

output layer. For the layer p = 0, the size of the data 

obtained was 83 456 B, i.e. - larger than that of the 

original image (78 848 B). As it was already pointed 

out, the data has high correlation and this ensures 

efficient compression with entropy coding. For 

example, the compressed data size for the same 
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layer (p=0) of the test image 

“Grayscale_forest010032.bmp” is 1510 B (the 

result is given in Table 1). Taking into account the 

size of the original image, the compression ratio 

CR=52,21 is calculated.  

The Peak Signal to Noise Ratio (PSNR) for the 

first test image Grayscale_forest010032.bmp for 

p=0 (Table 1) is PSNR = 23,45 dB. In the same 

table are given the compression ratios obtained with 

IDP-BPNN for other 18 test images of same size 

(224×352). It is easy to see that for the mean 

compression ratio CR = 52,13 is obtained 

PSNR>22,52 dB, i.e. the visual quality of the 

restored test images is suitable for various 

applications. Better image quality is obtained when 

the next pyramid layers are added. 

     In Table 2 are given the results for the group of 

18 test images of the kind “forest” after IDP-BPNN 

compression, implemented with MATLAB. The 

results obtained (Table 2) show that IDP-BPNN 

method performance for group of similar test 

images surpasses that for single images (Table 1). In 

the same table are given the results obtained using 

the JPEG 2000-based compression for the same test 

images. The results show that the CR and the 

PSNR are a little higher for IDP-BPNN than for 

JPEG 2000.  

Table 1. Results obtained for 18 test images from 

the group named “forest” after IDP-BPNN 

compression (78 848 Bytes for each original image). 

Image 

No. 

CR PSNR 

[dB] 

Bits per 

pixel (bpp) 

Compressed 

file size [B]

1 52.21 23.45 0.1532 1510 

2 52.42 23.05 0.1526 1504 

3 51.53 19.10 0.1552 1530 

4 50.54 17.14 0.1583 1560 

5 52.35 22.71 0.1528 1506 

6 52.35 19.72 0.1528 1506 

7 53.06 22.28 0.1508 1486 

8 52.49 23.40 0.1524 1502 

9 52.85 31.63 0.1514 1492 

10 51.80 21.55 0.1544 1522 

11 52.21 21.92 0.1532 1510 

12 52.21 22.28 0.1532 1510 

13 52.35 19.87 0.1528 1506 

14 51.73 19.50 0.1546 1524 

15 52.43 22.31 0.1526 1504 

16 52.08 23.67 0.1536 1514 

17 52.49 28.07 0.1524 1502 

18 51.20 23.63 0.1563 1540 

Mean 52.13 22.52 0.1535 1513 

 

Thus, the results obtained show higher 

compression ratio CR = 63,21 for a group of images 

than the mean compression ratio CR=52,13 obtained 

after individual processing of the same test images.  

     The NN architecture used for the experiments 

comprises 64 neurons in the input layer, 8 neurons 

in the hidden layer, and 64 neurons in the output 

layer for the zero decomposition level. The chosen 

ratio for the input vectors was correspondingly: 80% 

for Training; 10 % for Validation, and 10% for 

Testing. 

Table 2. Results obtained for a group of 18 test 

images of the group “forest” after IDP-BPNN 

compression (1419264 B for the whole group). 

Image Image 

size 

CR PSNR 

[dB] 

File size

 [B] 

 Original  6336×224 - - - 

IDP-BPNN 6336×224 63.21 21,35 22 452 

 JPEG2000 6336×224 63.00 21,02 22 528 

In Fig. 5 are shown the restored images of the 

test image “Boy” after compression using 5 

methods: IDP-BPNN, JPEG and JPEG 2000. 

MATLAB (im2jpeg, imwrite) and Lura Smart 

Compress (JPEG and JPEG 2000) were used for 

these experiments.  

The results obtained for several test images are 

given in Table 3.  

In Fig. 6 are shown the results (restored images 

and enlarged parts) for the test image “Boy” after 

compression with JPEG 2000 and IDP-BPNN. The 

conditions in both cases are similar: CR = 60 and 

PSNR = 29 dB. It is easy to notice that for same 

compression and PSNR the image processed with 

IDP-BPNN is not as blurred as that, processed with 

JPEG 2000, i.e. the quality evaluation with PSNR in 

this case does not correspond to human perception.  

The IDP-BPNN method is suitable for coding of 

uncompressed images represented in RGB sampling 

format 4:4:4. In this case, it is necessary to 

transform the image first into the YCrCb sampling 

format 4:2:0 and then apply the IDP-BPNN on each 

component individually. The decoding is performed 

in reverse order. The experiments with such images 

confirmed the efficiency of the method.  

In Fig. 7 are shown the results for the color test 

image “Lena” (512×512 pixels, 24 bpp) – the 

restored images obtained for same compression 

(CR>60) with the IDP-BPNN method and with 

JPEG.  

The experiments with high-resolution (satellite) 

images are very promising because they give high 

compression ratio for retained visual quality (PSNR 
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higher than 30 dB) after decoding. For example, an 

image of size 8192×8192 pixels was restored with 

retained visual quality after CR > 120 [16], while 

equivalent visual quality was obtained for CR<100 

with JPEG 2000. 

 

 

6 Conclusion 
In this paper is presented one new approach for non-

linear image representation based on NN-controlled 

pyramidal image decomposition. The method is 

similar to the way in which humans recognize 

images – starting with a coarse approximation and 

continuing with successively closer approximations 

until the needed result is obtained. Another analogy 

is provided by the training procedure – just like 

humans, the method requires some training before 

recognition – the better the training, the better the 

recognition results.  

The method is asymmetric (the coder is more 

complicated than the decoder) and this determines it 

mostly in application areas, which do not require 

real time processing – i.e. applications, for which 

the training time is not crucial. 

The experimental results show that for the same 

compression, the image approximations obtained 

using the IDP-BPNN method have better visual 

quality than the compression standard JPEG 2000. 

The method could be successfully applied for the 

efficient representation of images and for layered 

image search in large databases. 

The future development of the method is aimed at 

the preliminary definition of the basic NN 

parameters (i.e. the training to be done in advance). 

This is to be accomplished for some large image 

classes (medical images, texts, natural pictures, 

faces, fingerprints, etc.). This will solve the 

difficulties due to the main disadvantage of the IDP-

BPNN method – the need for long training time and 

will permit real-time applications. 
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            Fig. 2. Block diagram of the 2-layer inverse pyramidal image decomposition with 3-layer BPNN.  

            Here [b]p – the vector of the threshold coefficients in the output layer for p=0,1,2; [W]p – the matrix of   

            the weight coefficients between the hidden and the output BPNN layer for p=0,1,2. 
 

 

 

Fig. 3. The original test images 
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Fig.4. The restored images after IDP-BPNN compression whit mean compression ratio CR = 52,13 

 

 

                               

                           Original                        IDP-BPNN: p=0;CR=60.4;PSNR=29    JPEG (im2jpeg):CR=29.6;PSNR=28.89 

                                                         

      JPEG (imwrite): CR=28.4 PSNR=29.34  LURA JPEG: CR=28.4 PSNR=29.33  LURA JPEG2000: CR=50 PSNR=29.15 

Fig. 5. The restored image “BOY”, after compression with 5 methods 
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                                                             a      b 

    

c                                               d 

                    Fig. 6. The test image “Boy” after processing with JPEG 2000 (a,b) and IDP-BPNN(c,d) 
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             a. Original test image “Lena”                    b. IDP - BPNN                                   c. JPEG  

                512 x 512 pixels, 24 bpp         CR = 65,22; PSNR = 29.90 dB       CR = 66,49;  PSNR = 28.97 dB) 

                               Fig. 7 Results for the test image Lena_color.bmp (512×512 pixels, 24 bpp)                

 

    

 Table 3. Results for several test images after compression with different methods performed with 

MATLAB and Lura Smart Compress. 

MATLAB LuraWave SmartCompress  

AIDP-

BPNN 
JPEG 

(im2jpeg) 

JPEG 

(imwrite) 

JPEG 2000 Lura JPEG Lura 

JPEG2000 

 

Image 

CR PSNR CR PSNR CR PSNR CR PSNR CR PSNR CR PSNR

Boy 60.40 29.05 29.6 28.99  28.47  29.34 25.23 28.97 28.48 29.33 50.04 29.15 

Fruit 60.29 32.89 30.53 33.01 31.67  32.78 32.64 32.69 31.67 32.78 60.00 33.11 

Vase 60.18 26.83 37.66 26.72 35.18  27.01 35.75 27.20 35.18 27.00 70.04 27.07 

Clown 60.01 31.81 30.43 31.88 31.36  31.88 31.71 31.47 31.37 31.88 60.03 31.87 

Peppers 60.23 30.94 37.63 31.17 36.80  31.17 38.39 30.70 36.81 31.16 80.02 30.85 

Text1 60.23 18.69 19.09 19.00 20.12  18.89 17.86 18.35 22.37 18.23 30.02 18.21 

Lena  59.57 29.15 30.48 29.53 30.75  29.53 32.10 29.20 30.75 29.52 60.03 29.31 
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