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Résumé. — Le flambage de longues plaques rectangulaires offre la possibilité de tester une proposition récente.
Le nombre d’onde des structures cellulaires dans des conditions faiblement supercritiques est déterminé par les
conditions aux limites. Dans le cas présent, on prédit une décroissance supercritique de la longueur d’onde.

Abstract. — The buckling of long rectangular elastic plates offers the possibility of testing a recent proposal.
The wavenumber of cellular structures in slightly supercritical conditions is determined by the boundary conditions.
In the present case a supercritical decrease of the wavelength is predicted.

Having in mind the wavelength selection in cel-
lular flows, as in Rayleigh-Bénard convection in
large horizontal layers, S. Zaleski and the author [1]
solved the question of non linear pattern selection in
slightly supercritical conditions for one dimensional
models.

This sort of problem is formulated as follows :
space dependent fluctuations with a (horizontal)
fixed wavenumber, say ¢,, become linearly unstable
around a homogeneous rest state whenever a control
parameter, say &, exceeds some critical value, which
can be taken at ¢ = 0. The growth of these fluctuations
is limited by non linear effects and a new steady state
is reached via a supercritical (or normal) bifurcation.
In a large class of problems, for slightly positive
values of ¢ linearly unstable fluctuations grow from
the homogeneous state whenever their wavenumber
belongs to a band of width of order &!/2 near the
threshold value g,. However, owing to the boundary
conditions limiting the lateral extent of the structure,
the supercritical steady pattern has its wavenumber
in a much narrower band of width of order ¢ near g,.

The applicability of this sort of consideration to the
Rayleigh-Bénard problem is not obvious, since long
rolls, when parallel to a lateral boundary, are unstable
against a cross roll instability localized near this
boundary [1]. One should account for the structure of
these boundary rolls parallel to their axis. This struc-
ture is due either to the cross roll modulation or to
lateral boundaries inhibiting their growth. A rea-
listic treatment of this problem is not an easy task.

Therefore it is of interest to look at a physical situa-
tion involving a non linear selection of the wave-

length, but nevertheless permitting quantitative pre-

dictions from simple ab initio calculations. That is
why I have considered the following version of the
von Kdrmén problem in elasticity of thin plates [2].

This is the buckling of long rectangular elastic
plates [3] submitted to a load along their long axis
(see Fig. 1). According to the general considerations
of reference [1], whenever the length of the long axis,
say L, is much larger than a quantity of order ¢!,
one may limit oneself to the consideration of a half
infinite problem. The possible buckling patterns for a
large (but finite) L are obtained by gluing together
two half infinite solutions in a convenient way. We
shall not consider this specific problem here; it is
treated in reference [1]. '
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Fig. 1. — At the centre of the figure the plate is represented from
above ; its cuts along the short (A) and long (B) are represented on
the left and right. A similar figure is in reference [4].
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The von Kérman [2] equations for the static buckling
are [4, 5] :

ANw = [p, W] — Aw,, (1a)

- %[W’ W]

A = (1b)
where w is the displacement of the plate perpendicular
to its surface, ¢ is the Airy stress function {5] and 4 is
the load (and thus the control parameter in this
problem). Moreover, x and y are the coordinates
on the plate surface, respectively along the long and
short axes of the plate, and

v, +u,v

[u’ U] = Uy yy yy Yxx

— 21Uy Uy

0*u 0%u
where u,, = T Yo T %,

Laplacian in (1a) and (15) is taken in the plane of the
plate : A2 = 6;“4 + 2 aizyz + 6;'4.

The boundary conditions (b.c.) can be taken as
w= Aw = 0 at the lateral boundary (y = * A/2,
h being the width of the plate), this corresponding
to the simply supported case [4]. The b.c. at the clamp-
ed edges (along the short edges of the plate, denoted as
| 0 from now on) are w |, = w,|, = 0. The simply
supported b.c. make the problem easily manageable
and are nevertheless realistic. The b.c. for ¢ are [4]
¢on = (Ap)y, where the subscript N indicates diffe-
rentiation in the normal direction (which yields

¢, = ¢, = 0 along the long sides, and

... . Finally the square

Oulg= @3l =0

along the short sides).

For an infinitely long plate, the ¢ = w = 0 solution
of (1) (this is the homogeneous rest state) bifurcates
normally as A increases beyond A, = 4 b> where
b = n/h (h is the constant width of the plate), the
corresponding linear perturbation being

@ =0 and w= wysinaxcosby with a=5b.

The non linear Landau analysis of this bifurcation
is straightforward and gives, for A 2 1, solutions
of (1) with a small finite amplitude. The general method
for computing explicitly this sort of solution has been
outlined by Sorokin [6] for the Rayleigh-Bénard case
and need not be explained here.

The result of this weakly non linear analysis is,
near A= A,anda = b:

2
@ =~ % (cos 2 ax — cos 2 by) (2a)

. . 8
w = w, sin ax cos by with w§ ~ e (e —40% (2b)

where a = b+ 5, A=A, + ¢ 6 and & both being
small such that ¢ > 4 6>. Higher order terms are
neglected.
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To deduce ¢ from (1b), once w is known, one is free
to add to ¢ an arbitrary quantity proportional to y?.
This only amounts to changing the load A.

To find the possible wavenumbers for half infinite
solutions with a clamped short edge, one follows a
method very similar to that of the authors of refe-
rence [1], for their model (a).

An important remark is that (1) has a constant of
the motion with respect to the x-dependence of solu-
tions. One verifies by integrations by parts

h/2 1
j dy <wx[tp, Wl + 5 o.dw, w}> =
—h/2

af("
= a I:,‘. w2 dy wx((px Wy — @y wxy] (3)

whenever w = Aw =0 at y = + h/2.

Multiplying (1a) by w, and (1b) by ¢,, integrating
the result over y, and combining the result to make
the cubic term disappear via (3), one gets after a few
elementary manipulations

dK

dx
where K= K’ + K” is the sought-after invariant.
Here :

0

W2
K’ =§ dy(]ll[w]+/21wi—M[<p])
—hy2

2
K” — S
~h/2

the quadratic functional M being defined by

dy wx((py Wiy = @ wyy)

1 1
M[‘/’]E!//xwxxx_zlllgx_ chy+§lllfy
The computation of K for periodic solutions as .
given by (2) is straightforward and yields, for the
lowest relevant order :

2 1.2 4 54
, _wob wo b h
K' = 20— he — 16b8) + ~o (4a)
4b4
K= -2 (4b)

where, again,d = a — bande = 1 — A_.

Collecting together (4a) and (4b), and accounting
for w2 ~ 8 ¢/b* (we assume that the selected wave-
number a is such as § ~ ¢, as in reference [1], and as
verified a posteriori), one gets :

252
wob*h (¢
K~ 3 (5 16b5>. (%)

This allows one to fix one of the limits to the range of
possible wavenumbers for half infinite solutions
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limited by a clamped edge. Near this clamped edge,
theinvariant Kreduces to

h/2

K, =S
—h/2
From (6) and because ¢ is vanishingly small near
the clamped edge [7], K must be negative in the bulk

solution, and this implies, from (5), ¢/32b < 6.

The other limit to the wavenumbers for half infi-
nite solutions is obtained as explained in reference [1] :
one considers first the boundary layer joining the

periodic solution far from the clamped edge to this
edge. The corresponding form for the plate deviation

1
dy [— 2 W2 — o2, + 02) Ia]- (6)

is w ~ X(x) sin ax cos by, where the envelope func-

tion X varies slowly on the spatial scale # and where
higher order terms are neglected. This envelope X
is the solution of [8]

X3p?

X ——3

+4X,, =0. )

For this particular problem the solution that satisfies
the b.c. at the clamped edge (w = w, = Oatx = 0) is

()" )]

This gives forw, |;and @, |,

X =

X2
[(p ~ E(COSZ ax — cos2 by)]

2ae

wxxla =2 aXIIa cos by = 5

cos by
and
X2,
Qrxlyg = (1 — cos 2 by) =6 -

Once inserted into the expression of the invariant X
at the edge, one gets
K|y~ —¢&h.

As in reference [1], this yields the other limit for
the band of selected wavenumber. Once made equal
to the expression for K, given in (5), this gives

s>%2-b5.

NON LINEAR PATTERN SELECTION

L-3

All these considerations show that, near ¢ = 0, the
wavenumber of the buckling pattern is such that
a = b + d,with

€

3¢
TR

This is in agreement with the observation [4] that
this wavelength tend to decrease as the load increases.
Moreover, it may be readily shown by using results
and methods of reference [1] that the various bifur-
cations producing this decrease of the wavelength
follow the schema of reference [4]. As ¢ increases at
constant L, the buckling occurs first with a wave-
number (along x) close to the lower limit [in the (9, ¢)

3¢

5 Then
(as A increases) it remains constant up to the crossing
of the other limit; that is, at the line ¢ = 32 b 4.
On this line, the buckling pattern changes by sub-
critical bifurcations, and this is accompanied by
changes of symmetry for the overall solution, with
respect to the middle of the rectangular plate. Then,
as one smoothly increases the load, the x-wavenumber
should remain close to the line ¢ = 32 b 6. If, on the
contrary, the load decreases smoothly, this wave-
number should remain close to the lower limit

3266

3

Cartesian plane]; that is, of order b +

The above analysis can equally be done when the
long edges are clamped (y = + h/2), as are the short
ones. The solution must be numerical however, as it
implies transcendental equations.

Moreover, the present analysis shows how to get
the adiabatic invariant (and thus the range of acces-
sible wavenumbers) in cases more complicated than
the ones considered in reference [1]. In a forthcoming
publication we consider the case of the Taylor roll
instability between rotating concentric cylinders (this
is not spoiled by cross roll instabilities at the boun-
daries). In this last case the invariant can be computed
almost as in the present one, except that the non
linear advection term of the Navier-Stokes equation
must be treated as the non linear term of model (b)
of reference [1], since the invariant in this sort of
problem is not exact, but only an adiabatic invariant.
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