Non-linear Modeling and Analysis of Solids and Structures

Steen Krenk

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521830546

© Cambridge University Press 2009

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2009

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

ISBN 978-0-521-83054-6 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To Jette

Contents

Preface		page ix
1	Introduction	1
1.1	A simple non-linear problem	2
	1.1.1 Equilibrium	3
	1.1.2 Virtual work and potential energy	6
1.2	Simple non-linear solution methods	7
	1.2.1 Explicit incremental method	8
	1.2.2 Newton–Raphson method	9
	1.2.3 Modified Newton–Raphson method	13
1.3	Summary and outlook	14
1.4	Exercises	15
2	Non-linear bar elements	17
2.1	Deformation and strain	18
2.2	Equilibrium and virtual work	20
2.3	Tangent stiffness matrix	24
2.4	Use of shape functions	26
2.5	Assembly of global stiffness and forces	31
2.6	Total or updated Lagrangian formulation	36
2.7	Summing up the principles	39
2.8	Exercises	43
3	Finite rotations	47
3.1	The rotation tensor	49
3.2	Rotation of a vector into a specified direction	53
3.3	The increment of the rotation variation	55
3.4	Parameter representation of an incremental rotation	60
3.5	Quaternion parameter representation	63
	3.5.1 Representation of the rotation tensor	64

vi	Contents	
	3.5.2 Addition of two rotations	65
	3.5.3 Incremental rotation from quaternion parameters	67
	3.5.4 Mean and difference of two rotations	68
3.6	Alternative representation of the rotation tensor	69
3.7	Summary of rotations and their virtual work	72
3.8	Exercises	73
4	Finite rotation beam theory	76
4.1	Equilibrium equations	77
4.2	Virtual work, strain and curvature	78
4.3	Increment of the virtual work equation	81
	4.3.1 Constitutive stiffness	82
	4.3.2 Geometric stiffness	83
	4.3.3 The load increments	85
4.4	Finite element implementation	86
	4.4.1 Element stiffness matrix	87
	4.4.2 Loads and internal forces	89
	4.4.3 Shear locking	91
4.5	Summary of 'elastica' beam theory	98
4.6	Exercises	99
5	Co-rotating beam elements	100
5.1	Co-rotating beams in two dimensions	101
	5.1.1 Co-rotation form of the tangent stiffness	104
	5.1.2 Element deformation stiffness	107
	5.1.3 Total tangent stiffness	110
	5.1.4 Finite element implementation	112
5.2	Co-rotating beams in three dimensions	117
	5.2.1 Co-rotation form of the tangent stiffness	120
	5.2.2 Element deformation stiffness	127
	5.2.3 Total tangent stiffness	130
	5.2.4 Finite element implementation	133
5.3	Summary and extensions	139
5.4	Exercises	141
6	Deformation and equilibrium of solids	145
6.1	Deformation and strain	146
	6.1.1 Non-linear strain	148
	6.1.2 Decomposition into deformation and rigid body motion	151
6.2	Virtual work and stresses	154
	6.2.1 Piola–Kirchhoff stress	155
	6.2.2 Cauchy and Kirchhoff stresses	158

	Contents	vii
	6.2.3 Stress rates	160
6.3	Total Lagrangian formulation	165
	6.3.1 Equilibrium and residual forces	166
	6.3.2 Tangent stiffness	167
	6.3.3 Finite element implementation	170
6.4	Updated Lagrangian formulation	174
	6.4.1 Transformation from total to updated format	174
	6.4.2 Virtual work in the current configuration	176
	6.4.3 Finite element implementation	180
6.5	Summary of non-linear motion of solids	185
6.6	Exercises	186
7	Elasto-plastic solids	189
7.1	Elastic solids	190
	7.1.1 Stress invariants	192
	7.1.2 Strain invariants and small strain elasticity	198
	7.1.3 Isotropic elasticity at finite strain	200
7.2	General plasticity theory	203
	7.2.1 Reversible deformation	204
	7.2.2 Maximum plastic dissipation rate	207
	7.2.3 Evolution equations	212
	7.2.4 Isotropic and kinematic hardening	216
7.3	Von Mises plasticity models	218
	7.3.1 Yield surface and flow potential	219
	7.3.2 Explicit integration	222
	7.3.3 Radial return algorithm	225
7.4	General aspects of plasticity models	229
	7.4.1 Combined isotropic and kinematic hardening	230
	7.4.2 Internal variables and non-associated flow	234
	7.4.3 General computational procedure	237
7.5	Models for granular materials	241
	7.5.1 Flow potential and yield surface	242
	7.5.2 Elasticity and hardening	247
7.6	Finite strain plasticity	249
7.7	Summary	252
7.8	Exercises	253
8	Numerical solution techniques	256
8.1	Iterative solution of equilibrium equations	257
	8.1.1 Non-linear iteration strategies	259

viii	Contents	
	8.1.2 Direction and step-size control	260
8.2	Orthogonal residual method	263
8.3	Arc-length methods	270
	8.3.1 General constraint formulation	272
	8.3.2 Hyperplane constraints	274
	8.3.3 Hypersphere constraint	278
8.4	Quasi-Newton methods	283
8.5	Summary	287
8.6	Exercises	288
9	Dynamic effects and time integration	290
9.1	Newmark algorithm for linear systems	292
	9.1.1 Energy balance and stability	295
	9.1.2 Numerical accuracy and damping	300
9.2	Non-linear Newmark algorithm	304
9.3	Energy-conserving integration	309
	9.3.1 State-space formulation	310
	9.3.2 Non-linear kinematics for Green strain	311
	9.3.3 Energy-conserving algorithm	315
9.4	Algorithmic energy dissipation	323
	9.4.1 Spectral analysis of linear systems	323
	9.4.2 Linear algorithm with energy dissipation	325
	9.4.3 Non-linear algorithm with energy dissipation	327
9.5	Summary and outlook	331
9.6	Exercises	333
References		336
Index		345

Preface

The aim of this book is to take the reader on a concentrated tour of some of the central issues of non-linear modeling and analysis of structures and solids. Traditionally, the non-linear theories of solids have been treated in books on continuum mechanics, while the questions of analysis have formed the focus of books on finite element techniques. The idea of the present book is to place the emphasis on modeling with a view to its numerical implementation right from the outset. Two guiding principles have determined the main style of the book: the story should be told in the form of concentrated chapters, each giving the central ideas of a specific aspect such as 'finite rotations' or 'elasto-plastic solids', and the reader should have the possibility of getting a feel for the numerical implementation by access and use of simple high-level implementations of the basic algorithms. A text based on these principles cannot provide exhaustive coverage, but aims at giving an interesting introduction to the basic ideas, which can then be studied elsewhere in greater detail as needed. It is hoped that the combination of a concise theoretical presentation in plain language supported by specific algorithms will make the text of interest to graduate students as well as professionals.

The book contains nine chapters: a brief introductory chapter setting the scene by use of elementary arguments, four chapters on structures, two chapters on non-linear deformation and material behavior of solids, and finally two chapters on numerical techniques for non-linear quasi-static and dynamic analysis. The theory is combined with demonstrations and exercises using a small MATLAB toolbox FEMFILES providing routines for creation and assembly of element matrices and permitting the solution of non-linear finite element problems in a fairly simple script file format. The toolbox FEMFILES is available from the author via the internet. Exercises that require the use of a high-level program like FEMFILES are marked *.

х

Preface

The text started as a draft manuscript prepared for a short introductory course on non-linear aspects of the finite element method at Aalborg University in the fall of 1992. A visit to Lund Institute of Technology sponsored by NorFA provided an opportunity to include additional material on the numerical aspects. The text was later extended with material on finite rotations, co-rotating formulation of elements, potential theory of plasticity theory and plasticity models for geotechnical materials, and conservation algorithms for numerical integration of dynamic problems. Several parts of this work have been sponsored by the Danish Technical Research Council. The work on bringing it all together was initiated during a visiting appointment as Melchor Professor at the University of Notre Dame, Indiana, in the fall of 2001. The final stage has been combined with courses at Helsinki University of Technology 2004, and at Aalborg University and Lund Institute of Technology 2005.