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SUMMARY
We investigate the use of general, non-l2 measures of data misfit and model structure
in the solution of the non-linear inverse problem. Of particular interest are robust
measures of data misfit, and measures of model structure which enable piecewise-
constant models to be constructed. General measures can be incorporated into
traditional linearized, iterative solutions to the non-linear problem through the use
of an iteratively reweighted least-squares (IRLS) algorithm. We show how such an
algorithm can be used to solve the linear inverse problem when general measures of
misfit and structure are considered. The magnetic stripe example of Parker (1994) is
used as an illustration. This example also emphasizes the benefits of using a robust
measure of misfit when outliers are present in the data. We then show how the IRLS
algorithm can be used within a linearized, iterative solution to the non-linear problem.
The relevant procedure contains two iterative loops which can be combined in a
number of ways. We present two possibilities. The first involves a line search to
determine the most appropriate value of the trade-off parameter and the complete
solution, via the IRLS algorithm, of the linearized inverse problem for each value of
the trade-off parameter. In the second approach, a schedule of prescribed values for
the trade-off parameter is used and the iterations required by the IRLS algorithm are
combined with those for the linearized, iterative inversion procedure. These two
variations are then applied to the 1-D inversion of both synthetic and field time-domain
electromagnetic data.

Key words: inversion, non-linear problems.

There have been a number of reports of the use of robust
1 INTRODUCTION

measures of misfit in geophysical inverse problems. Claerbout

In this paper we investigate the solution of the non-linear & Muir (1973) espouse the merits of an l1 measure when a set

inverse problem using measures other than the typical sum- of observations contains outliers or ‘infinite blunders’. In the
of-squares, or l2 , measure. Our motivation is two-fold. First, context of the 1-D seismic inverse problem, Gersztenkorn,
we would like our solution to be less influenced by outliers Bednar & Lines (1986) illustrate the superiority of a solution

obtained using an l1 measure over one obtained using an l2and other non-Gaussian noise, that is to be more robust, than

when an l2 measure of data misfit is used. Second, we would measure when spikes (i.e. outliers) are present in the seismic

trace. Scales, Gersztenkorn & Treitel (1988) provide a similarlike to be able to construct models that are piecewise constant,

or ‘blocky’, and therefore more in accord with the geology of illustration of the robustness of an l1 measure in the context

of seismic tomography. Both sets of authors use an iterativelycertain regions than the smooth, ‘smeared-out’ images obtained

using an l2 measure of model structure. These two aims can reweighted least-squares algorithm. Crase et al. (1990) provide

another illustration of the benefits of robust measures of misfitbe achieved with the use of judiciously chosen measures of

data misfit and model structure, for example an l1 measure, or when they compare the results of seismic waveform inversion

using a number of robust measures and the traditional l2the measure related to the ‘most robust’ of the M-estimators

of Huber (1964). Traditional linearized, iterative inversion measure. Amundsen (1991) likewise provides a comparison for

seismic frequency–wavenumber inversion. In an application toprocedures can be modified to handle such non-l2 measures

by the inclusion of an iteratively reweighted least-squares gravity data, Beltrão, Silva & Costa (1991) use a robust

measure when fitting polynomials to observations to determinealgorithm.
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214 C. G. Farquharson and D. W. Oldenburg

the regional field. Their method uses an iteratively reweighted and discuss two procedures for solving the non-linear inverse

problem, and illustrate their behaviour and the results theyleast-squares procedure. Finally, to make their procedure more
robust in the presence of realistic noise, LaBrecque et al. (1997) produce for the 1-D inversion of time-domain electromagnetic

data.use an iteratively reweighted least-squares scheme to down-

weight the importance of outliers in their 3-D inversion of
electrical resistance tomography data.

2 GENERAL MEASURES, THE LINEAR
The use of robust measures of misfit has also led to significant

INVERSE PROBLEM AND ITERATIVELY
improvements in the processing of magnetotelluric and geo-

REWEIGHTED LEAST SQUARES
magnetic depth sounding data (see Egbert & Booker 1986;
Chave, Thomson & Ander 1987; Chave & Thomson 1989; There are numerous functions that can be used as a measure
Sutarno & Vozoff 1991; Larsen et al. 1996). The time-series of of the ‘size’ of a vector, whether the elements of that vector
the observed electric and magnetic fields from which frequency- are the misfits between observed and predicted data, or the
domain response functions are computed contain noise that parameters describing a model. Consider a vector x with
can rarely be considered as purely Gaussian. Robust measures elements x

j
, j=1, … , N. Then a general measure of its size is

of misfit therefore give much more reliable estimates of the given by
response functions than does an l2 measure.

Mention has also been made, although to a much lesser w(x)= ∑
N

j=1
r(x

j
) . (1)

extent and predominantly for linear inverse problems, of using
non-l2 measures to construct models possessing some character It can easily be seen that when r(x)=x2 this general expression

gives (the square of ) the l2 norm of the vector:other than being ‘smeared-out’ and smooth. Claerbout &
Muir (1973) put forward the possibility of obtaining sparse

dxd2
2
= ∑

N

j=1
x2
j
. (2)or piecewise-constant models by minimizing an l1 measure

of model structure. Levy & Fullagar (1981) obtain sparse
The measure in eq. (1) also includes the more general l

p
norm:models in seismic deconvolution by minimizing an l1 norm of

the model. Oldenburg (1984a) constructs minimum-structure
dxdp

p
= ∑

N

j=1
|x
j
|p , (3)models when inverting lead isotope data by minimizing an l1

norm of the model’s gradient. Oldenburg (1984b) discusses the
where 1≤p<2. Two other measures that we consider in thisuse of l1 measures of model structure and data misfit for the
paper are one related to the particular M-estimator that wasgeneral linear inverse problem. Alliney & Ruzinsky (1994)
considered the ‘most robust’ by Huber (1964), and one pro-investigate the solution of the general linear problem when an
posed by Ekblom (1973, 1987). The first of these correspondsobjective function comprising an l1 measure of model structure
toand an l2 measure of data misfit is minimized. In the context

of seismic data processing, Sacchi & Ulrych (1995, 1996)

obtain sparse solutions to Radon and Fourier transforms by r(x)=Gx2 |x|≤c ,

2c|x|−c2 |x|>c ,
(4)

considering the respective inverse transforms as linear inverse
problems and then solving by minimizing an objective function

where c is a positive constant that separates the elements ofmade up of a suitable measure of model structure and an l2 the vector x into those that are considered large and thosemeasure of misfit.
that are considered small. The large values then contributeAs yet very little use has been made of non-l2 measures of
less to this measure than they do to the l2 norm. This measuremodel structure in the solution of the non-linear geophysical
is also linked to a probability density function for x

j
that isinverse problem. There are some notable exceptions, however.

Gaussian in the centre and exponential in the tails (HuberDosso (1990) minimizes the l1 norm of the model’s vertical
1964). For the purposes of this paper we shall call the measurederivative in order to construct piecewise-constant models for
given by eqs (1) and (4) the ‘M-measure’ because of its originthe 1-D magnetotelluric problem. Dosso also uses an l1measure
amongst Huber’s M-estimators. The measure proposed byof data misfit and solves the linearized inverse problem using
Ekblom (1973, 1987) that we have found useful, especiallylinear programming. Oldenburg & Ellis (1993) and Ellis,
from a numerical point of view, is a perturbed version of theFarquharson & Oldenburg (1993) use an l1 measure to con-
l
p

norm:struct blocky models for the 2-D magnetotelluric problem.

These authors also use linear programming. r(x)= (x2+e2 )p/2 , (5)
Here we present a means of using general measures of both

where e is some positive number. As e becomes small, thisdata misfit and model structure in the solution of the non-
measure tends towards the l

p
norm given in eq. (3). For largelinear geophysical inverse problem. The technique is based on

e, the above measure behaves like a scaled sum-of-squaresthe standard linearized, iterative approach (see e.g. Constable,
measure. This can be seen from the following series expansionParker & Constable 1987; Smith & Booker 1988; deGroot-
of eq. (5) valid for large e (Ekblom 1973):Hedlin & Constable 1990), but with the solution of the system

of equations at each iteration, which is non-linear for general
r(x)=epC1+ p

2

x2
e2

+OAx4
e4BD . (6)non-l2 measures, being obtained using an iteratively reweighted

least-squares algorithm. We first introduce the measures of
misfit and model structure that particularly interest us. We Consider now a linear inverse problem that we want to

solve using the general expression in eq. (1) as a measure ofthen show how the solution to a linear inverse problem can
be obtained using an iteratively reweighted least-squares pro- both data misfit and model structure. We assume that the

model is the spatial distribution of some physical property ofcedure, and illustrate this with an example. Finally, we present
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Non-linear inversion using general measures 215

the Earth, m(r), and that it is discretized as follows: three terms in W, are not independent. Three are used only to

provide a certain aesthetic symmetry to the objective function.
We now solve the linear inverse problem by finding them(r)= ∑

N

j=1
m
j
y
j
(r) , (7)

model m that minimizes the objective function W given in

eq. (9). To do this we follow the standard procedure ofwhere r is the position vector and y
j

are basis functions.
differentiating W with respect to the model parameters andUsually these basis functions are pulse basis functions that are
equating the resulting equations to zero. Consider first theequal to unity within a cuboidal cell and zero everywhere else.
differentiation of the general measure given in eq. (1) withIn such a case m

j
is the value of the physical property in the

respect to the kth model parameter, assuming that x is somejth cell. Let the forward problem of determining the set of
function of the model m:observations for a particular model be expressed as

dprd=Gm , (8) ∂w(x)

∂m
k
= ∑

N

j=1
r∞ (x

j
)
∂x

j
∂m

k
. (11)

where m=(m1 , … , m
N
)T , dprd is the vector of M predicted

If all values of k are considered, this relationship can be writtendata for this model, and G is an M×N matrix that contains
asessentially all the physics of this linear problem. The inverse

problem consists of finding the one model from the collection ∂w(x)

∂m
=BTq , (12)that reproduce the observations to an appropriate level of misfit

that is the most plausible model given any prior knowledge of
the region under investigation. where ∂w/∂m= (∂w/∂m1 , … , ∂w/∂m

N
)T , B

ij
=∂x

i
/∂m

j
and

To solve the inverse problem we construct an objective q=[r∞ (x1 ), … , r∞ (x
N
)]T . The explicit form of q will depend

function that we are going to minimize: on the particular form of r. However, in order to construct a

system of equations upon which an iteratively reweighted least-
W=a

s
w
s
(W

s
(m−mref) )+a

x
w
x
(W

x
m)

squares routine can be used, which is our intention, consider
the substitution q=Rx where R is a diagonal matrix given by+b[w

d
(W

d
(dprd−dobs ))−wtar

d
] . (9)

R=diag{r∞(x1 )/x1 , … , r∞ (x
N
)/x

N
} . (13)In this expression, the three instances of the general measure

function, namely w
s
, w

x
and w

d
, are intended to provide

Eq. (12) therefore becomes
measures, respectively, of (1) how close the model, m, is to a

reference model mref , (2) the amount of structure in the model, ∂w(x)

∂m
=BTRx . (14)

and (3) the misfit between the predicted data, dprd , and the
observations, dobs . What the three terms in eq. (9) are actually

The elements of R for the three particular measures that wemeasures of depends not only on the particular form used for
consider in this paper are as follows. First, for the l

p
normeach measure, but also on the weighting matrices W

s
, W

x
and

given by eq. (3),W
d
. The particular model character that interests us in this

paper is simplicity of structure. We therefore use the first-order R
ii
=p|x

i
|p−2 . (15)

finite-difference operator for W
x
. For a 1-D inverse problem

For p<2 this expression is singular for x
i
=0. A small cut-offin which m(r)=m(x), and for pulse basis functions of equal

value, c, is therefore used in any numerical implementationlength, this matrix has the form
(see e.g. Gersztenkorn et al. 1986):

R
ii
=Gpcp−2 |x

i
|≤c ,

p|x
i
|p−2 , |x

i
|>c .

(16)

W
x
=A−1 1 0 … 0

0 −1 1 … 0

e P e

0 … 0 −1 1

0 … 0 0 0
B . (10)

Second, for the M-measure given by eqs (4) and (1),

R
ii
=G2 , |x

i
|≤c ,

2c/ |x
i
| , |x

i
|>c .

(17)

If the pulse basis functions are of varying lengths, W
x

can be
Note that, unlike the l

p
norm, there is now no difficulty withmodified accordingly. We also assume for the purposes of this

small values of x
i
. Finally, for Ekblom’s measure given bypaper that when a reference model is included it is of equal

eqs (5) and (1),appropriateness over the complete spatial extent of the model.
We therefore take W

s
to be the identity matrix. We also assume R

ii
=p(x2

i
+e2 )p/2−1 . (18)

that the noise in the observations is not correlated between
Let us now return to the minimization of the whole objectiveobservations. The data-weighting matrix, W

d
, is therefore

function W in eq. (9). Consider the differentiation of the termdiagonal. We also expect, for the examples in this paper, that
involving w

s
. For this term, x=W

s
(m−mref). The jth elementthe ith element on the diagonal of this matrix is the reciprocal

of this vector, written in summation notation, isof the estimate of the uncertainty in the ith datum. If the noise
is Gaussian with zero mean this estimate of uncertainty is the

x
j
= ∑

N

l=1
[W

s
]
jl
(m
l
−mref

l
) . (19)usual standard deviation. Returning to eq. (9), the constant,

wtar
d

, is the desired target misfit appropriate for the amount
of noise in the observations. As a final comment, the three From the definition given after eq. (12), the matrix B for this

vector x is given by B
ij
=[W

s
]
ij
. Hence, from eq. (14), theconstants a

s
, a

x
and b, which determine the balance of the
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216 C. G. Farquharson and D. W. Oldenburg

derivative of w
s
with respect to the model m is is considered (see e.g. Holland & Welsch 1977; Wolke &

Schwetlick 1988; O’Leary 1990). Alliney & Ruzinsky (1994) prove
the convergence of a descent algorithm when a combination

∂w
s

∂m
=WT

s
R
s
W
s
(m−mref) . (20)

of an l2 measure of misfit and l1 measure of model structure is

minimized. We have found, as we shall proceed to demonstrate,R
s
is the matrix given in eq. (13) for the appropriate form of

that the IRLS procedure is successful in the minimization of ar for w
s
. Identical reasoning leads to

general, composite objective function such as the one given in

eq. (9), and hence enables us to solve the linear inverse problem∂w
x

∂m
=WT

x
R
x
W
x
m (21)

in the way we would like.

for the derivative of the second term in W. For the derivative
of the third term on the right-hand side of eq. (9), let 3 AN EXAMPLE LINEAR INVERSE
x=W

d
(dprd−dobs ). Using the definition of the forward PROBLEM

modelling given in eq. (8), this becomes x=W
d
(Gm−dobs ).

Before proceeding to the non-linear inverse problem, which isThe matrix B for this x is B=W
d
G. Hence, from eq. (14),

our ultimate goal, we illustrate the use of the general objective

function and the IRLS procedure described in the preceeding∂w
d

∂m
=GTWT

d
R
d
W

d
(Gm−dobs ) . (22)

section in the solution of a linear inverse problem. The example
that we use is the linear magnetic stripe problem of ParkerFrom eqs (20) to (22), the system of equations obtained by
(1994). This is a simplification of the actual geophysical inversedifferentiating the objective function W with respect to the
problem of determining the magnetization of the oceanic crustmodel parameters and equating to zero is therefore
from the magnetic anomalies aligned parallel to mid-ocean

[a
s
WT
s
R
s
W

s
+a

x
WT
x
R
x
W

x
+bGTWT

d
R
d
W
d
G]m ridges.

To provide an instructive, linear problem it is assumed that=bGTWT
d
R
d
W

d
dobs+a

s
WT
s
R
s
W

s
mref . (23)

(1) the magnetization of the oceanic crust occurs within an
Our solution to the linear inverse problem is the model m infinitesimally thin layer at a depth h below the ocean surface,
that satisfies this system of equations. (2) that this magnetization is in the vertical direction, and

Eq. (23) is very similar to the system of equations that would (3) that its intensity varies only with distance, x, from the ridge
be obtained if all the measures in the objective function W axis. The model, m, to be found is the distribution with x of
were sum-of-squares measures. The difference is the presence the intensity of the magnetization. The observations are of the
of the diagonal matrices R

s
, R

x
and R

d
. These matrices actually vertical component of the magnetic field at the ocean surface

depend on the model, m, so eq. (23) is a non-linear system at various distances from the ridge axis. If we discretize the
of equations. This system can be solved with an iterative model using pulse basis functions (see eq. 7),
procedure:

m(x)= ∑
N

j=1
m
j
y
j
(x) , (27)mk+1=M−1

k
yk , (24)

where, from eq. (23), where

M
k
=[a

s
WT

s
Rk
s
W

s
+a

x
WT

x
Rk
x
W
x
+bGTWT

d
Rk
d
W
d
G] (25)

y
j
(x)=G1 , X

j−1≤x<X
j
,

0 , elsewhere ,
(28)and

yk=bGTWT
d
Rk
d
W

d
dobs+a

s
WT
s
Rk
s
W
s
mref , (26)

then the forward modelling (see eq. 8) is given by
where Rk

s
=R

s
(mk), etc. The starting model in this procedure,

dprd=Gm , (29)m1 , is given by the solution of eq. (23) with R
s
=R

x
=R

d
= I,

where I is the identity matrix. This starting model is the
with

traditional least-squares solution to the linear inverse problem.

The matrices R
s
, R

x
and R

d
are computed for this model using

G
ij
=

m0
2pC x−x

i
(x−x

i
)2+h2DXj

x=X
j−1

, (30)eq. (13) or whichever of eqs (16) to (18) may be appropriate.
The matrix equation (23) is then formed and solved to give

the new model. The matrices R
s
, R

x
and R

d
are recomputed where x

i
is the location of the ith observation, and m0 is the

magnetic permeability of free space.for this new model and the process repeated. The iterations

are terminated once the model is no longer changing by a We generated synthetic data from the model shown in
Fig. 1(b). As done by Parker, the plotted values of mag-significant amount. We use LU decomposition, in particular

the routine ‘sgesv’ from  (Anderson et al. 1995), to netization have been scaled by 0.001 and given the units

A m−1 . This mimics the effect of a magnetized layer that issolve the matrix equation given by eq. (24).
The above iterative procedure for solving the non-linear 1 km thick. Data were computed using the formulae in eqs

(29) and (30). Initially only Gaussian noise, of 8 nT standardsystem of equations is commonly referred to as the iteratively

reweighted least-squares (IRLS) procedure. It is very similar deviation, was added to these data. The resulting synthetic
data are shown in Fig. 1(a). We present the inversion, using l2to Newton’s method for minimizing W. For a comparison of

these two methods when a single l
p
measure is being minimized, measures, of these outlier-free data in Section 3.1. Outliers

were then introduced by perturbing two of the data. Thesee e.g. Watson (1980) or Ekblom (1987). There have been
various theoretical and empirical discussions of the convergence inversion, using various measures, of these perturbed data is

described in Sections 3.2 to 3.4.of the IRLS procedure when a single, particular measure
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Non-linear inversion using general measures 217

Figure 1. (a) The synthetic data for the linear magnetic stripe example Figure 2. (a) The predicted data (solid line) for the model produced
discussed in Section 3.1. The error bars indicate the standard deviation by the inversion of the synthetic magnetic stripe data in Fig. 1(a) using
of the noise added to the data. (b) The model from which these data l2 measures for w

s
, w

x
and w

d
. The error bars indicate the synthetic

were computed. data. (b) The model (solid line) produced by this l2 inversion. The

dashed line represents the true model.

3.1 Gaussian noise and l
2

inversion
The inclusion of a reference model was required in this and

all other inversions of the magnetic stripe data to fix theConsider first an inversion of the data contaminated with only

Gaussian noise. We used the square of the l2 norm for each of background value of the models. This is because the kernels
[that is the term (x−x

i
)/[(x−x

i
)2+h2] in eq. 30] for thisw

s
, w

x
and w

d
in the objective function W. A minimum-structure

model was desired, so we used the first-order finite-difference inverse problem have zero area, meaning the data are insensitive

to the background value of magnetization.operator given in eq. (10) for W
x
. The reference model was a

constant magnetization of zero, and a
s
=0.1 and a

x
=1. The

model was discretized into 60 equally sized cells extending
3.2 Outliers and l

2
inversion

from x=−30 km to x=30 km. Outwith these limits the model
was fixed and equal to zero. The elements of W

d
were the To illustrate the benefits of using robust measures of misfit,

we perturbed two of the synthetic data discussed in the pre-reciprocals of the standard deviations of the noise in the data.
Since the noise in the data is solely Gaussian, the expected vious section. The datum at x=−8 km was changed from

251 to 300 nT, and the datum at x=3 km was changed fromvalue of the sum-of-squares measure of misfit is equal to 31

(the number of observations for this example). This value was −6.7 to 181 nT. (This new value is equal to the neighbouring
datum at x=4 km.) The estimated uncertainties for these twotherefore used as the target misfit. The first iteration of the

procedure described in Section 2 was used to give the solution data were not changed from 8 nT. The modified data set is

shown in Fig. 3(a).for this particular example. The target misfit of 31 was obtained
with b=2.4×105. The corresponding model and predicted The inversion described in Section 3.1 involving sum-of-

squares measures for each of w
s
, w

x
and w

d
was repeated fordata are shown in Fig. 2.

© 1998 RAS, GJI 134, 213–227

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/134/1/213/632527 by guest on 21 August 2022



218 C. G. Farquharson and D. W. Oldenburg

3.3 Outliers and l
1

inversion

The preceeding example hints at the unsuitability of sum-of-
squares measures of misfit when the noise in the data is non-

Gaussian in general, and when outliers are present in particular.
We repeated the inversion of the previous section using a
robust measure of misfit. The chosen measure was that of

Ekblom given by eqs (5) and (1) with p=1. We also used this
measure for w

x
in order to produce a piecewise-constant model,

and for w
s
. The value of e for w

x
was 1, and for w

d
, 0.01. These

values were chosen as follows. The measures w
x
, w

s
and w

d
were computed for a range of e using the final model and
predicted data for the l2 inversion in the previous section.

The resulting curves are shown in Fig. 4. We recognize that
the curves for the model and predicted data produced by the
inversion in this section will not be identical to those in Fig. 4.

However, the curves in Fig. 4 provide a means of estimating
values of e, prior to carrying out the inversion, that are small
enough that the final values of w

x
, w

s
and w

d
will not differ

significantly from their values with e=0. Values of e lying
about two orders of magnitude to the left of each point of
maximum curvature were small enough that w

x
, w

s
and w

d
differed only in the third significant figure from their values
with e equal to zero, and yet large enough that the IRLS

procedure converged. The inversion in this section was there-
fore minimizing, in essence, l1 norms of misfit and model
structure.

From Parker & McNutt (1980), an appropriate target value
for an l1 norm misfit is √2/p M if there is only Gaussian noise
present in the data. The value of this target misfit for this

example is 24.7. However, the model that gave this misfit
possessed an unacceptable amount of structure. The model
chosen as the solution corresponded to an l1 norm misfit of

39.5 (the value of w
d

was 39.6). This model is shown in
Fig. 5(b), and the predicted data in Fig. 5(a). A comparison of
Figs 3 and 5 highlights two important points. First, the fit to
the perturbed data obtained using essentially an l1 normFigure 3. (a) The perturbed synthetic magnetic stripe data. The two

outliers are indicated by the arrows. The solid line represents the

predicted data for the model obtained using l2 measures for both data

misfit and model structure. This model is shown as the solid line in

panel (b). The dashed line in panel (b) represents the model from

which the synthetic data were generated.

the perturbed data set. The model deemed to be the most

appropriate is shown in Fig. 3(b). The corresponding predicted
data are shown in Fig. 3(a). The value of b giving this model
was 4.27×105. The corresponding misfit was w

d
=186=6M.

This is six times greater than what one would attempt to
achieve if the data were not thought to contain outliers.

However, models corresponding to lower values of misfit
contained more structure than seemed justified by the data.
Also, the corresponding predicted data showed a large amount

of variation around the perturbed datum at x=3 km. Such
models were therefore deemed unacceptable. Note that even
though the chosen model gives a misfit six times greater than

that achieved for the inversion of the outlier-free data, it still
contains significantly more structure than the model for that
inversion (see Fig. 2b). This is because such a large contribution
to the sum-of-squares measure of misfit comes from the two Figure 4. The variation with e of Ekblom’s measure (with p=1) for
outliers that the other data have to be fit too closely in order w

x
, w

s
and w

d
computed using the final model and corresponding

predicted data from the l2 inversion in Section 3.2.to get the misfit even as small as 6M.
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Non-linear inversion using general measures 219

procedure with weights given by eq. (16) and c=0.01. The

results produced by both of these approaches were essentially
identical to those in Fig. 5. The IRLS procedure required 79
iterations for this example.

3.4 Outliers and M-measure/l
2

inversion

As a final example based on the linear magnetic stripe data,
we inverted the perturbed data using an M-measure (see eqs
1 and 4) as the measure of misfit and Ekblom’s measure with

p=1 for w
s

and w
x
. As before, the value of e in the Ekblom

measure was 1. The weighting matrices W
s
, W

x
and W

d
, and

the values of a
s
and a

x
were also the same as before. If a value

of c=1.5 is taken as the constant in eq. (4), and only Gaussian
noise contaminates the data, then the expected value of
the M-measure for 31 data is 30.3. Also, the average number

of normalized residuals, that is elements of the vector
W

d
(dprd−dobs ), whose absolute values are less than and greater

than the constant c are 24.2 and 6.8, respectively. These two

values, and the value of the target misfit, were obtained by
generating 105 realizations of a set of 31 normally distributed
random variables and calculating the M-measure of misfit

for each realization considering the random variables to be
the normalized residuals. However, just as for the previous

inversions of the perturbed data, the model that gave the target
misfit contained an unacceptable amount of structure. The
target misfit was therefore increased to 90.9 (three times that

for the outlier-free data). The resulting model is shown in
Fig. 6(b), and the corresponding predicted data in Fig. 6(a).
The number of data with normalized residuals lower than and

greater than c=1.5 was 28 and 3 respectively. The IRLS loop
required 49 iterations to converge.

3.5 Summary for the example linear inverse problem

It can be seen from the inversions of the synthetic magnetic
stripe data that robust measures of misfit enable results to beFigure 5. The predicted data (solid line, a) and model (solid line, b)
obtained that are significantly better when outliers are presentresulting from the inversion of the perturbed synthetic magnetic stripe
than those obtained using the sum-of-squares measure. Thedata (shown by the error bars in a) using Ekblom’s measure with
examples also illustrate the ability to construct piecewise-p=1 for w

s
, w

x
and w

d
.

constant, or ‘blocky’, models if an l1 measure of model structure
is minimized.

measure of misfit is more appropriate than that obtained using
a sum-of-squares measure. The two outliers in Fig. 5(a) are

4 GENERAL MEASURES AND THE
in effect ignored by the predicted data. This is not the case in

NON-LINEAR INVERSE PROBLEM
Fig. 3(a). Second, a model produced by minimizing the l1 norm
of its gradient has a piecewise-constant, or ‘blocky’, appearance The standard approach for solving the non-linear inverse

problem is to use an iterative procedure in which the problemwhich can make it preferable in many situations to the smooth,

smeared-out models produced using l2 measures. is linearized at each iteration. This linearized problem can then
be solved using any of the plethora of methods available forThe IRLS loop required 93 iterations for the results shown

in Fig. 5. When the values of e were increased by an order linear inverse problems. It is then mostly assumed that such
an iterative procedure will converge to the solution of the non-of magnitude, 59 iterations were required for convergence.

(The convergence criterion was that no model parameter linear problem. Building on the discussion of the linear problem

in Section 3, we now describe how general measures of misfithad changed by more than 0.001 A m−1 between successive
iterations.) The resulting model did differ slightly from the one and model structure can be incorporated into an iterative,

linearized solution to the non-linear inverse problem.shown in Fig. 5, although differences in the predicted data

were not discernable. It is only when p is equal to or very As for the linear problem, we solve the non-linear inverse
problem by finding the model that minimizes an objectiveclose to 1 that a large number of IRLS iterations is required.

For other values of p, the number of IRLS iterations is typically function (cf. eq. 9):

20 or 30.
W=a

s
w
s
(W

s
(mn−mref) )+a

x
w
x
(W

x
mn )

Finally, the inversion in this section was also carried out for
true l1 norms using (1) linear programming and (2) the IRLS +b[w

d
(W

d
(d[mn]−dobs ) )−nwtar

d
] . (31)
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220 C. G. Farquharson and D. W. Oldenburg

The data misfit in eq. (31) can therefore be written as

w
d
(W

d
(dn−1+Jn−1mn−Jn−1mn−1−dobs ) ) , (34)

where dn=d[mn] and Jn=J[mn].
To minimize the objective function in eq. (31) we differentiate

with respect to the elements of mn and equate the resulting
equations to zero, exactly as discussed in Section 2 for the
linear problem. The only significant difference is in the differ-

entiation of the data misfit. Instead of eq. (22) for the linear
case, differentiation of eq. (34) gives

∂w
d

∂m
=JTWT

d
R
d
W

d
(Jmn−Jmn−1+dn−1−dobs ) , (35)

where J=Jn−1 . By analogy with eq. (23), the system of

equations to be solved is therefore

[a
s
WT

s
R
s
W

s
+a

x
WT

x
R
x
W

x
+bJTWT

d
R
d
W
d
J]mn

=bJTWT
d
R
d
W

d
(dobs−dn−1+Jmn−1)+a

s
WT

s
R
s
W

s
mref .

(36)

We solve this system of equations using the IRLS procedure
described in Section 2. There are therefore two iterative
procedures involved in the solution of the non-linear problem:

the one associated with the linearization of the non-linear
problem, and the one associated with the iteratively reweighted
least-squares procedure. There are a number of ways in which

the two can be combined. We discuss two possibilities in the
next section when we apply the preceeding ideas to the 1-D
inversion of synthetic time-domain electromagnetic data.

5 AN EXAMPLE NON-LINEAR INVERSE
PROBLEM: SYNTHETIC DATA

We now illustrate the solution of the non-linear inverse
problem using general measures of misfit and model structure,
and the IRLS procedure described in Section 2. Our chosen
example is the 1-D inversion of time-domain electromagneticFigure 6. The results of inverting the perturbed magnetic stripe data,
(TEM) data. The TEM method is used extensively for mineralshown by the error bars in (a), by minimizing Ekblom’s measure with
exploration, and is seeing ever-increasing use in environmentalp=1 for w

s
and w

x
, and an M-measure for the data misfit. The solid

line in (b) represents the model produced by the inversion, and the and engineering surveys. It has also been used for hydrocarbon
solid line in (a) represents the corresponding predicted data. The exploration. For an overview of the TEM method and its uses,
dashed line in (b) indicates the model from which the synthetic data see Nabighian & Macnae (1991). We have chosen this as our
were generated. example because of our previous experience with this inverse

problem: see Farquharson & Oldenburg (1993), in which we
present an inversion procedure for obtaining, from TEM data,

horizontally layered, minimum-structure models of the Earth’sWe recognize that an iterative process is now needed. We
electrical conductivity. We used the traditional sum-of-squarestherefore require that the model resulting from the nth iteration,
measure for both the data misfit and the measure of modelthat is mn , will minimize this objective function. Note that the
structure. For details of the forward modelling of TEM datatarget misfit, nwtar

d
, depends on the iteration.

over a horizontally layered model, and the computation of theThe data-misfit term in eq. (31) involves the predicted data
Jacobian matrix of sensitivities for such a model, we refer thefor the model that will result from the iteration d[mn]. There
reader to this paper.is no longer a linear relationship, such as the one in eq. (8),

In this section we consider the inversion of synthetic TEMbetween these data and the model. However, these data can
data. Synthetic data were computed for the three-layered modelbe approximated with the first two terms in a Taylor series
shown in Fig. 8(b). The data were computed for a 5×5 mexpansion about the model obtained from the previous
horizontal transmitter loop on the surface of the model, and aiteration:
horizontal receiver loop, also on the surface of the model, of

d[mn]#d[mn−1]+J[mn−1](mn−mn−1 ) , (32) unit area at a distance of 20 m from the centre of the transmitter
loop (see Fig. 7). The transmitter current waveform was a purewhere J is the Jacobian matrix of sensitivities:
step-off with a pre-shut-off current of 12 A. The range of delay
times over which the voltage in the receiver loop was computed

J
ij
[mn]=

∂d
i
[mn]

∂m
j

. (33)
can be seen from Fig. 8(a). Gaussian noise was added to the
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Non-linear inversion using general measures 221

voltages. The standard deviation of this noise increased in

steps from 0.5 to 8 per cent over the range of delay times. The

resulting synthetic data are shown in Fig. 8(a). We now present

the results of inverting these data using the linearized, iterative

procedure summarized in the previous section, and using

non-l2 measures of misfit and model structure. The same model

parametrization was used for all inversions: the model was

made up of 50 layers whose thicknesses increased exponentially

with depth. The parameter to be found was the natural
Figure 7. The transmitter–receiver geometry for the synthetic TEM

logarithm of the electrical conductivity in each layer.
data used as the first non-linear example. The origin is at the centre

We restrict our consideration here to only one measure: theof the transmitter loop, and the coordinates are in metres. T and R
l1 measure, or more precisely, Ekblom’s measure given by eqsindicate the transmitter and receiver, respectively, both of which lie
(1) and (5) with p=1 and e small. We chose this measureon the surface of the model, that is in the plane z=0.

because it enables us to produce piecewise-constant models,

and because it is a robust measure of misfit. It also allows

comparison with the alternative approach for l1 measures of

using linear programming. In the following inversions of the

synthetic TEM data we also present two possible ways in

which the two iterative procedures, the one associated with

the linearization of the non-linear problem, and the one

associated with the IRLS algorithm, can be combined.

5.1 Gaussian noise, l
2

inversion and a line search over b

Consider first the inversion of the synthetic TEM data using

the traditional sum-of-squares measure for w
s
, w

z
(‘z’ since our

model is now a function of depth) and w
d
. A purely minimum-

structure model was desired, so a
s
=0 and a

z
=1, and W

z
was

the first-order finite-difference operator. The data-weighting

matrix, W
d
, was a diagonal matrix, the elements of which were

the reciprocals of the standard deviations of the noise in the

data. The first iteration in the IRLS procedure was used to

solve eq. (36), which is a linear system for this example.

A line search was performed at each iteration associated

with the linearization of the inverse problem to determine the

appropriate value of b. Since the emphasis of these examples

is illustration, we used the comprehensive but inefficient process

of solving eq. (36) for 100 values of b spread over a suitably

wide range, and computing the misfit associated with each b.

A bisection search was then performed once the two values of

b bracketing the desired value had been determined. The

desired value of b was the smallest value giving a misfit equal

to the target misfit for that iteration, or if the misfit could not

be reduced that far, then the chosen value was the one that

gave the largest decrease in misfit.

The target misfit at each iteration was taken as

nwtar
d
=max(0.66×n−1wtar

d
, wtar

d
), where wtar

d
was the ultimate

target misfit for the non-linear inversion. Since the data misfit

for this example is a sum-of-squares measure, wtar
d

was chosen

to be equal to the number of observations (=17). The final

model is shown in Fig. 8(b), and the corresponding predicted

Figure 8. (a) The synthetic TEM data (shown by the error bars) data in Fig. 8(a). The values of b chosen at each iteration are
contaminated only with Gaussian noise that are used for the first shown in Fig. 9(a), along with the corresponding values of
examples of non-linear inversion using general measures of misfit and w

z
and w

d
. Note the characteristic decrease in w

d
at each

model structure. The two almost coincident solid lines indicate the iteration and increase in w
z

until the target misfit of w
d
=17 is

predicted data for the model produced using the traditional l2 measures
reached after 21 iterations. The starting model was a homo-

of misfit and model structure, and for the model produced using l1 geneous half-space of conductivity 0.01 S m−1. Also note themeasures. (b) The model (solid line) produced by the inversion of the
characteristic smooth appearance of the final model for thissynthetic data shown in panel (a) using l2 measures, and the model
minimum-structure inversion using an l2 measure of model(dashed line) produced using l1 measures. The dotted line indicates the

model from which the synthetic data were computed. structure.
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222 C. G. Farquharson and D. W. Oldenburg

smooth and regular as during the inversion using l2 measures

(see Fig. 9a). In particular, the desired decrease in misfit at
each iteration was not always achieved, and there is consider-
able variation in b for the iterations immediately before and

after the ultimate target misfit of 13.6 is achieved.
The inversion was repeated using true l1 norms for w

z
and

w
d
, and using linear programming to solve the linearized

problem. Instead of constructing the system given in eq. (36),
the following overdetermined system of equations was formed:

AbW
d
Jn−1

a
s
W

s
a
z
W
z
Bmn=AbW

d
(dobs−dn−1+Jn−1mn−1 )

a
s
W

s
mref

0 B . (37)

The model that minimized the l1 norm of the difference between

the two sides of this equation was found using the routine of

Figure 9. (a) The variation with iteration of the trade-off parameter

b, the measure of model structure w
z
, and the data misfit w

d
for the

inversion, using l2 measures for both w
z
and w

d
, of the synthetic TEM

data shown in Fig. 8. (b) The corresponding variation during the

inversion using l1 measures for both w
z
and w

d
, and the IRLS procedure.

Note the different scales on the vertical axes.

5.2 Gaussian noise, l
1

inversion and a line search over b

The previous inversion was repeated using the same parameters
and weighting matrices, but using Ekblom’s measure, given by
eqs (1) and (5), for both w

z
and w

d
. The value of p was 1, and

e was equal to 5×10−4 in w
z

and 10−1 in w
d
. The IRLS

solution to eq. (36) was needed, typically requiring 20 to 30

iterations. As in the previous section, a line search was per-
formed to find the most appropriate value of b for each
iteration associated with the linearization of the non-linear
problem. The target misfit at each iteration was taken to be

Figure 10. The final model (solid line in b) produced by the inversionnwtar
d
=max(0.66×n−1wtar

d
, wtar

d
). Following Parker & McNutt

of the synthetic TEM data (shown by the error bars in a) using l1(1980) and the linear l1 example described in Section 3.3, the
norms for w

z
and w

d
, and using linear programming to solve the system

ultimate target misfit was taken to be wtar
d
=√2/p×17=13.6.

of equations at each iteration in the linearized inversion procedure.
The final model for this inversion is indicated by the dashed

The predicted data for this model are indicated by the solid line in (a).
line in Fig. 8(b). The predicted data are shown by the solid The dashed line in (b) indicates the model obtained from the l1line in Fig. 8(a). The chosen values of b at each iteration, along inversion using Ekblom’s measure and the IRLS procedure, already
with the corresponding values of w

z
and w

d
, are shown in shown in Fig. 8(b). The dotted line in (b) indicates the model from

which the synthetic data were generated.Fig. 9(b). The variation of these three quantities is not as
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Abdelmalek (1980a,b), available from the TOMS collection of

software at NETLIB (http://www.netlib.org/). A line search
was performed, just as for the other inversions of the synthetic
TEM data so far discussed. The final model is shown in

Fig. 10(b), and the predicted data in Fig. 10(a). The chosen
value of b at each iteration and the corresponding variation
in w

z
and w

d
are shown in Fig. 11. Note that the variation in

these three quantities is not as smooth and uncomplicated as
the behaviour for the l2 inversion (see Fig. 9a). Also note that
the value of b, and to a lesser extent w

z
and w

d
, never converge

to a stable value but continue to oscillate as the number of
iterations increases beyond the low teens. It is also intriguing
that the values of b that are reached are over an order of

magnitude greater than in the supposedly equivalent inversion
using Ekblom’s measure with p=1. There are also differences
between the final models for the two inversions, most notably

the conductivity of the basement (see Figs 10b and 8b).
The differences between the inversion using Ekblom’s

measure and the IRLS procedure, and the inversion using the

true l1 norm and linear programming, develop through the
iterative solution to the non-linear problem, and the choice of
b at each iteration. Fig. 12 shows the value of the data misfit

as a function of b for the final iteration in the three inversions
of the synthetic TEM data so far discussed. The curve for the

l2 inversion, shown in panel (a), is smoothly varying and
simple, as one would hope. By contrast, the ‘curve’ for the l1
inversion using linear programming, shown in panel (c), is

predominantly piecewise-constant: ranges of b for which the
misfit is not changing separated by discontinuities in the value
of misfit. In fact, it is generally the case that the target misfit

for a particular iteration cannot be achieved because it falls
between the values on either side of a discontinuity. The search
procedure described in Section 5.1 was modified for this

situation to choose simply the value of b that gave the misfit
closest to the target value. The curve shown in panel (b) is
that for Ekblom’s measure with p=1 and a small but non-

Figure 12. The data misfit, w
d
, as a function of the trade-off parameterzero value for e, and for solution via the IRLS procedure. This

b for the final iteration in (a) the l2 inversion, (b) the l1 inversion usingcurve is significantly smoother than the one for the l1 norm
Ekblom’s measure and the IRLS procedure, and (c) the l1 inversion

inversion using linear programming. It is the difficulty in
using the true l1 norm and linear programming. Note the different

scales in all three plots.

carrying out a line search along a curve such as the one shown
in Fig. 12(c) compared to the one in Fig. 12(b), and the

modification of the line search procedure required to address
this issue, that led to different values of b being chosen during
the two corresponding inversions, and different final results

being attained.

5.3 Gaussian noise, l
1

inversion and a schedule for b

The inversion in the previous section using Ekblom’s measure
involved two distinct iterative loops: the familiar loop

associated with the linearization of a non-linear problem, and

the loop within the IRLS procedure used to obtain the solution
for each linearized problem. A line search over b was also

incorporated into the solution of each linearized problem in
order to find the b that gave a misfit equal to some targetFigure 11. The variation of b, w

z
and w

d
during the l1 inversion of the

value. In this line search, the IRLS solution to the system ofsynthetic TEM data for which the solution at each iteration was found

using linear programming. equations has to be found for each value of b, and a forward
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224 C. G. Farquharson and D. W. Oldenburg

modelling performed to determine the misfit. These multiple system of equations given in eq. (36) is constructed and solved

once using the weighting matrices R
s
, R

z
and R

d
computed forapplications of the forward modelling and IRLS procedures in

the solution of each linearized problem make this inversion the model obtained from the previous iteration. The two
iterative procedures, the one required to overcome the non-procedure relatively time-consuming.

We now describe a variation of this inversion procedure linearity of the inverse problem, and the one required to
overcome the non-linearity introduced by non-l2 measures,which in itself is significantly quicker. In this variation a

schedule of values of b is prescribed (Oldenburg & Ellis 1993; therefore proceed in unison. This is similar to the approach

used by LaBrecque et al. (1997).Ellis et al. 1993). This means that only a single system of
equations has to be solved and a single forward modelling The inversion described in Section 5.2 using Ekblom’s

measure was repeated using exactly the same parameters andcarried out at each iteration. However, a trial-and-error process

involving re-running the inversion is required to determine an weighting matrices, but using the procedure described in the
previous two paragraphs. The resulting model and predictedappropriate schedule.

This inversion procedure can be made even quicker by data are shown in Fig. 13. The prescribed value of b for each

iteration, and the resulting values of w
z

and w
d
, are shown inabsorbing the iterations required by the IRLS procedure into

the iterations associated with the linearization of the non-linear Fig. 14. The final value of w
d

was 13.6, just as for the related
inversion in Section 5.2. Comparison of Figs 13 and 8 showsproblem. At each iteration associated with the linearization of

the problem, and for the single prescribed value of b, the that essentially the same model has been produced by the two
different inversions. The 50 iterations shown in Fig. 14 required
significantly less time that the 40 shown in Fig. 9. However,

several runs were required to determine the schedule of values
of b that gave the desired value for the final misfit.

5.4 Outliers, and l
2

and l
1

inversions

To conclude the example inversions of the synthetic TEM data
set, we perturbed two of the data to create outliers. The value
of the voltage at the third measurement time was decreased

by ten per cent, and the values of the voltage and measurement
uncertainty at the fourth-last measurement time were set equal
to the voltage and uncertainty at the preceeding time. These

two perturbed data are indicated by the arrows in Fig. 15(a).
The perturbed data were inverted using the l2 inversion

described in Section 5.1, and the procedure using Ekblom’s

measure with p=1 described in Section 5.2. Both of these
procedures involved a line search over b. Not surprisingly,
neither inversion could fit the outlier-contaminated data to

the same values of w
d
(17 and 13.6 for the l2 and l1 inversions)

as when only Gaussian noise contaminated the data. Final
models were therefore chosen on the basis of giving the smallest

Figure 13. The final model produced by the l1 inversion of the

synthetic TEM data using Ekblom’s measure, and for which a pre-

scribed schedule of values of b was used, is shown as the solid line

Figure 14. The prescribed values of b for the l1 inversion of thein (b). The predicted data for this model are shown by the solid line

in (a). The error bars in (a) represent the synthetic data, and the dotted synthetic TEM data using Ekblom’s measure, the results of which are

shown in Fig. 13. The corresponding behaviour of the data misfit, w
d
,line in (b) represents the model from which the synthetic data

were computed. and the measure of model structure, w
z
, are also shown.
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Non-linear inversion using general measures 225

Figure 16. (a) The variation in the chosen value of b, and in theFigure 15. The perturbed synthetic TEM data are shown by the error
values of w

z
and w

d
during the l2 inversion of the synthetic TEM data

bars in (a). The two data that were perturbed are indicated by the
containing outliers. The results of this inversion are shown in Fig. 15.

arrows. The solid and dashed lines in (a) are the predicted data for
(b) The variation of b, w

z
and w

d
during the l1 inversion of the

the final models produced by the l2 and l1 inversions respectively. The
perturbed data set. The results of this inversion are also shown

corresponding models are shown in (b): the solid line is the model for
in Fig. 15.

the l2 inversion, and the dashed line is the model for the l1 inversion.

The dotted line in (b) is the model from which the synthetic data

were generated.
5.5 Summary for the synthetic TEM examples

We have given illustrations, using synthetic TEM data, of
the solution of the non-linear inverse problem using non-l2misfit without possessing an unreasonable amount of structure.
measures of misfit and model structure. We have presented

The misfits for the chosen models were 544 for the l2 inversion, two possible methods for combining the iterative loops
and 47 for the l1 inversion. The models are shown in Fig. 15, associated with the linearization of the non-linear problem
along with the corresponding predicted data. The behaviour and the IRLS procedure needed to accommodate non-l2of b, w

z
and w

d
during the two inversions is shown in Fig. 16. measures. The first method involves a line search over b at

There are two important points that arise from the com- each iteration in the former of the two loops, and a complete
parison of the models in Figs 15 and 8. First, there is very solution of the system of equations for each b using the IRLS
little difference between the models for the l1 inversions of the procedure. The second method uses a prescribed schedule of
outlier-free data (Fig. 8b) and the outlier-contaminated data the values of b, and absorbs the IRLS iterations into the
(Fig. 15b). This is because the l1 measure of misfit used in iterations associated with the linearization of the non-linear
these inversions is a robust measure, and, as such, is not greatly problem. The second of these methods is by far the quicker if
affected by the outliers. Second, and in obvious contrast to the an appropriate schedule is known, or can be readily established.
first point, there are significant differences between the models However, the first method is the more robust, and can be
for the l2 inversions of the two data sets. This is because the expected to attain the solution to a particular problem at the

first attempt.l2 measure is not a robust measure.
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was discretized into 100 layers of exponentially increasing
6 AN EXAMPLE NON-LINEAR INVERSE

thicknesses. A blocky, minimum-structure model was desired,
PROBLEM: FIELD DATA

so Ekblom’s measure with p=1 and e small (=5×10−4) was
used as a measure of model structure, and the first-order finite-As a final illustration of the solution of the non-linear inverse

problem using general measures of misfit and model structure difference operator used for W
z
. No proximity to a reference

model was required, so a
s
=0 and a

z
=1. The data shown inwe present the results of an inversion of field TEM data

supplied by CRA Exploration Party. The data were collected Fig. 17(a) are of high quality with very small uncertainties.

The noise that is present was considered to be Gaussian. Theusing a 500×500 m transmitter loop with the receiver at its
centre. Two overlapping sweeps were used to record the data, sum-of-squares measure was therefore used as the measure

of misfit.one from 0.68 to 27.8 ms, and one from 4.37 to 446 ms. Linear

ramp turn-offs were used, of duration 0.3 ms for the earlier The model produced by the inversion is shown in Fig. 17(b),
and the corresponding predicted data are shown in Fig. 17(a).sweep, and 0.5 ms for the later sweep. The data are shown by

the dots in Fig. 17(a). The uncertainties in the observations Given the number of data, the initial value of the ultimate

target misfit was 69. However, the minimum misfit that couldwere estimated to be of 2 per cent for all measurement times.
These estimates were derived from the repeatability of the be attained was 149. The model shown in Fig. 17(b) was

produced by the inversion with a target misfit of 155. Themeasurements. The error bars are smaller than the dots in

Fig. 17(a), so are not shown. behaviour of b, w
d

and w
z

during the inversion is shown
in Fig. 18.The data were inverted using the procedure involving the line

search over b described in Sections 5.1 and 5.2. The model

7 CONCLUSIONS

The traditional linearized, iterative approach to solving the

non-linear inverse problem can be readily generalized to
incorporate non-l2 measures of data misfit and model structure.
This can be done with the inclusion of an iteratively reweighted

least-squares procedure. The successful implementation of
this approach has been illustrated for a number of possible
measures of misfit and model structure. The illustrations also

serve to demonstrate the benefits of the particular measures
that we chose to use, namely the robustness of the l1 measure
and the M-measure when used as measures of data misfit, and

the ability to construct piecewise-constant, or ‘blocky’, models
that an l1 measure of model structure provides.
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