
Non-linear optimization of biochemical pathways:
applications to metabolic engineering and
parameter estimation

���&% ��$��' �$� �%) #�' �� ��##

�$'("()(� %� �"%#% "��# ��"�$��'� �$"*�&'"(, %� ��#�'
��&,'(+,(!�
��&,'(+,(!�

��&��" "%$ ���� ���� ��

������� �� ��� ��� �		�
 ������� �� ������ ��� �		�
 �������� �� ��������� �� �		�

Abstract
Motivation: The simulation of biochemical kinetic systems is
a powerful approach that can be used for: (i) checking the
consistency of a postulated model with a set of experimental
measurements, (ii) answering ‘what if?’ questions and (iii)
exploring possible behaviours of a model. Here we describe
a generic approach to combine numerical optimization
methods with biochemical kinetic simulations, which is
suitable for use in the rational design of improved metabolic
pathways with industrial significance (metabolic engineer-
ing) and for solving the inverse problem of metabolic
pathways, i.e. the estimation of parameters from measured
variables.
Results: We discuss the suitability of various optimization
methods, focusing especially on their ability or otherwise to
find global optima. We recommend that a suite of diverse
optimization methods should be available in simulation
software as no single one performs best for all problems. We
describe how we have implemented such a simulation-op-
timization strategy in the biochemical kinetics simulator
Gepasi and present examples of its application.
Availability: The new version of Gepasi (3.20), incorporat-
ing the methodology described here, is available on the
Internet at http://gepasi.dbs.aber.ac.uk/softw/Gepasi.html.
Contact: prm@aber.ac.uk

Introduction

Computers have been used since the 1940s to simulate the
kinetics of biochemical reactions. Given a pathway structure
and a kinetic scheme, the admissible steady states of that sys-
tem and the time courses of the reactions can be computed.
This is a well-developed field and the reader is referred to
other publications that cover the subject in greater depth
(Garfinkel et al., 1970; Heinrich et al., 1977; Garfinkel,
1981; Hayashi and Sakamoto, 1986; Hofmeyr, 1986;
Mendes and Kell, 1996). Basically, kinetics simulation soft-
ware calculates the values of the internal metabolite con-
centrations based on a set of kinetic functions and values for
their parameters and the (constant) external metabolite con-

centrations. The majority of kinetic models are described in
terms of coupled differential equations (rather than explicit
algebraic functions) and simulators implement the appropri-
ate methods to solve these systems of ordinary differential
equations (ODEs). Two distinct types of simulation can be
carried out: (i) time courses, in which the values of the vari-
ables are determined as a time series; (ii) steady states where
the values of the variables are determined for a state in which
no metabolite concentration changes. There are several mod-
ern programs designed specifically for this purpose (Cor-
nish-Bowden and Hofmeyr, 1991; Mendes, 1993, 1997;
Sauro, 1993; Ehlde and Zacchi, 1995) and most include a
facility to investigate the behaviour of the model over a range
of values of some of its parameters. This allows one effec-
tively to study the dependency of the model’s behaviour on
its parameters and is therefore a very effective means of fore-
casting the effects of large parameter perturbations. The abil-
ity to predict the effect of large parameter changes is an es-
sential requisite (Westerhoff and Kell, 1996) for the rational
design of engineered organisms (metabolic engineering)
(Bailey et al., 1990; Cameron and Tong, 1993; Cameron and
Chaplen, 1997; Mendes and Kell, 1997), an activity that is
becoming attainable experimentally (via rDNA, site-di-
rected mutagenesis, etc.).

The currently existing simulators use one of two strategies
to ‘scan’ the parameter space of a kinetic model: repeated
solution of the ODEs at different values of the scanned para-
meters, or using continuation algorithms (Hocker, 1994).
Both these approaches have major limitations in terms of the
dimension of the parameter space. Continuation can be car-
ried out for invariant dynamical states (steady states, limit
cycles, etc.) and is limited to two parameters at a time, while
the computation time for systematic scans by the repeated
solution of ODEs grows exponentially with the number of
parameters. This ‘curse of dimensionality’ (Duda and Hart,
1973) means that the systematic process is really applicable
only to rather small numbers of parameters (below 10 and
preferably less than five; Garey and Johnson, 1979). The
question then arises as to whether there are any other pro-
cedures one can use when the model has a large number of

�%#� �	 $%� �� ����

�� �' �
�����

869� Oxford University Press

BIOINFORMATICS

P.Mendes and D.B.Kell

870

parameters. The answer is yes: numerical and combinatorial
optimization algorithms can be used for such purposes. Here,
we will describe how these can be implemented in a meta-
bolic simulation package in a generic way so as to be able to
address a diversity of problems.

Optimization methods have a number of applications in
science and engineering. For example, they are routinely
used in parameter fitting problems, as a means of designing
improved processes or devices, in search problems or as
learning algorithms. In enzyme kinetics, some of these
methods are already used in combination with simulation for
parameter estimation (fitting). Linear or (now more com-
monly) non-linear least squares regression is used to estimate
kinetic constants from measured rates and concentrations,
and several computer programs are available for this purpose
(Duggleby, 1984; Holzhütter and Colosimo, 1990; Frieden,
1993; Kuzmic, 1996). It is also possible to apply the same
technique to estimate the kinetic parameters of several en-
zymes simultaneously, a procedure already described in
1972 by Curtis and Chance, but still carried out only infre-
quently. More recently, numerical optimization has been
used for the design of pathway models with particular prop-
erties (Bray and Lay, 1994; Gilman and Ross, 1995) or for
the improvement of fluxes of biotechnological interest
(Torres et al., 1997). These applications were carried out
with software specially written for them. The fitting software
packages cited above are only capable of using one optimiz-
ation method and usually this is one that can find a minimum
only in the vicinity of an initial guess (e.g. the Levenberg–
Marquardt method; Levenberg, 1944; Marquardt, 1963). Es-
sentially, numerical optimization has not evolved to a stage
in which there is a single method that is the best for all ap-
plications, and although the idea that a single method would
be the best for all problems is an attractive one, it is in fact
incorrect, probably due to the great variety of problem do-
mains and their properties (Wolpert and Macready, 1997).
Thus, it is highly desirable to be able to apply a series of
methods to each optimization problem (including fitting), in
order to achieve the best possible solution. The purpose of
this article is to describe a way in which this can be implem-
ented in biochemical kinetics software. We also propose that
the use of numerical optimization should be extended such
that any item of a kinetic model should be able to take part
in optimization, not simply the metabolite concentrations,
fluxes or functions of the differences between simulated and
measured data.

For the purposes of this simulation-optimization method-
ology, the strategy that is used for the simulation part is not
really important, so long as it is capable of taking values of
the model parameters as inputs and providing the (calcu-
lated) values of the variables as outputs. Simulation based on
differential equations, arguably the most popular method, is
quite adequate, but so are other methods such as Monte Carlo

(Kibby, 1969) or cellular automata (Ermentrout and Edels-
tein-Keshet, 1993). In the implementation described below,
we have used our own simulation package Gepasi (Mendes,
1993, 1997), which is based on differential equations and is
written in the C++ language.

Optimization

Optimization problems are concerned with locating optima
(maxima or minima) of functions. Finding a maximum of a
function f(x) is equivalent to finding a minimum of –f(x).
Thus, we will refer only to minimization hereafter, although
the reader should bear in mind that the discussion applies
equally to maximization following the simple transform-
ation above. The problem can then be stated in general terms
as follows:

given a real-valued scalar function f(x) of n variables x =
(x1, …, xn), find a minimum of f(x) such that gi(x) ≥ 0 with
i = 1, …, m (inequality constraints) and hj(x) = 0 with j =
1, …, m (equality constraints).

In general, the objective function f(x) and the constraints
gi(x) and hj(x) are non-linear, although frequently the only
constraints are linear boundaries of the form ai ≤ xi ≤ bi (these
actually translate into two separate constraints: xi – ai ≥ 0 and
bi – xi ≥ 0), where ai and bi are often positive constants. Some
problems might be unconstrained, i.e. m = m’ = 0. Owing to
its non-linearity, f(x) will often have several minima. For
many applications, one is interested in the global minimum
(i.e. the one with the lowest value of f(x)), although some-
times a local minimum may be sufficient. In fact, it is as-
sumed in many cases such that a local minimum then found
is ‘close’ to the global minimum, an assumption that is wide-
ly borne out for hard combinatorial optimization problems
(so-called NP-complete; see Garey and Johnson, 1979) of
this type. On some rare occasions, one may even wish or
need to know all the minima. The existence of several mini-
ma or otherwise is an important issue in so far as many op-
timization methods can only find a local minimum, as will be
discussed below. The majority of numerical optimization
methods do not rely on the explicit form of f(x), and only
require its value to be evaluated at several points; some
methods do not even require this function to be continuous
or differentiable and may still work if its values contain
noise. In the next section, we will briefly discuss some of the
numerical methods that are available to minimize functions;
for the moment, it is enough to bear in mind that these
methods only need to evaluate f at specific values of the vari-
ables (vector x).

Because the functions to minimize are not required in an
explicit form, the results of kinetic simulations (i.e. solutions
of ODEs) are suitable candidates for optimization. These in-
clude metabolite concentrations and fluxes, but also any

Non-linear optimization of biochemical pathways

871

other indices derived from these, including the various co-
efficients of metabolic control analysis (Kacser and Burns,
1973; Heinrich and Rapoport, 1974; Fell, 1992, 1996; Hein-
rich and Schuster, 1996), mass action ratios, stability indices,
etc. The ability to find maxima or minima of these entities is
an extremely desirable feature of a kinetics simulator as it
will allow one to characterize any kinetic model extensively
and is of great interest to the biotechnology industry. The
field of metabolic engineering (Kell and Westerhoff, 1986;
Bailey et al., 1990; Cameron and Tong, 1993) is concerned
with modifying the properties of metabolic pathways with
the aim of enhancing the production of some metabolite of
interest. Another area where optimization is quite useful is in
parameter estimation; here one has a candidate model and
experimental data, and one desires to estimate the values of
the model parameters from those data. This could typically
involve the construction of a sum-of-squares function of the
residuals between the measured and the simulated data, the
estimates of the true parameters being those values that mini-
mize the sum-of-squares function. The minimization of this
sum-of-squares function can be carried out exactly in the
same manner and with the same numerical methods as the
design problems mentioned above. This extends the useful-
ness of the approach to the inverse problems of identifying
parameter values from measured variables. In this paper, we
will describe a general strategy to implement this combined
simulation-optimization approach and will briefly describe
how we have implemented it in our own biochemical kinetics
simulator Gepasi (Mendes, 1993, 1997).

Before proceeding any further, we would like to clarify
some potentially confusing issues of language that arise in
this combined approach. This is related to the words ‘para-
meter’ and ‘variable’, which are used in simulation and op-
timization with perhaps confusing meanings. In modelling
and simulation, one distinguishes between parameters and
variables, the parameters being entities of a model that are
either constant, under our direct control or vary independent-
ly; examples of parameters are kinetic constants and time.
Variables are entities whose values are entirely determined
by the parameters; examples are the internal metabolite con-
centrations and fluxes (and, of course, any other entities
calculated from these). Although in optimization these
words have the same meaning, the entities that are para-
meters and variables are now exactly the opposite: the vari-
ables of the simulation are now part of the objective function
(the function to be minimized) and the parameters to optim-
ize become variables (because they are varied in the course
of the optimization)—this is why these are also known as
inverse problems. To avoid confusion, we will always refer
to the entities that are parameters in the simulation model as
‘parameters’ and the variables in the simulation model as
‘variables’; when we refer to the model parameters that are

being optimized, we call them ‘adjustable parameters’ to
stress the fact that their values are going to be adjusted by the
optimization method. We must nevertheless point out that the
optimization literature refers to these as ‘variables’ as they
are effectively varied during the course of the optimization.
To make matters worse, the numerical optimization methods
themselves can be tuned by a few parameters that are only
involved with the way the method proceeds (e.g. step sizes,
desired accuracies, etc.); we refer to these as ‘method para-
meters’.

Numerical optimization methods

The field of numerical optimization is vast and it is outside
the present scope to discuss it at any length. However, it is
useful to list the various types of methods and their character-
istics, simply to show their suitability for our purpose.

Linear programming methods are very popular due to their
ability to handle hundreds of thousands of parameters. How-
ever, with the exception of metabolite concentrations or
fluxes represented in the S-System formalism (as described
in Torres et al., 1997), they cannot be applied to biochemical
problems due to their requirement of objective function li-
nearity in terms of the adjustable parameters. Non-linear op-
timization methods are thus to be preferred. Those that con-
verge faster to a local minimum are the gradient descent
methods, the most popular being the Newton method (e.g.
Fletcher, 1987), although for practical reasons sophisticated
variants of this (e.g. Nash, 1984; Byrd et al., 1995) are pre-
ferred. The Levenberg–Marquardt method (Levenberg,
1944; Marquardt, 1963) is particularly suitable in least
squares problems based on sum of squares functions; the
method can also be used for general functions (Goldfeld et
al., 1966). Direct search methods do not calculate derivatives
and are also local minimizers, the most successful being
those described by Hooke and Jeeves (1961) and Nelder and
Mead (1965). Stochastic methods are important when the
objective function has several optima and one is interested in
a global optimum. The most simple is random start, but most
often the ones to use are multistart (Rinnooy Kan and
Timmer, 1989) and simulated annealing (Kirkpatrick et al.,
1983). Evolutionary algorithms, also of stochastic nature,
can be used for non-linear optimization (Bäck and Schwefel,
1993) and may indeed find global optima. The most popular
is the genetic algorithm (Holland, 1975; Goldberg, 1989),
but evolutionary programming (Fogel et al., 1966; Fogel,
1995) may be better suited for optimization. Finally, there are
also deterministic methods for solving global optimization
problems: TRUST (Barhen et al., 1997) appears to be much
faster than the stochastic based methods, but its use is still not
widespread. All these methods can be applied in the method-
ology we describe here.

P.Mendes and D.B.Kell

872

Table 1. An application programming interface (API) for the optimization routines. The controlling part of the software uses these function calls to run the
optimization

Procedure Input data Output data Description

Init none none carries out initialization of private variables

Version none a version number returns the version number of this routine

IsConstrained none TRUE/FALSE returns TRUE if this method is capable of
handling general constraints, FALSE otherwise

IsBounded none TRUE/FALSE returns TRUE if this method is capable of
handling adjustable parameter boundary
constraints, FALSE otherwise

SetCallback reference to callback function none to set a callback function to the front-end; this will
be called by the optimization routine regularly to
provide information about the progress of the
algorithm

MethodParameterNumber none total number of method
parameters

returns the number of method parameters that
have to be set

MethodParameterName index of parameter name of parameter returns the name of one method parameter

CreateArrays number of adjustable parameters;
number of constraints

none creates storage to hold values of the adjustable
parameters and constraints

ReleaseMemory none none releases all the memory temporarily allocated to
carry out the optimization

SetAdjustableParameter index of parameter; reference to
parameter

none stores a reference to one adjustable parameter

SetConstraint index of constraint; reference to
constraint

none stores a reference to a constraint

GetAdjustableParameter index of parameter value of parameter returns the candidate value of this adjustable
parameter at the minimum

GetObjectiveFunction none value of the objective
function

returns the candidate value of the objective
function at the minimum

Optimize reference to the function that carries
out the simulations

none executes the optimization algorithm calling the
simulation routine (passed as argument) when
needed. Note: this procedure can give feedback
of its progress by the callback function set with
SetCallback

SolveLeastSquares reference to the function that carries
out the simulations

none stores a reference to the procedure that carries out
simulations and then executes the optimization
algorithm to solve the problem. Note: this
procedure must periodically call the callback
function set with SetCallback

The optimization-simulation methodology

All numerical optimization methods operate by carrying out
a series of procedures in which the value of the objective
function has to be calculated for a set of values of the adjust-
able parameters. Figure 1 shows the generic algorithm which
describes the higher level operation of all numerical optimiz-
ation methods. Where these methods differ from each other
is in the details of steps 3 and 4. This high-level algorithm
forms the base of our specification of a general method to
implement numerical optimization in biochemical kinetics.
Each of the optimization methods is programmed as a mod-
ule consisting of a set of procedures that implement a well-
defined application programming interface (API). In this
section, we describe a prototype API for such a purpose.

Table 1 lists the functions that compose this API, which after
implementation for a specific optimization method form an
optimization module.

Before initiating the optimization process itself, one has
fully to specify a kinetic model which will be the subject of
the optimization. This implies defining the reactions, and set-
ting their kinetic types, initial concentrations for metabolites
and values for the kinetic constants. Even those parameters
that are going to be subject to the optimization have to be
given an initial value as the optimization methods have to
start (step 1 in Figure 1) at some point of parameter space. All
this is carried out by the user at the front-end level, and exact-
ly in the same way as one would do for a simple simulation
(e.g. Mendes, 1997). Then the user has to enter the specific
information about the optimization: (i) the model variable

Non-linear optimization of biochemical pathways

873

Fig. 1. An overview of the optimization process. Steps 3 and 4 are
the only ones whose details differ from method to method.

that will be the objective function, which could be a function
of several variables; (ii) whether the process is a minimiz-
ation or a maximization; (iii) the parameters which will be
adjusted in the optimization and optionally upper and lower
boundaries for their values; (iv) some constraints that must
not be violated in the optimization; (v) which of the available
optimization modules to use and values for its own control-
ling parameters. When the user chooses to start the process,
all this information is passed to the relevant optimization
module using the appropriate routines of the API (see Table
1). Specifically, CreateArrays, once to allocate the appropri-
ate amount of memory for storing intermediate data, iterate
SetAdjustableParameter to pass a reference to each adjust-
able parameter and its boundaries, and SetConstraint to pass
a reference to each constraint, MethodParameterNumber to
find out how many controlling parameters this module has,
and SetMethodParameter for each of the module’s control-
ling parameters.

Once all the necessary information has been defined and
passed to the optimization module and the user has selected
to run the optimization, one of the procedures Optimize or
SolveLeastSquares is called and then the optimization is
actually carried out (steps 2–5 in Figure 1). SolveLeast-
Squares is only used if solving a fitting problem and the mod-
ule has a special way of solving least squares problems (such
as the Levenberg–Marquardt method which forms an ap-
proximation of the first and second derivatives of the sum of
squares from the vector of residuals rather than by finite dif-
ferences). Both these procedures take as argument a refer-
ence to one procedure in the simulation subsystem that calcu-

lates the objective function. We note that this procedure in the
simulation subsystem is where it is taken into account
whether the process is a minimization or a maximization. In
the latter case, the procedure returns the negative of the ob-
jective function value so that the optimization modules only
carry out minimizations. This procedure is also responsible
for calculating the sum of squares of the residuals in the case
of fitting problems, except if SolveLeastSquares is being
used.

The operation of the procedures Optimize and Solve-
LeastSquares is specific to the method the module imple-
ments, and will not be discussed here in any detail. It is worth
mentioning that all methods require several evaluations of
the objective function, each of these consisting of a simula-
tion. Some modules, notably those implementing gradient
descent methods, require estimates of the first and/or second
derivatives of the objective function. As the objective func-
tions are never explicit functions in this framework, this is
achieved by forward finite differences using the formula:

f (p)
p �

f (p� �h) � f (p)
�h

where ∆h is a small number relative to the parameter value
p. The optimization modules regularly pass information
about the progress of the optimization back to the controlling
subsystem by a callback function (set previously with Set-
Callback). This is typically called at every iteration of the
method and allows the front-end to inform the user about the
progress of the optimization, in terms of the current estimate
of the objective function at the minimum.

Each module has a different criterion for stopping the iter-
ations (step 3, Figure 1) which is, in some cases, strictly re-
lated to the process of optimization itself. A common cri-
terion is based on the amount by which the objective function
has reduced in the last iteration. If the change has been
smaller than a certain tolerance, the method stops. Some
methods also monitor the change in a norm of the adjustable
parameter vector against another tolerance level. In the par-
ticular case of evolutionary algorithms (see above), it is diffi-
cult to specify a stopping criterion due to the probabilistic
nature of the algorithms; in this case, it is possible to have the
criterion based on the number of generations (i.e. leaving the
decision to the user).

Step 4 of Figure 1 is the one that is specific for each differ-
ent method. Some of these methods may already be available
as subroutines and so all that is needed is a way of interfacing
them to the API described here. This is what has been done
using a series of methods in our implementation of this API
in Gepasi, described below (see also Table 2).

P.Mendes and D.B.Kell

874

Table 2. Optimization modules currently available for Gepasi Version 3.20

Module name Method Featuresa Origin of code References

Random search Random search with uniform distributionB C G S written in C++ by PM

Steepest descent Steepest descent with finite differences
gradient

B C L D written in C++ by PM

L-BFGS-B Limited memory BFGS quasi-Newton
method

B L D L-BFGS-B Version 2.1,b written in
FORTRAN by C.Zhuc

Byrd et al., 1995

Truncated
Newton

Truncated Newton (Lanczos method) B L D TN,b written in FORTRAN by S.Nashc Nash, 1984

Tensor Derivative tensor method L D TOMSd Algorithm 739b, written in
FORTRAN by T.Chow et al.c

Chow et al., 1994

Levenberg–
Marquardt

Restricted step Newton method with the
Marquardt iteration

B L D written in C++ by PM Levenberg, 1944;
Marquardt, 1963;
Goldfeld et al., 1966

NL2SOL Adaptive non-linear least squares
(Gauss–Newton)

B L D DN2FBe written in FORTRAN by
D.Gayc

Dennis et al., 1981

Multistart Multistart with steepest descent-based
local optimization

B C G S written in C++ by PM

Hooke and
Jeeves

Hooke and Jeeves direct search B L D written in C by M.Johnson,b adapted by
PM

Hooke and Jeeves, 1961

Genetic
algorithm

Genetic algorithm with floating-point
encoding

B C G S written in C++ by PM e.g. Michalewicz, 1994

Evolutionary
programming

Meta-evolutionary programming B C G S written in C++ by PM Fogel et al., 1992

Simulated Monte Carlo simulated annealing with B C G S written in C++ by PM Corana et al., 1987

annealing exponential cooling schedule

aB, works with bounds on the adjustable parameters; C, works with constraints on the variables; G, can find global optima; L, can only find local optima; S, sto-
chastic algorithm; D, deterministic algorithm.
bObtained from the mathematical software repository Netlib, http://netlib.bell-labs.com/netlib/master/readme.html
cOriginal FORTRAN code automatically converted to C using f2c (Feldman et al., 1995).
dACM Transactions on Mathematical Software.
eObtained from the PORT library, available in the Netlib archive (see note b).

When the stopping criterion is satisfied, the optimization
module gives control back to the main part of the software.
If a parameter fitting problem was the objective of the op-
timization, then some statistics can be calculated, specifi-
cally standard deviations for the fit and for the fitted para-
meters or even better (Johnson, 1992) confidence intervals.
The optimization module is interrogated by the controlling
subsystem through calls to the routine GetAdjustable-
Parameter for the values of the adjustable parameters and
GetObjectiveFunction for the value of the objective function
at the minimum. In the end, the results are output in an ap-
propriate format, often a textual report file. For parameter
fitting problems, it is important to plot the distribution of re-
siduals against the free and dependent variables of the
measurements, as this provides a good check for the quality
of the fitted parameters (Straume and Johnson, 1992).

As described above, the optimization modules and the main

controlling part of the software pass information to each other
in both directions. This is required for setting up the procedure
and to pass back its results, but also to provide the user with
feedback about the progress of the computation. The latter is
a very important feature as some of the optimization methods
are very slow, especially when the biochemical model and/or
the number of adjustable parameters are large. Without this
feature, the user would soon suspect the software of malfunc-
tion and would be tempted to abort the run even though it was
working properly, albeit slowly. Another feature which is also
important in a practical sense is that the user should be allowed
to halt an optimization routine at any time and hopefully still
get some results (i.e. a set of parameter values that produces
an objective function value closer to the optimum than the
original guess). This way in which this is implemented de-
pends on how the main software is designed and so we have
left this undefined in the API (Table 1).

Non-linear optimization of biochemical pathways

875

Implementation

The implementation of the API defined in Table 1 is tied up
with the computer language used. We have implemented this
API in the Gepasi software (Mendes, 1993, 1997) which is
written in the C++ language in a Microsoft Windows envi-
ronment. Thus, we wrote all optimization modules in the
C++ language, making extensive use of pointers (including
pointers to functions), dynamic-link libraries (DLLs) and
threads: (i) the optimization routine keeps pointers to the
function that carries out one simulation and to the variables
that hold the values of the adjustable parameters; (ii) the con-
troller starts the optimization as a new thread, of which it has
total control, i.e. it can stop it at any time; (iii) the optimiz-
ation modules implementing the API defined above were
built as dynamic-link libraries. The latter point is important
in the sense that it makes the program extensible: whenever
we implement a new optimization module, we can distribute
that module alone without having to rewrite or recompile any
other part of Gepasi. In fact, we are still implementing extra
optimization modules that will be released later.

When other computer languages or operating systems are
used, perhaps there will be other more appropriate architec-
tures to follow. For example, in the increasingly popular lan-
guage Java , the optimization modules would be adequately
written as a set of classes implementing a specific ‘interface’.
The interface would be the equivalent to the DLLs and would
follow the API of Table 1, just like the Windows DLLs.

Table 2 lists the optimization modules currently available
for Gepasi Version 3.20 and the numerical optimization
methods they implement.

Applications

There are basically two types of applications in which this
simulation-optimization approach is useful. The first is con-
cerned with finding sets of parameter values that result in a
maximum or minimum of a model variable or function of
model variables. This type of application can be generally
referred to as ‘design’ problems and includes both metabolic
engineering and biochemical evolution studies. The second
type of application is where one has a number of experimen-
tally determined values of some model variables (or func-
tions derived from them) and intends to find the most prob-
able set of values of the model parameters that would pro-
duce the behaviour of the experimental system. We will refer
to these as ‘parameter estimation’ problems. These two ap-
plications are different only in the form of objective function
used: while in the first only items of the model are used, the
second also uses values obtained by experiment (the objec-
tive function is the sum of squares of residuals). While in
design problems one may be interested in either maximiza-
tion or minimization, parameter estimation always consists
of a minimization. However, the two types of applications

Fig. 2. A branched metabolic pathway with feedback. All steps are
chemically reversible, the arrows only represent the positive
direction of flux. Steps 1, 3 and 6 follow reversible Hill kinetics with
one modifier (Hofmeyr and Cornish-Bowden, 1997), for all three the
Hill coefficient for substrate is 4, the forward limiting rate 10, the
parameter α is 0.1 (the modifier is an inhibitor) and all other
parameters unity. Steps 2, 4 and 7 follow the ordered bi bi
mechanism (Cleland, 1963) where the cofactor A/AH is always the
first to bind the enzyme and the last to be released, all three have
forward and reverse limiting rates of 10, all other parameters equal
to unity. Steps 5 and 8 follow reversible Michaelis–Menten kinetics
(Haldane, 1930) with forward limiting rate equal to 10 and all
Michaelis constants unity. All steps have an equilibrium constant of
unity. S, P1 and P2 are external metabolites, their concentrations kept
constant at 1, 0.1 and 0.1, respectively. The total amount of the
conserved moiety A is 0.1. Units are arbitrary.

share common features in all other aspects and this is exactly
why we advocate that biochemical optimization software
should deal with both.

As a matter of example we will describe two applications
of this combined approach: the first is a design problem,
while the second is a parameter estimation problem. They
were both carried out with Gepasi Version 3.20 (briefly de-
scribed above) which implements this methodology.

Rational design for flux enhancement

Figure 2 depicts a hypothetical branched biochemical path-
way with a conserved cofactor and feedback. It is similar to
the pathway analysed by Cornish-Bowden et al. (1995), ex-
cept for the presence of the cofactor and the kinetics of some
of the steps. Steps 2, 4 and 7 follow the ordered bi bi mechan-
ism (Cleland, 1963) (similar to many NADH-dependent
dehydrogenases), steps 5 and 8 follow reversible Michaelis–
Menten kinetics (Haldane, 1930), and steps 1, 3 and 6 follow
reversible Hill kinetics with one modifier (Hofmeyr and Cor-
nish-Bowden, 1997). The latter mechanism allows the modi-
fier (M2 for step 1 and AH for steps 3 and 6) to be an inhibitor
or activator, depending on the values of the parameter α. We
set arbitrary values for the parameters of the model (see the
legend to Figure 2) to build a reference state which we will
call wild type for obvious reasons.

The aim of this simulation-optimization exercise is then to
find the optimal conditions in order to manipulate the path-
way to achieve two independent objectives: (i) maximize the

P.Mendes and D.B.Kell

876

flux towards P1 without constraints on the flux towards P2;
(ii) maximize the flux towards P1 keeping the flux towards
P2 unaltered from its original value. This is thus a metabolic
engineering application and at this level one is determining
what are the manipulations that need to be carried out in a
later stage.

The fact that the reversible Hill kinetics equation (Hof-
meyr and Cornish-Bowden, 1997) we used allows for the
modifier to be either activator or inhibitor is very advantage-
ous for these purposes: the optimization process can simulta-
neously explore the effect of the modifiers as inhibitors or
activators to achieve the optimal states required.

We define the model of Figure 2 in Gepasi setting all the
appropriate numerical values of the wild-type state. Then, to
achieve aim (i), we set up a maximization of the flux of step
5 (J5, the objective function) with 16 adjustable parameters:
the eight forward limiting rates between 0.001 and 1000,
M0.5 (half-saturating concentrations of modifier) for steps 1,

3 and 6 between 10–7 and 107, the parameter α (see above)
of steps 1, 3 and 6 between 10–5 and 105, and the total amount
of cofactor moiety ([A] + [AH]) between 10–6 and 10. To
achieve aim (ii), we added the additional constraint that the
flux J8 be limited to the interval 0.01 ≤ J8 ≤ 0.0118, which
is roughly its wild-type value ± 8%. In both problems, we
forced the ratio of forward to reverse limiting rates of all
steps to be constant to comply with the Haldane relationship
(the Michaelis constants for substrate and product are not
changed). This was achieved by defining ‘links’ (Mendes,
1993) that set the reverse rates according to the value of the
forward ones. Not doing so would mean that the thermody-
namic properties of the pathway would change in the course
of the optimization.

Several optimization modules were applied to solve these
two problems and their performance is summarized in Table
3 and 4. Full numerical results are available on the Internet
at http://gepasi.dbs.aber.ac.uk/metab/opt/branched.html.

Table 3. Performance of optimization modules on the maximization of J5 (Figure 2) without constraints on J8

Optimization module J5 J1 J8 Characteristics of solution No. of simulations

None (wild type) 0.0109 0.0218 0.0109 A + AH = 0.1; A/AH = 0.27 steps 1, 3 and 6: all weak
feedback inhibition

1

L-BFGS-B 0.0131 0.0261 0.0131 A + AH = 0.22; A/AH = 0.24 steps 1, 3 and 6: all
weak feedback inhibition Vm: no significant changes
in any step

672

Levenberg–Marquardt 0.0132 0.0262 0.0130 A + AH = 0.22; A/AH = 0.24 steps 1, 3 and 6: all
weak feedback inhibition Vm: unaltered

31 030

Steepest descent 0.0295 0.0331 0.0036 A + AH = 0.24; A/AH = 0.23 steps 1, 3 and 6: all
feedback inhibition, stronger on 6 Vm: step 3 up, step
6 down

4454

Simulated annealing 0.2276 0.2276 2 ×10–7 A + AH = 0.72; A/AH = 0.16 steps 1, 2 and 3 no
feedback Vm: steps 1, 2, 3, 4 and 5 at maximum, 6 at
minimum, 7 and 8 increased

326 731

Multistart 0.2538 0.2578 0.0040 A + AH = 1.30; A/AH = 0.09 step 1 strong feedback
activation, 3 feedback activation, 6 weak feedback
activation Vm: steps 1, 2, 3, 4, 5 and 6 up, 7 unaltered,
8 decreased

29 045

Random search 0.2942 0.2942 3×10–5 A + AH = 1.13; A/AH = 0.13 step 1 no feedback, 3
feedback activation, 6 very weak feedback inhibition
Vm: steps 1, 2, 3, 4, 5 and 7 increased, 6 and 8
decreased

3 000 000

Truncated Newton 0.3727 0.3727 <10–9 A + AH = 1.82; A/AH = 0.09 step 1 weak feedback
inhibition, 3 strong feedback activation, 6 strong
feedback inhibition Vm: steps 1, 2, 3, 4 and 5 close to
maximum, 7 and 8 unaltered, 6 at minimum

27 041

Evolutionary
programming

0.3771 0.3771 3 × 10–8 A + AH = 1.84; A/AH = 0.09 step 1 feedback
activation, 3 feedback activation, 6 weak feedback
activation Vm: steps 1,2, 3, 4 and 5 at maximum, 7 and
8 5-fold increase, 6 at minimum

45 150

Genetic algorithm 0.3771 0.3771 <10–9 A + AH = 1.80; A/AH = 0.09 step 1 weak feedback
activation, 3 very strong feedback activation, 6 very
strong feedback inhibition Vm: steps 1, 2, 3, 4 and 5 at
maximum, 6, 7 and 8 decreased

25 500

Non-linear optimization of biochemical pathways

877

Table 4. Performance of optimization modules on the maximization of J5 (Figure 2) constrained to 0.01 ≤ J8 ≤ 0.0118

Optimization module J5 J1 J8 Characteristics of solution No. of simulations

None (wild type) 0.0109 0.0218 0.0109 A + AH = 0.1; A/AH = 0.27 steps 1, 3 and 6: all weak
feedback inhibition

1

Random search 0.0723 0.0824 0.0100 A + AH = 2.69; A/AH = 0.06 step 1 feedback
inhibition, 3 strong feedback activation, 6 feedback
activation Vm: steps 1, 2, 6 and 7 increased, 3, 4 and 7
no significant changes, 8 decreased

100 000

Simulated annealing 0.2218 0.2321 0.0103 A + AH = 0.73; A/AH = 0.16 steps 1, 2 and 3 no
feedback Vm: steps 2, 3, 4, 5 and 7 at maximum, 1, 6
and 8 increased

95 434

Genetic algorithm 0.2918 0.3018 0.0100 A + AH = 1.06; A/AH = 0.12 step 1 feedback
activation, 3 very strong feedback activation, 6 no
feedback Vm: steps 1, 2, 4, 5, 6, 7 and 8 increased, 3
no significant change

101 100

Evolutionary programming 0.3740 0.3840 0.0100 A + AH = 1.83; A/AH = 0.09 steps 1 and 6 weak
feedback activation, 3 feedback activation Vm: step 6
increased 10-fold, all others at maximum

100 100

For the problem without constraints, the highest value of
J5 obtained was 0.3771, a 30-fold increase over the ‘wild-
type’ value. This solution was obtained with the genetic algo-
rithm (GA) and evolutionary programming (EP) methods.
We note that even though the value of J5 is the same in both
cases, the two solutions are not the same: the feedback inter-
action at step 6 is a very strong inhibition in the GA solution
while it is a weak activation in the EP solution. Indeed, the
second-best solution obtained with the truncated Newton
method (with J5 just slightly smaller than in the best case)
was obtained with yet another combination of feedback in-
teractions as in this case step 1 is inhibited rather than acti-
vated by M2. Being able to have obtained these three sol-
utions is already an advantage: the metabolic engineer can
choose the one that is easier to produce in practice. Interest-
ingly, this result possibly reflects the natural (as opposed to
computational) phenomenon of divergent evolution.

Clearly, not all methods were capable of solutions as good
as the three already mentioned. Indeed, two methods (the
quasi-Newton methods L-BFGS-B and Levenberg–Mar-
quardt) barely increased the value J5 at all. The former seems
to have converged prematurely to a region of parameter
space where J5 is flat (and so these gradient methods could
not find the ‘downhill direction’).

A major factor in obtaining high flux seems to be the total
amount of cofactor, which is positively correlated with J5.
The cofactor ratio has an even stronger (though negative)
correlation with J5, but unlike the total amount this cannot be
identified with a cause, as it is a variable of the model just like
J5. What this means is that, in a state of maximal J5, this ratio
is lower than otherwise. Based on this and other unpublished
simulation results, we suspect that for real organisms it may
well be beneficial to consider the pathways producing and

degrading cofactors as these are the ones that will effectively
determine the total amount of the cofactor moiety.

In the second optimization problem, we required the com-
peting flux J8 to be within 8% of its wild-type value. Adding
this constraint meant that we could now apply only four op-
timization modules, as the others in our implementation have
not yet been made to work with constraints on variables. The
best results were again obtained with evolutionary algo-
rithms, but this time EP performed better than the GA. We are
surprised that it was possible to obtain a solution with a value
of J5 as high as 37-fold greater than in the wild type. This was
achieved without decreasing the limiting rate of any enzyme
in the competing branch (in the previous unconstrained prob-
lem at least one of these was reduced in all solutions). No
other features in this solution are strikingly different from the
best solutions of the unconstrained case. This stresses the im-
portance of applying quantitative methods, and indeed rein-
forces our view that the models chosen for optimization pur-
poses must be capable of reasonable extrapolation abilities.
Similarly, the real quality of the simulation-optimization
method in the context of metabolic engineering can be veri-
fied only after comparison with the performance of the engi-
neered organisms.

Parameter estimation

In this example, we want to estimate a number of rate con-
stants of the mechanism of irreversible inhibition of HIV
proteinase (Figure 3; see also Kuzmic, 1996). Data from five
time courses at four different inhibitor concentrations
measured fluorimetrically were used for this analysis
(further details can be found at http://gepasi.dbs.aber.ac.uk/
metab/opt/hivfit.html). We defined the reaction mechanism

P.Mendes and D.B.Kell

878

Fig. 3. Mechanism of irreversible inhibition of HIV proteinase. The
enzyme is only active in a dimer form, the product is a competitive
inhibitor for the substrate and the inhibitor is irreversible. For more
details, see Kuzmic (1996).

of Figure 3 in Gepasi and set the parameters to initial guess
values as in Kuzmic (1996). The software was set to fit the
rate constants k22, k3, k42, k52 and k6 to the experimental data.
In this fit, it was also assumed that there is a certain degree
of uncertainty (± 50%) in the value of the initial concentra-
tions of substrate and enzyme, and that the offset (baseline)
of the fluorimeter was not exactly zero. Therefore, there are
a total of 20 adjustable parameters: the five rate constants,
five initial concentrations of enzyme, five initial concentra-
tions of substrate and five offset values (given that there are
five time course curves).

We fit the model to the experimental data using a series of
optimization methods. The best solution was obtained with
simulated annealing with a very good quality of fit, as judged
by the lack of correlation between the residuals and time
(Figure 4). The next best solution was obtained with the Le-
venberg–Marquardt method and despite the sum of squares
being only some 1% worse than that obtained with simulated
annealing, some parameters have considerably different va-
lues. Indeed, some of them have a better standard deviation
(see Table 5). We do not know whether both solutions are two
different minima of the least squares function or if this func-
tion is very flat in this region of parameter space. A signifi-
cant aspect is that the solution obtained with simulated an-
nealing took considerably longer to obtain than the second
best (roughly 3 million simulations against 4000). This is a
severe disadvantage and one would be tempted to dismiss the
usage of this technique and favour the method of Levenberg–
Marquardt on these grounds. The latter is guaranteed to con-
verge to the global minimum only if started in its vicinity, so
given a good initial guess for the parameters this method is
definitely the best choice. However, if the initial guess is poor
(and unfortunately there is no way of knowing this a priori),
then Levenberg–Marquardt will not converge to the global

Fig. 4. Least squares fit of progress curves of HIV proteinase in the
presence of an irreversible inhibitor. Results of the best fit obtained
with simulated annealing. (A) Simulated (smooth curves) and
experimental data (noisy curves). (B) Residuals as a function of time.

minimum, but simulated annealing will, and possibly the
evolutionary algorithms will too. We think that this subject
deserves more detailed study, although it would not be ap-
propriate to do so here and at all events the implementation
that we described here is appropriate for such a study.

Discussion

We have described an approach for combining biochemical
kinetics simulations with numerical optimization methods.
We illustrated its usefulness with two examples, but, of
course, these do not remotely cover the whole universe of
applications. We therefore discuss several other types of
problems which may be solved (or at least their solution
aided) by this strategy. As these problems are of two distinct
classes, optimization and fitting, we shall discuss them sep-
arately, but we remind the reader that the way in which soft-
ware is implemented to solve them is essentially the same.

Non-linear optimization of biochemical pathways

879

Table 5. Results of least squares fits of HIV proteinase progress curves in the presence of an irreversible inhibitor. Further details are available at
http://gepasi.dbs.aber.ac.uk/metab/opt/hivfit.html

Parameter Simulated annealinga Levenberg–Marquardta

(sum of squares = 0.0211) (sum of squares = 0.0213)

k22 201.1 (± 135.7) 180.6 (± 25.70)

k3 7.352 (± 0.6785) 10.39 (± 1.020)

k42 1171 (± 1070) 1072 (± 202.5)

k52 13 140 (± 26870) 2.821×10–16 (± 1.13 × 10–15)

k6 30 000 (± 89780) 2.486×10–16 (± 2.585 × 10–15)

[S]i (curve 1) 24.79 (± 0.03285) 24.76 (± 0.03321)

[S]i (curve 2) 23.43 (± 0.03882) 23.56 (± 0.04232)

[S]i (curve 3) 26.79 (± 0.05742) 27.09 (± 0.06503)

[S]i (curve 4) 32.10 (± 2.103) 28.17 (± 1.365)

[S]i (curve 5) 26.81 (± 1.773) 23.51 (± 1.159)

[E]i (curve 1) 0.004389 (± 0.0003404) 0.003068 (± 0.0002724)

[E]i (curve 2) 0.004537 (± 0.0002353) 0.003622 (± 0.0001862)

[E]i (curve 3) 0.005470 (± 0.0001906) 0.004728 (± 0.0001543)

[E]i (curve 4) 0.004175 (± 0.00001338) 0.004135 (± 0.00001119)

[E]i (curve 5) 0.003971 (± 0.00009885) 0.003994 (± 0.000004843)

offset (curve 1) –0.008013 (± 0.0007571) –0.007377 (± 0.0007672)

offset (curve 2) –0.003911 (± 0.0008744) –0.007180 (± 0.0009906)

offset (curve 3) –0.008962 (± 0.001338) –0.01605 (± 0.001527)

offset (curve 4) –0.01600 (± 0.001819) –0.02281 (± 0.002130)

offset (curve 5) –0.003789 (± 0.001613) –0.009926 (± 0.001862)

aParameter value and standard deviation.

Design problems are common in biotechnology (Kell and
Westerhoff, 1986; Cornish-Bowden et al., 1995; Westerhoff
and Kell, 1996), where one normally seeks to maximize a
flux, a yield or the concentration of an interesting product,
and to minimize the concentration of undesired compounds,
or a combination of several of these things. Here it is implied
that we have the technology to carry out substantial changes
in the pathways, be it in the amount of each enzyme present
or indeed in altering the properties of the enzymes. This ac-
tivity has become known as metabolic engineering (Bailey
et al., 1990; Cameron and Tong, 1993; Mendes and Kell,
1997). To be able to change pathways in such a way, we will
need to apply recombinant DNA (Skatrud et al., 1989) and
traditional (Ulmer, 1983), active site-based (Fersht, 1985) or
more advanced (Kuchner and Arnold, 1997) protein engin-
eering technologies (forced evolution). However, the exist-
ence of appropriate technology is not sufficient on its own,
since there are many ways in which to change a pathway, but,
in general, only a very small proportion of these will result
in the desired effect. What has been in high demand in the
biotechnology field (Kell and Westerhoff, 1986; Cornish-
Bowden et al., 1995; Westerhoff and Kell, 1996; Mendes and

Kell, 1997) are rational methods of designing the improved
pathway. It is exactly at the design stage that the simulation-
optimization methodology proposed here can be useful for
metabolic engineering.

The first step is to build a kinetic model of the pathway to
optimize that has reasonable extrapolation qualities (as the
optimization process is most frequently an extrapolation).
Thus, we stress that models should be as complete as poss-
ible; it is important to keep assumptions to a minimal level
and especially not to ignore metabolites of the pathway by
assuming them constant (as, for example, the pair NAD+ and
NADH in Galazzo and Bailey (1990)). Doing so implies that
results outside the restricted conditions used to build the
model will be meaningless. At times, it may be necessary to
adopt phenomenological rather than mechanistic descrip-
tions. While the latter are preferred due to their better ex-
trapolation ability, the former are not unreasonable as long as
they have been constructed with a sufficiently large set of
different experimental conditions and are able to explain the
whole range of behaviour observed (Kell and Sonnleitner,
1995).

P.Mendes and D.B.Kell

880

Once a good kinetic model is available, it is then necessary
(i) to construct an objective function reflecting the require-
ments for the engineered organism and (ii) to determine with
which parameters and within what boundaries the manipula-
tions can be made. Then the kinetic model is used in a simula-
tor coupled with optimization methods so as to obtain the
values of the parameters at the desired optimum. As we have
pointed out previously, the fact that objective functions are
usually non-linear in terms of the model parameters, and that
there may be a large number of these, means that probably
there are several local optima far from the global one. To find
the global optimum, one may need to use the slower proba-
bilistic methods rather than the faster gradient descent ones.
This is a strong argument for including several optimization
methods in software of this kind. Only in that way can users
‘experiment’ with several methods applied to the same prob-
lem. We have found in our own experience with Gepasi that
no single method is the best for all problems, a conclusion
established in the field of combinatorial optimization (e.g.
Wolpert and Macready, 1997).

Although metabolic engineering is an obvious application
of this approach, we think that other areas, perhaps more
theoretical, may also benefit from it. A few groups, notably
that of Heinrich, have indeed applied analytical optimization
methods (e.g. Heinrich et al., 1987, 1997; Schuster and Hein-
rich, 1987, 1991; Savinell and Palsson, 1992; Klipp and
Heinrich, 1994) to several pathway schemes to investigate
the conditions for maximal flux, minimal concentrations,
and a series of other criteria. The idea is that these optimal
states are ultimately targets of evolution. Even setting aside
evolutionary arguments, it is always very useful to find the
limits within which a certain pathway may behave, an activ-
ity of theoretical biochemistry which we like to call ‘explora-
tory modelling’. Alone, this is useful to increase our knowl-
edge of basic biochemical behaviour and it appears that it
may become very important in the analysis of whole-organ-
ism behaviour. As a result of the already fully sequenced ge-
nomes, there is an ongoing activity (Karp et al., 1996; Tatu-
sov et al., 1996; Selkov et al., 1997; Bono et al., 1998) of
reconstructing the metabolic pathways of these organisms
based on all their (identified) enzymes. The problem here is
that the kinetic parameters of the large majority of the en-
zymes of these organisms are unknown. This approach could
be used to reveal the limits of such whole-organism ‘super-
pathways’ (though high-performance implementations and
fast hardware are probably required). While the analytical
approach is better than numerical solutions due to the ap-
proximate character of the latter, the domain of problems that
are solvable analytically is unfortunately rather small. Thus,
the numerical approach proposed here is an important com-
plement to the analytical one, and has a place in theoretical
biochemistry too.

Parameter estimation is a well-established area of bio-
chemical kinetics and enzyme kinetic parameters are rou-
tinely estimated in many laboratories. Non-linear least
squares fitting is a standard technique for the estimation of
enzyme kinetic parameters (Cleland, 1979; Duggleby, 1985;
Beechem, 1992; Johnson, 1992; Johnson and Faunt, 1992;
Kuzmic, 1996) and it could appear that in this aspect our pro-
posal contains no novelty. In reality, though, non-linear least
squares fitting in enzyme kinetics has been almost exclusive-
ly carried out with gradient descent methods (mainly the Le-
venberg–Marquardt method), we would argue that for many
complex enzyme mechanisms there are benefits in being
able to select global optimization methods because the error
hyper-surfaces (the sum-of-squares functions) often have
several minima (e.g. Markus et al., 1980; Esposito and Flou-
das, 1998). If this is the case, gradient descent methods can
provide very poor estimates of the parameter values and may
be simply wrong (rather than just inaccurate). Furthermore,
most commercial packages for enzyme kinetics do not use
the differential equations of the model, but rather some form
of integrated equations that are, in general, only approximate
and are tainted with unnecessary assumptions. The approach
we suggest here can use both methods and it is up to the user
to describe the kinetics of the reactions using integrated
equations (such as the Michaelis–Menten equation) or by
considering the detailed enzyme mechanism, in which case
the solution will present the values of the elementary rate
constants. Additionally, the fitting can be carried out with
time course or steady-state data. We know of only a few com-
puter programs that follow this approach for enzyme kinetic
data fitting: SIMFIT (Holzhütter and Colosimo, 1990), FIT-
SIM (Frieden, 1993) and DynaFit (Kuzmic, 1996), but all are
limited to using the Levenberg–Marquardt method for the
minimization of the sum of squares. Kuzmic (1996) pointed
out that in order to obtain good fits, the software needs to
consider that concentrations of the various substances in the
experiment contain some degree of error and so these initial
concentrations should also be included as adjustable para-
meters. Our implementation follows this recommendation
and so Gepasi allows the user to define any initial concentra-
tion as an adjustable parameter. Rather than being limited to
fitting the parameters of one single reaction, we argue that it
is now becoming very important to consider systems of reac-
tions as required by in situ and in vivo experiments (Mendes
et al., 1995). In these experiments, one is in general not able
to ‘silence’ competing or side reactions and therefore the nu-
merical model must include them, this also goes towards a
‘global analysis’ (Beechem, 1992). With the ability to carry
out experiments in increasingly complex systems, there is
now a greater demand for matching software capable of ana-
lysing the complex data sets generated. The approach we
have described here offers a significant step in this direction

Non-linear optimization of biochemical pathways

881

by defining a flexible framework to incorporate sophisti-
cated optimization methods and deal with metabolic models
of arbitrary complexity.

In conclusion, we hope that the methodology that we de-
scribe here, and indeed our own implementation of it, will be
useful for the theoretical study of pathway kinetics, the ra-
tional design of improved pathways in metabolic engineer-
ing and for enzyme kinetic parameter estimation, including
in situ and in vivo set-ups. As we enter the post-genomic era,
emerging techniques of functional analysis (Lockhart et al.,
1996; Winston and Fitzgerald, 1997; Wodicka et al., 1997;
Ducret et al., 1998) mean that soon large amounts of gene
expression kinetic data (transcriptome, proteome and meta-
bolome; Oliver et al., 1988) will become available. The ap-
proach described here will be very important in constructing
and analysing kinetic models of gene expression with which
such data may be compared. This is currently the only way
(Brenner, 1997) to rationalize all the non-linear interactions
occurring in such complex metabolic systems. The possibil-
ity of applying several optimization methods to obtain the
best possible solution is essential for the proper workings of
this methodology.

Acknowledgements

We thank Jacky Snoep (Free University of Amsterdam) for
testing beta versions of Gepasi and Petr Kuzmic (Biokin) for
discussions about the Levenberg–Marquardt method. Kin-
etic data of irreversible inhibition of HIV proteinase were
kindly supplied by Drs Sergei Gulnik, Leonid Suvorov and
John W.Erickson (SAIC Frederick, NCI-FCRDC). We are
grateful to the Engineering and Biological Systems Commit-
tee of BBSRC for financial support.

References

Bäck,T. and Schwefel,H.-P. (1993) An overview of evolutionary
algorithms for parameter optimization. Evol. Comput., 1, 1–23.

Bailey,J.E., Birnbaum,S., Galazzo,J.L., Khosla,C. and Shanks,J.V.
(1990) Strategies and challenges in metabolic engineering. Ann. NY
Acad. Sci., 589, 1–15.

Barhen,J., Protopopescu,V. and Reister,D. (1997) TRUST: a determin-
istic algorithm for global optimisation. Science, 276, 1094–1097.

Beechem,J.M. (1992) Global analysis of biochemical and biophysical
data. Methods Enzymol., 210, 37–54.

Bono,H., Ogata,H., Goto,S. and Kanehisa,M. (1998) Reconstruction of
amino acid biosynthesis pathways from the complete genome
sequence. Genome Res., 8, 203–210.

Bray,D. and Lay,S. (1994) Computer simulated evolution of a network
of cell-signaling molecules. Biophys. J., 66, 972–977.

Brenner,S. (1997) Loose Ends. Current Biology, London.
Byrd,R.H., Lu,P., Nocedal,J. and Zhu,C. (1995) A limited memory

algorithm for bound constrained optimisation. SIAM J. Sci. Comput.,
16, 1190–1208.

Cameron,D.C. and Chaplen,F.W.R. (1997) Developments in metabolic
engineering. Curr. Opin. Biotechnol., 8, 175–180.

Cameron,D.C. and Tong,I. (1993) Cellular and metabolic engineering:
an overview. Appl. Biochem. Biotechnol., 38, 105–140.

Chow,T., Eskow,E. and Schanbel,R. (1994) Algorithm 739: A software
package for unconstrained optimization using tensor methods. ACM
Trans. Math. Softw., 20, 518–530.

Cleland,W.W. (1963) The kinetics of enzyme-catalyzed reactions with
two or more substrates or products. I. Nomenclature and rate
equations. Biochim. Biophys. Acta, 67, 104–137.

Cleland,W.W. (1979) Statistical analysis of enzyme kinetic data.
Methods Enzymol., 63, 103–138.

Corana,A., Marchesi,M., Martini,C. and Ridella,S. (1987) Minimizing
multimodal functions of continuous variables with the ‘simulated
annealing’ algorithm. ACM Trans. Math. Softw., 13, 262–280.

Cornish-Bowden,A. and Hofmeyr,J.H. (1991) METAMODEL—A
program for modeling and control analysis of metabolic pathways on
the IBM pc and compatibles. Comput. Applic. Biosci., 7, 89–93.

Cornish-Bowden,A., Hofmeyr,J.-H.S. and Cárdenas,M.L. (1995) Strat-
egies for manipulating metabolic fluxes in biotechnology. Bioorg.
Chem., 23, 439–449.

Curtis,A.R. and Chance,E.M. (1972) Numerical methods for simulation
and optimization. In Hemker,H.C. and Hess,B. (eds), Analysis and
Simulation of Biochemical Systems. North-Holland Publishing Co.,
Amsterdam, pp. 39–57.

Dennis,J.E., Gay,D.M. and Welsch,R.E. (1981) An adaptive nonlinear
least-squares algorithm. ACM Trans. Math. Softw., 7, 348–368.

Ducret,A., van Oostveen,I., Eng,J.K., Yates,J.R. and Aebersold,R.
(1998) High throughput protein characterization by automated
reverse-phase chromatography electrospray tandem mass spectro-
metry. Protein Sci., 7, 706–719.

Duda,R.O. and Hart,P.E. (1973) Pattern Classification and Scene
Analysis. John Wiley, London.

Duggleby,R.G. (1984) Regression analysis of nonlinear Arrhenius plots:
an empirical model and a computer program. Comput. Biol. Med., 14,
447–445.

Duggleby,R.G. (1985) Estimation of the initial velocity of enzyme-cata-
lysed reactions by non-linear regression analysis of progress curves.
Biochem. J., 228, 55–60.

Ehlde,M. and Zacchi,G. (1995) MIST: a user-friendly metabolic
simulator. Comput. Applic. Biosci., 11, 201–207.

Ermentrout,G.B. and Edelstein-Keshet,L. (1993) Cellular automata
approaches to biological modeling. J. Theor. Biol., 160, 97–133.

Esposito,W.R. and Floudas,C.A. (1998) Global optimization in para-
meter estimation of nonlinear algebraic models via the error-in-vari-
ables approach. Ind. Eng. Chem. Res., 37, 1841–1858.

Feldman,S.I., Gay,D.M., Maimone,M.W. and Schryer,N.L. (1995) A
Fortran-to-C converter. Computing Science Technical Report 149,
AT&T Bell Laboratories.

Fell,D.A. (1992) Metabolic control analysis—a survey of its theoretical
and experimental development. Biochem. J., 286, 313–330.

Fell,D.A. (1996) Understanding the Control of Metabolism. Portland
Press, London.

Fersht,A. (1985) Enzyme Structure and Mechanism, 2nd edn. Freeman,
San Francisco, CA.

Fletcher,R. (1987) Practical Methods of Optimization, 2nd edn. John
Wiley and Sons, Chichester.

P.Mendes and D.B.Kell

882

Fogel,D.B. (1995) Evolutionary Programming: Toward A New Philos-
ophy of Machine Intelligence. IEEE, Piscataway.

Fogel,D.B., Fogel,L.J. and Atmar,J.W. (1992) Meta-evolutionary pro-
gramming. In Chen,R.R. (ed.), 25th Asilomar Conference on Signals,
Systems and Computers. IEEE Computer Society, Asilomar, pp.
540–545.

Fogel,L.J., Owens,A.J. and Walsh,M.J. (1966) Artificial Intelligence
Through Simulated Evolution. Wiley, New York.

Frieden,C. (1993) Numerical integration of rate equations by computer.
Trends Biochem. Sci., 18, 58–60.

Galazzo,J.L. and Bailey,J.E. (1990) Fermentation pathway kinetics and
metabolic flux control in suspended and immobilized Saccharomyces
cerevisae. Enzyme Microb. Technol., 12, 162–172.

Garey,M. and Johnson,D. (1979) Computers and Intractability: A Guide
to the Theory of NP-Completeness. Freeman, San Francisco.

Garfinkel,D. (1981) Computer modeling of metabolic pathways. Trends
Biochem. Sci., 6, 69–71.

Garfinkel,D., Garfinkel,L., Pring,M., Green,S.B. and Chance,B. (1970)
Computer applications to biochemical kinetics. Annu. Rev. Biochem.,
39, 473–498.

Gilman,A. and Ross,J. (1995) Genetic-algorithm selection of a regula-
tory structure that directs flux in a simple metabolic model. Biophys.
J., 69, 1321–1333.

Goldberg,D.E. (1989) Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley, Reading, MA.

Goldfeld,S.M., Quant,R.E. and Trotter,H.F. (1966) Maximisation by
quadratic hill-climbing. Econometrica, 34, 541–555.

Haldane,J.B.S. (1930) The Enzymes. Longmans Green, London.
Hayashi,K. and Sakamoto,N. (1986) In Dynamic Analysis of Enzyme

Systems. An Introduction. Springer-Verlag, Berlin.
Heinrich,R. and Rapoport,T.A. (1974) A linear steady-state treatment of

enzymatic chains. General properties, control and effector strength.
Eur. J. Biochem., 42, 89–95.

Heinrich,R. and Schuster,S. (1996) The Regulation of Cellular Systems.
Chapman and Hall, New York.

Heinrich,R., Rapoport,S.M. and Rapoport,T.A. (1977) Metabolic re-
gulation and mathematical models. Prog. Biophys. Mol. Biol., 32,
1–82.

Heinrich,R., Holzhutter,H.G. and Schuster,S. (1987) A theoretical
approach to the evolution and structural design of enzymatic
networks. Linear enzymatic chains, branched pathways and glycoly-
sis of erythrocytes. Bull. Math. Biol., 49, 539–595.

Heinrich,R., Montero,F., Klipp,E., Waddell,T.G. and Meléndez-
Hevia,E. (1997) Theoretical approaches to the evolutionary optimiz-
ation of glycolysis: thermodynamic and kinetic constraints. Eur. J.
Biochem., 243, 191–201.

Hocker,C.G. (1994) Applying bifurcation theory to enzyme kinetics.
Methods Enzymol., 240, 781–816.

Hofmeyr,J.H.S. (1986) Steady-state modeling of metabolic pathways. A
guide for the prospective simulator. Comput. Applic. Biosci., 2, 5–11.

Hofmeyr,J.-H.S. and Cornish-Bowden,A. (1997) The reversible Hill
equation: how to incorporate cooperative enzymes into metabolic
models. Comput. Applic. Biosci., 13, 377–385.

Holland,J.H. (1975) Adaptation in Natural and Artificial Systems. The
University of Michigan Press, Ann Arbor, MI.

Holzhütter,H.G. and Colosimo,A. (1990) SIMFIT: a microcomputer
software-toolkit for modelistic studies in biochemistry. Comput.
Applic. Biosci., 6, 23–28.

Hooke,R. and Jeeves,T.A. (1961) ‘Direct search’ solution of numerical
and statistical problems. J. Assoc. Comput. Mach., 8, 212–229.

Johnson,M.L. (1992) Why, when and how biochemists should use least
squares. Anal. Biochem., 206, 215–225.

Johnson,M.L. and Faunt,L.M. (1992) Parameter estimation by least-
squares methods. Methods Enzymol., 210, 1–37.

Kacser,H. and Burns,J.A. (1973) The control of flux. Symp. Soc. Exp.
Biol., 27, 65–104.

Karp,P.D., Ouzounis,C. and Paley,S. (1996) HinCyc: a knowledge base
of the complete genome and metabolic pathways of H. influenzae. In
States,D.J., Agarwal,P., Gaasterland,T., Hunter,L. and Smith,R. (eds),
Proceedings of the Fourth International Conference on Intelligent
Systems for Molecular Biology. AAAI Press, Menlo Park, CA,
pp. 116–124.

Kell,D.B. and Sonnleitner,B. (1995) GMP—Good Modelling Practice:
an essential component of good manufacturing practice. Trends
Biotechnol., 13, 481–492.

Kell,D.B. and Westerhoff,H.V. (1986) Towards a rational approach to
the optimization of flux in microbial biotransformations. Trends
Biotechnol., 4, 137–142.

Kibby,M.R. (1969) Stochastic method for the simulation of biochemical
systems on a digital computer. Nature, 222, 298–299.

Kirkpatrick,S., Gelatt,C.D. and Vecchi,M.P. (1983) Optimization by
simulated annealing. Science, 220, 671–680.

Klipp,E. and Heinrich,R. (1994) Evolutionary optimization of enzyme
kinetic parameters: effect of constraints. J. Theor. Biol., 171, 309–323.

Kuchner,O. and Arnold,F.H. (1997) Directed evolution of enzyme
catalysts. Trends Biotechnol., 15, 523–530.

Kuzmic,P. (1996) Program DYNAFIT for the analysis of enzyme kinetic
data: application to HIV proteinase. Anal. Biochem., 237, 260–273.

Levenberg,K. (1944) A method for the solution of certain nonlinear
problems in least squares. Q. Appl. Math., 2, 164–168.

Lockhart,D.J. et al. (1996) Expression monitoring by hybridization to
high-density oligonucleotide arrays. Nature Biotechnol., 14,
1675–1680.

Markus,M., Plesser,T., Boiteux,A., Hess,B. and Malcovati,M. (1980)
Analysis of progress curves. Rate law of pyruvate kinase type I from
Escherichia coli. Biochem. J., 189, 421–433.

Marquardt,D.W. (1963) An algorithm for least squares estimation of
nonlinear parameters. SIAM J., 11, 431–441.

Mendes,P. (1993) GEPASI: a software package for modelling the
dynamics, steady states and control of biochemical and other systems.
Comput. Applic. Biosci., 9, 563–571.

Mendes,P. (1997) Biochemistry by numbers: simulation of biochemical
pathways with Gepasi 3. Trends Biochem. Sci., 22, 361–363.

Mendes,P. and Kell,D.B. (1996) Computer simulation of biochemical
kinetics. In Westerhoff,H.V., Snoep,J.L., Sluse,F.E., Wijker,J.E. and
Kholodenko,B.N. (eds), BioThermoKinetics of the Living Cell.
BioThermoKinetics Press, Amsterdam, pp. 254–257.

Mendes,P. and Kell,D.B. (1997) Making cells work—metabolic engin-
eering for everyone. Trends Biotechnol., 15, 6–7.

Mendes,P., Kell,D.B. and Welch,G.R. (1995) Metabolic channelling in
organized enzyme systems: experiments and models. Adv. Mol. Cell.
Biol., 12, 1–19.

Michalewicz,Z. (1994) Genetic Algorithms + Data Structures =
Evolution Programs, 3rd edn. Springer-Verlag, Berlin.

Nash,S.G. (1984) Newton-type minimization via the Lanczos method.
SIAM J. Numer. Anal., 21, 770–788.

Non-linear optimization of biochemical pathways

883

Nelder,J.A. and Mead,R. (1965) A simplex method for function
minimization. Comput. J., 7, 308–313.

Oliver,S.G., Winson,M.K., Kell,D.B. and Baganz,F. (1988) Systematic
functional analysis of the yeast genome. Trends Biotechnol., 16,
373–378.

Rinnooy Kan,A.H.G. and Timmer,G.T. (1989) Global optimization: a
survey. Int. Ser. Numer. Math., 87, 133–155.

Sauro,H.M. (1993) SCAMP: a general-purpose simulator and metabolic
control analysis program. Comput. Applic. Biosci., 9, 441–450.

Savinell,J.M. and Palsson,B.O. (1992) Network analysis of intermediary
metabolism using linear optimisation. I. Development of mathemat-
ical formalism. J. Theor. Biol., 154, 421–454.

Schuster,S. and Heinrich,R. (1987) Time hierarchy in enzymatic
reaction chains resulting from optimality principles. J. Theor. Biol.,
129, 189–209.

Schuster,S. and Heinrich,R. (1991) Minimization of intermediate
concentrations as a suggested optimality principle for biochemical
networks. I. Theoretical analysis. J. Math. Biol., 29, 425–442.

Selkov,E., Maltsev,N., Olsen,G.J., Overbeek,R. and Whitman,W.B.
(1997) A reconstruction of the metabolism of Methanococcus
jannaschii from sequence data. Gene, 197, GC11–GC26.

Skatrud,P.L., Tietz,A.J., Ingolia,T.D., Cantwell,C.A., Fisher,D.L., Chap-
man,J.L. and Queener,S.W. (1989) Use of recombinant DNA to
improve production of cephalosporin C by Cephalosporium acremo-
nium. Bio/Technology, 7, 477–485.

Straume,M. and Johnson,M.L. (1992) Analysis of residuals: criteria for
determining goodness-of-fit. Methods Enzymol., 210, 87–105.

Tatusov,R.L., Mushegian,A.R., Bork,P., Brown,N.P., Hayes,W.S., Boro-
dovsky,M., Rudd,K.E. and Koonin,E.V. (1996) Metabolism and
evolution of Haemophilus influenzae deduced from a whole-genome
comparison with Escherichia coli. Curr. Biol., 6, 279–291.

Torres,N.V., Voit,E.O., Glez-Alcón,C. and Rodriguez,F. (1997) An
indirect optimization method for biochemical systems: Description of
method and application to the maximization of the rate of ethanol,
glycerol and carbohydrate production in Saccharomyces cerevisiae.
Biotech. Bioeng., 55, 758–772.

Ulmer,K.M. (1983) Protein engineering. Science, 219, 666–671.
Westerhoff,H.V. and Kell,D.B. (1996) What BioTechnologists knew all

along…? J. Theor. Biol., 182, 411–420.
Winston,R.L. and Fitzgerald,M.C. (1997) Mass spectrometry as a

readout of protein structure and function. Mass Spectr. Rev., 16,
165–179.

Wodicka,L., Dong,H.L., Mittmann,M., Ho,M.H. and Lockhart,D.J.
(1997) Genome-wide expression monitoring in Saccharomyces
cerevisiae. Nature Biotechnol., 15, 1359–1367.

Wolpert,D.H. and Macready,W.G. (1997) No free lunch theorems for
optimization. IEEE Trans. Evol. Comput., 1, 67–82.

