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ABSTRACT

The data produced by the new generation of interferometers are affected by a wide variety of partially unknown complex effects
such as pointing errors, phased array beams, ionosphere, troposphere, Faraday rotation, or clock drifts. Most algorithms addressing
direction-dependent calibration solve for the effective Jones matrices, and cannot constrain the underlying physical quantities of the
radio interferometry measurement equation (RIME). A related difficulty is that they lack robustness in the presence of low signal-to-
noise ratios, and when solving for moderate to large numbers of parameters they can be subject to ill-conditioning. These effects can
have dramatic consequences in the image plane such as source or even thermal noise suppression. The advantage of solvers directly
estimating the physical terms appearing in the RIME is that they can potentially reduce the number of free parameters by orders of
magnitudes while dramatically increasing the size of usable data, thereby improving conditioning. We present here a new calibration
scheme based on a nonlinear version of the Kalman filter that aims at estimating the physical terms appearing in the RIME. We enrich
the filter’s structure with a tunable data representation model, together with an augmented measurement model for regularization.
Using simulations we show that it can properly estimate the physical effects appearing in the RIME. We found that this approach
is particularly useful in the most extreme cases such as when ionospheric and clock effects are simultaneously present. Combined
with the ability to provide prior knowledge on the expected structure of the physical instrumental effects (expected physical state and
dynamics), we obtain a fairly computationally cheap algorithm that we believe to be robust, especially in low signal-to-noise regimes.
Potentially, the use of filters and other similar methods can represent an improvement for calibration in radio interferometry, under
the condition that the effects corrupting visibilities are understood and analytically stable. Recursive algorithms are particularly well
adapted for pre-calibration and sky model estimate in a streaming way. This may be useful for the SKA-type instruments that produce
huge amounts of data that have to be calibrated before being averaged.

Key words. instrumentation: interferometers – methods: data analysis – techniques: interferometric

1. Introduction

The new generation of interferometers is characterized by very
wide fields of view, large fractional bandwidth, high sensitivity,
and high resolution. At low frequency, such as with the Low-
Frequency Array (LOFAR), or the Murchison Widefield Array
(MWA), the cross-correlation between voltages from pairs of an-
tenna (the visibilities) are affected by severe complex baseline-
time-frequency direction dependent effects (DDE) such as the
complex phased array beams, the ionosphere and its associated
Faraday rotation, the station’s clock drifts, and the sky structure.
At higher frequency, the interferometers using dishes are less af-
fected by ionosphere, whereas troposphere, pointing errors, and
dish deformation play an important role.

1.1. Direction dependent effects and calibration problems

A wide variety of solvers has been developed to tackle the
direction-dependent calibration problems of radio interferom-
etry. In this paper, for the clarity of our discourse, we clas-
sify them in two categories. The first and most widely used
family of algorithms (later referred as the Jones-based solvers)
aim at estimating the apparent net product of various effects
discussed above. The output solution is a Jones matrix per
time-frequency bin per antenna per direction (see Yatawatta
et al. 2008; Noordam & Smirnov 2010, and references therein).

Sometimes the solutions are used to derive physical parame-
ters (e.g., Intema et al. 2009; Yatawatta 2013 in the cases of
ionosphere and beam shape, respectively). The second family
of solvers estimate directly from the data the physical terms
mentioned above that give rise to a set of visibility (later re-
ferred as the continuous or physics-based solvers). These solvers
are used for direction-independent calibration in the context of
fringe-fitting for VLBI (Cotton 1995; Walker 1999, and ref-
erences therein) to constrain the clock states and drifts (also
referred as delays and fringe rates). Bhatnagar et al. (2004)
and Smirnov (2011b) have presented solutions to the direction-
dependent calibration problem of pointing error. It is impor-
tant to note that deconvolution algorithms are also physics-based
solvers estimating the sky brightness, potentially taking the DDE
calibration solution into account (Bhatnagar et al. 2008, 2013;
Tasse et al. 2013). The latest imaging solvers can also estimate
spectral energy distribution parameters (Rau & Cornwell 2011;
Junklewitz et al. 2014). Most of these imaging algorithms are
now well understood in the framework of compressed sensing
theory (see McEwen & Wiaux 2011, for a review). Their goals,
constrains, and methods are, however, very different from purely
calibration-related algorithms, and we will not discuss them fur-
ther in this paper.

Jones-based and physics-based solvers have both advantages
and disadvantages. The main problem with using physics-based
solvers is that the system needs to be modeled accurately, while
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analytically complex physics can intervene before measuring a
given visibility. Jones-based algorithms solving for the effec-
tive Jones matrices are not subject to this problem, because
no assumptions have to be made about the physics underlying
the building of a visibility (apart from the sky model that is
assumed).

However, one important disadvantage of Jones-based solvers
over physics-based solvers for DDE calibration is that they lack
robustness when solving for a large number of parameters and
can be subject to ill-conditioning. This can have dramatic ef-
fects in the image plane, such as source suppression. In the most
extreme case these algorithms can artificially decrease noise in
the calibrated residual maps by over-fitting the data. This eas-
ily drives artificially high dynamic range estimates. Hundreds of
parameters (i.e., of directions) per antenna, polarization, can cor-
respond to tens of thousands of free parameters per time and fre-
quency bin. The measurement operator being highly nonlinear,
for each given data set and process space, it is often hard to know
whether ill-conditioning is an issue. Simulations can give an an-
swer in individual cases, and a minimum time and frequency in-
terval for the solution estimate can be estimated. However, this
time interval can be large, and the true underlying process can
vary significantly within that interval.

1.2. Tracking versus solving

Another important consideration is the statistical method used
by the algorithm to estimate the parameters. Most existing
Jones-based and physics-based solvers minimize a chi-square.
This is done by using the Gauss-Newton, gradient descent, or
Levenberg-Marquardtalgorithm. More recently, in order to solve
for larger systems in the context of calibration of DDEs, this has
been extended using expectation maximization, and SAGE al-
gorithms (Yatawatta et al. 2008; Kazemi et al. 2011). One well-
known problem is that conventional least-squares minimization
and maximum likelihood solvers lack robustness in the presence
of low signal-to-noise ratios (S/N; the estimated minimum chi-
square jumps in between adjacent data chunks, while this be-
haviour is non-physical). In most cases, a filtering of the esti-
mated solutions (Box car, median, etc) or an interpolation might
be necessary (see e.g., Cotton 1995). In practice, situations of
low S/N combined with the need to perform DDE calibration are
not rare (in the case of LOFAR, the ionosphere varies on scale
of 30 s while not much flux is available in the field).

In this paper we present a new calibration algorithm whose
structure is that of a Kalman filter. Our main aim is to address
the stability and ill-conditioning issues discussed above by us-
ing a physics-based approach, which (i) decreases the number of
free parameters in the model and (ii) increases the amount of us-
able data; the algorithm structure allows us to (iii) use additional
physical priors (time/frequency process smoothness for exam-
ple), while (iv) keeping the algorithm computationally cheap.
We note that we do not do any quantitative comparison between
least-squares solvers and our approach. Instead, we focus on de-
scribing an implementation of a nonlinear Kalman filter for radio
interferometry and we study its robustness.

While nonlinear least-squares solvers are iterative, our algo-
rithm uses a nonlinear Kalman filter, which is a recursive se-
quence (see Sect. 2). Kalman filters are referred in the litera-
ture as minimum mean square error estimators, and instead of
fitting the data at best (least-squares solver), they minimize the
error on the estimate given information on previous states. In
other words, they can be viewed as tracking the process rather

Table 1. Overview of the mathematical notations used throughout this
paper.

Gptν . . . The product of the 2 × 2 direction-independent Jones
matrices for antenna p at time t and frequency ν.

Dpstν . . The product of the 2 × 2 direction-dependent Jones ma-
trices in direction s for antenna p at time t and fre-
quency ν.

N . . . . . The number of parameters in the model.
M . . . . . The number of visibility-type data points.
Mi . . . . The number of image-type data points.
x . . . . . . Process vector of size N, containing the values of the

parameters to be estimated.
y . . . . . . Data vector of size M.
P . . . . . The covariance matrix on the estimated process vector

(size N × N).
Q . . . . . The process covariance matrix of size N × N.
R . . . . . The data covariance matrix of size M × M.
f . . . . . . The nonlinear evolution operator mapping RN → RN . It

is equivalent to a matrix F when f is linear.
h . . . . . . The nonlinear measurement operator mapping RN →

R
2M . When h is linear, we note it as a matrix H.

(.)k−1|k−1 The a priori value of (.) at k − 1 built at the k − 1 step.
(.)k|k−1 . The prior of (.) predicted at k from the k − 1 step (after

(.)k−1|k−1 has been evolved through the f evolution oper-
ator).

(.)k|k . . . The posterior value of (.) estimated at k using the
Kalman gain (after the Kalman gain has been applied
to (.)k|k−1 in the data-domain).

χi . . . . The ith σ-point vector of size N in the process domain.
Y i . . . . The ith σ-points propagated in the data domain of size

M.
K . . . . . The Kalman gain matrix of size N × M.

than solving for it. An estimated process state vector1 built from
previous recursions, together with a covariance matrix prior are
specified. This way, the filter allows us to constrain the expected
location of the true process state along the recursion. Even when
the location of the minimum chi-square jumps between data
chunks, the posterior estimate stays compatible with the prior
estimate and with the data (under the measurement and evolu-
tionary models). As more data goes though the filter, the process
state and its covariance are updated (and the trace of the covari-
ance matrix decreases in general).

An interesting aspect of our approach is that we use alter-
native data domains (Sect. 3), which amounts to conducing the
calibration in the image domain. We show that this approach pro-
vides higher robustness. We discuss the details of the implemen-
tation and algorithmic costs in Sect. 4. An important step for the
feasibility of the approach is to re-factor the filtering steps us-
ing the Woodbury matrix identity (Sect. 4.1). We demonstrate
the efficiency of our algorithms in Sect. 5, based on simulations
of the clock/ionosphere (Sect. 5.1) and pointing error (Sect. 5.2)
problems. An extended discussion on the differences between
our algorithm and other existing techniques is given in Sect. 6.
An overview of the mathematical notation is given in Table 1.

1.3. Radio interferometry measurement equation

To model the complex DDE (station beams, ionosphere, Faraday
rotation, etc.), we make extensive use of the radio interferome-
try measurement equation (RIME) formalism, which provides
a model of a generic interferometer (for extensive discussions

1 The process state vector encodes the states of the instrument, iono-
sphere, beams, etc. It is written as x throughout this paper.
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on the validity and limitations of the measurement equation see
Hamaker et al. 1996; Smirnov 2011a). Each of the physical phe-
nomena that transforms or converts the electric field before the
correlation is modeled by linear transformations (2× 2 matri-
ces). If s = [l,m, n =

√
1 − l2 − m2]T is a sky direction, and

MH stands for the Hermitian transpose operator of matrix M,
then the 2 × 2 correlation matrix V(pq)tν between antennas p and
q at time t and frequency ν can be written as

V(pq)tν = h(x) = Gptν(x)

⎛⎜⎜⎜⎜⎜⎝∑
s

Vs
(pq)tν(x)ks

(pq)tν

⎞⎟⎟⎟⎟⎟⎠ GH
qtν(x) (1)

Vs
(pq)tν(x) = Dpstν(x)xs DH

qstν(x), (2)

where x is a vector containing the parameters of the given
system (ionosphere state, electronics, clocks, etc.), Dpstν is the
product of direction-dependent Jones matrices corresponding to
antenna p (e.g., beam, ionosphere phase screen, and Faraday ro-
tation), Gptν is the product of direction-independent Jones ma-
trices for antenna p (like electronic gain and clock errors), and
Xs is referred as the sky term2 in the direction s, and is the
true underlying source coherency matrix [[XpX∗q,XpY∗q], [YpX∗q,
YpY∗q]]. The scalar term ks

(pq)tν describes the effect of the array
geometry and correlator on the observed phase shift of a coher-
ent plane wave between antennas p and q. We have ks

(pq)tν =

exp (−2iπφ(u, v, w, s)) with [u, v, w]T as the baseline vector be-
tween antennas p and q in wavelength units and φ(u, v, w, s) =
ul + vm + w (n − 1).

Although the detailed structure of Eq. (1) is of fundamen-
tal importance, throughout this paper it is reduced to a nonlinear
operator h:RN �→ RM , where N is the number of free parameters
and M is the number of data points. The operator h therefore
maps a vector xk parameterizing the Jones matrices and/or sky
terms appearing on the right-hand side of Eq. (1) (the states of
the beam, the ionosphere, the clocks, the sky, etc.), and maps it to
a vector of visibilities yk such that yk = h(xk). In the following,
yk is the set of visibilities at the time step k for all frequencies,
all baselines, and all polarizations. The choice of mapping the
state space to the measurement space for all frequencies for a
limited amount of time (time step k) is motivated by the fact that
regularity is much stronger on the frequency axis. For example,
the Jones matrices associated with the ionosphere or clocks, al-
though they greatly vary in time, have a very stable frequency
behaviour at any given time.

2. Kalman filter for nonlinear systems

Nonlinear least-squares algorithms only consider the χ2 value
for the given data chunk. As mentioned above, this is a prob-
lem in (i) low S/R and (ii) ill-conditioned regimes. For example
for (i), if one considers a noisy χ2 valley, the least-squares solu-
tion will jump between each time-frequency bin because of noise
– while this behaviour is obviously non-physical. Effect (ii) will
bring instability as a result of the χ2 valley having multiple local
minima, or a flat minima. As explained in Sect. 1.2, Kalman fil-
ters provide a number of advantages allowing us in principle to
significantly improve robustness, and to minimize the impact of
ill-conditioning.

2 For convenience, in this section and throughout the paper, we do not
show the sky term

√
1 − l2 − m2 that usually divides the sky to account

for the projection of the celestial sphere onto the plane, as this has no
influence on the results.

In the following, we assume an evolution operator xk =
f(xk−1) + wk describing the evolution of the physical quanti-
ties underlying the RIME, and a measurements operator yk =
h(xk)+ uk generating the set of measurement for a given process
vector xk (examples for both f and h are given in Sect. 5). The
random variables uk and wk model the noise and are assumed to
follow normal distributions uk ∼ N(0,Rk) and wk ∼ N(0,Qk),
where Rk and Qk are the data and process covariance matrix re-
spectively. In the following, we name the predicted-process and
data domains the codomains of f and h, respectively.

2.1. Kalman filter

The traditional Kalman filter (Kalman 1960) assumes (a) f and h
to be linear operators (written F and H below for f and h re-
spectively). If the process vector xk−1 for the time-step k − 1
has x̂k−1|k−1 estimated mean and Pk−1|k−1 estimated covariance
from the data at step k − 1, assuming (b) Gaussian noise in
the process and data domains, xk−1|k−1 is distributed following
xk−1|k−1 ∼ N(x̂k−1|k−1,Pk−1|k−1).

Under the conditions (a) and (b), operators F and H yield
Gaussian distributions in the predicted-process and data domains
respectively. Given x̂k−1|k−1 and Pk−1|k−1 the Kalman filter (i) pre-
dicts x̂k|k−1 and Pk|k−1 through F; and (ii) updates those to x̂k|k and
Pk|k through H given the data yk.

It can be shown that the mean and covariance of xk−1 can be
evolved through F giving x̂k|k−1 and Pk|k−1 as follows:

x̂k|k−1 = Fk x̂k−1|k−1 (3)

Pk|k−1 = FkPk−1|k−1FT
k +Qk. (4)

Taking into account the data vector yk at step k, the updated mean
and covariance x̂k|k and Pk|k of xk are estimated through the cal-
culation of the Kalman gain Kk, and are given by

Sk = HkPk|k−1HT
k + Rk (5)

Kk = Pk|k−1HT
k S−1

k (6)

ỹk = yk −Hk x̂k|k−1 (7)

x̂k|k = x̂k|k−1 +Kkỹk (8)

Pk|k = (I −KkHk)Pk|k−1. (9)

The estimate x̂k|k is optimal in the sense that Pk|k is minimized.
This approach is extremely powerful for linear-systems, but the
radio interferometry measurement equation is highly nonlinear
(the operator h in Eq. (1)). This makes the traditional Kalman fil-
ters unpractical for the radio interferometry calibration problem.

2.2. Unscented Kalman filter

The Kalman filters fail at properly estimating the statistics of
x essentially because f and h are nonlinear, and lead to non-
Gaussian distributions in the predicted-process and data domains
described above.

The unscented Kalman filter (UKF, Julier & Uhlmann 1997;
Wan & van der Merwe 2000) aims at properly estimating the
mean and covariance in both these domains by directly applying
the nonlinear operators f and h to deform the initial Gaussian dis-
tribution of x. In practice, instead of selecting a large number of
process vectors built at random as is done in Monte Carlo par-
ticle filters for example, the unscented transform (UT) scheme
selects a much smaller set of 2N + 1 sigma-points in the process
domain in a deterministic manner. Each point is characterized by
a location in the process space and by a corresponding weight.
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The set is built in such a way that its mean and covariance match
the statistics of the random variable x. The points are propagated
through the nonlinear operators f and h in the predicted-process
and data domains, respectively, and the corresponding mean and
covariance are estimated based on their evolved positions and
associated weights. Using Taylor expansions of f and h, it can
be shown that the mean and covariance of the evolved random
variable are correct up to the third order of the expansion (Julier
& Uhlmann 1997). Errors are introduced by higher order terms,
but partial knowledge about these can be introduced using proper
weighting schemes. It is important to note, however, that even
though the mean and covariance can be properly estimated after
applying nonlinear operators through the UT, the Kalman filter
still assumes Gaussian statistics of all random variables to esti-
mate the statistics of x.

2.2.1. Sigma-points and associated weights

Given a multivariate distribution with covariance P of size N×N,
the set of sigma-points are generated in the following way

χ̃i =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
x̂ for i = 0

x̂ +
[√

N
1−w0

P
]
i

for i = 1, . . . ,N

x̂ −
[√

N
1−w0

P
]
i

for i = N + 1, . . . , 2N.

(10)

Here N is the number of parameters, P is the process covari-
ance matrix, and [M]i is the ith column of the matrix M. The
real-valued scalar w0 controls the distance of the sigma-points
to the origin. As N increases, the radius of the sphere that con-
tains the sigma-points increases as well. As shown in Julier &
Uhlmann (1997), for the errors to be minimized on the mean and
covariance estimate, the sigma-points should stay in the neigh-
bourhood of the origin. The sigma-point locations are scaled by
a parameter α giving:

χi = (1 − α)χ̃0 + αχ̃i. (11)

When estimating the mean of the evolved distribution, the
weights associated with the sigma-points are

wm
i =

{
(w0 + μ − 1)/μ for i = 0
(1 − w0)/(2Nμ) otherwise,

(12)

where μ is a normalizing constant appearing while computing
the Taylor expansion of the nonlinear operator. When computing
the covariance of the sigma-points, the weights are given by

wc
i =

{
wm

0 + β + 1 − α for i = 0
wm

i otherwise
(13)

where β is an extra parameter that can be used to incorporate
additional knowledge on the fourth-order term of the Taylor ex-
pansion of the covariance.

2.2.2. Filtering steps

A set of sigma-points is generated assuming xk−1|k−1 ∼
N(x̂k−1|k−1,Pk−1|k−1), following the scheme outlined above
(Sect. 2.2.1). The sigma-points are then propagated through the
nonlinear evolution operator f

χi
k|k−1 = f(χi

k−1|k−1) for i = 0, . . . , 2N (14)

and the mean and covariance are estimated as follows:

x̂k|k−1 =

2N∑
i=0

wm
i χ

i
k|k−1 (15)

Pk|k−1 =

2N∑
i=0

wc
i [χi

k|k−1 − x̂k|k−1][χi
k|k−1 − x̂k|k−1]T +Qk. (16)

If μ = α2 the expressions of x̂k|k−1 and xk|k−1 agree up to the third
order of the Taylor expansion. We note that Eqs. (15) and (16)
are the UKF versions of Eqs. (3) and (4). Once x̂k|k−1 and Pk|k−1
are estimated, we assume xk|k−1 ∼ N(x̂k|k−1,Pk|k−1), and a new
set of sigma-points is generated following the scheme outlined in
Eqs. (10) and (11). The new set of sigma-points are propagated
onto the measurement domain through the nonlinear observation
function h

Y i
k = h(χi

k|k−1) for i = 0, . . . , 2N, (17)

whereY i
k is the measurement vector corresponding to each pro-

cess vector χi
k|k−1. As in Eqs. (15) and (16) the measurement

mean ŷk, measurement covariance Pykyk , and state-measurement
cross-covariance Pxkyk are then estimated:

ŷk =

2N∑
i=0

wi
mY i

k (18)

Pykyk =

2N∑
i=0

wi
c [Y i

k − ŷk][Y i
k − ŷk]T + Rk (19)

Pxkyk =

2N∑
i=0

wi
c [χi

k|k−1 − x̂k|k−1][Y i
k − ŷk]T . (20)

We note again that Eqs. (18) and (19) mirror the behaviour of
Eq. (5), while the term Pxkyk (Eq. (20)) is similar to Pk|k−1HT

k in
Eq. (6); ŷk has size M, Pykyk has size M × M and Pxkyk has size
N × M, where N and M are the dimensions of the process and
measurement spaces respectively. The Kalman gain is then

Kk = Pxkyk P
−1
ykyk

(21)

and the updated estimates x̂k|k and Pk|k can be computed:

x̂k|k =x̂k|k−1 +Kk(yk − ŷk) (22)

Pk|k =Pk|k−1 −KkPykyk K
T
k . (23)

3. Data representation

In this section we describe how we can modify the measure-
ment operator together with the raw data to improve robustness.
Using the operator discussed in Sect. 3.2 in combination with
the Kalman filter discussed above, this is equivalent to an image-
plane calibration.

3.1. Robustness with large process covariance

As explained in Sects. 2.2 and 4, the unscented transform cor-
rectly approximates the evolved covariance up to the third order.
When the radius of the sphere containing σ-points in the pro-
cess domain increase, and depending on the strength of nonlin-
earities of the evolution and measurement operators f and h, the
estimated mean and covariance can be affected by large errors.
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Fig. 1. This figure shows how the sigma-point statistics compares to the true statistics. Specifically, we consider the case of a frequency-dependent
phase gradient (clock offset, ionospheric effect, or source position offset). The true covariance corresponds to the gray area, while the sigma
points appear as dotted lines, together with their associated estimated covariance (thick dashed line). The noise in the data is represented by the
dash-dotted line. Qualitatively, the goodness of the description depends on the type of the data representations operator.

This is the case when the multivariate ellipsoid is too deformed,
and the statistics of theσ-points in the evolved domain no longer
capture the true statistics.

Here, we introduce another layer of nonlinear operators
R:R2M �→ RM̃ that transform the sets of visibilities into another
measurement domain. We define various simple representation
operators as

R||Img:R2M → RMi RRe
uv:R2M → RM

y �→ ∣∣∣g1D(y)
∣∣∣ y �→ Re(y)

Rφuv:R2M → RM RRe
Img:R2M → RMi

y �→ φ(y) y �→ Re(g1D(y))

where g1D = RCImg is the operator described in Sect. 3.2 trans-
forming a set of visibilities into another set of 1D images (the
Fourier transform along the frequency axis, also referred to later
as the pseudo-image domain). The operators |.|, φ(.), and Re(.)
take the complex norm, the phase, and the real part, respectively;
M is the number of visibility data, and Mi the number of pixels
in the image domain. Our goal is to obtain a system that has less
nonlinearity, so that the σ-points statistics still properly match
the true statistics, even when the volume within the multivariate
ellipsoid is large in the process domain.

In order to illustrate this idea, we compare the evolved co-
variance estimated using Eq. (19) to the true evolved mean and
covariance as estimated by running Monte Carlo simulations.
The system is made of one point source at the phase center, the
bandpass goes from 30 to 70 MHz, and our interferometer con-
sists of one baseline. We consider the ellipsoid of the clock-offset
parameter Δt01 ∼ N(0, 10)×10−9 s (therefore corresponding to a
large 10× 10−9 s estimated error), and inspect how it is reflected
in the data domains after applying h̃ = R ◦ h (the symbol ◦ is
used here for the function composition). For this system, Eq. (1)
becomes ỹ = h̃(x) = R (

exp (2πiνΔt01)
)
, where Δt01 is our ran-

dom variable. Figure 1 shows how the statistics of the σ-points
compare to the true statistics when using different data repre-
sentations R. When R picks the real part Re or the phase φ of

y = h̃(x) (RRe
uv and Rφuv), the σ-points statistics are obviously

wrong.

3.2. One-dimensional image domain for calibration

Although a single transformation separate the uv-plane from the
image domain, it seems the latter is sometimes more suited for
calibration. Intuitively, in the uv domain clock shifts, source po-
sition, and ionospheric disturbance will wrap the phases of the
complex-valued visibilities everywhere, and the strong nonlin-
earities sometimes present in h make the distribution strongly
non-Gaussian. On the contrary, in the image domain, the same
type of perturbations only affect the data locally, and will move
the flux from one pixel to its neighborhood.

We cannot use the 2D image domain, as it is built from the
superposition of all baselines, which would lead to an effective
loss of information. Instead, similarly to what is done for VLBI
delays and fringe rates calibration (Cotton 1995), we build a
1D image per baseline (see Appendix A for details). As shown
in Fig. 1, when going into the pseudo-image domain, the power
is concentrated in a few pixels. Using Monte Carlo simulations
Fig. 1 shows the ability of the unscented transform to properly
describe the data statistics after the nonlinear measurement oper-
ator and the different representation operatorsR (Sect. 3.1) have
been applied to the process domain. We have subtracted the true
mean 〈R〉MC from each quantity plotted in this figure. The real
part RRe

Img of individual pixels gives a better match, but is still

biased. Taking the norm R||Img of the image-plane complex pixel
seems to behave well in all conditions. This is discussed in detail
in Appendix A.

3.3. The augmented measurement state
for regularization

As explained above, one of the aims of the work presented in this
paper is to address the ill-conditioning issues related to the large
inverse problem underlying the use of modern interferometers.
This is done by analytically specifying the physics underlying
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the RIME (using a physics-based approach, see Sect. 1.1), and
by using the Kalman filter mechanism, able to constrain the lo-
cation of the true process state through the transmission of pre-
vious estimated state and associated covariance. Yet, in some
situations, and particularly when two variables are analytically
degenerate (such as the clock shifts and the ionosphere when
the fractional bandwidth is small), the robustness of the scheme
presented is not strong enough to guarantee the regularity of so-
lutions, and the estimated process can drift to a domain where
solutions are non-physical.

In order to take into account external constrains while still
properly evolving the process covariance Pk|k, we introduce an
augmented measurement model (see e.g., Henar 2011; Hiltunen
et al. 2011). Using the idea underlying Tikhonov regularization,
if x0 is the expected value of x, and Qγ0 the covariance of x0, our
cost function becomes

C(x) = ‖̃h(x) − ỹ‖2P + ‖x − x0‖2Qγ0 (24)

=

∥∥∥∥∥∥
[

h̃(x)
x

]
−

[
ỹ
x0

]∥∥∥∥∥∥
2

(P,Qγ0)

(25)

= ‖̃ha
(x) − ỹa‖2(P,Qγ0), (26)

where ‖x‖C = xT C−1x is the norm of vector x for the metric C,
with C the covariance matrix of x (or the Mahalanobis distance).
The operator h̃

a
:RN �→ RM+N is the augmented version of h and

(P,Qγ0) is the block diagonal covariance matrix of the augmented
process vector. The parameter γ allows us to control the strength
of the Tikhonov regularization, and is such that Qγ0 = γ

−2Q0.

4. Implementation for radio-interferometry

As explained above, radio-interferometry deals with large in-
verse problems, made of millions or billions of nonlinear equa-
tions. This poses a few deep problems including (i) numerical
cost and (ii) numerical stability. In this section, we describe our
UKF implementation.

4.1. Woodbury matrix identity

The first matter is the size of the matrices involved in the UKF
recursion steps presented in Sect. 2.2. Specifically, in the case of
LOFAR, we have nbl ∼ 1500 baselines and nν ∼ 250 frequen-
cies. This gives a number of dimensions M for the measurement
space of M ∼ 1.5 × 106 per recursion (taking into account the
four-polarization visibilities). The predicted measurement co-
variance matrix Pykyk has size M × M, and in practice becomes
impossible to store and invert directly (∼8 petabytes of memory).
Fortunately we can re-factor Eq. (21) so that we do not have to
explicitly calculate each cell of Pykyk . We can see that Eq. (19)
can be rewritten as

Pykyk = SkWST
k + Rk (27)

with

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[Sk]i = Y i

k − ŷk

Wi j =

{
wc

i if i = j
0 otherwise,

where Sk is a matrix of size M × (2N + 1), [Sk]i is the ith column
of Sk, and W is a diagonal matrix of size (2N + 1) × (2N + 1)
containing the weights on its diagonal. Using the Woodbury

matrix identity3 (Hager 1989), we can express the Kalman
gain Kk as

Kk = Pxkyk P
−1
ykyk

= Pxkyk R
−1
k

(
I − Sk

(
W−1 + ST

k R−1
k Sk

)
ST

k R−1
k

)
. (28)

This relation (Eq. (28)) is quite remarkable, as it allows us to ap-
ply the Kalman gain without explicitly calculating it, and with-
out estimating either Pykyk or its inverse. Instead, the inverse W−1

of the diagonal weight matrix of size (2N+1)× (2N+1), and the
inverse R−1

k of the data covariance matrix of size M ×M have to
be estimated. Even though Rk has large dimensions, if the noise
is uncorrelated only the diagonal has to be stored and the in-
verse can be computed element-by-element. Similarly, the inner
product of matrices with Rk are computationally cheap. At each
recursion k we have to explicitly estimate the σ-points evolved
through the measurement operator h and contained in Sk.

4.2. Adaptive step

While Pk|k characterizes the posterior process covariance, the
matrix Q (Eqs. (4) and (16)) characterizes the intrinsic process
covariance through time. It can, for example, describe the natural
time-variability of the ionosphere, the speed of the clock drift, or
the beam stability. In addition, in a strong nonlinear regime, it is
well known that the Kalman filters can underestimate Pk|k, and
thereby drive biases in the estimate x̂k|k of xk. This would typi-
cally happen when x̂k−1|k−1 is too far from x, or when the process
covariance is changing (for example a changing and increasing
ionospheric disturbance for a given time-period). Although the
Kalman filter does not produce an update Qk of Q, based on the
residual data we can externally update it and write Qk = κQ.
The scaling factor κ is useful for estimating whether the model
properly fits the data at any time step k. Following Ding et al.
(2007), we can write

κ =
∑

i

wi
Q

tr
{
(yk−i − ŷk−i)(yk−i − ŷk−i)

T − Rk−i

}
tr

{
Sk−iWST

k−i

} (29)

wi
Q = exp

(
−(tk − tk−i)/τQk

)
, (30)

where tr {A} is the operator computing the trace of a matrix A.
The weights are designed to take into account past residual val-
ues, and τQk

is a time-type constant. Here, estimating κ is com-
putationally cheap as tr only accesses the diagonal of the input
matrix.

4.3. Computational cost

In this section, we discuss the computational cost of the pro-
posed algorithm. Our concern is to show that the approach is fea-
sible, and we do not intend to show that it is faster than other ex-
isting approaches. However, we discuss the issues of the scaling
relations and parallelizability of various parts of the algorithm.
We argue that using the refactorization described in Sect. 4.1, our
algorithm should be compatible with existing hardware, even for
the data sets produced by the most modern radiotelescopes.

As explained above, we adopt a physics-based approach to
reduce the number of degrees of freedom by orders of mag-
nitudes while using more data at a time (see Sect. 1.1 for a

3 The Woodbury matrix identity has sometimes been used in the con-
text of the ensemble Kalman filters, and is given by: (A + UCV)−1 =

A−1 − A−1U
(
C−1 + VA−1U

)−1
VA−1.
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Fig. 2. Snapshot residual image estimated at different recursion times (the color scale is identical in each panel). As recursion time evolves, more
data cross the Kalman filter, the ionospheric and clock parameters estimates become more accurate, and the residual noise level decreases (see also
Fig. 4).

discussion on Jones-based versus physics-based approach). The
Kalman filter is fundamentally recursive (i.e., it has only one it-
eration), while tens to hundreds of iterations are needed to reach
local convergence with Levenberg-Marquardt for example. This
means that the equivalent gain by the proposed approach on the
model estimation side is the number of iteration. This gain might
be balanced in some cases by the larger data chunks processed
at a time by the Kalman filter itself. We give here the scaling
relations for our implementation of the filter scheme.

The predict step (controlled by operator f in Sect. 2.2) always
represents a relatively small number of steps, as it scales with the
number of parameters N in the process vector. The update step,
however, is the costly part of the computation (Sect. 2.2). It con-
sists of (i) estimating the data corresponding to different points
in the process domain (applying the operator h, see Eq. (1)) and
(ii) computing the updated estimate of the process vector and
associated covariance. Step (i) is common to all calibration al-
gorithms, and in most cases this is the expensive part of the
calculation as we map N parameters to M data points, M hav-
ing relatively high values of ∼104−106. Within our framework,
most of the computation is spent in the estimate of Sk of size
M× (2N+1) (Eq. (17)), which, compared to the Jacobian equiv-
alent that would have size M × N, represents a cost of a factor
of ∼2 in computational time. It is worth noting that this step is
heavily parallelizable. The operations in (ii) to apply the Kalman
gain (Eq. (28)) are negligible in terms of computing time for the
example described in Sect. 5.1. From the scaling associated with
the use of the Woodbury matrix identity, following the work pre-
sented in Mandel (2006), we estimate this operation should scale
as O(N3 + MN2).

We believe the algorithm should be practical with large data
sets. For the few test cases we have been working on (with
a 4-core CPU) with ∼20 to ∼100 parameters, and moderate
to large data set (such as the LOFAR HBA data set contain-
ing ∼1500 baselines, 30 sub-bands, and a corresponding M ∼
1.8 × 105 points per recursion, see Sect. 5.1.2), the algorithm
was always sveral times faster than real time. On the LOFAR
CEP1 cluster, a distributed software would work with up to
M ∼ 106 points per recursion and N ∼ 100. Preliminary tests
showed that the Kalman filter’s most consuming steps appearing
in Eq. (28) are computed within a few seconds (computing inner
products with numpy/ATLAS, on an 8-core CPU).

5. Simulations

In this section, we present simulations for (i) the pointing er-
ror calibration problem (also addressed using physics-based al-
gorithms in Bhatnagar et al. 2004; Smirnov 2011b) and (ii) the
clock/ionosphere problem.

5.1. Clock drifts and ionosphere

LOFAR raw data sets are characterized by a few dominating
direction-independent and DDEs, including clocks and the iono-
sphere. While direction dependent calibration is known to be dif-
ficult, clock errors and ionosphere effects combined with a lim-
ited – even though large – bandwidth make the problem partially
ill-conditioned.

5.1.1. Evolution and measurement operators

The error δtclk
p due to the clock offset of antenna p produces a

linearly frequency-dependent phase φclk
p = 2πνδtclk

p . The time
delay δtion

p,d introduced by the ionosphere is frequency dependent

δtion
p,d ∝ Tp,d/ν

2, where Tp,d is the total electron content (TEC),
given in TEC-units (TECU), and seen by station p in direction d.
This gives a phase φion

p,d = kTp,d/ν, with k = 8.44 × 109 m3 s−2.
The measurement operator h (Eq. (1)) is built from the di-

rection independent Gptν and direction dependent terms Dd
ptν as

Gptν(x) := exp
(
2πiν δtp(x)

)
I (31)

Dd
ptν(x) := exp

(
ikν−1 T d

p(x)
)

I, (32)

where I is the 2 × 2 unity matrix and δtp is a simple linear op-
erator unpacking the clock value of antenna p from the process
vector x. For this test, we choose to model the ionosphere using a
Legendre polynomial function (see e.g., Yavuz 2007). Assuming
a single ionospheric screen at a height of 100 km, the nonlinear
operator T d

p extracts the Legendre coefficients, and returns the
TEC value seen by antenna p in direction d. For this simulation,
we are using the R||Img representation presented in Sect. 3.

The operator f that describes the dynamics of the system typ-
ically contains a lot of physics. Clock offsets drift linearly with
time, while the ionosphere has a non-trivial behaviour (defined
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Fig. 3. Estimated clock errors (full line) and posterior covariance (dotted line) as a function of time for different LOFAR stations in the simulation
presented in Sect. 5.1. The dashed line shows the true underlying clock offset. To improve convergence speed, before t = 6 min, the evolutionary
model is stochastic.

in Sect. 5.1.2). We configure the filter to consecutively use two
types of evolution operator f. The first is used for the first ∼6 min,
and f is the identity function, which corresponds to a stochastic
evolution. This appears useful when the initial process estimate
starts far from the true process state. This way, the filter’s state
estimate gets closer to the true state without assuming any physi-
cal evolutionary dynamics. The convergence speed and accuracy
are then both controlled by the covariance matrices Pk and Qk
described above. We set the second evolutionary operator f to
be an extrapolating operator. It computes an estimated process
vector value from the past estimates. At time step k, for the ith
component of x, solutions are estimated as follows:

f(xi
k) := P

(
{xk−m}, ni

fit, τi

)
(33)

wi
t−m = exp (−(tk − tt−m)/τi), (34)

whereP is the operator computing the polynomial interpolation,
ni

fit is the degree of the polynomial used for the interpolation, wi

are the weights associated with each point xk−m at tk−m, and τi
gives a timescale beyond which past information is tapered.

5.1.2. Simulation for LOFAR

An important consideration is that at any given time our
algorithm needs to access all frequencies simultaneously.
With 250 sub-bands (16-bit mode), 1 channel per sub-band,
1500 baselines, 4 polarization, this gives a number of visibili-
ties per recursion of 1.5 × 106. The data is currently distributed
and stored per sub-band, so our software needs to deal with a
number of technical problems for a realistic full size simulation.
For this simulation, we scale down the problem by a factor ∼8
in terms of number of frequency points per recursion. Assuming
NVSS source counts (Condon et al. 1998), a spectral index of
−0.8, and a field of view of 8 degrees in diameter, we estimate a
total of ∼20 Jy of signal per pointing at ∼150 MHz. Inspecting
the cross polarization visibilities of a LOFAR calibrated data set
with Δν = 0.2 MHz and Δt = 6 s gives an estimated noise of
∼2 Jy per visibility bin. We work on 30 sub-bands only, with fre-
quencies linearly distributed between 100 MHz and 150 MHz,
and scale the signal to match S/N ∼ 10 per visibility per sub-
band. We distribute the corresponding flux density on a 3×3 rect-
angular grid of sources with a step of 3 degrees in RA and 3 de-
grees in Dec.

For the dynamics of the underlying physical effects, we
apply a linearly drifting clock offset taken at random with
∂(δtclk

p )/∂t ∼ N(0, 10) ns. As mentioned above, we model the
ionosphere with a 2D-Legendre polynomial basis function. For
this simulation, each Legendre li j coefficient varies following
li j = sin(t/τi j + dτi j), with τi j and dτi j taken at random. Along
the lines discussed above, we set (ni

fit, τi) = (1, 5 min) and
(ni

fit, τi) = (2, 1 min) for the clock and for the ionosphere, re-
spectively. These orders for the extrapolating polynomials are in
agreement with the linear clock drift and the nonlinear behaviour
of the ionosphere.

5.1.3. Results

The filter and simulation configuration are described in
Sects. 5.1.1 and 5.1.2, respectively. At each recursion step,
∼180.000 complex visibilities cross the filter and the pro-
cess state (clock and ionosphere) as well as its covariance are
estimated.

First, in order to inspect the match to the data we derive
the frequency-baseline-direction dependent Jones matrices at the
discrete locations of the sources in our sky-model, and subtract
the visibilities corresponding to the given discrete directions. We
then grid the residual visibilities and compute the snapshot im-
ages (see Fig. 2). Figure 4 shows the minimum and maximum
residual as well as the standard deviation as a function of time.
Very quickly the visibilities are correctly matched down to the
thermal noise.

In Fig. 3 we show the clock offsets estimates as a function
of time compared to the true clock errors. The clock offset es-
timates seem to converge asymptotically to the true underlying
states. The ionospheric parameter estimates are more subject to
ill-conditioning, as some parts of the TEC-screen are not pierced
by any projected station. However, plotting the TEC-screen cor-
responding to the individual Legendre coefficients gives a good
qualitative match to the true TEC values (Fig. 5).

5.2. Pointing errors

One of the dominating calibration errors for interferometers us-
ing dishes are the individual antenna pointing errors. They start
to have a significant effect even at moderate dynamic range, and
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Fig. 4. Top panel: maximum and minimum residual values in the snap-
shot image as a function of recursion time (full line). Bottom panel:
standard deviation in the residual snapshot maps. The expected thermal
noise is shown in the bottom figure as the dotted line.

Fig. 5. Ionosphere state described using a Legendre polynomial basis
function. The estimated and true state of the ionosphere (left and right
panels) are shown at the beginning and at the end of the filter’s recur-
sion. The open circles show the location of the pierce points in the iono-
sphere. The spatial coordinates are given in kilometers from the array
center projected on the ionosphere screen.

can be severe for non-symmetric primary beams with azimuthal
dish mounts. Bhatnagar et al. (2004) and Smirnov (2011b) have
presented a physics-based calibration scheme to specifically
solve for pointing errors, using a least-squares minimization
technique combined with a beam model.

Here, we simulate a Westerbork Synthesis Radio Telescope
(WSRT) data set. As in Sect. 5.1, we first define a measurement
equation (operator h). We only consider the direction dependent
primary beam effect, using the WSRT cos3 beam model

Gptν(x) := I (35)

Dd
ptν(x) := cos

(
min

{
65 [ν/109] rd

pt(x), 1.0881
})3

I (36)

rd
pt(x) =

√
(ld − δlpt(x))2 + (md − δmpt(x))2, (37)

where δlpt and δmpt are the operators unpacking the pointing er-
ror values δl and δm for antenna p at time t. The f evolution

operator is the same as in Sect. 5.1.1, with τi = 5 min
(Eq. (33)). We simulate a data-set containing 64 channels cen-
tered at ∼1.3 GHz and channel width δν = 0.3 MHz. The sky
model has 20 sources with a total flux density of ∼10 Jy, with a
noise of 0.2 Jy per visibility. The simulated pointing errors have
an initial global offset distributed as δl0 ∼ δm0 ∼ N(0, 3) ar-
cmin, and the pointing offsets evolve periodically as δl(t) =
l0+al cos(2πt/τl+φl), with al ∼ N(1, 0.3) arcmin, τl ∼ N(40, 10)
min, and φl uniformly distributed between 0 and 2π. The same
scheme is used to generate the evolution law for δm.

Figure 6 shows the comparison between the estimated point-
ing errors and the true pointing errors for a few antennas. The
filter’s estimate rapidly converges to the true pointing offset, and
properly tracks its state within the estimated uncertainty.

6. Discussion and conclusion

6.1. Overview: pros, cons, and potential

As discussed throughout this paper, it is important to obtain ro-
bust algorithms that do not affect the scientific signal. In this
paper, we have presented a method that aims at improving ro-
bustness along the following lines:

(a) The Kalman filter presented here is fundamentally recursive,
and information from the past is transferred along the re-
cursion, thereby constraining the expected location of the
underlying true state. This is fundamentally different from
minimizing a chi-square, and then smoothing or interpolat-
ing this solution, especially since we can assume a physical
measurement and evolutionary model.

(b) Contrary to the Jones-based algorithms that have to deal
with hundreds of degrees of freedom, our algorithm follow
a physics-based approach (see Sect. 1.1 for other physics-
based methods). It aims at estimating the true underly-
ing physical term, potentially describing the Jones matrices
of individual effects everywhere in the baseline-direction-
frequency space. The very inner structure of the RIME can
be used to constrain the solutions. This feature allows us to
take into account much bigger data chunks. Typically, most
effects have a very stable frequency behaviour, and the data
in the full instrumental bandwidth can be simultaneously
used at each recursion. This improves conditioning.

(c) The measurement operator is nonlinear, and combining (a)
with (b) is made possible by using a modern nonlinear ver-
sion of the Kalman filter, together with the representation
operator presented in Sect. 3.

(d) Ill-conditioning can still be significant if effects are analyt-
ically degenerate to some degree. We can modify the mea-
surement operator to take external prior information into ac-
count (see Sect. 3.3), and reject solutions that are considered
to be non-physical. For example, this can allow the user to
provide the filter with an expected ionospheric power spec-
trum of the Legendre coefficients.

(e) One of the benefits of using filters is that they produce a pos-
terior covariance matrix on the estimated process state. The
covariance estimate should be reliable assuming the nonlin-
earities are not too severe.

Given the large size of our inverse problem, and in order to
make any algorithm practical, optimizing the computational cost
is of prime importance. Using the Woodbury matrix identity
(Sect. 4.1), we re-factor the unscented Kalman filter steps to
make the algorithm practical. Even for the moderately large sim-
ulations described in Sect. 5.1, a 4-core CPU is able to constrain
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Fig. 6. True pointing errors for a WSRT simulation (dashed line) together with the estimated state as a function of time (full line). Our algorithm
properly tracks the time dependent pointing errors within the estimated covariance (dotted line).

solutions faster than real time. The need to access the data of all
frequencies simultaneously represents some technical problems,
as these are distributed over different cluster nodes.

An important potential problem with physics-based ap-
proaches is that the system needs to be described analytically,
while algorithms solving for the effective Jones matrices do not
use any assumptions about the physics underlying the building
of a visibility (apart from the sky model that is assumed). This
would cause problems in particular if the model encapsulated
in the operator h misses physical ingredients that are present
in reality, and would probably drive biases in the estimates.
Furthermore, the unscented Kalman Filter used and adapted to
the context of radio-interferometry in this paper deals with non-
linearities only up to a certain level. This means in practice that
the process a priori covariance has a certain maximum size for a
given type of nonlinearities.

6.2. Conclusion

The use of filters and similar methods can potentially improve
radio interferometric calibration. As with least-squares mini-
mization techniques, our approach is guaranteed to work only
if nonlinearities are not too severe in the neighborhood of the
true process state. Other algorithms dealing with nonlinearities
are known to provide higher robustness, such as more general
particle filters, or Markov chains Monte Carlo algorithms. The
latter is guaranteed to provide a correct estimated posterior dis-
tribution. However, most of these methods are computationally
expensive because of the many predict steps that have to be com-
puted, and this fact could make them impractical, given the large
size of our problem. Recursive algorithms are well adapted to
streaming pre-calibration, and based on preliminary simulations,
our algorithm seems to be robust enough to solve for the sky
term (positions, flux densities, spectral indices, etc.) in a stream-
ing way.

We have not yet demonstrated the efficiency of our algo-
rithm with real data sets essentially because of its complexity
and novelty. Indeed, our software needs to deal with a num-
ber of technical issues as well as more fundamental problems.
Specifically in the case of the newest interferometers such as
LOFAR, (i) we have to deal with large quantities of distributed
data, and the algorithm has to access all frequencies simultane-
ously. Beyond these technical aspects, because we solve for the
underlying physical effects; (ii) we need to build pertinent phys-
ical models for the various effects we are solving for, such as the

ionosphere or phased array beams. An application of this algo-
rithm to real data sets will be presented in a future paper.
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Appendix A: One-dimensional images properties

In this section we discuss in more detail the 1D image represen-
tations introduced in Sect. 3. Aiming at being as conservative as
possible, but still working in the image domain, we define g1D to
be the operator that builds one 1D image per baseline (pq), and
polarization i as

ỹ(pq),i = g1D(y(pq),i)

:=
∫ ∞

−∞
y(pq),i(ν) exp

(
2πi
ν

c
bT

pqs
)

dν

=

∫ ∞

−∞
V(pq),i(ν) rect

(
ν − νm
Δν

)
exp

(
2πi
ν

c
bT

pq s
)

dν (A.1)

with V(pq),i =

nd∑
d=1

Sd
i exp

(
−2πi

ν

c
bT

pq sd

)
dν, (A.2)

where c is the speed of light, rect is the rectangular function,
νm = (ν0 + ν1)/2, and Δν = ν1 − ν0 with ν0 and ν1 the mini-
mum and maximum available frequencies. In order to align the
u-coordinate with the frequency extent of the baseline, we rotate
bpq and s and sd with 3 × 3 rotation matrix Uθφ such that

bθφ = Uθφ

⎡⎢⎢⎢⎢⎢⎢⎣ upq

vpq
wpq

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

u′pq
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (A.3)

sθφ = Uθφ

⎡⎢⎢⎢⎢⎢⎢⎣ l
m

n − 1

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣ l′

m′
n′

⎤⎥⎥⎥⎥⎥⎥⎦ , (A.4)

where (l,m, n) are the image plane coordinates, (upq, vpq) are the
uv-coordinates of baseline (pq), (ν0, ν1) are the lower and higher
frequencies values of the interferometer’s bandpass. It is unitary
so bTs = bT

θφsθφ. We can write the complex 1D image as

ỹ(pq),i =

nd∑
d=1

Sd
i δ(l

′
d) ∗ PSF1D, (A.5)
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where ∗ is the convolution product and Sd,i is the apparent flux
of the source in direction d for polarization i.

More intuitively, this means that ỹ(pq),i is obtained by project-
ing the sky on the baseline, and convolving it with the 1D point
spread function (PSF) of the given baseline. The term PSF1D is
obtained by computing the inverse Fourier transform of the uv-
domain sampling function,

PSF1D(l′) = F −1
{
rect

(
ν − νm
Δν

)}
(A.6)

= sinc
(
u′Δνl′/c

)
exp

(
2πiu′νml′/c

)
, (A.7)

where sinc is the cardinal sine function. We can see in Eq. (A.7)
that PSF1D contains both low and high spatial frequency terms
(u′Δν/c and u′νm/c, respectively, whose ratio equals the frac-
tional bandwidth).

Therefore, while RRe
Img still contains the high frequency

fringe, taking the complex norm using R||Img eliminates the high

spatial frequency term, and PSF1D underR||Img is smoother (RRe
Img

extracts the envelope of PSF1D). This intuitively explains why
theR||Img representation seems to provide a better match between
the true and the σ-points statistics. As the clock and ionospheric
displacements mostly amount to apparent shifts in source lo-
cations, smoothness of R||Img provides stability in the σ-points
statistics in the data domain.

Applying any of the representation operators presented
above modifies the properties of the input data covariance ma-
trix Rk (Eq. (5), (19), and (27)). Assuming the noise in the vis-
ibilities is uncorrelated, Rk is diagonal matrix. Assuming the
noise is not baseline or frequency dependent we have Rk = σ

2 I ,
for RCuv and RRe

uv, and Rk = (σ2/nν) I for RRe
Img. The statistics of

R||Img are non-Gaussian since it is the norm of a complex number.

In that case the random variable is X = σ−1 √nν
√

(Re2 + Im2)
which follows a non-central χ-distribution with two degrees of
freedom, and mean and covariance

μX =

√
π

2
L0

1/2

{−λ2

2

}
(A.8)

σ2
X = 2 + λ2 − μ2

X (A.9)

with λ =
√

nνσ
−1

√
μ2

Re + μ
2
Im, (A.10)

where L0
1/2 is a generalized Laguerre polynomial.
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