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INTRODUCTION

Model predictive control (MPC) has been the most 
successful advanced control technique applied in the 
process industries. The formulation naturally handles 

time-delays, multivariable interactions and constraints. 
Particularly in the petrochemical industry, MPC has often been 
tuned for robustness rather than a high level of dynamic 
performance. In addition to conservative tuning, performance 
has been limited by the use of linear models and the standard 
“additive output disturbance” assumption to compensate for 
plant-model mismatch. 

There is a wealth of articles on MPC in general, with many 
different formulations and applications of non-linear MPC in the 
literature; my goal is not to review these articles. Rather, my goal 
is to provide a personal perspective of NMPC. My primary 
audience is graduate students and others just beginning their 
foray into model predictive control research and application. The 
MPC literature can be quite challenging to read and it is not 
always clear why certain implementation decisions are made. 
Rarely are the particular pitfalls fully presented. One of my goals 
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is to point out some of the pitfalls of using fairly intuitive 
approaches to implementing MPC and NMPC. While I certainly 
do not do justice to the many contributions of other researchers 
involved in MPC, through my limited citations, I hope that the 
reader obtains a clearer perspective on some of the issues of 
critical importance. While much of the article is focused on non-
linear MPC, I close the article with a discussion of disturbance 
rejection, using some simple linear examples. 

For general reviews of model predictive control, see Bequette 
(1991a), Henson (1998), Morari and Lee (1999), Mayne et al. 
(2000) and Qin and Badgwell (2003). A tutorial introduction to 
dynamic matrix control (DMC) is presented in my process 
control textbook (Bequette, 2003), and the paper by Shah 
(1995); also, the books Bitmead et al. (1990), Camacho and 
Bordons (2004), Maciejowski (2002) and Rossiter (2003) 
derive various MPC algorithms, generally with a focus on 
linear systems. 

An overview of non-linear model predictive control (NMPC) is presented, with an extreme bias towards the author’s experiences and published 
results. Challenges include multiple solutions (from non-convex optimization problems), and divergence of the model and plant outputs when 
the constant additive output disturbance (the approach of dynamic matrix control, DMC) is used. Experiences with the use of fundamental 
models, multiple linear models (MMPC), and neural networks are reviewed. Ongoing work in unmeasured disturbance estimation, prediction 
and rejection is also discussed. 

On présente un aperçu général du contrôle prédictif par modèles non linéaires (NMPC), en mettant l’accent en particulier sur les expériences 
des auteurs et les résultats publiés. Les défi s incluent des solutions multiples (à partir des problèmes d’optimisation non convexes), ainsi que 
la divergence entre les sorties de modèle et d’installation lorsque la perturbation de sortie additive constante (la méthode du contrôle de 
matrice dynamique, DMC) est utilisée. Les expériences avec les modèles fondamentaux, les modèles linéaires multiples (MMPC) et les réseaux 
neuronaux sont examinées. Le travail actuellement mené sur l’estimation, la prédiction et le rejet des perturbations non mesurées est 
également examiné.
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MOTIVATING NON-LINEAR BEHAVIOUR
Examples of challenging problems that may justify NMPC are 
shown in Figure 1. Systems with input multiplicity, where a 
single output value may be obtained from at least two different 
input values, have a region where the process gain changes sign. 
No fi xed parameter linear controller with integral action can be 
designed for closed-loop stable behaviour at operating points on 
different “sides” of this peak. An additional problem is that 
systems with input multiplicity often have a non-minimum 
phase zero (resulting in “inverse response” or “wrong-way” 
behaviour) region on one side of the peak, as shown by Sistu 
and Bequette (1995). This results in an additional complication 
even for a non-linear strategy that accounts for the change in the 
sign of the gain of a system with input multiplicity. In the region 
with the NMP zero there is an inherent closed-loop performance 
limitation that may not exist in the other region. Thus, even a 
non-linear controller should be designed for different closed-
loop performance depending on the operating region.

Systems with multiple steady-states (or output multiplicity), 
such as the example shown in Figure 2, can sometimes be 
stabilized with a single fi xed parameter linear controller with 
integral action, but the closed-loop performance usually degrades 
substantially as the operating point is changed. 

A typical cascade control strategy to regulate temperature in a 
continuously stirred tank reactor (CSTR) is shown in Figure 3. 
Here, the output of the reactor temperature controller (primary) 
is a set point for the jacket temperature controller (secondary), 
which manipulates the make-up jacket fl ow rate. In many 
control studies the effect of the secondary loop is neglected and 
it is assumed that the jacket temperature is directly manipulated 
to control the reactor temperature; this results in a two-state 
model, where concentration and reactor temperature are the 
states. An example steady-state input-output curve for reactor 
temperature as a function of jacket temperature is shown in 
Figure 4 (top). While this relationship is monotonic (no 
multiplicity), and the two-state model is often open-loop stable 
throughout the entire range, the actual relationship between 

jacket fl ow rate and reactor temperature, as obtained from a 
three-state model, may have multiple steady-state behaviour 
with open-loop unstable regions, as shown in Figure 4 (bottom). 
Here, by using a two-state model, one is inherently assuming a 
stabilizing secondary controller. This has important safety 
ramifi cations, because, if the secondary controller saturates or 
the loop is opened, the system can go unstable, resulting in 
either ignition (high temperature steady-state) or extinction (low 
temperature steady-state). My main point is that it is extremely 
important to understand particular problems that may arise 
when simplifying control strategies. Russo and Bequette (1997) 
provide a more detailed discussion on this topic, while Russo 
and Bequette (1995, 1998) present comprehensive studies of the 
impact of reactor design on operability. 

OVERVIEW OF MODEL PREDICTIVE CONTROL
The basic concept of model predictive control is illustrated in 
Figure 5. A time step k, a sequence of M control moves (to be 

Figure 1. An example of input multiplicity, where a single desired 
steady-state output value may result from two different input values. 
For this particular example, the steady-state on the left-hand side 
also has a non-minimum phase zero (unstable inverse); Sistu and 
Bequette (1995).

Figure 2. Output multiplicity (multiple steady-states) where there is a 
region where a single input value can result in several different output 
values; in this case, the intermediate output value is always unstable, 
while the lower or upper steady-state values are often open-loop stable

Figure 3. Typical control diagram for a continuously stirred tank reactor
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applied at step k, k+1,…, k+M-1) are adjusted to minimize an 
open-loop objective function over a prediction horizon of P steps 
(k+1, …, k+P). Only the fi rst control move (time step k) is 
actually implemented, and a new output measurement is 
obtained at the next time step (k+1). Rarely is the output 
prediction from step k to k+1 perfect, so some type of model 
update is performed, and a new optimization problem is solved 
at step k+1. For this reason, MPC is often called receding 
horizon control. While Figure 5 is used as an intuitive explana-
tion of MPC, it should be clear that multiple inputs can be 
adjusted and that multiple outputs can be controlled, if properly 
handled in the objective function. Also, one of the many reasons 
for the success of MPC is the ability to explicitly enforce 
constraints on the manipulated inputs. 

This description of MPC should raise many questions, such as:
• What type of model is used to predict the effect of control 

moves on outputs?
• What type of objective function is used?
• What type of optimization algorithm is used?
• What plant-model “mismatch” compensation procedure is 

used before a new optimization is performed? A related 
question is: what initial conditions are used to solve the 
model at each time step?
Perhaps the easiest question to address is the objective 

function. Most often a quadratic objective function is used, for 
two basic reasons: (1) it results in an analytical solution when a 
linear model is used and the problem is unconstrained; and (2) 
it seems natural to provide a greater penalty to larger deviations 
from the desired set point. Also, when a linear model is used, 
and the constrained problem is solved, this results in a so-called 
quadratic program (QP) and there exist effi cient, robust and 
reliable QP codes. While linear programming problems are often 
used in large scale supply chain optimization problems, the 
solution is always at a constraint. For MPC problems, an LP 
formulation can often result in manipulated inputs that frequently 
hop from a minimum to maximum constraint. 

In the sections that follow these questions are addressed for 
several different approaches that (we) have used to handle non-
linear systems: (1) Non-linear Model Predictive Control (NMPC) 
using fundamental models; (2) EKF-based NMPC using succes-
sive linearization; (3) Multiple Model Predictive Control (MMPC); 
and (4) Artifi cial Neural Network-based MPC. 

The initial conditions used to solve the model at each 
optimization time can simply consist of the values obtained by 
integrating the model from the previous time step, and compen-
sating for the error in the plant output by using the so-called 
additive output disturbance assumption, as presented in the 
next section.

MODEL PREDICTIVE CONTROL 
USING FUNDAMENTAL MODELS
A foray into NMPC was based on the use of fi rst-principles or 
fundamental ordinary differential equation models with the 
following form:

x f x u
y g x

= ( )
= ( )

,
 (1)

Where x is a vector of states, u is the vector of manipulated inputs, 
and y is a vector of outputs. It is implicitly assumed that there are 
vectors of parameters and disturbances. Integration of the model 
from time step k-1 to current time step k is represented by:

Figure 4. Reactor temperature as a function of the jacket temperature 
(top) and reactor temperature as a function of the jacket make-up fl ow 
rate (bottom)

Figure 5. The basic MPC approach includes the optimization of M 
future control moves (“control horizon”), based on minimizing an 
objective function composed of model predictions over P time steps 
(“prediction horizon”), subject to constraints. The fi rst control move is 
implemented, compensation for plant-model mismatch is performed, 
and the optimization problem is solved again.
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since the states are not corrected with feedback measurements. A 
detailed comparison of the computation times for the various 
implementation strategies, including different optimization codes 
and numerical integrators, is performed by Sistu et al. (1993). 
There are signifi cant computational savings to the NLQDMC 
approach of Garcia (1984), particularly if analytical derivatives are 
used to in the model linearization. For the example problem the 
closed-loop performance of NLQDMC was nearly identical to that 
of the methods solving the full non-linear problem.

A major challenge to solving this open-loop optimal control 
problem is that it is, in general, non-convex. This can lead to 
multiple minima in the objective function, as shown in Figures 6 
and 7 for an example problem with input multiplicity (Sistu and 

ˆ ˆ ,
ˆ ˆ|

x F x u
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Where ts is the sample time; the k:k-1 subscript notation is used 
to indicate the prediction at step k based on measurements at 
step k-1. At step k, an output measurement is available:

yk

and the model error is calculated:

d y yk k k k= − −ˆ | 1  (3)

A hypothetical set of current and future control moves:

u u uk k k P, , ,+ + −1 1

is chosen to minimize an objective function over a prediction 
horizon of P steps, and the model is integrated from time step k 
to k+P, based on the hypothetical control moves
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The objective function is evaluated and the selection of control 
moves repeated until the optimum is obtained. Note that the 
equations above assume that the plant-model mismatch is 
performed using the standard additive output disturbance 
assumption, similar to what is commonly assumed in dynamic 
matrix control (DMC) (Cutler and Ramaker, 1980).

There are many ways to integrate or solve the modelling 
equations and the optimization problem. The most straightfor-
ward, and computationally expensive, approach is to use an 
optimization strategy, such as SQP (Biegler et al., 1997) as the 
“outer-loop” and a numerical integrator (based on Runge-Kutta 
or related techniques) as an “inner-loop” to evaluate the 
objective function at each iteration of the optimizer. This is 
referred to as a sequential strategy. As an alternative, orthogonal 
collocation on fi nite elements (OCFE) can be used to discretize 
the ordinary differential equations and solve them as a large set 
of algebraic equations. Again, a sequential approach can be used 
with the optimizer as the outer loop and the orthogonal colloca-
tion procedure as the inner loop. A simultaneous optimization 
and model solution strategy embeds the algebraic equations 
obtained from the OCFE method as equality constraints in the 
optimization problem. A major advantage to this is that it is 
straightforward to enforce state constraints, at least at the 
collocation points (Cuthrell and Biegler, 1987).

A non-linear quadratic matrix control (NLQDMC) strategy, 
proposed by Garcia (1984), successively linearizes the model at 
each time step and solves the optimization problem for the linear 
system of equations. Here, the non-linear model is used to “follow” 
the plant by integrating the non-linear equations from step k-1 to 
step k. The output is updated using the additive correction term 
(3). Based on an initial set of current and future control moves 
(usually just the most recent control action used from k-1 to k), the 
non-linear equations are then integrated from step k to step k+P. 
This can be viewed as the “free response,” similar to the way that 
linear MPC is decoupled into free and forced response contribu-
tions for future predictions. The optimizer then uses the linearized 
model, evaluated at step k, to solve the optimization problem using 
inputs that are perturbed from the ones used for the integration of 
the non-linear model from k to k+P, and assuming a constant 
additive output disturbance for model output predictions. The 
main drawbacks are that this approach can only be used for open-
loop stable systems, and cannot be used for inferential control, 

Figure 6. Illustration of a non-convex system. Here, the objective 
function has multiple minima for prediction horizons greater than 5, 
for a control horizon of 1 (Sistu and Bequette (1992)).

Figure 7. Illustration of the effect of multiple solutions. Depending on 
the optimization initialization, a prediction horizon of 7 can lead to two 
different steady-state solutions (Sistu and Bequette (1992)).
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closed-loop performance will generally be poor. Also, inferential 
control based on unmeasured states cannot be performed, since 
the unmeasured model state values will be different than the 
plant state values; note that this additive output disturbance 
assumption can be classifi ed as an “open-loop observer.” Clearly, 
a closed-loop state estimation or observer technique is needed 
for satisfactory closed-loop performance, particularly if inferen-
tial control is important. Here a number of closed-loop observer 
techniques, including solving a moving horizon problem by 
minimizing plant-model mismatch over a past horizon using 
constrained optimization (Sistu and Bequette, 1990; Bequette, 
1991b; Sistu and Bequette, 1991; Ramamurthi et al., 1993) have 
been used.

Moving horizon estimation is the dual of model predictive (or 
receding horizon) control, and thus similar optimization and 
model solution approaches can be used. Decision variables can 
include the initial conditions of the states at the beginning of the 
horizon, disturbances and parameters. Usually, it is assumed 
that an estimated parameter is constant over the estimation 
horizon, but it may be desirable to “block” disturbances and 
allow them to change at frequent intervals (not necessarily every 
sample time) during the horizon. Sistu and Bequette (1990) 
extend the notion of an “activation threshold”, an approach 
sometimes used in adaptive control, where the horizon estima-
tor is only activated when plan-model mismatch is above a 
certain threshold; otherwise a simple additive disturbance 
assumption is used. Bequette (1991b) shows multirate results 
where output measurements and control actions are all available 
at different rates. 

EKF-BASED NMPC
A major limitation to the NLQDMC approach of Garcia (1984) 
is that it uses an open-loop observer, limiting it to open-loop 
stable systems. Lee and Ricker (1994) extended the basic idea 
by adding a closed-loop observer in the form of an extended 
Kalman fi lter, resulting in EKF-based NMPC. The disturbance 
states using the EKF can be simple terms added to the state 
equations, or can be physical parameters, such as rate 
constants. The approach of Sandink et al. (2001) can be used 
to select appropriate parameters for real-time estimation. In 
addition, Kozub and MacGregor (1992a, b) provide detailed 
discussions on the design and implementation of state estima-
tors using extended Kalman fi lters. 

EKF-based NMPC was applied to chemical processes where 
fundamental models are available, but parameters are uncertain 
and there are limited state variable measurements. Particularly 
important is the ability to characterize disturbances that do not 
fi t the traditional “additive output disturbance” characteriza-
tion, which simply involves a shifting of the predicted process 
output by the most recent plant-model mismatch. In Prasad et 
al. (2002) a styrene polymerization reactor, with multirate 
sampling and delayed results from laboratory measurements 
was studied. A multi-level Kalman fi lter is used, where an 
updating KF is implemented when the delayed laboratory 
measurement value is received. 

MULTIPLE MODEL PREDICTIVE CONTROL
Multiple Model Predictive Control (MMPC) uses a bank of 
models, where the models are selected to span the expected 
dynamic behaviour of the process. A weighting function selects 
the best model (or combination of models) that represents the 

Bequette, 1992). Notice that a prediction horizon of 7 can lead 
to solutions for the manipulated input that are either on the 
“left” (low fl ows) or “right” (high fl ows) hand side of the peak 
in the steady-state input/output plot (Figure 1, with different 
fl ow rate units), depending upon the initial seed for the 
optimizer. This is one reason that many NMPC formulations 
have an objective function that includes all of the states, rather 
than just the controlled output as used in our simula-
tion studies . 

The additive output disturbance assumption is known to lead 
to poor performance when unmeasured disturbances occur at 
the process inputs. Also, simple output compensation cannot be 
used for linear unstable systems, because the additive distur-
bance would grow unbounded over time. One of the fi rst 
interesting results was that a non-linear system may be control-
led at an open-loop unstable operating point, using a non-linear 
model and the additive output assumption. This is possible 
because the model outputs may evolve to a stable steady-state, 
even while the plant output is being controlled to an unstable 
steady-state. The difference between the two states is the additive 
output term; an example is shown in Figure 8 (from Sistu and 
Bequette, 1991). While it is possible to stabilize the plant at an 
unstable point with the model output at a stable operating point, 

Figure 8. Set-point change to an open-loop unstable operating point. 
Notice that the plant can be controlled at the unstable point, while the 
model is attracted to a stable operating point. The difference between 
the two is compensated by the additive disturbance term (Sistu and 
Bequette (1991)).
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current input-output behaviour. The weighted model is then 
used for the predictions in the optimal control move calcula-
tion. MMPC is particularly useful for processes where it would 
be hard to obtain fundamental models that realistically describe 
behaviour over a wide range of operating conditions. Classical 
adaptive control techniques will often result in estimated 
model parameters that are not physically consistent; also, there 
have been few successful multivariable adaptive control 
applications. One of the main application areas of our MMPC 
strategy is in the fi eld of biomedical control systems. MMPC 
was used to regulate the blood pressure and cardiac output of 
patients in a surgical environment. Our approach does not 
require a period of open-loop process identifi cation, so closed-
loop control can begin immediately with the sedation of the 
patient. Yu et al. (1992) solved an unconstrained optimization 
problem. A constrained version is presented by Rao et al. 
(2003), while implementation issues are discussed by 
Aufderheide and Bequette (2003).

The primary limitation to our MMPC approach is the classic 
additive disturbance assumption of DMC. Our current effort 
extends the MMPC approach to include disturbances in each 
model in the bank as appended states, which are estimated using 
a Kalman fi lter. 

ARTIFICIAL NEURAL NETWORK-BASED MPC
Similar to MMPC, an artifi cial neural network based approach to 
MPC may be desirable when it is too time consuming to develop 
a fundamental model, or when a fundamental model is diffi cult 
to formulate (such as many biomedical or physiological problems). 
Also, many engineers in industry are comfortable with using 
neural networks, particularly since there are a number of readily 
available software packages to use. A major disadvantage is that 
there tends to be a “black box” treatment and lack of understand-
ing of what is happening in that “black box.” 

Prasad and Bequette (2003) presented a method of reducing 
the number of intermediate nodes in ANN models. Kuure-Kinsey 
et al. (2006) developed a novel formulation of an ANN MPC 
strategy that results in a time-varying linear term, enabling an 
analytical solution to an unconstrained problem, and a quadratic 
program (QP) for constraints. Signifi cant computational savings 
for the linearized ANN approach are shown compared to the 
“full blown” ANN optimization problem solution. Also, while 
most ANN-based MPC approaches presented in the literature use 
additive output compensation, Kuure-Kinsey et al. (2006) 
developed a KF-based procedure to estimate input disturbances 
as appended states. 

DISTURBANCE REJECTION
It was noted several times the limitation to the additive output 
step disturbance of DMC and early implementations of NMPC. 
Muske and Badgwell (2002) provide a nice analysis of distur-
bance rejection in linear MPC, by appending disturbance states 
that are estimated using a Kalman Filter. They proved that the 
number of disturbances that can be estimated without bias 
(obviously in the limit of a perfect model) is equal to the number 
of measurements. They focus on step input disturbances, but 
similar formulations result for other types of disturbances, such 
as ramps and periodic functions. 

An additive output disturbance assumption, results in an 
augmented state space model with the following form:
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Augmenting input disturbances as additional states yields the 
formulation:
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and a Kalman fi lter with the following form:
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is used for state estimation for both output and input distur-
bances. When the disturbance really enters as a step at the input, 
the performance of the KF-based method can be signifi cantly 
better than DMC (additive output disturbance), as shown in 
Figure 9 for a fi rst-order example. It should be noted, however, 
that Tenney et al. (2004) provide an example where a linear MPC 
with output compensation stabilizes the non-linear process, 
while an input disturbance formulation cannot.

While it is satisfactory for many systems to assume step 
disturbances, where the most recent disturbance estimate is 
assumed to remain constant for predictions, we are motivating 
by problems where disturbances really occur as other forms, 
such as ramps or sine waves (periodic behaviour). 

van de Vusse Reaction Example
Linearization of the classic van de Vusse reactor model (Bequette, 
2003) results in the following state space model, where the fi rst 
input is manipulated and the second input is a disturbance.

Figure 9. Comparison of performance of DMC vs. a KF-MPC approach 
that assumes a plant input disturbance, for a simple fi rst-order system
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First, consider a ramp disturbance. The performance of a KF-
based MPC strategy with a ramp input disturbance estimate 
performs much better than an additive output disturbance 
formulation, as shown in Figure 10.

The disturbance model for a periodic disturbance is
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The performance if a KF-based MPC strategy with a periodic 
input disturbance estimate performs much better than an 
additive output disturbance formulation, as shown in Figure 11. 
Of course, this assumes that the period (or equivalently, the 
frequency) is known. If the period is estimated, then an extended 
Kalman fi lter formulation is required, where the period is an 
estimated state. Alternatively, a multiple model estimate strategy 
can be used, where each disturbance model corresponds to a 
different frequency disturbance. 

SUMMARIZING COMMENTS PERSPECTIVE 
ON CONTINUING CHALLENGES
In this article I have provided a concise overview of some of the 
challenges of developing and implementing non-linear predic-
tive control algorithms. In general, the optimization problem is 
non-convex and may result in solutions with multiple minima. 
Also, the intuitive approach of compensating for plant-model 
mismatch with an additive output term, can result in poor 
performance when actual disturbances occur at the inputs. It is 
particularly important for open-loop unstable systems to use a 
closed-loop observer that compensates for the state estimates. 

Since most process systems are open-loop stable, and input-
output testing is often done to develop models, the issue of 
disturbance rejection is often more important than explicit state 
estimation. I encourage those of you developing MPC-based 
techniques to give more attention to the problem of disturbance 

estimation, prediction and compensation. Also, model develop-
ment remains an ongoing challenge and it is usually not clear 
whether the additional effort of developing a non-linear model, 
instead of a linear model, will result in an economic benefi t. 
While many investigators have developed non-linearity measures, 
these are not easy to apply in practice and usually require the a 
priori development of a non-linear model. 

Understanding how to develop an appropriate closed-loop 
performance criterion for non-linear processes remains a challenge. 
Take the van de Vuuse reactor problem, for example. Operating 
points in the minimum-phase region (right-hand side of the 
“peak”) are easy to control, and deadbeat control is possible. On 
the other hand, operation in the non-minimum phase region 
(right-hand side of the “peak”) is much more diffi cult, requiring 
long prediction horizons and limited closed-loop performance. For 
non-linear systems, then, it is important to develop performance 
criteria based on knowledge of the inherent performance limita-
tions at a particular operating point. Having a “variable” objective 
function certainly adds an additional degree of diffi culty; as 
handled in the context of MMPC (Aufderheide and Bequette, 
2003) by changing the objective function based on the dynamics 
of the current weighted model. 

Finally, there has been limited discussion about real-time 
adaptation in the industrial applications literature. Most of the 
non-linear MPC strategies have been based on the use of artifi -
cial neural networks or gain-scheduling, neither of which are 
typically adapted in real-time. Practitioners are encouraged to 
provide more detailed discussions of what adaptive methods 
have and have not worked in MPC applications. 
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