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Abstract centrations. The majority of kinetic models are described in

Motivation: The simulation of biochemical kinetic systems i§erms of coupled differential equations (rather than explicit
a powerful approach that can be used for: (i) checking th@lgebraic functions) and simulators implement the appropri-
consistency of a postulated model with a set of experimenff methods to solve these systems of ordinary differential
measurements, (i) answering ‘what if?’ questions and (iiipquations (ODEs). Two distinct types of simulation can be
exploring possible behaviours of a model. Here we descritsérried out: (i) time courses, in which the values of the vari-
a generic approach to combine numerical Optimizatiorﬁmes are determlne_d as atime series; (ii) steady states Where
methods with biochemical kinetic simulations, which ighe values of the variables are determined for a state in which
suitable for use in the rational design of improved metaboli8© metabolite concentration changes. There are several mod-
pathways with industrial significance (metabolic engineer€m Programs designed specifically for this purpose (Cor-
ing) and for solving the inverse problem of metabolidlish-Bowden and Hofmeyr, 1991; Mendes, 1993, 1997;
pathways, i.e. the estimation of parameters from measuréx®uro, 1993; Ehlde and Zacchi, 1995) and most include a
variables facility to investigate the behaviour of the model over a range
Results:We discuss the suitability of various optimization®f values of some of its parameters. This allows one effec-
methods, focusing especially on their ability or otherwise t§vely to study the dependency of the model's behaviour on
find global optima. We recommend that a suite of diversiS parameters and is therefore a very effective means of fore-
optimization methods should be available in simulatiorfasting the effects of large parameter perturbations. The abil-
software as no single one performs best for all problems. Vi@ to predict the effect of large parameter changes is an es-
describe how we have implemented such a simulation-opential requisite (Westerhoff and Kell, 1996) for the rational
timization strategy in the biochemical kinetics simulatordes_'gn of engineered organisms (metabolic engineering)
Gepasi and present examples of its application (Baileyet al, 1990; Cameron and Tong, 1993; Cameron and
Availability: The new version of Gepasi (3.20), incorporat-Chaplen, 1997; Mendes and Kell, 1997), an activity that is
ing the methodology described here, is available on theecoming attainable experimentally (via rDNA, site-di-

Internet at http://gepasi.dbs.aber.ac.uk/softw/Gepasi.html rected mutagenesis, etc.). _
Contact: prm@aber.ac.uk The currently existing simulators use one of two strategies

to ‘scan’ the parameter space of a kinetic model: repeated
solution of the ODEs at different values of the scanned para-
meters, or using continuation algorithms (Hocker, 1994).
Computers have been used since the 1940s to simulate Bwth these approaches have major limitations in terms of the
kinetics of biochemical reactions. Given a pathway structurdimension of the parameter space. Continuation can be car-
and a kinetic scheme, the admissible steady states of that aysd out for invariant dynamical states (steady states, limit
tem and the time courses of the reactions can be computeycles, etc.) and is limited to two parameters at a time, while
This is a well-developed field and the reader is referred tine computation time for systematic scans by the repeated
other publications that cover the subject in greater depsolution of ODEs grows exponentially with the number of
(Garfinkel et al, 1970; Heinrichet al, 1977; Garfinkel, parameters. This ‘curse of dimensionality’ (Duda and Hart,
1981; Hayashi and Sakamoto, 1986; Hofmeyr, 1986t973) means that the systematic process is really applicable
Mendes and Kell, 1996). Basically, kinetics simulation softenly to rather small numbers of parameters (below 10 and
ware calculates the values of the internal metabolite copreferably less than five; Garey and Johnson, 1979). The
centrations based on a set of kinetic functions and values fguestion then arises as to whether there are any other pro-
their parameters and the (constant) external metabolite caredures one can use when the model has a large number of
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parameters. The answer is yes: numerical and combinator{&ibby, 1969) or cellular automata (Ermentrout and Edels-
optimization algorithms can be used for such purposes. Hetejn-Keshet, 1993). In the implementation described below,
we will describe how these can be implemented in a metawe have used our own simulation package Gepasi (Mendes,
bolic simulation package in a generic way so as to be able1893, 1997), which is based on differential equations and is
address a diversity of problems. written in the C++ language.

Optimization methods have a number of applications in
science and engineering. For example, they are routingly
used in parameter fitting problems, as a means of designin
improved processes or devices, in search problems or @ptimization problems are concerned with locating optima
learning algorithms. In enzyme kinetics, some of thes@maxima or minima) of functions. Finding a maximum of a
methods are already used in combination with simulation fdunction f(x) is equivalent to finding a minimum of(x).
parameter estimation (fitting). Linear or (now more com-Thus, we will refer only to minimization hereafter, although
monly) non-linear least squares regression is used to estim#te reader should bear in mind that the discussion applies
kinetic constants from measured rates and concentratiomgjually to maximization following the simple transform-
and several computer programs are available for this purpoaton above. The problem can then be stated in general terms
(Duggleby, 1984; Holzhitter and Colosimo, 1990; Friedergs follows:

1993; Kuzmic, 1996). It is also possible to apply the same . ) )
technique to estimate the kinetic parameters of several en-9iven a real-valued scalar functiffw) of n variablesc =
zymes simultaneously, a procedure already described in % -+ %n), find & minimum of(x) such thag (x) 2 0 with
1972 by Curtis and Chance, but still carried out only infre- | = 1.---» M (inequality constraints) artg(x) = 0 withj =
quently. More recently, numerical optimization has been 1: -+ M (equality constraints).

used for the design of pathway models with particular prop- |n general, the objective functidx) and the constraints
erties (Bray and Lay, 1994; Gilman and Ross, 1995) or 1G4 (x) andh(x) are non-linear, although frequently the only
the improvement of fluxes of biotechnological interestonstraints are linear boundaries of the fare <l (these
(Torreset al, 1997). These applications were carried OUgctyally translate into two separate constraintsg = 0 and
with software specially written for them. The fitting software, _x > 0), whereg andl are often positive constants. Some
packages cited above are only capable of using one optimigroplems might be unconstrained, ire= m’ = 0. Owing to
ation method and usually this is one that can find a minimurgs non-linearity,f(x) will often have several minima. For
only in the vicinity of an initial guess (e.g. the Levenberg-many applications, one is interested in the global minimum
Marquardt method; Levenberg, 1944; Marquardt, 1963). Eg.e. the one with the lowest valueféf)), although some-
sentially, numerical optimization has not evolved to a staggmes a local minimum may be sufficient. In fact, it is as-
in which there is a single method that is the best for all agumed in many cases such that a local minimum then found
plications, and although the idea that a single method woujél‘close’ to the global minimum, an assumption that is wide-
be the best for all problems is an attractive one, it is in fagj borne out for hard combinatorial optimization problems
incorrect, probably due to the great variety of problem doso-called NP-complete; see Garey and Johnson, 1979) of
mains and their properties (Wolpert and Macready, 1997his type. On some rare occasions, one may even wish or
Thus, it is highly desirable to be able to apply a series @feed to know all the minima. The existence of several mini-
methods to each optimization problem (including fitting), inma or otherwise is an important issue in so far as many op-
order to achieve the best possible solution. The purpose tirhization methods can only find a local minimum, as will be
this article is to describe a way in which this can be implendiscussed below. The majority of numerical optimization
ented in biochemical kinetics software. We also propose thatethods do not rely on the explicit form fgf), and only
the use of numerical optimization should be extended sugbquire its value to be evaluated at several points; some
that any item of a kinetic model should be able to take patitethods do not even require this function to be continuous
in optimization, not simply the metabolite concentrationspr differentiable and may still work if its values contain
fluxes or functions of the differences between simulated antbise. In the next section, we will briefly discuss some of the
measured data. numerical methods that are available to minimize functions;
For the purposes of this simulation-optimization methodfor the moment, it is enough to bear in mind that these
ology, the strategy that is used for the simulation part is natethods only need to evaluéte specific values of the vari-
really important, so long as it is capable of taking values ables (vectok).
the model parameters as inputs and providing the (calcu-Because the functions to minimize are not required in an
lated) values of the variables as outputs. Simulation based explicit form, the results of kinetic simulations (i.e. solutions
differential equations, arguably the most popular method, ©f ODES) are suitable candidates for optimization. These in-
quite adequate, but so are other methods such as Monte Catlade metabolite concentrations and fluxes, but also any

timization
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other indices derived from these, including the various cdseing optimized, we call them ‘adjustable parameters’ to
efficients of metabolic control analysis (Kacser and Burnsstress the fact that their values are going to be adjusted by the
1973; Heinrich and Rapoport, 1974; Fell, 1992, 1996; Heimptimization method. We must nevertheless point out that the
rich and Schuster, 1996), mass action ratios, stability indicedptimization literature refers to these as ‘variables’ as they
etc. The ability to find maxima or minima of these entities igre effectively varied during the course of the optimization.
an extremely desirable feature of a kinetics simulator as To make matters worse, the numerical optimization methods
will allow one to characterize any kinetic model extensivelfhemselves can be tuned by a few parameters that are only
and is of great interest to the biotechnology industry. Thi@volved with the way the method proceeds (e.g. step sizes,
field of metabolic engineering (Kell and Westerhoff, 1986desired accuracies, etc.); we refer to these as ‘method para-
Bailey et al, 1990; Cameron and Tong, 1993) is concernefleters’.

with modifying the properties of metabolic pathways with

the aim of enhancing the production of some metabolite of

interest. Another area where optimization is quite useful is iNumerical optimization methods

parameter estimation; here one has a candidate model and

experimental data, and one desires to estimate the valuesTbk field of numerical optimization is vast and it is outside
the model parameters from those data. This could typicalthe present scope to discuss it at any length. However, it is
involve the construction of a sum-of-squares function of thaseful to list the various types of methods and their character-
residuals between the measured and the simulated data, ites, simply to show their suitability for our purpose.
estimates of the true parameters being those values that minitinear programming methods are very popular due to their
mize the sum-of-squares function. The minimization of thigbility to handle hundreds of thousands of parameters. How-
sum-of-squares function can be carried out exactly in thever, with the exception of metabolite concentrations or
same manner and with the same numerical methods as fhexes represented in the S-System formalism (as described
design problems mentioned above. This extends the usefifl-Torreset al, 1997), they cannot be applied to biochemical
ness of the approach to the inverse problems of identifyingfoblems due to their requirement of objective function li-
parameter values from measured variables. In this paper, Wearity in terms of the adjustable parameters. Non-linear op-
will describe a general strategy to implement this combingdmization methods are thus to be preferred. Those that con-
simulation-optimization approach and will briefly describeverge faster to a local minimum are the gradient descent

how we have implemented it in our own biochemical kinetic§'€th0ds, the most popular being the Newton method (e.g.
simulator Gepasi (Mendes, 1993, 1997). Fletcher, 1987), although for practical reasons sophisticated

Before proceeding any further, we would like to clarifyVariants of this (e.g. Nash, 1984; Byrial, 1995) are pre-

; L ; d. The Levenberg—Marquardt method (Levenberg,
some potentially confusing issues of language that arlsel rre. . . . X
this combined approach. This is related to the words ‘par 944, Marquardt, 1963) is particularly suitable in least

meter’ and ‘variable’, which are used in simulation and o Squares problems based on sum of squares functions; the

S . . . . 'method can also be used for general functions (Goldfeld
timization with perhaps confusing meanings. In modellin

and simulation. one distinquishes between parameters Egal. 1966). Direct search methods do not calculate derivatives
' 9 P qud are also local minimizers, the most successful being

variables, the parameters being entilies of a model that Hose described by Hooke and Jeeves (1961) and Nelder and

either constant, under our direct control orvaryindependermeaol (1965). Stochastic methods are important when the
ly; examples of parameters are kinetic constants and tim@% '
8

) o ; . objective function has several optima and one is interested in
Variables are entities whose values are entirely determingd,qpq optimum. The most simple is random start, but most

by the parameters; examples are the internal metabolite CQf¥ten the ones to use are multistart (Rinnooy Kan and
centrations and fluxes (and, of course, any other entitier:}mmer, 1989) and simulated annealing (Kirkpatetial,
calculated from these). Although in optimization these gg3). Evolutionary algorithms, also of stochastic nature,
words have the same meaning, the entities that are pagam pe used for non-linear optimization (Béck and Schwefel,
meters and variables are now exactly the opposite: the vafigg3) and may indeed find global optima. The most popular
ables of the simulation are now part of the objective functiog the genetic algorithm (Holland, 1975; Goldberg, 1989),
(the function to be minimized) and the parameters to optinbut evolutionary programming (Fogel al, 1966; Fogel,

ize become variables (because they are varied in the couns5) may be better suited for optimization. Finally, there are
of the optimization)—this is why these are also known aslso deterministic methods for solving global optimization
inverse problems. To avoid confusion, we will always refeproblems: TRUST (Barheet al, 1997) appears to be much

to the entities that are parameters in the simulation model faster than the stochastic based methods, but its use is still not
‘parameters’ and the variables in the simulation model asidespread. All these methods can be applied in the method-
‘variables’; when we refer to the model parameters that amogy we describe here.
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Table 1. An application programming interface (API) for the optimization routines. The controlling part of the software uses ttiesec#lisdo run the

optimization
Procedure Input data Output data Description
Init none none carries out initialization of private variables
Version none a version number returns the version number of this routine
IsConstrained none TRUE/FALSE returns TRUE if this method is capable of
handling general constraints, FALSE otherwise
IsBounded none TRUE/FALSE returns TRUE if this method is capable of
handling adjustable parameter boundary
constraints, FALSE otherwise
SetCallback reference to callback function none to set a callback function to the front-end; this will

MethodParameterNumber

MethodParameterName
CreateArrays

ReleaseMemory
SetAdjustableParameter
SetConstraint
GetAdjustableParameter
GetObjectiveFunction

Optimize

SolvelLeastSquares

none
parameters

index of parameter name of parameter
number of adjustable parameters; none
number of constraints
none none
index of parameter; reference to none
parameter

index of constraint; reference to
constraint

none

index of parameter value of parameter

none value of the objective

function

reference to the function that carrie;mone
out the simulations

reference to the function that carriesnone
out the simulations

total number of method

be called by the optimization routine regularly to
provide information about the progress of the
algorithm

returns the number of method parameters that
have to be set

returns the name of one method parameter

creates storage to hold values of the adjustable
parameters and constraints

releases all the memory temporarily allocated to
carry out the optimization

stores a reference to one adjustable parameter
stores a reference to a constraint

returns the candidate value of this adjustable
parameter at the minimum

returns the candidate value of the objective
function at the minimum

executes the optimization algorithm calling the
simulation routine (passed as argument) when
needed. Note: this procedure can give feedback
of its progress by the callback function set with
SetCallback

stores a reference to the procedure that carries out
simulations and then executes the optimization
algorithm to solve the problem. Note: this
procedure must periodically call the callback
function set with SetCallback

The optimization-simulation methodology

Tablel lists the functions that compose this API, which after

implementation for a specific optimization method form an
All numerical optimization methods operate by carrying oubptimization module.

a series of procedures in which the value of the objective Before initiating the optimization process itself, one has
function has to be calculated for a set of values of the adjustily to specify a kinetic model which will be the subject of
able parameters. Figuteshows the generic algorithm which the optimization. This implies defining the reactions, and set-
describes the higher level operation of all numerical optimizing their kinetic types, initial concentrations for metabolites
ation methods. Where these methods differ from each othand values for the kinetic constants. Even those parameters
is in the details of steps 3 and 4. This high-level algorithrthat are going to be subject to the optimization have to be
forms the base of our specification of a general method @iven an initial value as the optimization methods have to
implement numerical optimization in biochemical kinetics.start (step 1 in FigurB at some point of parameter space. All
Each of the optimization methods is programmed as a mothis is carried out by the user at the front-end level, and exact-
ule consisting of a set of procedures that implement a welly in the same way as one would do for a simple simulation
defined application programming interface (API). In this(e.g. Mendes, 1997). Then the user has to enter the specific
section, we describe a prototype API for such a purposmformation about the optimization: (i) the model variable
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1 - set initial values for the adjustable parameters lates the objective function. We note that this procedure in the
simulation subsystem is where it is taken into account
whether the process is a minimization or a maximization. In

2 - evaluate the objective function by simulation the latter case, the procedure returns the negative of the ob-
jective function value so that the optimization modules only
carry out minimizations. This procedure is also responsible

3 - finish if stopping criterion satisfied for calculating the sum of squares of the residuals in the case
of fitting problems, except iSolvelLeastSquards being
used.

4 - generate new guess for the adjustable parameters The operation of the procedur€ptimize and Solve-

LeastSquaress specific to the method the module imple-
ments, and will not be discussed here in any detail. It is worth
5 - go back to step 2 mentioning that all methods require several evaluations of
the objective function, each of these consisting of a simula-
tion. Some modules, notably those implementing gradient
Fig. 1. An overview of the optimization process. Steps 3 and 4 areqescent methods, require estimates of the first and/or second
the only ones whose details differ from method to method. derivatives of the objective function. As the objective func-
tions are never explicit functions in this framework, this is
achieved by forward finite differences using the formula:

f f(p+4h) — f
that will be the objective function, which could be a function % - 1@ Ar)1 B

of several variables; (ii) whether the process is a minimiz-
ation or a maximization; (iii) the parameters which will be . i
adjusted in the optimization and optionally upper and lower WhereAhis a small number relative to the parameter value
boundaries for their values; (iv) some constraints that mu# The optimization modules regularly pass information
not be violated in the optimization; (v) which of the available2Pout the progress of the optimization back to the controlling
optimization modules to use and values for its own controfUPSystem by a callback function (set previously Bith-
ling parameters. When the user chooses to start the procesd!lPack. This is typically called at every iteration of the
all this information is passed to the relevant optimizatioinethod and allows the front-end to inform the user about the
module using the appropriate routines of the API (see TabRrogress of the optimization, in terms of the current estimate
1). SpecificallyCreateArraysonce to allocate the appropri- Of the objective function at the minimum.
ate amount of memory for storing intermediate data, iterate Each module has a different criterion for stopping the iter-
SetAdjustableParametéo pass a reference to each adjustations (step 3, Figur® which is, in some cases, strictly re-
able parameter and its boundaries, &atConstrainto pass lated to the process of optimization itself. A common cri-
a reference to each constraiMethodParameterNumbép  terionis based on the amount by which the objective function
find out how many controlling parameters this module had)as reduced in the last iteration. If the change has been
andSetMethodParametdor each of the module’s control- smaller than a certain tolerance, the method stops. Some
ling parameters. methods also monitor the change in a norm of the adjustable
Once all the necessary information has been defined afpd@rameter vector against another tolerance level. In the par-
passed to the optimization module and the user has selectigdilar case of evolutionary algorithms (see above), itis diffi-
to run the optimization, one of the procedustimizeor  cult to specify a stopping criterion due to the probabilistic
SolveLeastSquares called and then the optimization is nature of the algorithms; in this case, it is possible to have the
actually carried out (steps 2-5 in Figule SolvelLeast- criterion based on the number of generations (i.e. leaving the
Squaress only used if solving a fitting problem and the mod-decision to the user).
ule has a special way of solving least squares problems (sucibtep 4 of Figuré is the one that is specific for each differ-
as the Levenberg—Marquardt method which forms an agnt method. Some of these methods may already be available
proximation of the first and second derivatives of the sum afs subroutines and so all that is needed is a way of interfacing
squares from the vector of residuals rather than by finite dithem to the API described here. This is what has been done
ferences). Both these procedures take as argument a refgsing a series of methods in our implementation of this API
ence to one procedure in the simulation subsystem that calin-Gepasi, described below (see also Tahle
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Table 2. Optimization modules currently available for Gepasi Version 3.20

Module name

Method Feature3

Origin of code

References

Random search Random search with uniform distributiorB C G S

Steepest descent

Steepest descent with finite differencée8 C L D
gradient

written in C++ by PM
written in C++ by PM

L-BFGS-B Limited memory BFGS quasi-Newton B LD L-BFGS-B Version 2.P,written in Byrd et al, 1995
method FORTRAN by C.Zh6G
Truncated Truncated Newton (Lanczos method) BLD ¥Myitten in FORTRAN by S.Nash  Nash, 1984
Newton
Tensor Derivative tensor method LD TOMIBIgorithm 73%, written in Chowet al, 1994
FORTRAN by T.Chowet al¢
Levenberg— Restricted step Newton method with theB L D written in C++ by PM Levenberg, 1944;
Marquardt Marquardt iteration Marquardt, 1963;
Goldfeldet al, 1966
NL2SOL Adaptive non-linear least squares BLD DN2FB® written in FORTRAN by Denniset al, 1981
(Gauss—Newton) D.Gay
Multistart Multistart with steepest descent-based BC G S written in C++ by PM
local optimization
Hooke and Hooke and Jeeves direct search BLD written in C by M.JoHhadapted by Hooke and Jeeves, 1961
Jeeves PM
Genetic Genetic algorithm with floating-point BCG S written in C++ by PM e.g. Michalewicz, 1994
algorithm encoding
Evolutionary Meta-evolutionary programming BCGS written in C++ by PM Fegell, 1992
programming
Simulated Monte Carlo simulated annealing with BCGS written in C++ by PM Cetanta1987
annealing exponential cooling schedule

aB, works with bounds on the adjustable parameters; C, works with constraints on the variables; G, can find global optiomdy fincdocal optima; S, sto-
chastic algorithm; D, deterministic algorithm.

bOptained from the mathematical software repository Netlib, http://netlib.bell-labs.com/netlib/master/readme.html

COriginal FORTRAN code automatically converted to C usitgy(Feldmaret al, 1995).

dACM Transactions on Mathematical Software.

€0btained from the PORT library, available in the Netlib archive (see note b).

When the stopping criterion is satisfied, the optimizatiortontrolling part of the software pass information to each other
module gives control back to the main part of the softwarén both directions. This is required for setting up the procedure
If a parameter fitting problem was the objective of the opand to pass back its results, but also to provide the user with
timization, then some statistics can be calculated, specifeedback about the progress of the computation. The latter is
cally standard deviations for the fit and for the fitted paraa very important feature as some of the optimization methods
meters or even better (Johnson, 1992) confidence intervaise very slow, especially when the biochemical model and/or
The optimization module is interrogated by the controllinghe number of adjustable parameters are large. Without this
subsystem through calls to the routiGetAdjustable- feature, the user would soon suspect the software of malfunc-
Parameterfor the values of the adjustable parameters antibn and would be tempted to abort the run even though it was
GetObjectiveFunctiofor the value of the objective function working properly, albeit slowly. Another feature which is also
at the minimum. In the end, the results are output in an aprportant in a practical sense is that the user should be allowed
propriate format, often a textual report file. For parameteto halt an optimization routine at any time and hopefully still
fitting problems, it is important to plot the distribution of re-get some results (i.e. a set of parameter values that produces
siduals against the free and dependent variables of tha objective function value closer to the optimum than the
measurements, as this provides a good check for the qualifsiginal guess). This way in which this is implemented de-
of the fitted parameters (Straume and Johnson, 1992). pends on how the main software is designed and so we have

As described above, the optimization modules and the mdit this undefined in the API (Tablg.
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Implementation M3 o M4 —2P]

The implementation of the API defined in Tables tied up v / AH

with the computer language used. We have implemented th§ ——> M1 7%1\/12

API in the Gepasi software (Mendes, 1993, 1997) which is A AH e AH A

written in the C++ language in a Microsoft Windawsnvi- E6 M5 \ 4 M6 N
E7 E8 =

ronment. Thus, we wrote all optimization modules in the
C++ language, making extensive use of pointers (including
pointers to functions), dynamic-link libraries (DLLs) and fig. 2. A branched metabolic pathway with feedback. Al steps are
threads: (i) the optimization routine keeps pointers to th@hemically reversible, the arrows only represent the positive
function that carries out one simulation and to the variablesirection of flux. Steps 1, 3 and 6 follow reversible Hill kinetics with
that hold the values of the adjustable parameters; (ii) the cone modifier (Hofmeyr and Cornish-Bowden, 1997), for all three the
troller starts the optimization as a new thread, of which it haslill coefficient for substrate is 4, the forward limiting rate 10, the
total control, i.e. it can stop it at any time; (jii) the optimiz- parametera is 0.1 (the modifier is an inhibitor) and all other -
ation modules implementing the API defined above werg@rameters unity. Steps 2, 4 and 7 follow the ordered bi bi
built as dynamic-link libraries. The latter point is important Mechanism (Cleland, 1963) where the cofactor A/AH is always the
in the sense that it makes the program extensible: WhenevF!'Ist to bind the enzyme and the last to be released, all three have
. A . orward and reverse limiting rates of 10, all other parameters equal
we implement a new optimization module, we can dlstrlbutq

. . . . 0 unity. Steps 5 and 8 follow reversible Michaelis—Menten kinetics
that module alone without having to rewrite or recompile aNYHaldane, 1930) with forward limiting rate equal to 10 and al

other part of Gepasi. In fact, we are stillimplementing extrayjichaelis constants unity. All steps have an equilibrium constant of
optimization modules that will be released later. unity. S, P1 and P2 are external metabolites, their concentrations kept
When other computer languages or operating systems agénstant at 1, 0.1 and 0.1, respectively. The total amount of the
used, perhaps there will be other more appropriate architecenserved moiety A is 0.1. Units are arbitrary.
tures to follow. For example, in the increasingly popular lan-
guage Javid, the optimization modules would be adequately
written as a set of classes implementing a specific ‘interfaceshare common features in all other aspects and this is exactly
The interface would be the equivalent to the DLLs and woul@thy we advocate that biochemical optimization software
follow the API of Tablel, just like the Windows DLLs. should deal with both.
Table2 lists the optimization modules currently available As a matter of example we will describe two applications
for Gepasi Version 3.20 and the numerical optimizatiomf this combined approach: the first is a design problem,

methods they implement. while the second is a parameter estimation problem. They
were both carried out with Gepasi Version 3.20 (briefly de-
Applications scribed above) which implements this methodology.

There are basically two types of applications in which thiﬁational design for flux enhancement
simulation-optimization approach is useful. The first is con-

cerned with finding sets of parameter values that result infigure2 depicts a hypothetical branched biochemical path-
maximum or minimum of a model variable or function ofway with a conserved cofactor and feedback. It is similar to
model variables. This type of application can be generallhe pathway analysed by Cornish-Bowdgial (1995), ex-
referred to as ‘design’ problems and includes both metabolaept for the presence of the cofactor and the kinetics of some
engineering and biochemical evolution studies. The secomd the steps. Steps 2, 4 and 7 follow the ordered bi bi mechan-
type of application is where one has a number of experimeism (Cleland, 1963) (similar to many NADH-dependent
tally determined values of some model variables (or funa@ehydrogenases), steps 5 and 8 follow reversible Michaelis—
tions derived from them) and intends to find the most prolivienten kinetics (Haldane, 1930), and steps 1, 3 and 6 follow
able set of values of the model parameters that would preeversible Hill kinetics with one modifier (Hofmeyr and Cor-
duce the behaviour of the experimental system. We will refetish-Bowden, 1997). The latter mechanism allows the modi-
to these as ‘parameter estimation’ problems. These two dier (M2 for step 1 and AH for steps 3 and 6) to be an inhibitor
plications are different only in the form of objective functionor activator, depending on the values of the pararoeige
used: while in the first only items of the model are used, theet arbitrary values for the parameters of the model (see the
second also uses values obtained by experiment (the objéagend to Figur) to build a reference state which we will
tive function is the sum of squares of residuals). While irall wild type for obvious reasons.

design problems one may be interested in either maximiza-The aim of this simulation-optimization exercise is then to
tion or minimization, parameter estimation always consistind the optimal conditions in order to manipulate the path-
of a minimization. However, the two types of applicationsvay to achieve two independent objectives: (i) maximize the
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flux towards P1 without constraints on the flux towards P23 and 6 between t0and 10, the parametex (see above)
(i) maximize the flux towards P1 keeping the flux towardsof steps 1, 3 and 6 betweerriand 18, and the total amount
P2 unaltered from its original value. This is thus a metaboliof cofactor moiety ([A] + [AH]) between 16 and 10. To
engineering application and at this level one is determiningchieve aim (ii), we added the additional constraint that the
what are the manipulations that need to be carried out inflax J8 be limited to the interval 0.G21J8< 0.0118, which
later stage. is roughly its wild-type value 8%. In both problems, we
The fact that the reversible Hill kinetics equation (Hof-forced the ratio of forward to reverse limiting rates of all
meyr and Cornish-Bowden, 1997) we used allows for thsteps to be constant to comply with the Haldane relationship
modifier to be either activator or inhibitor is very advantagefthe Michaelis constants for substrate and product are not
ous for these purposes: the optimization process can simultdranged). This was achieved by defining ‘links’ (Mendes,
neously explore the effect of the modifiers as inhibitors 0t993) that set the reverse rates according to the value of the
activators to achieve the optimal states required. forward ones. Not doing so would mean that the thermody-
We define the model of Figuiein Gepasi setting all the namic properties of the pathway would change in the course
appropriate numerical values of the wild-type state. Then, wf the optimization.
achieve aim (i), we set up a maximization of the flux of step Several optimization modules were applied to solve these
5 (J5, the objective function) with 16 adjustable parametersvo problems and their performance is summarized in Table
the eight forward limiting rates between 0.001 and 100® and4. Full numerical results are available on the Internet
Mo s (half-saturating concentrations of modifier) for steps lat http://gepasi.dbs.aber.ac.uk/metab/opt/branched.html.

Table 3. Performance of optimization modules on the maximization of J5 (Figure 2) without constraints on J8

Optimization module  J5 J1 J8 Characteristics of solution No. of simulations

None (wild type) 0.0109 0.0218 0.0109 A+ AH =0.1; A/AH = 0.27 steps 1, 3 and 6: all weakL
feedback inhibition

L-BFGS-B 0.0131 0.0261 0.0131 A+ AH =0.22; A/AH = 0.24 steps 1, 3 and 6: all 672
weak feedback inhibitioNy: no significant changes
in any step

Levenberg—Marquardt ~ 0.0132 0.0262 0.0130 A+ AH =0.22; A/AH = 0.24 steps 1, 3 and 6: all31 030
weak feedback inhibitioy: unaltered

Steepest descent 0.0295 0.0331 0.0036 A + AH =0.24; A/AH = 0.23 steps 1, 3 and 6: alt454
feedback inhibition, stronger on\&,: step 3 up, step
6 down

Simulated annealing 0.2276 0.2276 xP0~7 A+ AH =0.72; A/AH = 0.16 steps 1, 2 and 3 no 326 731

feedbackVy: steps 1, 2, 3, 4 and 5 at maximum, 6 at
minimum, 7 and 8 increased

Multistart 0.2538 0.2578 0.0040 A + AH = 1.30; A/AH = 0.09 step 1 strong feedback9 045
activation, 3 feedback activation, 6 weak feedback
activationV,: steps 1, 2, 3, 4, 5 and 6 up, 7 unaltered,

8 decreased

Random search 0.2942 0.2942 x18-5 A+ AH =1.13; A/AH = 0.13 step 1 no feedback, 3 3 000 000
feedback activation, 6 very weak feedback inhibition
Vm: steps 1, 2, 3,4, 5 and 7 increased, 6 and 8
decreased

Truncated Newton 0.3727 0.3727 S0) A+ AH =1.82; A/AH = 0.09 step 1 weak feedback 27 041
inhibition, 3 strong feedback activation, 6 strong
feedback inhibitiorvy,: steps 1, 2, 3, 4 and 5 close to
maximum, 7 and 8 unaltered, 6 at minimum

Evolutionary 0.3771 0.3771 %108 A+ AH =1.84; A/AH = 0.09 step 1 feedback 45 150
programming activation, 3 feedback activation, 6 weak feedback
activationV: steps 1,2, 3, 4 and 5 at maximum, 7 and
8 5-fold increase, 6 at minimum

Genetic algorithm 0.3771 0.3771 <109 A + AH =1.80; A/AH = 0.09 step 1 weak feedback 25 500
activation, 3 very strong feedback activation, 6 very
strong feedback inhibitiowy,: steps 1, 2, 3, 4 and 5 at
maximum, 6, 7 and 8 decreased
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Table 4.Performance of optimization modules on the maximization of J5 (Figure 2) constrained<al800.0118

Optimization module J5 Jl J8 Characteristics of solution No. of simulations

None (wild type) 0.0109 0.0218 0.0109 A+ AH =0.1; A/AH = 0.27 steps 1, 3 and 6: all weakL
feedback inhibition

Random search 0.0723 0.0824 0.0100 A+ AH = 2.69; A/AH = 0.06 step 1 feedback 100 000
inhibition, 3 strong feedback activation, 6 feedback
activationViy: steps 1, 2, 6 and 7 increased, 3, 4 and 7
no significant changes, 8 decreased

Simulated annealing 0.2218 0.2321 0.0103 A+ AH =0.73; A/AH = 0.16 steps 1, 2 and 3 no 95 434
feedbackvy,: steps 2, 3, 4, 5 and 7 at maximum, 1, 6
and 8 increased

Genetic algorithm 0.2918 0.3018 0.0100 A+ AH =1.06; A/AH = 0.12 step 1 feedback 101 100
activation, 3 very strong feedback activation, 6 no
feedbackviy: steps 1, 2, 4, 5, 6, 7 and 8 increased, 3
no significant change

Evolutionary programming 0.3740 0.3840 0.0100 A+ AH =1.83; A/AH = 0.09 steps 1 and 6 weak 100 100
feedback activation, 3 feedback activatigit step 6
increased 10-fold, all others at maximum

For the problem without constraints, the highest value alegrading cofactors as these are the ones that will effectively
J5 obtained was 0.3771, a 30-fold increase over the ‘wildietermine the total amount of the cofactor moiety.
type’ value. This solution was obtained with the genetic algo- In the second optimization problem, we required the com-
rithm (GA) and evolutionary programming (EP) methodspeting flux J8 to be within 8% of its wild-type value. Adding
We note that even though the value of J5 is the same in bdliis constraint meant that we could now apply only four op-
cases, the two solutions are not the same: the feedback intémization modules, as the others in our implementation have
action at step 6 is a very strong inhibition in the GA solutiomot yet been made to work with constraints on variables. The
while it is a weak activation in the EP solution. Indeed, thbest results were again obtained with evolutionary algo-
second-best solution obtained with the truncated Newtatthms, butthis time EP performed better than the GA. We are
method (with J5 just slightly smaller than in the best caseurprised that it was possible to obtain a solution with a value
was obtained with yet another combination of feedback iref J5 as high as 37-fold greater than in the wild type. This was
teractions as in this case step 1 is inhibited rather than aaishieved without decreasing the limiting rate of any enzyme
vated by M2. Being able to have obtained these three sdftthe competing branch (in the previous unconstrained prob-
utions is already an advantage: the metabolic engineer cim at least one of these was reduced in all solutions). No
choose the one that is easier to produce in practice. Interesther features in this solution are strikingly different from the
ingly, this result possibly reflects the natural (as opposed teest solutions of the unconstrained case. This stresses the im-
computational) phenomenon of divergent evolution. portance of applying quantitative methods, and indeed rein-

Clearly, not all methods were capable of solutions as goddrces our view that the models chosen for optimization pur-
as the three already mentioned. Indeed, two methods (theses must be capable of reasonable extrapolation abilities.
quasi-Newton methods L-BFGS-B and Levenberg—MarSimilarly, the real quality of the simulation-optimization
quardt) barely increased the value J5 at all. The former seemsthod in the context of metabolic engineering can be veri-
to have converged prematurely to a region of parametéied only after comparison with the performance of the engi-
space where J5 is flat (and so these gradient methods colfgred organisms.
not find the ‘downhill direction’).

A major factor in obta@ning high_fl_ux seems to be th_e totap5rameter estimation
amount of cofactor, which is positively correlated with J5.
The cofactor ratio has an even stronger (though negativig) this example, we want to estimate a number of rate con-
correlation with J5, but unlike the total amount this cannot bstants of the mechanism of irreversible inhibition of HIV
identified with a cause, as itis a variable of the model just likeroteinase (Figurg; see also Kuzmic, 1996). Data from five
J5. What this means is that, in a state of maximal J5, this ratime courses at four different inhibitor concentrations
is lower than otherwise. Based on this and other unpublisheteasured fluorimetrically were used for this analysis
simulation results, we suspect that for real organisms it mdfurther details can be found at http://gepasi.dbs.aber.ac.uk/
well be beneficial to consider the pathways producing anchetab/opt/hivfit.html). We defined the reaction mechanism
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Fig. 3.Mechanism of irreversible inhibition of HIV proteinase. The ol —
enzyme is only active in a dimer form, the product is a competitive i

inhibitor for the substrate and the inhibitor is irreversible. For more -0.1 —— : = : : —
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of Figure3 in Gepasi and set the parameters to initial guess 0.01 1

values as in Kuzmic (1996). The software was set to fit the
rate constaniy, ks, kap, ks andks to the experimental data. @ 9-003
In this fit, it was also assumed that there is a certain degrgg =~ ©
of uncertainty £ 50%) in the value of the initial concentra- g -0.005
tions of substrate and enzyme, and that the offset (baseline) -0.01
of the fluorimeter was not exactly zero. Therefore, there are -0.015
a total of 20 adjustable parameters: the five rate constants, .g.g2

five initial concentrations of enzyme, five initial concentra- 0 500 1000 1508290 2500 3000 3500
tions of substrate and five offset values (given that there are
five time course curves). Fig. 4.Least squares fit of progress curves of HIV proteinase in the

We fit the model to the experimental data using a series gfresence of an irreversible inhibitor. Results of the best fit obtained
optimization methods. The best solution was obtained withvith simulated annealing.Aj Simulated (smooth curves) and
simulated annealing with a very good quality of fit, asjudg(_:.daxperimental data (noisy curvedd) Residuals as a function of time.
by the lack of correlation between the residuals and time
(Figured). The next best solution was obtained with the Le-
venberg—Marquardt method and despite the sum of squaragimum, but simulated annealing will, and possibly the
being only some 1% worse than that obtained with simulatesl/olutionary algorithms will too. We think that this subject
annealing, some parameters have considerably different wleserves more detailed study, although it would not be ap-
lues. Indeed, some of them have a better standard deviatjpropriate to do so here and at all events the implementation
(see Tabl®). We do not know whether both solutions are twahat we described here is appropriate for such a study.
different minima of the least squares function or if this func-
tion is very fI_at in this region.of parameter space. A signifipiscussion
cant aspect is that the solution obtained with simulated an-
nealing took considerably longer to obtain than the secontfe have described an approach for combining biochemical
best (roughly 3 million simulations against 4000). This is &inetics simulations with numerical optimization methods.
severe disadvantage and one would be tempted to dismissWie illustrated its usefulness with two examples, but, of
usage of this technique and favour the method of Levenbergeurse, these do not remotely cover the whole universe of
Marquardt on these grounds. The latter is guaranteed to capplications. We therefore discuss several other types of
verge to the global minimum only if started in its vicinity, soproblems which may be solved (or at least their solution
given a good initial guess for the parameters this method aded) by this strategy. As these problems are of two distinct
definitely the best choice. However, if the initial guess is poarlasses, optimization and fitting, we shall discuss them sep-
(and unfortunately there is no way of knowing thiwiori),  arately, but we remind the reader that the way in which soft-
then Levenberg—Marquardt will not converge to the globalvare is implemented to solve them is essentially the same.
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Table 5. Results of least squares fits of HIV proteinase progress curves in the presence of an irreversible inhibitor. Further aesddble at
http://gepasi.dbs.aber.ac.uk/metab/opt/hivfit.html

Parameter Simulated annealirig Levenberg—Marquarat
(sum of squares = 0.0211) (sum of squares = 0.0213)

koo 201.1 ¢ 135.7) 180.6 ¢ 25.70)

ks 7.352 (£ 0.6785) 10.39% 1.020)

ka2 1171 ¢ 1070) 10724 202.5)

ks2 13 140  26870) 2.82%10716(+ 1.13x 1019

Ks 30 000 £ 89780) 2.48810716 (+ 2.585x 10-19)

[Sli (curve 1) 24.794 0.03285) 24.76%0.03321)

[Sli (curve 2) 23.43%0.03882) 23.5640.04232)

[Sli (curve 3) 26.79% 0.05742) 27.0940.06503)

[Sli (curve 4) 32.1042.103) 28.17£1.365)

[Sli (curve 5) 26.8141.773) 23.51£1.159)

[E]; (curve 1) 0.004389+0.0003404) 0.003068:(0.0002724)

[E]; (curve 2) 0.004537+0.0002353) 0.003622(0.0001862)

[E]; (curve 3) 0.005470+0.0001906) 0.004728:(0.0001543)

[E]; (curve 4) 0.00417540.00001338) 0.004135%(0.00001119)

[E]; (curve 5) 0.003971+0.00009885) 0.003994 (0.000004843)

offset (curve 1) —0.00801% (0.0007571) —0.00737%(0.0007672)

offset (curve 2) —0.00391% (0.0008744) —0.00718@ (0.0009906)

offset (curve 3) —0.008962 (0.001338) —0.01605:(0.001527)

offset (curve 4) —0.0160@(0.001819) —0.0228%(0.002130)

offset (curve 5) —0.003789% 0.001613) —0.009926 £ 0.001862)

8Parameter value and standard deviation.

Design problems are common in biotechnology (Kell andKell, 1997) are rational methods of designing the improved
Westerhoff, 1986; Cornish-Bowdenal, 1995; Westerhoff pathway. It is exactly at the design stage that the simulation-
and Kell, 1996), where one normally seeks to maximize @ptimization methodology proposed here can be useful for
flux, a yield or the concentration of an interesting productmetabolic engineering.
and to minimize the concentration of undesired compounds, The first step is to build a kinetic model of the pathway to
or a combination of several of these things. Here itis impliegptimize that has reasonable extrapolation qualities (as the
that we have the technology to carry out substantial changgstimization process is most frequently an extrapolation).
in the pathways, be it in the amount of each enzyme presefl ;s we stress that models should be as complete as poss-
or indeed in altering the properties of the enzymes. This afBle: it is important to keep assumptions to a minimal level

g\t”gl higg%?Cg;nn?ekrgﬁvglnSST?ftatigécg?r.:/?é?,%eegngn(fiﬁ nd especially not to ignore metabolites of the pathway by
) ! 9, ' suming them constant (as, for example, the pairNahid

1997). To be able to change pathways in such a way, we wj ) . . _—
need to apply recombinant DNA (Skatreidal, 1989) and ADH in Galazzo and Bailey (1990)). Doing so implies that

traditional (Ulmer, 1983), active site-based (Fersht, 1985) §FSults outside the restricted conditions used to build the
more advanced (Kuchner and Arnold, 1997) protein engir{T-‘Odel will be meanlngless. At times, it may be .ne'cessary.to
eering technologies (forced evolution). However, the exis@dOPt phenomenological rather than mechanistic descrip-
ence of appropriate technology is not sufficient on its owrfions. While the latter are preferred due to their better ex-

since there are many ways in which to change a pathway, biigolation ability, the former are not unreasonable as long as
in general, only a very small proportion of these will resulthey have been constructed with a sufficiently large set of
in the desired effect. What has been in high demand in tigéfferent experimental conditions and are able to explain the
biotechnology field (Kell and Westerhoff, 1986; Cornish-whole range of behaviour observed (Kell and Sonnleitner,

Bowdenet al, 1995; Westerhoff and Kell, 1996; Mendes andL995).

879



P.MendesandD.B.Kell

Once a good kinetic model is available, it is then necessaryParameter estimation is a well-established area of bio-
(i) to construct an objective function reflecting the requirechemical kinetics and enzyme kinetic parameters are rou-
ments for the engineered organism and (i) to determine witinely estimated in many laboratories. Non-linear least
which parameters and within what boundaries the manipulaquares fitting is a standard technique for the estimation of
tions can be made. Then the kinetic model is used in a simukrzyme kinetic parameters (Cleland, 1979; Duggleby, 1985;
tor coupled with optimization methods so as to obtain thBeechem, 1992; Johnson, 1992; Johnson and Faunt, 1992;
values of the parameters at the desired optimum. As we hakazmic, 1996) and it could appear that in this aspect our pro-
pointed out previously, the fact that objective functions arposal contains no novelty. In reality, though, non-linear least
usually non-linear in terms of the model parameters, and thequares fitting in enzyme kinetics has been almost exclusive-
there may be a large number of these, means that probalylyarried out with gradient descent methods (mainly the Le-
there are several local optima far from the global one. To findenberg—Marquardt method), we would argue that for many
the global optimum, one may need to use the slower probeemplex enzyme mechanisms there are benefits in being
bilistic methods rather than the faster gradient descent oneble to select global optimization methods because the error
This is a strong argument for including several optimizatiomyper-surfaces (the sum-of-squares functions) often have
methods in software of this kind. Only in that way can userseveral minima (e.g. Markes al, 1980; Esposito and Flou-
‘experiment’ with several methods applied to the same prolalas, 1998). If this is the case, gradient descent methods can
lem. We have found in our own experience with Gepasi th@rovide very poor estimates of the parameter values and may
no single method is the best for all problems, a conclusidoe simply wrong (rather than just inaccurate). Furthermore,
established in the field of combinatorial optimization (e.gmost commercial packages for enzyme kinetics do not use
Wolpert and Macready, 1997). the differential equations of the model, but rather some form

Although metabolic engineering is an obvious applicationf integrated equations that are, in general, only approximate
of this approach, we think that other areas, perhaps maaed are tainted with unnecessary assumptions. The approach
theoretical, may also benefit from it. A few groups, notablyve suggest here can use both methods and it is up to the user
that of Heinrich, have indeed applied analytical optimizationo describe the kinetics of the reactions using integrated
methods (e.g. Heinrickt al, 1987, 1997; Schuster and Hein-equations (such as the Michaelis—-Menten equation) or by
rich, 1987, 1991; Savinell and Palsson, 1992; Klipp andonsidering the detailed enzyme mechanism, in which case
Heinrich, 1994) to several pathway schemes to investigatiee solution will present the values of the elementary rate
the conditions for maximal flux, minimal concentrations,constants. Additionally, the fitting can be carried out with
and a series of other criteria. The idea is that these optintahe course or steady-state data. We know of only a few com-
states are ultimately targets of evolution. Even setting asigeiter programs that follow this approach for enzyme kinetic
evolutionary arguments, it is always very useful to find thelata fitting: SIMFIT (Holzhitter and Colosimo, 1990), FIT-
limits within which a certain pathway may behave, an activSIM (Frieden, 1993) and DynaFit (Kuzmic, 1996), but all are
ity of theoretical biochemistry which we like to call ‘explora-limited to using the Levenberg—Marquardt method for the
tory modelling’. Alone, this is useful to increase our knowl-minimization of the sum of squares. Kuzmic (1996) pointed
edge of basic biochemical behaviour and it appears thataut that in order to obtain good fits, the software needs to
may become very important in the analysis of whole-orgarconsider that concentrations of the various substances in the
ism behaviour. As a result of the already fully sequenced gexperiment contain some degree of error and so these initial
nomes, there is an ongoing activity (Katpal, 1996; Tatu- concentrations should also be included as adjustable para-
sovet al, 1996; Selkowt al, 1997; Boncet al, 1998) of meters. Our implementation follows this recommendation
reconstructing the metabolic pathways of these organismasd so Gepasi allows the user to define any initial concentra-
based on all their (identified) enzymes. The problem here i®n as an adjustable parameter. Rather than being limited to
that the kinetic parameters of the large majority of the erfitting the parameters of one single reaction, we argue that it
zymes of these organisms are unknown. This approach coidchow becoming very important to consider systems of reac-
be used to reveal the limits of such whole-organism ‘supetions as required kin situ andin vivo experiments (Mendes
pathways’ (though high-performance implementations anekt al, 1995). In these experiments, one is in general not able
fast hardware are probably required). While the analyticab ‘silence’ competing or side reactions and therefore the nu-
approach is better than numerical solutions due to the americal model must include them, this also goes towards a
proximate character of the latter, the domain of problems thgflobal analysis’ (Beechem, 1992). With the ability to carry
are solvable analytically is unfortunately rather small. Thusut experiments in increasingly complex systems, there is
the numerical approach proposed here is an important comew a greater demand for matching software capable of ana-
plement to the analytical one, and has a place in theoretidging the complex data sets generated. The approach we
biochemistry too. have described here offers a significant step in this direction
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by defining a flexible framework to incorporate sophisti-Cameron,D.C. and Chaplen,F.W.R. (1997) Developments in metabolic

cated optimization methods and deal with metabolic modelsengineeringCurr. Opin. Biotechno) 8, 175-180.

of arbitrary complexity. Cameron,D.C. and Tong,l. (1993) Cellular and metabolic engineering:
In conclusion, we hope that the methodology that we de- 2" overviewAppl. Biochem. BiotechnoB8, 105-140.

scribe here, and indeed our own implementation of it, will bW T, ESkow.E. and Schanbel,R. (1994) Algorithm 739: A software

useful for the theoretical study of pathway kinetics, the ra- package for unconstrained optimization using tensor metAQid.

. . . . . . Trans. Math. Softyw20, 518-530.
tional design of improved pathways in metabolic engln(:"erCIeIand,W.W. (1963) The kinetics of enzyme-catalyzed reactions with

!ng .?nd fgr enzym? kmetj: paramtete;hestlma:tlon, mC.IUdmg two or more substrates or products. I. Nomenclature and rate
IN Situanain vivoset-ups. As we enter the post-genomic era, equationsBiochim. Biophys. Aci#7, 104-137.

emefg'”g teChn'queS_Of functional anaIySIS_ (Lockbael, Cleland,W.W. (1979) Statistical analysis of enzyme kinetic data.
1996; Winston and Fitzgerald, 1997; Wodiekaal, 1997, Methods Enzymol63, 103-138.

Ducretet al, 1998) mean that soon large amounts of gen€orana,A., Marchesi,M., Martini,C. and Ridella,S. (1987) Minimizing
expression kinetic data (transcriptome, proteome and metamultimodal functions of continuous variables with the ‘simulated
bolome; Oliveret al, 1988) will become available. The ap- annealing’ algorithmACM Trans. Math. Softwl3, 262—280.

proach described here will be very important in constructingorish-Bowden,A. and Hofmeyr,J.H. (1991) METAMODEL—A
and analysing kinetic models of gene expression with which program for modeling and control analysis of metabolic pathways on
such data may be compared. This is currently the only waythe IBM pc and compatible§omput. Applic. Biosgi7, 89-93.
(Brenner, 1997) to rationalize all the non-linear interaction§ormish-Bowden,A., Hofmeyr,J.-H.S. and Cardenas,M.L. (1995) Strat-
occurring in such complex metabolic systems. The possibil- €dies for manipulating metabolic fluxes in biotechnoldgjporg.

ity of applying several optimization methods to obtain the Chem 23, 439-449.

best possible solution is essential for the proper workings rtis,A.R. and Chance,E.M. (1972) Numerical methods for simulation
this methodology and optimization. In Hemker,H.C. and Hess,B. (eflaglysis and

Simulation of Biochemical Systendorth-Holland Publishing Co.,

Amsterdam, pp. 39-57.
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