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Abstract

Non-linear modal interactions in the dynamics of a vibrating drop are examined. The partial di!erential equations
governing the drop vibrations are formulated assuming potential #ow and incompressibility. The solution is expressed in
terms of the eigenfunctions of the (linearized) Laplace operator in spherical coordinates. A small parameter e is
introduced to scale the (small) deformation of the drop surface from its position of equilibrium. A 2 : 1 internal resonance
is then imposed between the second and third modes of the resulting discretized system, and the ensuing non-linear
modal interactions are studied using the method of multiple scales. A bifurcation in the slow dynamics of the system is
detected that leads to amplitude modulations of the drop oscillations. The method employed in this work is general and
can be used to study other types of non-linear interactions involving two or more drop modes. ( 2001 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

The study of the shape dynamics of drops and
bubbles has a long history. The review of previous
work in this area can be found in [1}3]. Viscous
and inviscid, linear and non-linear models of free
and forced interface oscillations were investigated
by various theoretical and numerical schemes for
the drop surrounded by gas and bubbles sur-
rounded by #uid [1}13]. The emphasis in these
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previous studies was on corrections to the eigen-
frequencies of the drop (bubble) and to the drop
(bubble) shape due to non-linearities and (or) vis-
cous e!ects. The response to the di!erent initial
conditions as well as the dynamics and stability of
the drop (bubble) in the presence of external pertur-
bing "elds have been also investigated in the pre-
vious works. Nevertheless, the behaviour of the
drop (bubble) in cases of internal resonances, i.e.,
when non-linear transfer of energy occurs between
pairs of modes due to non-linearities, has not re-
ceived much attention. As exception is [13] where
a 2 : 1 internal resonance in bubble oscillations was
considered. In [6] numerical simulations are utili-
zed to study modal interactions in drops. In [2]
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modal interactions in drops are studied experi-
mentally. Modulations in the drop oscillations
(similar to the ones predicted herein) were detected
numerically in that work.

Usually, the theoretical consideration starts with
assumptions on the properties of the #uid #ow and
on the (often axisymmetric spherical) geometry of
the drop (bubble). The assumption of potential #ow
and incompressibility of the #uid within the drop or
outside the bubble lead to a Laplace equation for
velocity potential and, consequently, to an analyti-
cal solution in terms of spherical harmonics. Then,
the analysis for bubbles and drops diverges. The
#uid contained in drops is treated as incompress-
ible and therefore, does not allow pulsation-type
solutions (i.e., the zeroth-order spherical harmonic);
this is not necessarily the case for bubbles where the
outside #uid although incompressible can still lead
to bubble pulsations. This di!erence between drop
and bubble dynamics becomes important if we
want to study non-linear modal interactions. For
the bubble, the pulsating spherical mode (harmonic
of zeroth order) leads to parametric excitation of
higher harmonics beginning with that of order
2 (since the "rst-order harmonic corresponds to
zero natural frequency, i.e., to pure translation of
the bubble), since the mean radius of the bubble is
a time-periodic function. Therefore, the bubble dy-
namics are characterized by stability}instability
regions arising from Floquet analysis. On the con-
trary, in the absence of pulsations, the mean radius
of the drop can be considered constant, and no
parametric excitation of higher modes is possible.
In this case internal resonances between drop
modes can produce interesting non-linear energy
exchanges and modulate the drop oscillations. It is
the aim of this work to analyze in detail such
a non-linear modal interaction and to predict cha-
nges in the drop dynamics due to modal bifurca-
tions.

2. General formulation

We consider an incompressible and inviscid free
liquid drop. The drop is surrounded by a vacuum
or a tenuous gas. We assume potential #ow within
the drop, and preservation of volume during drop

oscillations. Assuming that the initial equilibrium
shape of the drop is spherical, we are interested in
the dynamics of its surface under small perturba-
tions of its shape.

First we formulate the equations governing the
motion of the drop and the associated boundary
conditions. The liquid satis"es the equation of con-
tinuity (Laplace equation for the velocity potential,
/). Employing a spherical coordinate system with
the origin at the center of mass of the drop, and
assuming axial symmetry, Laplace equation is
given by,

+2/"0N
1

r2
L
LrAr2

L/

Lr B
#

1

r2 sin h
L
LhAsin h

L/
LhB"0. (1)

The solution of (1) can be expressed as the linear
combination of spherical functions, rnP

n
(h), where

P
n
(h) are Legendre polynomials of nth order

(n"0, 1, 22).
In addition, Bernoulli's equation for the pressure

within the drop is as follows:

o
L/
Lt

#o
v2

2
#ogr cos h#p"f (t), (2)

where o is the density of the #uid, and g is the
gravity constant. In (2) we can set f (t)"0, since
v"$/, where p denotes the pressure. Expressing
v in (2) in terms of /, using spherical coordinates,
we obtain

p"!o
L/
Lt

!

o
2A

L/
Lr B

2
!

o
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L/
LhB

2
!ogr cos h.

(3)

At this point we introduce the following
non-dimensional variables

pH"
p

ogr
0

, rH"
r

r
0

, tH"
t

(r
0
/g)1@2

, /H"
/

(r3
0
g)1@2

(4)

where, r
0

is the radius of the drop in equilibrium,
and the superscript (*) will be omitted in the follow-
ing analysis. Using (4), the pressure assumes the
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following non-dimensional form:

p"!

L/

Lt
!

1

2A
L/

Lr B
2
!

1

2r2A
L/

LhB
2
!r cos h (5)

The perturbed drop surface is described by the
relation F(r, h, t)"0, where

F(r, h, t)"r
s
!1!g(h, t), (6)

and g is a small perturbation. Taking the total time
derivative of the above relation describing the
surface, we obtain a kinematic condition satis"ed
point-wise at the surface of the drop:

A
L
Lt

#$/ '$BF(r, h, t)"0, (7)

where r
s

denotes the perturbed radius of the drop,
given by r

s
"1#g. Taking into account (6) and

employing direct di!erentiation, (7) yields:

Lg
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L/

Lr
#

1

r2
L/

Lh
Lg
Lh

"0. (8)

Considering that the pressure di!erence on the
two sides of the surface of the drop is solely due to
surface tension, we obtain the following expression
for the pressure within the drop:

p"p
%
#

1

Bo
$ ' n( , (9)

where p
%
is the external pressure, Bo"gor2

0
/p is the

Bond number in dimensional variables, n( is the
outward unit normal to the surface r

4
"1#g, and

$ ' n("
2

r
!

1

r2
L
4
(g), (10)

where L
4

denotes the surface Laplacian. For the
axisymmetric case this Laplacian is given by,
(L/Lh)(sinh(L/Lh)). Expanding (10) in Taylor series
about the equilibrium r"1 we get,

$ ' n("2!(2g#L
4
(g))#2g(g#L

4
(g)). (11)

The Taylor series in (11) was truncated up to order
g2 (e.g. Longuett}Higgins [1]). Substituting (9) and
(11) into (5) and combining the resulting equation

with (8), we obtain a set of non-linear di!erential
equations governing g and /. Rescaling the vari-
ables as, gC eg,/C g/, where e is a small per-
turbation parameter, the governing equations take
the form:
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In deriving (12) we expanded the external pressure
in the regular perturbation expansion, p

%
&p(0)

%
#

ep(1)
%
#2 and retained terms up to order e2.

Before proceeding with the analysis of Eq. (12)
we discuss certain restrictions imposed on the
variables g and p

%
:

(i) The assumption of uniform acceleration g of
the center of mass of the drop in the vertical direc-

tion leads to, p
%
"!2

3
, where `bara denotes aver-

aging with respect to h in the vertical direction [3].
(ii) The liquid in the drop was assumed to be

incompressible. Taking into account the following
expression for the instantaneous volume of the
drop, we get:

<"
1

3P
p

0
P

2p

0

(1#eg)3 sin hdh du

"

4p

3
[1#3eg6 #3e2g2#O(e3)] (13)

where `bara denotes averaging with respect to h.
Thus, the requirement of volume preservation to
O(e3) during drop oscillations leads to the require-

ment, g6 "g2"0.
(iii) The origin of the spherical coordinate system

remains "xed at the center of mass of the drop, i.e.,

g cos h"0
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Combining (i), (ii) and (iii) we obtain [3],

p(0)
%
"

2

Bo
#cos h, (14)

p(1)
%
"C cos h, (15)

where

C"!

3

2P
p

0

g(0)P
2
(cos h) sin hdh

and g(0) is the "rst term of the regular expansion
g&g(0)#eg(1)#2. Similarly, it can be shown,
using (ii), that

p(2)
%
"CI cos h (16)

where the coe$cient CI depends on both g(0) and
g(1) (note that correct to order e0, CI depends only
on g(0)).

Employing the above relations, (12) is rewritten
as,
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Note, that due to the previous perturbation ex-
pansions, both Eqs. (17) are applied at r"1, i.e., at
the non-dimensional equilibrium value of the
radius; in addition, in (17) we retain only linear
terms in e. We see, that the Bond number Bo is the
sole parameter for our non-dimensionalized sys-
tem. Harper et al. [3] performed a linearized analy-
sis of this problem, and studied the stability of the
surface shape to small perturbations. In doing so
they neglected the non-linear terms in (17), and
determined, that the lowest critical Bond number
for surface drop instability is

(Bo)
#3
"11.22. (18)

Below this value of Bo the surface is `absolutely
stablea in the linear sense, i.e., it does not blow up

[3]. In this work we include "rst-order non-linear
e!ects in the analysis, and study the drop oscilla-
tions near a particular value of Bo, which turns out
to be less than the linearized instability limit (18);
thus, no instability phenomena are expected to
occur in our analysis.

First we need to decouple the linear parts of
Eq. (17). Since we are interested in studying the
surface deformation of the drop, we eliminate the
velocity potential from these equations. Retaining
only O(1) terms in (17) we obtain the following
linearized system (similar to the system studied by
[3]):
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(g(0)))"0,

Lg(0)
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Expressing the solution in terms of the eigenfunc-
tions of the Laplace operator in spherical coordi-
nates, we have that,

/(r, h, t)"
=
+
n/2

rnb
n
(t)P

n
(cos h). (20)

Similarly, we expand the surface deformation in
series,
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=
+
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a
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where a
n
(t) and b

n
(t) are the amplitudes of the

spherical harmonics; note, that a
0
"a

1
"

b
0
"b

1
"0 due to the previous condition (ii).

From the second of equations in (19) we obtain
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n
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1
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where the following notations were employed:
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n
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Thus,
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n
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"

1

n

Lg(0)
n

Lt
. (24)

Substituting (24) into the "rst of Eqs. (19) we
eliminate the potential and obtain a single ordinary
di!erential equation governing g(0)

n
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3. Solution by direct expansion

We now suppose that only two harmonics in (25)
are excited. The justi"cation for such truncation of
the in"nite series will be discussed later, and will be
based on a careful study of internal resonances in
the dynamical system under consideration. Setting
all amplitudes other than the ones corresponding
to the second and third harmonics equal to zero, we
obtain the representation,
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in terms of which (25) yields:
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Multiplying (27) by P
2
, taking the average of the

result with respect to h, and repeating the same
operations with P

3
, we obtain a set of two coupled

linear ordinary di!erential equations governing the

dynamics of our system at O(1):
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In deriving (28) we have used the following proper-
ties of Legendre polynomials:
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Due to the previous truncation we have that
a
1
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4
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n
"0, and, in addition [3],
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.

The system (28) gives us information about the
normal modes of the linearized system; however, in
this work we are interested in the next order of e in
order to obtain the modulation equations for time
periodic solutions correct to O(e). Hence, repeating
the above manipulations for system (17) to order
O(e), and upon substitution of the perturbation
expansion a

2
"a(0)

2
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2
, a

3
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3
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3
, we

obtain the following corrected version of Eqs. (28)
that account for leading non-linear e!ects:
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A special note regarding the notation used in (29) is
in order. Due to the perturbation expansion used,
the right-hand sides of these equations contain the
O(1) approximations for the amplitudes, governed
by the linearized system (28). The right-hand sides
contain the non-linear estimates for the amplitudes,
de"ned immediately above (29).

4. Multiple-scales formulation

The system (29) is in the form of a weakly non-
linear dynamical system and, thus, is amenable to
analysis techniques from the theory of non-linear
dynamics. In what follows we will apply the
method of multiple-scales to study the `slowa dy-
namics [14]. Before we proceed to the analysis
a study of the linearized eigenfrequencies of (29) is
undertaken in order to justify the truncation of the
series (25). These eigenfrequencies are computed as,

u
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19

Bo
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121

Bo
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54

35
,

u
2
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19
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.
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We now restrict our attention to the special case of
1 : 2 resonance between the second and third har-
monics. This is achieved by selecting the parameter
Bo so that u

1
is nearly equal to 2u

2
. Under this

condition, a 1 : 2 internal resonance is possible, that
non-linearly couples the dynamics of the two
modes giving rise to non-linear phenomena having
no counterparts in linear theory. If no other low-
order integral relationships (such as 1 : 4, 2 : 3, etc.)
exist between the remaining harmonics and the
second or third harmonic, no additional internal
resonances exist and one expects that the remaining
modes are uncoupled (to "rst-order) from the ones
studied herein. In addition, the quadratic non-lin-
earities of (29) are expected to excite only the 1 : 2
internal resonance and no other higher order res-
onances. Hence, our truncation to two harmonics is
justi"ed. From (30) the value of the parameter for
exact 1 : 2 internal resonance is BoH"2.40986. We
introduce a tuning parameter p

0
and choose the

Bond number so that near resonance occurs:
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0
. (31)

Introducing (31) into (29) we obtain:
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and suppress the superscript star for BoH in further
manipulations. We now introduce the following
linear coordinate transformation that decouples
the linear part of (32),

A
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a
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d
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d
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2
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and analyze the resulting linearly decoupled system
employing the method of multiple scales [14]. To
this end, we introduce `slowa and `fasta scales,
¹

0
"t and ¹

1
"et, and expand the amplitudes

d
2

and d
3

in regular perturbation expansions using
at the same time the new slow and fast independent
variables. Then the following series of subproblems
arises at di!erent orders of approximation.

At order e0:
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with solution,
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where c.c. denotes the complex conjugate,
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are determined at the next order of approximation.
At order e1:
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where D
1
,d/d¹

1
, we retained only secular terms

for 1 : 2 resonance [3] and the various coe$cients
are de"ned by,
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Introducing the new tuning parameter p so that
the two frequencies are related by u
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where

k"
1

2u2
2
Bo2A19!

363

Bo2

1

A
121

Bo2
#

54

35B
1@2 B,

and eliminating secular terms from (35), we get the
following modulation equations:

i
La

2
L¹

1

e*b2!a
2

Lb
2

L¹
1

e*b2#;
4

pa
2

2u
1
k
e*b2

#

a2
3

4u
1

(u2
2
(;

1
#;

2
)!;

3
)e2*b3~*pT1"0, (38)

i
La

3
L¹

1

e*b3!a
3

Lb
3

L¹
1

e*b3#<
5

pa
3

2u
2
k
e*b3

#

a
2
a
3

4u
2

(u
2
u

1
<

1
#<

2
u2

1
#<

3
u2

2

!<
4
)e*b2`*pT1~*b3"0,

or

i
La

2
L¹

1

!a
2

Lb
2

L¹
1

#a2
3
I
1
e2*b3~*b2~*pT1#I

3
pa

2
"0,

i
La

3
L¹

1

!a
3

Lb
3

L¹
1

#a
3
a
2
I
2
e*b2~2*b3`*pT1

#I
4
pa

3
"0. (39)
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Setting /"2b
3
!b

2
!p¹

1
, and separating real

and imaginary parts in (39) we obtain the following
set of four "rst-order equations:

La
2

L¹
1

#a2
3
I
1

sin /"0,

La
3

L¹
1

!a
3
a
2
I
2

sin/"0, (40)

a
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2
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1
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1

cos/!I
3
pa

2
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a
3

Lb
3

L¹
1

!a
3
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2
I
2

cos /!I
4
pa
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where
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"
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1
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2
)!;

3
4u
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I
2
"

u
2
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1
<
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2
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#<

3
u2

2
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"
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Introducing the polar transformation

a
2
"a cos c, a

3
"aA

I
2

I
1
B

1@2
sin c,

where c"b
2
!b

3
, (41)

we get the relations

1
2
(a2)@"0Na"const,

/@"pI
5
#aI

2
cos/A2 cos c!

sin c2
cos c B,

c@"aI
2

sin c sin/, (42)

where I
5
"2I

4
!I

3
!1. Eqs. (42) constitute a dy-

namical system of the two-Torus and c, /3S]S.
The "rst of the above equations is equivalent to
a statement of energy conservation during the non-
linear modal interactions between the second and
third harmonics of the drop. Hence, the analysis is
performed on an isoenergetic manifold. Moreover,
it turns out that system (42) is integrable with a "rst
integral of motion given by

K(c, /)"s cos c2#2 cos c sin /2 cos/, (43)

where s"pI
5
/I

2
a. Equilibrium (singular) points of

(41) correspond to points where dK/dc"0 and
dK/d/"0. The latter relation gives

cos c sin/2 cos/"0N/"0, p

and

c"0, p,p/2, 3p/2. (44)

Substituting each of these possibilities into the
relation dK/dc"0, gives

2 cos/!s"0,

3 cos c2!s cos c!1"0. (45)

Taking into account that D cos cD)1 and
Dcos/D)1 we get the bifurcation value of s:

s
"*&

"$2 (46)

The lines c"0, p are invariant lines in the phase
plot of system (42), and c"p/2 and 3p/2 lead to
cos/"0 or /"p/2, 3p/2. So the only possible
bifurcations can occur at s"$2 which corres-
ponds to p"$7.86 for a"1.

In Fig. 1 we present the phase trajectories of (42)
for two di!erent values of the tuning parameter,
p"7.0 (Fig. 1a, before the bifurcation) and p"8.0
(Fig. 1b, after the bifurcation). We note that the
Saddle-node bifurcation as p is decreased past 7.86
generates an stable-unstable pair of equilibrium
points and a homoclinic loop connecting the unsta-
ble equilibrium with itself.

In order to determine what is the e!ect of the
bifurcation on the surface shape of the drop we
resort to the old amplitudes, computed by

a
2
"cos c(et) cos(2u

2
t#2c(et)#/(et)

#ept#O(e2))# sin c(et) cos(u
2
t#c(et)

#/(et)#ept#O(e2))#O(e).

a
3
"C

1
cos c(et) cos(2u

2
t#2c(et)#/(et)

#ept#O(e2))#C
2

sin c(et) cos(u
2
t#c(et)

#/(et)#ept#O(e2))#O(e). (47)

Now, in order to observe the e!ect of the bifurca-
tion on the drop oscillations we select the initial
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Fig. 1. (a) Phase portrait of the system before the bifurcation
p"7.0. (b) Phase portrait of the system after bifurcation
p"8.0.

Fig. 2. Transient responses p"7.0.

conditions, corresponding to the homoclinic loop
for `slowa variables, before (p"7.0) and after
(p"8.0) the bifurcation. The resulting transient
responses for variables a

2
(t) and a

3
(t) are depicted

in Figs. 2 and 3. We note that on the homoclinic
orbit the envelope of mode 2 decays with time, and,
as a result, after su$ciently long time the drop
oscillates predominantly in the third spherical

mode. Close to the homoclinic orbit the second
mode undergoes fast oscillations with slow
envelope modulations of long periods. When no
homoclinic orbit exists the second mode undergoes
large-amplitude modulated oscillations, with
shorter period envelope modulations.

5. Discussion

We considered a drop of inviscid, incompressible
#uid in a gravitational "eld. In contrast to most
previous linearized studies, we included leading-
order non-linear e!ects in our model, and
preceeded to an analytical study of the drop oscilla-
tions. Speci"cally, we studied a 2 : 1 internal
resonance between the second and third spherical
modes of the drop, and used the method of
multiple-scales to study the slow-#ow modal inter-
actions (energy exchanges) between the two modes.
An interesting feature of our analysis is that it leads
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Fig. 3. Transient responses p"8.0.

to a completely integrable system on the 2-torus.
The analysis reveals that a bifurcation occurs in
the slow #ow that leads to long-time amplitude
modulations of the drop oscillations. After the
bifurcation (when no homoclinic orbit in the slow
dynamics exists), the amplitude modulations are of
shorter duration and of larger amplitude and much
more rigorous non-linear energy exchange occurs
between modes. As a general result, the homoclinic
orbit leads to energy localization in the third (high-
er) interacting mode. The analysis can be extended

to bubbles (in the absence of pulsations), and to
higher-order modal interactions in drops.
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