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We discuss several problems which were left in the previous paper on Non·Linear Realization in 
Supersymmetric Theories. The independence of invariant Lagrangians is discussed and the representation 
of fi is fully determined. 

§ 1. Introduction 

This paper complements our previous one entitled "Non-Linear Realization in 
Supersymmetric Theories"!) (hereafter referred to as I). First, let us makea brief review 
of 1. 

Consider N = 1 supersymmetric theories with a global internal symmetry group G 
spontaneously breaking down to its subgroup H. Let Veff ( ¢) be an effective potential, 
which depends on chiral superfield ¢ in p-representation of G. Define}; as 

}; = {¢o; ¢o is a minimal point of Veff ( ¢ )}, (1'1) 

then of course 

p( G)};=}; . (1· 2) 

The domain of the representation p can be extended from G to its complexification GC 

("analytic representation") and the following fact is proved; 

(1·3) 

Furthermore, symmetry group at the vacuum point is, in general, larger than H C
• Let ii 

be the symmetry group at the vacuum point ¢o, 

ii={g;p(g)¢o=¢o,gEGC
}, (1'4) 

which includes H C
, of course. In I, we showed that ii is semidirect product of H C and a 

nilpotent group R (generated by a nilpotent ideal) (ii-structure theorem), 

(1· 5) 

and presented explicitly all the candidates for ii in every classical group G. 
The Goldstone superfields ~ are chiral superfields and representatives of the coset 

space GC 
/ ii .1),2) They consist of what is called Goldstone bosons whose number is equal 

to dim G/H, quasi-Goldstone bosons and quasi-Goldstone fermions. The numbers of 
those quasi-Goldstone bosons NQ and fermions Nf are given by 

*) Fellow of the Japan Society for the Promotion of Science. 
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NQ=dim[GC/H]-dim[G/H]=dim[G/H]-dimR, 

N f =dim[Gc/H]/2. (1·6) 

Furthermore, N Q is equal to the number of M -type Goldstone superfields, while that of 
P-type ones is equal to dim R/2. The transformation law of ~ under G is given by 

hEH. (1·7) 

As to matter chiral superfield N in a po-representation of H, it is transformed under 
G as 

(1·8) 

The linear base ¢ is constructed by taking some representation p of GC whose restriction 
to H is Po, 

¢=p(~)N , (1·9) 

gEG 

¢~ ¢'=p(g)¢: (1·10) 

According to the transformation properties of ~ and N, we showed in I how to 
construct invariant Lagrangians for Goldstone and matter superfields. 

In this paper we prove the statements which were only given without proof in I. In 
§2 we clarify the representation dependence of B-type and C-type invariant Lagrangians. 
In §3 we discuss representation of H. We can show the structure of H when H is 
embedded into G in an unnatural way (for example, using higher representations). 

§ 2. Independence of invariant Lagrangians 

In I, we presented the following three types of G-invariant Lagrangians of Goldstone 
superfields: 
[A-type)1l.3l When there exists an analytic representation Po of GC whose restriction to H 
contains a trivial one, let e a be a base of the representation Po, 

po(H)ea=ea, 

then any function of the invariant ea t Po(~t ~)eb, 

[( ea t Po( ~t ~ )eb)]n , 

is a candidate for G-invariant Lagrangians. 
[B-type]4l Let TJi be projections (see (2·24) in 0, then 

[In det~/[p(~t ~)]]n 

is a candidate for Lagrangians, where p is any representation of G. 
[C-type] Define G-covariant projection Pi as 

which satisfies 

(2·1) 

(2·2) 

(2·3) 

(2·4) 
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P/=Pi, Tr Pi = const. (2·5) 

Then any function of non-trivial invariants Tr PiPj (i:f: j), Tr PiPjPk(i:f: j:f: k), etc., is a 
candidate for Lagrangian, 

(2·6) 

Here arises a question: Which of the invariants are independent in B- and C-type 
recipes? 

First, we show the following lemma which is necessary to answer the question. 
Lemma 7 Let 9 be a Lie algebra and {ga, a = 1, ... , r} be an arbitrary decomposition into 
its subspaces, 

r 

g= ~ga. (2·7) 
a=l 

Then, for any element X ofg, there exists such XiEg a ) that 

(2·8) 

Proof It is evident that any element A ( E g) can be written as 

A=~Aa, AaEga. (2·9) 
a 

In the following we denote the a-component of an element A as [AJa, i.e., 

(2·10) 

It is sufficient to prove the following: There exist such X a( t )E ga that 

(2·11) 

where t is a parameter. From (2·11), vye see 

(2·12) 

Thus 

(2,13) 

where L1(t) is a polynomial in XaU )'s higher than quadratic terms and of course an 
element of g. Hence the solutions of the equation, 

give our desired XaU), which can be obtained by iteration. Q.E.D.*> 

*> To be more precise, the proof is not sufficient unless the convergence ofthe iterated series of (2,13) is shown. 
See Ref. 7) for an exact proof in the particular case. However we think that the proof is enough for our practical 
use since the effective Lagrangian theory deals with ~ only in the form of asymptotic expansion. 
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2. 1. Independence in B-type recipe 

First, let us consider the case of pure realization. As was shown in I, gC is given by 

(2·15) 

We assume for the moment that 9 is a semi-simple algebra. In case when 9 contains U(1) 
algebras, we can make a similar discussion to a little care about U(1) part. Further f)c 

is decomposed into semi-simple and U(1) parts, 

(2·16) 

According to lemma 7, ~t ~(E GC
) can be written as 

(2·17) 

with 

(2·18) 

Noting that 

(2·19) 

we have 

In det"p(~t ~)=ln det"p(eRtt )+ In det"p(e Re
) 

+ In det"p (e HtS
.
S
.) + In det"p(eF.,cMJ81 ). (2·20) 

The first two terms on the r.h.s. are zero according to the nil potency of Re and Re t (see 
Theorem 7 in §3). The 7J-projected subspaces of p-representation are invariant under f)g.s. 
and any representation of semi-simple Lie algebras is traceless. Hence the third term is 
also zero. So (2·20) gives the following, 

(2·21) 

where ai's are some constants. Thus the number of independent invariants is equal to 
that of U(1) factors of H.*J For a classical group G, we can get all the independent 
Ci(~, ~t)'s with only the fundamental representation Pf and its associated 7Ji's. 

Next let us consider other (non-pure) cases. Recall the following transformation 
law, 

9EG _ 

In: det,,[P(~t ~)] ---+ In det,,[p(~t ~)]+ In det,,[p( h-l(~, g»] 

+In det,,[P(h-It(~, g»]' (2·22) 

Similar discussion tells us that 

(2·23) 

where r is equal to the number of U(1) factors contained in H. If we pick up r pieces 

*J When G contains U(l) factors, this number is equal to the difference between the number of U(l) factors 
of H and that of G. 
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of independent B-type Lagrangians charactered by Pi and TJi U=l, "', r), we have the 
following G-invariant quantity with some appropriate constants bi, 

(2-24) 

Hence L1 is given by A-type or C-type recipes. For a classical group G, it is sufficient to 
adopt the fundamental representation Pf and the associated projections for Pi and TJi. 

2. 2. Independence in C-type recipe 

Here let us restrict our discussion to classical groups. It is evident that A or C-type 
invariants are no other than functions of (.;t ';)ab. Consider the following transformation 
law, 

(2-25) 

. Thus the factor fi -1 (.;, g) (or fi -1 t (.;, g» can be cancelled only in the following three 
cases: 

i) There exists such TJ j as 

(2-26) 

ii) We can construct such a "composite" vector from'; as supplies the [TJjfi-1TJj]-1-factor 
after being transformed under G; 

iii) TJi.;t ';TJJ is contracted with [TJj.;t ';TJJ]-l as (TJi.;t ';TJJ)[TJJ.;t ';TJJ-1 . 

The first two cases correspond to the A-type recipe. The last case tells that only 
fundamental representation is adequate to the C-type recipe.*) 

2.3. Absence of A- and C-type invariants in pure realization 

If projections TJi and TJJ satisfy the relation, 

TJiTJJ = TJi , 

then a similar relation holds for Pi and PJ; 

PiPj=P(';)TJi(P(.;t ,;)]q}TJiP(.;t ';)TJJ(P(.;t ';)];;1JJP(.;t) 

=P(';)TJi(P(.;t ';)];lTJiTJJP(.;t ';)TJJ(P(.;t ';)];}T}JP(.;t) 

=P(';)TJi(P(.;t ';)];i1TJiTJJP(.;t )=Pi . 

(2-27) 

(2-28) 

In the case of pure realization, it can be shown that if P is an irreducible representation 
·of G, any pair of TJi and TJJ satisfy (2-27).**) Hence there exists such Pi among any set 
of G-covariant projections that 

Tr pi,pi .. ··Pir=Tr P;=(const). (2-29) 

Thus there exist no C-type invariants. 

*) Also it is possible to construct invariant Lagi"angians according to the hyb~id recipe of A· and C·types. 
**) For a classical group G it is enough to take fundamental representations Pf among p. Hence it becomes 

evident that the corresponding projections satisfy (2·27), if one writes down their explicit form according to the 
recipe explained in 1. 
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As to A-type invariants, there exists, in general, a representation P of CC whose 
restriction on· Ii contains a one-dimensional representation. In pure realization case, 
however, it can be shown that the one-dimensional representation becomes a trivial one of 
Ii if and only if P itself is triviaP) Thus there exist no A-type invariants. 

§ 3. Ii -representaion theorem 

We have clarified the structure of Ii in I mainly for the case when Ii is naturally 
embedded in Cc. Even if we pick up some groups C and H, however, there are various 
ways in practice to embed H in C. For example, Hcan be embedded in a higher 
representation, or even in a reducible representation. Here we present the following 
theorem about representation of Ii. 
THEOREM 8 For any irreducible representation (p, V) of C, the restriction of p on Ii 
can be always expressed in the following form by taking appropriate basis, 

(3·1) 

where the notation * indicates non-zero matrix elements. 
Proof C can be assumed to be a compact semi-simple group. Let No be such a subspace 
of V that 

N o= {e; p(r)e=O ,eE V}. (3·2) 

According to Lie's theorem,6) there exists one-dimensional representation of any nilpotent 
algebra, and we showed in I that the eigenvalue is zero in this case (Statement 3 in 
Appendix A). So non-trivial No does necessarily exist. Since 

(3·3) 

then 

(3·4) 

Thus we can naturally define a representation (PI, Vi= V/No) of~ from the representation 
p. We can make a similar discussion to (PI, Vr> and have the representation (P2, V2 
= VI/NI= V/NI) of ~. In this way we get the following sequence, 

(3·5) 

The basis of Ni+l is given by adding such vectors to that of Ni that they are orthogonal 
to the basis of Ni • Q.E.D. 
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