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SUMMARY

In relativistic cosmology the theory of uniform model universes is based on
Einstein’s equations, which derive from a variational principle the field-
Lagrangian L of which is the scalar curvature R to within an arbitrary additive
constant. In this work the possibility of taking L to be a more general invariant
of the Riemann tensor is contemplated. The consequences of choosing L to be
a function ¢ of R alone are tentatively examined under specialized circum-
stances, with particular attention to an open world-model oscillating between
non-singular states. Difficulties revolving about the actual form which ¢ might
take are discussed.

I. INTRODUCTION

Cosmological theory based on the general theory of relativity leads to the
conclusion (1) that an evolving Robertson-Walker universe either developed from a
singular state or a state of complete emptiness in the past or will reach such a state in
the future, whilst every oscillatory universe goes through a succession of singular
states; granted throughout that pressure p and energy density p are non-negative
quantities, and that dp/dp< 0. As long as one adheres, on the one hand, to the
Robertson-Walker metric g; as the appropriate instrument for the description of
the Universe as a whole and, on the other, to the general principle that the geometry
of the world is determined covariantly by the distribution of matter and radiation
within it, one will seek to adopt an equation of the form

Pkl = TH, (1.1)

where T*! is a phenomenological tensor which represents the sources of the
gravitational field other than itself, whereas P*! is a geometrical tensor which
depends on the gi; and their derivatives alone. If one now enquires how one might
construct modified theories which do not imply the necessary occurrence of states of
complete emptiness or of singular states, in particular in the case of oscillating models,
two generic alternatives offer themselves: (i) modifications of the first kind which
contemplate the abandonment of the requirement that Ty% and — T,® (a = 1, 2, 3)
must be non-negative (2); and (ii) modifications of the second kind, in which
Einstein’s formt Gy := 3grR— Ry — Agi of Py; is abandoned in favour of some
more general tensor. The first class of modifications evidently leaves the basic
principles of Einstein’s theory untouched and merely concerns itself with the

1 The notation : = and = : means that the equation operates as a definition of the quantity
on the left and right respectively.

I
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sources, whereas the second affects the structure of the theory. Of course, they are
not mutually exclusive, nor is there any a priori reason why the generic form of the
field equations must necessarily be that represented by equation (1.1).

Now, whereas the consequences of various modifications of the first kind have
been considered in the literature at various times (2), the same does not appear to be
true of those of the second kind. In this note I therefore undertake a very tentative
examination of the outcome of a class of modifications of the second kind. The class
as a wholet is characterized by the requirement that P¥! be the functional derivative
with respect to g4 of some invariant L of the Riemann tensor other than R. Then,
whatever the form of the Lagrangian L may be, the divergence T%!,; of the source
tensor will vanish as a consequence of equation (1.1), so that the conservation laws
governing the sources are the same as those in Einstein’s theory. Incidentally, an
important consequence of this is that the resulting theory cannot accommodate the
steady-state universe for any choice of L since the required constancy of the energy
density implies that the sum of pressure and energy density must vanish [see
equation (2.6)], a conclusion which is incompatible with the requirement that these
quantities shall be non-negative.

Various objections may be raised against the introduction of Lagrangians more
general than R— 2. For instance, even when L is required not to involve covariant
derivatives of the Riemann tensor (a restriction which will be adhered to through-
out), Py; will contain fourth derivatives of the components of the metric tensor. In
any event, it is difficult to see how a definite choice of L might be motivated.
Nevertheless, if a quantum-theoretic description of the metrical field is possible one
may expect that on a phenomenological level the effects of ¢ vacuum polarization’
will be to induce non-linear terms in the Lagrangian (4). (In lowest order perturba-
tion theory the additional term in L may be expected to be a linear combination of
the quadratic invariants Ry R¥! and R2, bearing in mind that the functional
derivatives of the quadratic invariants RpppaR¥'m? — 4R R¥ 4+ R2  and
ek Ry st Ryt vanish identically.) One has, indeed, a situation corresponding
closely to that which obtains in quantum electrodynamics. There vacuum polariza-
tion induces effects which are described on a phenomenological (quasi-classical)
level by the theory of Born and Infeld. This is a non-linear generalization of
Mazxwellian electrodynamics, non-linearity here being understood in the sense that
the Lagrangian is a non-linear function of the two quadratic invariants of the
field (s).

With these remarks in mind, the introduction of a non-linear Lagrangian is
perhaps after all not as far-fetched as might appear to be the case at first sight—see,
however, Section 7. The following formal point may also be raised. Suppose one
writes L as R—2A+4*L. If *P¥! is the functional derivative of *L, equation (1.1)
becomes

Gri = Tri—*Py, (1.2)

which are Einstein’s equations, but with the ¢ normal ’ source supplemented by an
¢ apparent ’ source
*¥Th = —*Pp. (1.3)

In the terminology used earlier, this looks like a modification of the first kind, but it
is not, to the extent that *7T%; depends upon the field alone. The same remark might

1 Probably this was first contemplated by Eddington (3).
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therefore be made about the work of Pachner (6), although his source appears to
have no readily identifiable normal part, and lacks a geometrical foundation.
Moreover, its dependence upon the metric tensor bears an ad hoc character of a kind
which precludes the applicability of the field equations to more general situations,
e.g. when the sources are unsymmetrical.

Since, in the first instance, no particular a prior: choice of L suggests itself it is
not unreasonable to adopt, for the purposes of orientation, the simple class of

Lagrangian L = ¢(R) (1.4)

where the function ¢ remains as yet unspecified. The corresponding field equations
are given in Section 2, and specialized to the case of the Robertson-Walker metric.
A particular open model, oscillating between non-singular states, satisfies these
equations if the source filling the model obeys the equations of state p = 1(p— p1),
where p; is a constant. After a digression on Palatini’s device, the model is con-
sidered in a little more detail in Sections 5 and 6. Finally, in Section 7 certain
apparently rather severe difficulties, relating to the actual form ¢(R) might take, are
discussed in some detail.

It is, of course, understood throughout that, whatever the actual form of the
Lagrangian may be, the effects of the part *Pkl of P¥! are completely negligible
under ‘ordinary’ circumstances. In other words, on a local scale, and under
ordinary astrophysical conditions, the actual Lagrangian L is effectively indistin-
guishable from R, and the theory reduces to Einstein’s theory (without cosmical
term).

2. THE FIELD EQUATIONS

In accordance with the remarks made in the introduction we contemplate the
field equations generated by the Lagrangian ¢(R). They are (see the Appendix)

(—R;kR;1+guiR; mR:™)” +(— R ;1 + gri(AR)¢" — Ruud’ +4gmd = Tri, (2.1)

where primes denote differentiation with respect to R. In the cosmological context
one would not solve these equations in the ordinary sense of the term since the
metric is required to be of the general form

ds? = —(1+}er?fro?)2S2(t)(dr2 +72 dO2+72 sin® 0 dg?) + 2 di2,  (2.2)

where 7 is a constant, € has one or other of the values +1, o, —1, and S(¢) is an
unspecified function of ¢ alone. For the time being units will be adopted such that
the numerical values of ¢, 7o and 87G (G = Newton’s constant) become unity. The
use of (2.2) in (2.1) now shows that

Ty = diag(—P’ —p, — b, P)

p = 3S71SR$"—35-15¢4' + 14, (2.3)
p = —R%"—(R+2S-1SR)p"+ S—24SS+252+2¢)p'— i, (2.4)

where

with
R = 65-2(SS+S2+¢), (2.5)

the dots denoting differentiation with respect to ¢.
In place of (2.4) one may use the relation

p+3S71S(p+p) = o. (2.6)
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3. EXAMPLE OF AN OSCILLATING MODEL

'To gain some insight into the possibilities the theory has to offer one may simply
make some more or less arbitrary but convenient choice of the function S(t). To this
end, take

S(#) = a(1—ncos wt)2 (a = /2 w™}), (3.1)
where w and 7 (< 1) are positive constants. Then in the first place
R = —301—(e+1)a2S 2], (3.2)
In the interests of gaining the greatest possible simplicity let it now further be
supposed that the model is open, € = —1. Then
R = —307% (3-3)

and this result shows the raison d’étre for the form of (3.1) of S. p and p may now be
computed from (2.3) and (2.4), and one so finds that

p = JuTr—(1 =71 -7 cos wr) 2}’ + I
p = —3@?3+(1—n?)(1 -1 cos wt)2Jp' ~ . (3-4)
It follows that
p—3p = —Re'+2¢, (3-5)
an equation which, bearing (3.3) in mind, follows at once by taking the trace of both

members of (2.1). The right-hand member of (3.5) is a constant, p;, say. Accord-
ingly, the equation of state of the fluid filling the model is

p = ¥p—p1) (3.6)
Evidently ¢ cannot be chosen entirely arbitrarily, for the algebraic equation
Rp'—2¢+p1 =0 (3-7)

must have at least one root on the negative real axis. Granted that p;=>o, the
Lagrangian L = R+bR? (b = constant), for example, is excluded by this condition,
whereas L = —2A+R+bR? is not, provided 4A< — p1. Granted now that (3.7)
has a root of the required kind, (3.4) can be given the form '

p=tipmt+(Fé—1p)X, 3p = —ip1+(id—1p1)X, (3-8)
where

X 1= (1—72)(1—7 cos wt)2,

4. DIGRESSION ON PALATINI’S DEVICE

The results of the preceding section were based on the ansatz (3.1) together
with the assignment of the value — 1 to e. Suppose now that instead the equation of
state (3.6) were adjoined to the equations of Section 2. Then, because of (2.6),

p = bS~4+1py, (4-1)

where b is a constant of integration. Inserting this form of p on the left of (2.4) and
bearing (2. 5) in mind one then has a third order differential equation for S once the
form of ¢ is prescribed (¢’ # constant). Granted that € = —1, (3.1) is clearly not the
most general solution of this equation and the situation is rather complicated. One is
tempted to draw upon Palatini’s device which hitherto seems to have been employed
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only in the context of vacuum field equations (7). Thus one replaces the previous

field equation
3L

o TR 2
Sem (4.2)
by the pair
SL SL
— =Tk _—— =, .
Sgi STy, (4.3)

the gz and the symmetric components of linear connection I'y; being now treated
as independent field functions. With L = #(R) equations (4.3) become

Sgud—¢'Rig = Tri, ('8 —g)m = o. (4-4)

Now, in the particular case of the equation of state (3.6) the first of these immedi-
ately leads to (3.7) and therefore to the constancy of R, which had previously to
be imposed as a subsidiary condition. The second then shows the I'”;; to be the
usual Christoffel symbols. By these means one indeed arrives uniquely at the
solution (3.1). Although this may at first sight seem to be an attractive conclusion,
it must be realized that it is tied to a particularly simple equation of state. In any
event, Palatini’s method is so full of difficulties (8) in all but the simplest cases that
it seems wisest not to pursue it.

5. THE RADIATION-LIKE CASE

The substance filling the model will be called radiation-like if it obeys the
equation of state of electromagnetic blackbody radiation, p = 3p. Then p; is to be
taken as zero in the equations of the preceding section, so that (3.8) in particular

becomes
p = 3p = 3X. (5.1)

Physically this situation is presumably not very realistic except about the epoch of
greatest contraction. Since X is positive the value of ¢, evaluated at the (negative)
root of equation (3.7), must be positive which is a further condition upon the form
of ¢.
If p, and p_ stands for the greatest and least values attained by p respectively,
(5.1) becomes
p = 4p L1+ 1)~ (1~ 1) cos wi] 2, (5.2)
with
2= p_fps.

For a universe filled with radiation whose density is proportional to the fourth power
of the temperature 7, (5.2) can be written as

T = [{+(x—0) sin? Jot 12T, (L= T2T,3). (5-3)

Under conditions even remotely resembling those in the actual universe the value of
¢ will presumably be very small compared with unity. Even from the point of view
of the redshift alone, if a value 2 is observed then one must certainly already have
{<(z+1)2. If, on the other hand, one takes the Universe to oscillate between states
such that 7, = 1012°K and T- = 1°K—merely for the sake of illustration—then
{ = 10724, At any rate, assuming that {<1, the time dependence of T will be
effectively independent of 7', almost all the time, i.e. except when sin jwt is
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comparable in magnitude with 4/{. On the other hand the  half-life ’ #;, defined as
the time required for T to drop from T, to 17, is very nearly just the fraction
T[T, of the period of oscillation 7 (=27/w). With the values of 7', and T— adopted
above #; will therefore be measured in days if 7 is of the order of 1019 sec.

6. THE CASE p1#0

The condition that p and p be non-negative now requires that

$=p1(2+n)/(1—), (6.1)
and this entails the inequalities

p+=pi(1+n+79?)(1=7)2, p-=p1. (6.2)

The density can be written in a form analogous to (5.2). With
£y 1= (4pL—p1)7 13
p = dp1+[(E,+E0)+(Ea—£-) cos wi] 2, (6.3)

From this it follows incidentally that if ¢’ is a time sufficiently close to a state of
greatest expansion one has generically

p = p-+3TH240(t"), p = Y(p-— p1)+ T2+ 0(t'4). (6.4)

The equation of state reflects the fact that about the times of greatest contraction the
universe is likely to be radiation-like. On the other hand, although the velocity of
sound is, rather unnaturally, 1/4/3 at all times, there exists now the possibility for
the ratio 3p/p to have any value between o and 1 about the times of greatest
expansion.

The Hubble parameter H and the acceleration parameter q are, as usual, defined
as

H:=8/S, q:= -S§Sz 6.5)

With (3.1) these are known functions of ¢. When <1 one finds that ¢H?2 is
independent of #:

gH? = lw? (6.6)
except at times such that sin2 fwt is of the order of 1 —7. At all times

(1= n*)g—1)X(H|w) + [1+(g— 1)n*](H/w)2— }n? = o. (6.7)

7- REMARKS ON THE FUNCTION ¢(R)

Perhaps the least attractive feature of the kind of modification contemplated
above revolves about the problem of the actual form of ¢(R). It is true that the
following essentially qualitative considerations are tied to the severely restrictive
assumptions made earlier, namely those embodied in equations (1.4), (3.1) and
(3.3)- Nevertheless I am inclined to the view that the situation is not likely to be
substantially more favourable under more general circumstances.

Recall that R must be a negative root of the algebraic equation (3.7), and that,
further, $(R) > o. These conditions alone are very weak and without appeal to other
theories no plausible choice of ¢ suggests itself. Still, in the first instance it is not
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unreasonable to make the qualitative assumption that ¢ can be written as a Taylor
series in R:

¢ = do+p1R+paR2+ .. ., (7.1)

where the ¢,, are constants, ¢,, having the physical dimensions of (length)27-2, One
might indeed suppose that the terms depending non-linearly upon R are induced by
quantum effects, either in the sources or in the gravitational field as such or both.
(The analogy with the non-linear electrodynamics of Born and Infeld springs to
mind.) The effects of these terms should therefore presumably be small under

‘ordinary ’ circumstances, in which case ¢1 = 1, 9 = —2A. Moreover, one may
expect that ¢y, is of the order of /272 where [/ is some fundamental length:
¢n = anlzn—_z (n> I), (7.2)

the constants a, being dimensionless and of the order of unity. However, equation
(3.7) then entails that |I2R| is a number of the order of unity, and therefore

wl~1, (7.3)

unless one has some very artificial Lagrangian, artificial in the sense that it involves
a large dimensionless constant. It appears therefore that / will be very large com-
pared with any length which might be expected to appear in the Lagrangian as a
consequence of quantum effects. This conclusion in turn implies an obvious conflict
with the expectation expressed just before equation (7.2). Under ordinary circum-
stances, e.g. in the interior of stars, one may expect, if on no other than dimensional
grounds, that the values of R and of p are of comparable magnitude, so that RI2 will
be a number very large compared with unity. Therefore, far from requiring that
¢~ —2A+ R as R—o one has to demand that ¢~ R for sufficiently large (though
possibly not too large) values of R; and if ¢ can be written as a power series at all,
it will have to be in descending powers. A simple example of a function which such
a series might represent is

¢ = [(R+2l72)2+ 3112, (7-4)

When p; = o one finds in this case that w!/ = 1. However, one can but view a
Lagrangian such as (7.4) with misgivings.

Department of Theovetical Physics, Faculty of Science, Australian National University,
Canberra, Australia

Recetved in original form 1970 February 17
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APPENDIX

THE FUNCTIONAL DERIVATIVE OF ¢(R)

The explicit form of the functional derivative of $(R) which appears on the left
of equation (2.1) is contained in a more general result (9) relating to the functional
derivative of any second order invariant of the Riemann tensor. However, it may be
found directly as follows.

For convenience, write

w:i=/(—g), hw:= ogn.
S(wd) = w('SR+1g"'bh)
w[¢ g 0R s+ (34g" — §'RE Ay, ). (A1)

Then

Since
IRst = T%n, 51+ TPs10
it follows at once that
$0Rst = 8"spp; 0y, (A2)

bearing in mind the tensorial character of 6I's;”. By the same token
T %mn = §(h¥m;n+HMen;m— M¥mn;),
so that (A2), after transvection with g%, becomes
g58Rs = [Ihss—hot, 5. (A3)

Using the sign ~ to denote equality to within an additive divergence one therefore
has
Sb/gStSRst ~ hssljﬁb,"‘h“?s,;st
= hu(gHTI$ ~ $' 1),
so that (A1) becomes
Swp)mw(— i +gF [ 1p"— ' RF + bdgh)hp,

and this means that

P = —¢';5i—Rinp’ + g0’ + 14)- (A4)
Bearing in mind that

¢k = Rymd”+ R kR 19"
one thus has finally

Py = —¢"R;xR;1—¢"R;in— &' Rig+ 8¢ RymRi ™ + " (IR + §).
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