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Abstract 

 

Large-scale brain dynamics are believed to lie in a latent, low-dimensional space. 

Typically, the embeddings of brain scans are derived independently from different cognitive 

tasks or resting-state data, ignoring a potentially large—and shared—portion of this space. Here, 

we establish that a shared, robust, and interpretable low-dimensional space of brain dynamics 

can be recovered from a rich repertoire of task-based fMRI data. This occurs when relying 

on non-linear approaches as opposed to traditional linear methods. The embedding maintains 

proper temporal progression of the tasks, revealing brain states and the dynamics of network 

integration. We demonstrate that resting-state data embeds fully onto the same task embedding, 

indicating similar brain states are present in both task and resting-state data. Our findings suggest 

analysis of fMRI data from multiple cognitive tasks in a low-dimensional space is possible and 

desirable, and our proposed framework can thus provide an interpretable framework to 

investigate brain dynamics in the low-dimensional space. 
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Introduction 

 

Understanding large-scale brain dynamics is a major goal of modern neuroscience (Jorgenson et 

al., 2015). However, due to the high-dimensional nature of brain patterns, how to best 

operationalize and tackle this problem remains an open question. Nevertheless, the temporal 

dimensions that explain the observed dynamics is small compared with the number of time 

points (Cunningham and Byron, 2014). Thus, there is growing evidence to suggest that a low-

dimensional space—hidden from direct observation, learned from the data, and derived from 

many brain regions—may be a suitable model for studying temporal brain dynamics (Gao and 

Ganguli, 2015). 

 

These low-dimensional spaces have been observed using a variety of neural recordings and 

animal models (Ahrens et al., 2012; Churchland et al., 2012; Kobak et al., 2016; Mishne et al., 

2016; Santhanam et al., 2009). Research suggests that linear methods, such as principal 

component analysis (PCA), are appropriate when recorded temporal data comes from simple 

stimuli that project onto a limited area within a manifold (Cunningham and Byron, 2014). 

However, data from richer tasks often project onto a larger portion of the manifold, violating 

linear approximations (Cunningham and Byron, 2014; Gallego et al., 2017). Nonlinear 

dimensionality reduction methods, like diffusion maps (Coifman and Lafon, 2006), can 

overcome this limitation by integrating local similarities into a global representation, which 

better reflect the underlying temporal dynamics in neural recordings. 

 

Similar concepts have emerged in human functional magnetic resonance imaging (fMRI) studies 

to quantify moment-to-moment changes in activity and connectivity (Hutchison et al., 2013b; 

Preti et al., 2017). As with related research on temporal recordings from animal models, 

dimensionality reduction methods are used to project the fMRI time series onto a low-

dimensional space (Allen et al., 2014b; Monti et al., 2017; Shine et al., 2016; Shine et al., 2019). 

From the low-dimensional space, characteristic brain states—or distinct, repeatable patterns of 

brain activity—are used to quantify brain dynamics. Predominantly, these studies have relied on 

linear methods (Allen et al., 2014b; Monti et al., 2017; Shine et al., 2016; Shine et al., 2019). 

However, given the rich repertoire of tasks available in human fMRI, a manifold derived from 

nonlinear methods may better capture the underlying geometry of the low-dimensional space. 

 

To address this, we recently introduced 2-step Diffusion Maps (2sDM; Gao et al., 2019), which 

is a novel extension of diffusion maps. 2sDM extracts common variability between individuals 

by performing dimensionality reduction of a 3rd-order tensor in a two-stage manner. In the first 

stage, timeseries data from each individual are embedded into a low-dimensional Euclidean 

space. In the second stage, embedding coordinates for the same time point from different 

individuals are concatenated for use in a second embedding. The second stage embeds similar 

time points across subjects to obtain a low-dimensional group-wise representation of those time 

points. This two-stage approach avoids directly comparing brain activation across subjects, 

which can be imprecise without proper alignment (Haxby et al., 2011). As 2sDM is an 

unsupervised learning method, there is no need to handcraft features, which are less robust, 

computationally intensive, and generalize poorly when compared to learned features from 

unsupervised methods (Bengio et al., 2013). While diffusion maps have been applied to fMRI 
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data (Margulies et al., 2016; Nenning et al., 2020), we aim to embed the time dimension rather 

than the spatial dimension.  

 

We used 2sDM to embed timeseries from a rich repertoire of tasks onto a single low-dimensional 

manifold in two fMRI datasets: the Human Connectome Project and the UCLA Consortium for 

Neuropsychiatric Phenomics. By using multiple tasks spanning a range of cognitive functions 

and loads, we obtain a more even sampling of the original high-dimensional space of recurring 

patterns of brain dynamics (Cunningham and Byron, 2014; Gallego et al., 2017) to better project 

individual time points onto a low-dimensional manifold. Compared with other embedding results 

that only aim to separate different tasks, our embedding positioned different tasks by their 

cognitive load. Thus, it enables scans to be compared both within the same task and across 

different tasks. As our embedding also has a clear clustering structure, downstream analyses that 

are based on brain states or low-dimensional trajectories are also straightforward to perform 

based on the embedding. Additionally, we embedded resting-state data into the same task 

embedding to investigate differences in brain dynamics between resting-state and task 

performance. These results suggest that manifold learning can uncover an interpretable low-

dimensional embedding for the study of brain dynamics in fMRI data. 

 

Methods 

 

Dataset and imaging parameters  

 

Data was obtained from the Human Connectome Project (HCP) 900 Subject release (Van Essen 

et al., 2013). We use fMRI data collected while 390 participants performed six tasks (gambling, 

motor, relational, social, working memory—WM, and emotion). We restrict our analyses to 

those subjects who participated in all nine fMRI conditions (seven task, two rest), whose mean 

frame-to-frame displacement is less than 0.1mm and whose maximum frame-to-frame 

displacement is less than 0.15mm, and for whom the task block order is the same as other 

subjects (𝑛 = 390). All fMRI data were acquired on a 3T Siemens Skyra using a slice-

accelerated, multiband, gradient-eco, echo planar imaging (EPI) sequence (TR=720ms, 

TE=33.1ms, flip angle=52°, resolution=2.0mm3, multiband factor=8). Images acquired for each 

subject include a structural scan and eighteen fMRI scans (working memory (WM) task, 

incentive processing (gambling) task, motor task, language processing task, social cognition task, 

relational processing task, emotion processing task, and two resting-state scans; two runs per 

condition (one LR phase encoding and one RL phase encoding run)) split between two sessions. 

 

The UCLA Consortium for Neuropsychiatric Phenomics (CNP; Poldrack et al., 2016) dataset is 

used for replication. Similar to the standards for the HCP dataset, we restrict our analyses to 

those subjects who participated in all 5 fMRI conditions (four task, one rest), whose mean frame-

to-frame displacement is less than 0.1mm and whose maximum frame-to-frame displacement is 

less than 0.15mm. 77 healthy controls are retained. These participants performed four tasks 

(paired memory retrieval task—PAMRET, paired memory encoding task—PAMENC, spatial 

working memory task—SCAP, task switching task—TASKSWITCH). Details of the image 

acquisition parameters have been published elsewhere (Poldrack et al., 2016). In brief, all data 

were acquired on one of two 3T Siemens Trio scanners at UCLA. Functional MRI data were 

collected using a T2*-weighted EPI sequence with the following parameters: slice 
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thickness=4mm, 34 slices, TR=2s, TE=30ms, flip angle=90°, matrix 64×64, FOV=192mm, 

oblique slice orientation. Images acquired for each subject include a structural scan and seven 

fMRI scans (balloon analog risk task (BART), paired-associate memory retrieval (PAMRET), 

paired-associate memory encoding (PAMENC), spatial capacity task (SCAP), stop signal task 

(SST), task-switching task (TASKSWITCH) and breath holding task).  

 

As 2sDM requires time series to be synchronized across individuals (i.e., different individuals 

encounter the same task condition at the same time point), the language task from the HCP and 

the stop signal task, balloon analogue risk task, and breath hold task from the CNP were not 

included. These tasks are self-paced. Participants finished blocks at different times, causing the 

task block to be unsynchronized across participants.  

 

fMRI processing  

 

For the HCP dataset, the HCP minimal preprocessing pipeline was used (Glasser et al., 2013), 

which includes artifact removal, motion correction, and registration to standard space. For the 

CNP dataset, structural scans were skull-stripped using OptiBet (Lutkenhoff et al., 2014) and 

registered to the MNI template using a validated algorithm in BioImage Suite (Joshi et al., 2011; 

Scheinost et al., 2017). Slice time and motion correction were performed in SPM8. For both 

datasets, all subsequent preprocessing was performed using image analysis tools available in 

BioImage Suite and included standard preprocessing procedures (Finn et al., 2015). Several 

covariates of no interest were regressed from the data including linear and quadratic drifts, mean 

cerebral-spinal-fluid (CSF) signal, mean white-matter signal, and mean gray matter signal. For 

additional control of possible motion related confounds, a 24-parameter motion model (including 

six rigid-body motion parameters, six temporal derivatives, and these terms squared) was 

regressed from the data. The data were temporally smoothed with a Gaussian filter (approximate 

cutoff frequency=0.12Hz). Mean frame-to-frame displacement yielded seven motion values per 

subject, which were used for subject exclusion and motion analyses. We restricted our analyses 

to subjects whose maximum frame-to-frame displacement was less than 0.15mm and mean 

frame-to-frame displacement was less than 0.1mm. This conservative threshold for exclusion due 

to motion was used to mitigate the effect of motion on the embedding. We used the Shen 268-

node atlas to extract timeseries from the fMRI data for further analysis (Shen et al., 2013). 

Timeseries used for the embedding were the average of the basis of the “raw” task time courses, 

with no removal of task-evoked activity, for each node in the atlas. Finally, 2sDM was applied to 

embed a 3rd-order tensor of fMRI data (individual × region × time) onto a single low-

dimensional manifold. 

 

2-step diffusion maps (2sDM) 

 

Diffusion maps are part of a broad class of manifold learning algorithms. Specifically, diffusion 

maps provide a global description of the data by considering only local similarities and are 

robust to noise perturbations. The new nonlinear representation provided by diffusion maps 

reveals underlying intrinsic parameters governing the data (Coifman and Lafon, 2006). We 

briefly describe the diffusion maps algorithm in general and in the following its application to 

fMRI data as used in our approach. Given a dataset of n points {𝐱!}!"#$  a pairwise similarity 

matrix 𝐒 between pairs of data points 𝐱! and 𝐱% is constructed, for example using the Gaussian 
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kernel 𝑤&-𝐱!, 𝐱%/ = exp	(−6𝐱! − 𝐱%6'/ϵ). Then the rows of the similarity matrix are normalized 

by 𝐏 = 𝐃(𝟏𝐒, where 𝐃!! = ∑ 𝐒!%%  is the degree of point 𝐱!. This creates a random walk matrix on 

the data with entries set to 𝑝-𝐱!, 𝐱%/ = 𝑤&-𝐱!, 𝐱%//𝑑(𝐱!). Taking the t-th powers of the matrix 𝐏 

is equivalent to running the Markov chain corresponding to the random walk on the data forward 

t times. The corresponding kernel 𝑝*(∙,∙) can then be interpreted as the transition probability 

between two points in t time steps. The matrix 𝐏 has a complete sequence of bi-orthogonal left 

and right eigenvectors 𝛟! and 𝛙!, respectively, and a corresponding sequence of eigenvalues 1 =
λ+ ≥ |λ#| ≥ |λ'| ≥ ⋯. Diffusion maps are a nonlinear embedding of the data points into a low-

dimensional space, where the mapping of point 𝐱 is defined as 𝚿(𝐱) =
(λ#,𝛙#(𝐱), λ',𝛙'(𝐱), … , λ-,𝛙-(𝐱)), where t is the diffusion time. Note that 𝛙+ is neglected 

because it is a constant vector. The diffusion distance 𝐷*'(𝐱, 𝐲) between two data points is 

defined as:  

𝐷*'(𝐱, 𝐲) =L-𝑝*(𝐱, 𝐳) − 𝑝*(𝐲, 𝐳)/'
𝜙+(𝐳)

.

 

where 𝛟+ represents the stationary distribution of the random walk described by the random 

walk matrix 𝐏. This measures the similarity of two points by the evolution in the Markov chain 

and the distance characterizes the probability of transition from 𝐱 or 𝐲 to the same z point in t 
time steps. Two points are closer with smaller 𝐷*'(𝐱, 𝐲) if there is a large probability of transition 

from 𝐱 to 𝐲 or vice versa, suggesting that there are more short paths connecting them. It is thus 

robust to noise as it considers all the possible paths between two points and is thus less sensitive 

to noisy connections. It was proved that the 𝑘-dimensional diffusion maps 𝚿 embed data points 

into a Euclidean space ℝ- where the Euclidean distance approximates the diffusion distance 

(Coifman and Lafon, 2006). In practice, eigenvalues of 𝐏 typically exhibit a spectral gap such 

that the first few eigenvalues are close to one with all additional eigenvalues being much smaller 

than one. Thus, the diffusion distance can be well approximated by only the first few 

eigenvectors. Therefore, we can obtain a low-dimensional representation of the data by 

considering only the first few eigenvectors of the diffusion maps. Intuitively, diffusion maps 

embed data points closer when it is harder for the points to escape their local neighborhood 

within time t. 
 

To obtain a groupwise low-dimensional representation of dynamics, a hierarchical diffusion 

maps-based manifold learning framework, 2-step diffusion maps (2sDM; Gao et al., 2019), was 

used to reduce the dimensionality of high-dimensional multi-individual fMRI time series. The 

framework is illustrated in Figure 1a. Under the assumption that individuals’ fMRI responses are 

time-synchronized, the fMRI BOLD time series data are organized as three-dimensional array 

𝐗 ∈ ℝ/×1×2(number of individuals 𝑀, number of regions or voxels 𝑉, number of time points 𝑇). 

In the first step of 2sDM, each individual is processed separately, by applying diffusion maps to 

the fMRI time series of every single individual 𝐗3⋅⋅ ∈ ℝ1×2 , thereby obtaining a 𝑑#-dimensional 

temporal embedding of each individual 𝚿3

(#) ∈ ℝ7!×2. Then, in the second step, we first 

concatenate the new representations from all individuals into a matrix 𝚿(#) ∈ ℝ(/7!)×2, such 

that each time-point is now represented by the embeddings of that time-frame aggregated from 

all M subjects. Then, a second-round diffusion embedding is performed, further reducing the 

dimensionality of every time-frame to 𝑑' and the final time-frame representation with multi-

individual similarity is 𝚿(') ∈ ℝ7"×2, where 𝑑# and 𝑑' are predetermined parameters that are 
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smaller than 𝑉. The concatenation and two-round embeddings are theoretically supported by the 

theorem that low-dimensional diffusion maps approximate the diffusion distance between time-

frames (Gao et al., 2019): The distance between two frames 𝚿(')(𝑡3) and 𝚿(')(𝑡8) approximates 

the average diffusion distance between those time-frames across all individuals. We used 𝑑# = 7 

and 𝑑' = 3 in our experiment. It is worth noting that the embedding results were robust under a 

certain range of different 𝑑# and 𝑑' (related discussion in Supplementary Materials and Figure 

S3). 

  

 
Figure 1. Schematic of manifold learning framework. a) 2sDM algorithm framework for 

time-synchronized multi-individual fMRI time series. b) 2-step out-of-sample extension 

framework with BrainSync for new fMRI time points. Mathematical notations in the figure are 

the same as those used in the corresponding Methods section. 

To reveal the progression of brain dynamics during tasks, we calculated temporal trajectories 

(Shine et al., 2019) for each task block by connecting points in the embedding in a temporal 

order. As the tasks involve the same task blocks with repetitions (i.e., WM task consists of 

a)

b)

!"

#
$…

#
$…

BrainSync

$…

!%

Nyström

extension

Nyström

extension

!

"…

#$ Ψ&

!

"
#…

$%

&'

&('
)*'
(%)

-′

-′

-′

-′

)* (")

!

"
#…

$%

!

#…

&'

()
(')

(,
(')

…

-' -) … -.

!

(())&)

(%

(')
=DM($%)

flatten

&' ('
(')

(()) =DM((('))

(%

(')

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.25.398693doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.25.398693
http://creativecommons.org/licenses/by-nc-nd/4.0/


interleaved blocks of 0-back and 2-back with the same length), we averaged the time-frames 

belonging to the same task block to obtain a smoothed representative trajectory of each task. 

Time frames corresponding to the cue or fixation between tasks blocks were not included. 

 

To summarize the embedding into a more compact and easier to analyze structure, we performed 

k-means clustering based on the first three embedding dimensions to cluster time points sharing 

similar brain activation patterns into discrete brain states. The Calinski-Harabasz criterion (ratio 

between the within-cluster dispersion and the between-cluster dispersion) was used to determine 

the number of clusters, evaluating values of 𝑘 = {2,… ,10} (Caliñski and Harabasz, 1974).  

 

To illustrate that our 2sDM manifold learning framework discovers structure that linear methods 

cannot recover, we used a 2-step PCA framework, similar to 2sDM. In the first step, a separate 

PCA is applied to each individual’s fMRI time series 𝐗3,.,. ∈ ℝ1×2, resulting into a 𝑑#-

dimensional linear temporal embedding of each individual 𝐜3(#) ∈ ℝ7!×2, where the first 𝑑# 

principal components with the maximum variances are included. Then each individual’s 

embedding is concatenated along the time dimension form to a matrix 𝐂(#) =
[𝐜#(#), 𝐜'(#), 𝐜;(#), … , 𝐜/(#)] ∈ ℝ(/7!)×2. A second-round PCA is performed to further reduce the 

dimensionality of this concatenated matrix. Each time frame is then embedded into 𝑑' 

dimensions and the final time-frame representation with multi-individual similarity is 𝐂(') ∈
ℝ7"×2. Same as 2sDM, we used 𝑑# = 7 and 𝑑' = 3 in our experiment. 

 

Dynamic connectivity  

 

To relate our task embedding to previously used handcrafted features (Shine et al., 2016), we 

calculated the participation coefficient 𝐵2 using sliding-window-based functional connectivity 

and then averaged 𝐵2 across all subjects, as described in previous literature (Shine et al., 2016). 

In this manuscript, handcrafted features refer to features that are designed manually, such as 

B<	that is used here to characterize the integration and segregation pattern of the brain network. 

The dynamic functional connectivity is calculated by the multiplication of temporal derivatives 

(MTD; Shine et al., 2015). MTD is calculated as the point-wise product of the temporal 

derivatives of paired nodes (𝑖, 𝑗)’s time series: 

𝑀𝑇𝐷38* = #

=
∑ 7*#$×7*%$

>&$#$
×>&$%$

*?=
* ,	

where 𝑑𝑡3* = 𝑡𝑠3* − 𝑡𝑠3*(# is the temporal derivative of node 𝑖 at time 𝑡 with time series (𝑡𝑠), 

𝜎7*#$ is the standard deviation of the 𝑑𝑡 and 𝑤 is the window length. At each time point, the 

dynamic functional connectivity is calculated as the averaged MTD over a sliding time window 

in order to reduce high-frequency noise. We chose the length of the sliding window length 𝑤 to 

be 15 time points, based on previous literature (Shine et al., 2016). 

 

The participation coefficient 𝐵2 characterizes the extent to which a region connects across all 

modules, where modules are normally defined a priori from community detection methods that 

identify a set of nodes as a module that are more strongly connected to each other than nodes 

from another set. The participation coefficient for a region 𝑖 at time 𝑇 is calculated as: 
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𝐵32 = 1 −Lc𝑘3@2𝑘32 d
'

A'

@"#

	
where 𝑘3@2 is the number of links of node 𝑖 to nodes in module 𝑠 at time 𝑇, 𝑘32 is the total degree 

of node 𝑖 at time 𝑇 and 𝑁/ is the number of modules, or canonical networks in our setting. The 

participation coefficient of a region is therefore close to 1 if its links are uniformly distributed 

among all the modules and 0 if all its links are within its own module. The whole brain 

participation coefficient 𝐵2 represents the average of 𝐵32 from each region and thus represents 

the integration and segregation pattern of the brain. 𝐵2 is closer to 1 if our whole brain is more 

integrated and closer to 0 if our whole brain is more segregated. 

 

2-step out-of-sample extension (OOSE) for resting-state fMRI 

 

To investigate the generalization of the task manifold and associated brain states, resting-state 

data were embedding onto the manifold. One of the challenges in nonlinear dimensionality 

reduction is to extend new data points to the embedding space. Unlike linear dimensionality 

reduction methods like PCA, there is no explicit mapping from the original features to the new 

coordinates. Moreover, appending the new data and redoing the dimensionality reduction is often 

computationally costly. To deal with this, we specially designed a corresponding 2-step out-of-

sample extension (OOSE) framework to embed new time points onto the existing temporal 

manifold. 

 

The framework is illustrated in Figure 1b. The framework follows a similar two-step structure to 

2sDM where the Nyström extension (Fowlkes et al., 2004) (a non-parametric OOSE method, 

details provided in supplementary materials) is used to approximate the reduced representation of 

the new time series in each step. Specifically, given new fMRI time series 𝑿g3,.,. ∈ ℝ1×2( , 𝑖 =
1,… ,𝑀	from the same group of individuals used for 2sDM embedding, we first approximate the 

eigenvectors 𝚿h3(#) for each individual using Nyström extension. Then we concatenate all the 

individuals’ eigenvectors 𝚿h3(#) as the new data points and approximate its eigenvectors 𝚿h (') as 

the final representation.  

 

As the 2sDM algorithm requires the task designs across individuals to be the same, this prevents 

embedding multi-individual resting-state fMRI timeseries directly, which is also a problem for 

any other scans that are not time-synchronized, e.g., the language task in the HCP dataset. To 

synchronize different individual’s time series, we used BrainSync, a framework that 

synchronizes fMRI time series across individuals (Joshi et al., 2018). BrainSync synchronizes 

one individual’s time series data 𝐘 ∈ ℝ1×2 to another reference individual 𝐗 ∈ ℝ1×2 by finding 

an optimal orthogonal transformation that minimizes summed moment-to-moment squared error 

𝐎@ = arg	min𝐎∈𝐎(2)‖𝐗−𝐘𝐎*‖'. The problem can be solved by the Kabsch algorithm (Kabsch, 

1976). The 𝑇 × 𝑇 cross-correlation matrix 𝐗*𝐘 is first formed and its singular value 

decomposition can be calculated as 𝐗*𝐘 = 𝐔𝚺𝐕,. The optimal 𝐎@ can be found by 𝐎@ = 𝐔𝐕* 
and 𝐘 can be synchronized to 𝐗 by 𝐘𝐎@*. By choosing a random individual as the reference, 

BrainSync was applied to all the other individuals and their time series were synchronized to the 

reference individual. After synchronizing across individuals, we then used the 2-step OOSE 
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framework to extend them onto the task manifold and find the temporal representation of resting-

state fMRI for the reference individual.  

 

To validate the 2-step OOSE framework, we used the task fMRI data to cross-validate the 

accuracy of the OOSE framework. Using leave-one-task-out cross-validation, a single task was 

held out when generating the 2sDM manifold. The left-out task was then embedded in the new 

manifold using our OOSE framework and compared with the original embedding created using 

all tasks. If the held-out task's extended coordinates are similar to the coordinates of the original 

embedding, it suggests that the OOSE framework is accurate. 

 

Characterizing changes in brain states 

 

By utilizing the temporal order of time points, we characterized the brain dynamics across the 

four brain states by state transition probability and dwell time. State transition probabilities were 

calculated based on the temporally adjacent time points’ brain states. From these state transition 

probabilities, a stochastic matrix and the dwelling times (i.e., the stationary probability 

distribution of the stochastic matrix) were calculated and visualized as Markov chain models. 

The stationary distribution of the Markov transition matrix 𝐏𝐭𝐫𝐚𝐧𝐬 is defined as the distribution 

that does not change under application of the transition matrix 𝛑 = 𝛑𝐏𝐭𝐫𝐚𝐧𝐬, which is the left 

eigenvector of 𝐏𝐭𝐫𝐚𝐧𝐬. It represents the distribution to which the Markov process converges. It 

was used in our experiment to represent the dwell-time distribution of discrete brain states. As 

tasks putatively put a participant into certain states (as opposed to the unconstrained nature of the 

resting state), we investigated differences in the temporal dynamics of state switching during task 

and rest. We calculated entropy—a measure of the randomness—of the transition probability 

from one brain state to the other states. Entropy of a discrete probability distribution measures 

the uncertainty of the outcome. It is calculated as the negative expectation of the logarithm of the 

probability mass function’s value 𝑆 = −Σ3𝑃3 log 𝑃3 = −𝐸I[log 𝑃]. In our experiment, entropy of 

the brain state transition probability was used to assess the randomness of brain state 

transitioning with lower entropy representing more easy-to-predict brain state transition 

dynamics. Greater entropy indicates a less predictable transition from one state to another. 

 

Experimental Design and Statistical Analysis 

 

No statistical methods were used to predetermine sample sizes. Other than the stated exclusion 

criteria for motion and complete imaging data, no participants and data points were excluded 

from the analysis. Following exclusion for motion, there was no significant correlation between 

motion and the embedding dimension. Parametric statistics (e.g., t-test, correlation, and chi-

squared test) were used when appropriate.  

 

Data availability  

 

The HCP data used in this study are publicly available from the ConnectomeDB database 

(https://db.humanconnectome.org). The CNP data used in this study are publicly available from 

OpenNeuro.org (https://openneuro.org/datasets/ds000030). MATLAB scripts to run the 2sDM 

analyses can be found at (https://github.com/carricky/2sDM). BioImage Suite tools used for 

analysis can be accessed at (https://bioimagesuiteweb.github.io/). 
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Results 

Brain dynamics during tasks embed onto a low-dimensional space  

 

Although each task is different in many ways, individual time points in the fMRI data from all 

tasks mapped onto a single low-dimensional manifold (Figure 2a). Compared with the common 

goal of other low-dimensional embedding results, the advantage of our results is not in 

separating different task scans apart. Instead, we find a global representation across multiple 

tasks that positioned tasks with similar cognitive loads together. By embedding multiple tasks 

together, rather than in isolation, the closeness of different blocks and tasks in the manifold 

suggest that similar, recurring patterns of brain dynamics exist across a variety of tasks. For 

example, in the manifold, the 2-back blocks of the WM task are significantly (𝑡 = 201.9, 𝑝 <
0.01, d. f. = 175,102) closer to time points from the gambling task (Euclidean distance: 

0.0258 ± 0.0096) than the 0-back blocks of the WM task (Euclidean distance: 0.0355 ±
0.0100), despite the fact that the 2-back and 0-back blocks were collected in the same fMRI run. 

The 2-back blocks of the WM task and the gambling task both entail a higher cognitive load. In 

contrast, the 0-back blocks of WM task overlap with the motor task. These tasks are simpler 

response tasks and less cognitively demanding. Overall, these time points are positioned based 

on the similarity of the cognitive load at that time point, instead of by task. 

 

For all tasks, the average trajectories from each task are found to start near the corner where cues 

(task cues preceding each task block) reside and end in the other corner where fixation blocks 

reside. These smooth trajectories indicate that the embedding preserves proper temporal 

associations between blocks when arranging time points in discrete states. As can be expected, 

the paths of these temporal trajectories depend on the cognitive load of the task block. For 

example, the 2-back task traverses through the upper part of the manifold (higher value in terms 

of 𝛙;), and, in contrast, the 0-back task traverses through the lower part of the manifold (Figure 

2b). Moreover, as can be seen from the top 20 eigenvalues of the diffusion matrix the spectrum 

decays rapidly, which suggests that the data is low-dimensional (Figure S1). 
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Figure 2. Nonlinear embedding of fMRI time series data. a) 2sDM embedding of 6 tasks 

(relational, social, motor, gambling, emotion, working memory 2-back, and working memory 0-

back) from the HCP dataset. Four different views of the manifold are shown. Each point in these 

subplots represents a single time point and is colored by the task type. b) Averaged temporal 

trajectory of each task with the embedding colored by the corresponding brain state as the 

background. c) WM task’s 0-back and 2-back task blocks visualized separately with major cues 

and fixations points annotated. Arrows show the progression direction of the trajectory. 

Trajectory in b) and c) uses the same colormap as a). 

 

 

When projecting task fMRI time-frames into 3D space using the first three coordinates of PCA, 

no clear structure is shown from the embedding (Figure 3). The fact that 2sDM discovered the 

manifold structure, while PCA could not, validates the usage of nonlinear manifold learning 

(more detailed comparison between 2-step PCA and 2sDM embeddings are included in the 

supplementary materials, Figure S4-S7). 
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Figure 3. 2-step PCA embedding from the HCP dataset. Unlike the nonlinear embeddings, 

shown in Figure 2, no clear structure is seen for the linear embedding, which validates the usage 

of nonlinear manifold learning. 

 

Task embedding captures handcrafted features in an unsupervised manner 

 

In Figure 4a, each time point in our task embedding is colored by its subject-averaged 𝐵2, 

showing a clear pattern of decreasing 𝐵2  starting from the top left corner of the embedding; 

higher 𝐵2  at the top of the embedding (i.e., high cognitive load tasks such as social, 2back, 

relational and gambling) indicates time points of higher integration and lower 𝐵2 at the tails of 

the embedding (i.e., cues and fixations) indicates time points of higher segregation (𝑟(𝑧, 	𝐵2) =0.610, d. f. = 3018, 𝑝 < 0.01,	where 𝑧 is the projection coordinates of points onto the diagonal of 

the triangular embedding; Figure 4b).  
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Figure 4. 2sDM embedding is related with global integration and segregation. a) 2sDM 

embedding in HCP dataset colored by the time-resolved 𝐵2. b) Scatter plot of the 𝐵2  with the 

projection onto the diagonal of the embedding structure (𝑧). Correlation of 𝑧 with 𝐵2 is shown 

with a line of best fit. Projection direction 𝑧 was determined manually as the approximate 

diagonal direction of the embedding. 

 

Operationalizing discrete, recurring brain states from task dynamics 

 

When clustering the task embedding, 𝑘 = 4 gives the largest Calinski-Harabasz score among a 

range, suggesting that the embedding has a clear interpretable structure (Figure S6). Based on the 

task contents of the temporal clusters, we labeled the four brain states as: fixation, transition, 

lower-level cognition, and higher-level cognition. Functionally reasonable and distinct patterns 

of activation during the different states are observed, e.g., canonical patterns of default mode 

network activity for the fixation state (Figure 5a). To relate these brain states to previous 

handcrafted features, we calculated the average 𝐵2  for each brain state (Figure 5b). The four 

states followed the expected patterns of integration and segregation, with the higher-level 

cognition state showing the greatest integration (𝑡 = 3.01, 𝑝 < 0.01, d. f. = 1596) and the 

fixation state showing the greatest segregation (𝑡 = 2.39, 𝑝 < 0.01, d. f. = 1420). The clustering 

results are similar with an increased number of clusters or of embedding dimensions. 

 

With the help of the four brain states, the dynamic trajectories can further reveal each task’s 

cognitive process (Figure 5c). For example, the motor task’s trajectory reveals a dynamic 

cognitive process as following: in the beginning, the individuals start from the cue state which is 

the common starting state across the other tasks. Then the individuals briefly enter the high-cog 

state, but not deep in the state and finally enter and stay in the low-cog state. Actually, it also 

reveals that on average, individuals wander towards the fixation state in the middle of the task 

block, suggesting a fatigue or practice effect. And towards the end of the task block, individuals 

return deep into the low-cog state and move towards the cue state for the next task block to start.  

 

Even for tasks like relational and social tasks that both require a certain level of high-level 

cognitive ability (Shine et al., 2016), there are differences that can be revealed by the trajectories 

(Figure 5c). The relational task starts from the transition cluster, then entered the higher-level 

cognition cluster and ends in the low-cog state, which suggests a lack of high-level cognitive 

ability involvement (adaptive to the task design) in the later stage of the relational task blocks. In 
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comparison, the social task starts near the transition cluster, goes deep into the high-cog state and 

returns to the transition state near the end of the task which suggests a constant requirement of 

higher-level cognitive ability. This trajectory view of each task enables a better understanding of 

the cognitive process and can also help in the future task designs. 

 

The transitions between states are similar for all tasks except for the motor task (which had a 

high probability of transiting into the lower-level cognition state and out of the higher-level 

cognition state; Figure 6a). Except for the WM task, which contains an equal proportion of high 

(2-back) and low (0-back) cognitive loads), dwell times for the four states exhibit a non-uniform 

distribution (𝜒' > 16.3, d. f. = 3, 𝑝 < 0.001; Figure 6b), indicating participants spent most of 

their time in certain limited states in a task-specific manner. For example, the lower-level 

cognition state occurs most frequently in the motor task, while the higher-level cognitive state 

dominates in social task time points.  

 

 

 
Figure 5 Brain states during tasks. a) Results of k-means clustering of the task manifold. 

Averaged brain activation patterns across subjects in the circled representative time points are 

shown for each brain state. b) 𝐵2 averaged over all the time points in each brain state. c) Two-

dimensional view of task trajectories with the embedding points. Trajectories are colored by each 

task and data points are colored by the brain states as in a). 
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Figure 6. Brain state dynamics differ between tasks. a) Brain state dynamics visualized as the 

Markov chain. Transition probability is visualized by the color of the directed edges. b) 

Stationary distribution probability visualized for each task and positioned by the proportion of 

higher-level cognition and lower-level cognition brain states. Chi-square test result against the 

uniform distribution is also shown. 
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Brain dynamics during rest embed onto the same recurring brain states which appeared 

during tasks 

 

Once embedded onto the task manifold, time points from the resting-state data spread across the 

whole manifold, including parts of the manifold corresponding to higher cognitive loads (Figure 

7a). To quantify the distribution of states during rest, we assigned each resting-state time point to 

one of the four previously identified brain states based on the brain state of the nearest task time 

point. As with the task data, we next calculated the brain state dwell time distribution across the 

entire resting-state scan (Figure 7b). A non-uniform dwell-time distribution is discovered, with 

fixation and transition states having a higher proportion of time points than the cognitive states 

(𝜒' = 205, d. f. = 3, 𝑝 < 0.001). Except for the lower-level cognition and the transition states in 

the social task (which have very few time points to robustly calculate entropy, see Figure 7c), all 

states exhibit higher entropy in the resting state than during a given task.  

 

In Figure S2, we plot the extension of the WM task. The 2-back and 0-back task blocks go to the 

correct higher-level cognition or lower-level cognition state respectively, while the fixation and 

cue time frames are also located in the correct brain states. The correlation between the extended 

coordinates and the coordinates from the original embedding was highly significant (𝑟 =
0.939, 𝑝 < 0.001). Holding out the other tasks produced similar results as the WM task. 

 

Replication of embedding  

 

Notably, we replicated the dimensionality reduction result using participants from the CNP 

dataset. A similar low-dimensional structure, brain states, and association with 𝐵2   (𝑟(𝜓', 	𝐵2) =0.30, 𝑝 < 0.01, 𝑑𝑓 = 1007) were found, verifying the robustness of the observed embeddings 

(Figure 8). Moreover, the same task scans from the schizophrenia cohorts were also embedded 

separately and found to be similar to the embedding from the HCP dataset and healthy control 

cohorts in the CNP dataset (Figure S8). This laid foundation for the downstream brain dynamics 

analysis (resting-state brain dynamics) that would be based on brain states as similar brain states 

could be identified in both groups. 
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Figure 7. Resting-state extended onto the task manifold. a) Representative task activation 

patterns of each state and the neighboring resting-state activation pattern are visualized. 

Correlation of the activation between task and rest is calculated with higher correlation 

representing more accurate out-of-sample extension. b) Stationary probability distribution of the 

four brain states during resting state. c) Entropy of each brain state’s transition probability in 

different tasks. Dots are colored by tasks they represent, and the grey box plot shows the entropy 

values of resting state with BrainSync (see Methods) referenced to different individuals. 
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Figure 8. a) 2sDM embedding and k-means clustering result of CNP dataset. b) Embedding with 

the first 2 dimensions of 2sDM in CNP dataset, colored by the corresponding 𝐵2 with the same 

colormap. 

 

 

Discussion 

 

Using a novel manifold learning framework, we demonstrate that fMRI data from different tasks 

span the same low-dimensional embedding (i.e., brain states). In other words, moment-to-

moment dynamics from any of these tasks group into the same small number of representative 

patterns that are hidden from direct observation. To recover this embedding, we employed 

nonlinear methods (e.g., 2-step Diffusion Maps—2sDM) to project the fMRI data onto a 

manifold than would be possible using linear methods only. The embedding maintained proper 

temporal progression of the tasks, revealing brain states and temporal dynamics of changes in 

network integration. Further, we demonstrate that resting-state data project onto the same task 

embedding using a specially designed out-of-sample-extension method, indicating similar brain 

states are present. Finally, we validate this embedding using an independent dataset. 

 

Several other publications have organized the temporal dynamics of the brain into a low 

dimension space or into distinct brain states (Allen et al., 2014b; Saggar et al., 2018; Vidaurre et 

al., 2017) using data from resting-state or a single task to construct the embedding (Gallego et 

al., 2017; Shine et al., 2019). Together, these works suggest that a low-dimensional structure 

exists; however, it is unclear how these structures adapt to diverse cognitive loads. By projecting 

a rich repertoire of task data into a single manifold, we show that, across different tasks, parts of 

the embedding (i.e. brain states) are well characterized by network segregation (i.e. 

communication mainly within brain networks) and integration (i.e. communication mainly across 

diverse brain networks) (Deco et al., 2015). Overall, the discrete states and association with 

network segregation/integration suggest that our embedding finds an intrinsic, latent structure of 

brain dynamics. 

 

These results are in line with the theory that the brain is able to reconfigure its large-scale 

organization dynamically either between different cognitive tasks or within resting-state (Cohen 

and D'Esposito, 2016; Shine et al., 2016). Further, they emphasize that this reconfiguration is 

shared across different cognitive loads and, importantly, resting-state. In other words, the same 

!!

!" !#

!"

!!

!# !#

!!!"

Higher-level 

cognition

Transition

Fixation

Lower-level

cognition

!1

!2
!!

b)a)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.25.398693doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.25.398693
http://creativecommons.org/licenses/by-nc-nd/4.0/


highly integrated state that characterizes a cognitively demanding task, such as a 2-back WM 

task, can be observed during resting-states and less cognitively demanding tasks, just with less 

frequency. These states can also be viewed from a dynamic system perspective (Taghia et al., 

2018). As clustering based on the eigenvectors of the normalized graph Laplacian has been used 

to find meta-stable state in the stochastic dynamical systems (Huisinga et al., 1999), the four 

brain states defined from the task scan can also be viewed as four different metastable states. 

Further, the temporal trajectories can separate different portions of tasks based on cognitive 

demand, suggesting a potential utility of the embedding for other downstream analyses of brain 

dynamics.  

 

In line with this, the dynamics between states, rather than within brain states themselves, appear 

to be the key distinguishing factor between task and rest. In support of this, how the brain 

transitions between different states is dependent on the task being performed and is less 

predictable in resting-state compared to tasks. Executing a task limits the transitions between 

states; while, during resting-state, the brain can more liberally traverse through different states. 

Though speculative, these results offer an explanation as to why task connectivity data is better 

at identifying individuals and subsequent predicting behaviors than resting-state connectivity 

data (Finn et al., 2017; Greene et al., 2018). Together, while the resting state may exhibit similar 

states as observed during task, the temporal dynamics of switching states are less predictable in 

resting state compared to task. 

 

Previous work demonstrates that brain networks fluctuate between states of low and high global 

integration during tasks as characterized by the participation coefficient (𝐵2) from sliding-

window functional connectivity. Tasks requiring higher cognitive loads, such as the 2-back 

condition in the WM task, exhibit greater integration while less cognitive load, such as the motor 

task, exhibits lower integration (Shine et al., 2016). A key drawback of these results is that they 

rely on two intermediate steps (e.g., the method used to construct dynamic functional 

connectivity and topological metrics to study), rather than the learned features from unsupervised 

methods. Together, our results suggest that the task embedding reveals latent information about 

changes in network topology without the need for handcrafted features. For example, each task 

can be effectively characterized from the proportion of time spent in lower-level and higher-level 

cognition states creating a similar ordering of task (see Figure 6b) as in (Shine et al., 2016).   

 

While resting-state fMRI is a powerful tool to map the functional organization of the brain, 

inherent limitations exist. Resting-state is often conceptualized as a single task state. Though 

emerging data, including our results, suggest that resting-state is not one single, monolithic state, 

but rather a collection of multiple states associated with different cognitive loads that also appear 

during tasks (Vidaurre et al., 2017). For example, while the majority of resting-state time points 

cluster into a single part of the manifold (such as the fixation blocks, which putatively are the 

most like “rest”), nearly a third of the time points more closely match cognitive states. Perhaps, 

more importantly different groups may have differences in “performing” rest (Buckner et al., 

2013). How best to interpret changes in resting-state connectivity in the presence of group 

differences in dynamics is still an open question.  

 

A key strength of our embedding framework is its data-driven nature. Although the only inputs 

are time-courses from task fMRI data, we demonstrated that the embedding coordinates can 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.25.398693doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.25.398693
http://creativecommons.org/licenses/by-nc-nd/4.0/


reveal topological information originally found using dynamic functional connectivity methods 

(Shine et al., 2016). This brain topology was found without specifying common modeling 

choices in dynamic functional connectivity or fMRI, in general, such as how to model the 

functional connectivity (i.e., statistical interdependence of signals) between brain regions, an 

underlying graph/network, or even information about task stimuli (e.g., block lengths). As a 

multitude of methodological choices have been proposed to analyses (Calhoun et al., 2014; 

Hutchison et al., 2013a) (e.g., ways of estimating connectivity (Allen et al., 2014a; Chang and 

Glover, 2010; Shine et al., 2015), constructing a weighted or unweighted graph (Rubinov and 

Sporns, 2010), specific graph theory measures (Honey et al., 2007; Meunier et al., 2010; Shine et 

al., 2016; Sizemore and Bassett, 2018), our embedding framework provides an end-to-end, data-

driven approach without the need for modeling choices to investigate brain dynamics. More 

generally, handcrafted features are being substituted by more automatic feature learning-based 

nonlinear methods such as deep learning and nonlinear embedding methods (Hamilton et al., 

2017). Our results show a specific scenario in which “let the data speak for itself” is an 

achievable option for modeling fMRI data.  

 

A limitation of this work is that the embedding can only “look under the light.” That is to say 

that, while a rich amount of task data was needed to create the embedding, we could not include 

every possible task in creating the embedding. Indeed, it is highly likely that many more than 

four brain states exist and that we haven’t detected every single one. A finer grade delineation of 

states, probably through further advancement in non-linear embedding methods, is a needed 

future direction of work. Moreover, although here brain states are defined based on the k-means 

clustering result, it does not rule out other ways to define brain states. For example, at each time 

point, the brain can also be modeled as being at different states with distinct probabilities 

(Vidaurre et al., 2017), which can be achieved by a fuzzy-clustering algorithm. Moreover, the 

brain state can also be characterized by the temporal trajectory where trajectory clustering 

technique can be used to cluster trajectories into trajectory-based brain states, which takes 

account the temporal information of the embedding (Lee et al., 2007). The k-means clustering 

way of defining brain state is only one of the ways to summarize information of the embedding 

and serves as a proof-of-concept that our embedding contains information that is relevant to 

brain dynamics. Nevertheless, the observed task embedding was similar across two different 

input datasets with different tasks, suggesting that embedding is general to factors such as 

scanner, task, processing, and sample size.  

 

One of the assumptions of 2sDM is that the time frames from all individuals are temporally 

aligned so that a group-average embedding of the time frames can be obtained. However, this 

does not rule out the applicability of the task scans that has different task block lengths/orders 

across individuals (e.g., language task in the HCP dataset) or the resting-state scans, which we 

have demonstrated in the paper by applying BrainSync. Thus, task scans with distinct block 

lengths/orders can also be embedded with 2sDM by applying BrainSync first. It is worth noting 

that as BrainSync requires a specific individual chosen as the reference, by aligning all the other 

individuals to the same selected individual, the group-average embedding then will approximate 

a cleaner temporal embedding of the selected individual, which can be used to investigate 

individual-level dynamics. 
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The ability to use data-driven methods to clearly identify a low-dimensional space of brain 

dynamics, regardless of how the brain is engaged during imaging, indicates that these brain 

dynamics are robust and reliable across conditions in addition to being unique. Together, these 

advances suggest that analysis of individual fMRI data from multiple cognitive tasks in a low-

dimensional space is possible, and indeed, desirable.  
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